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Multifractal analysis of DNA walks and trails
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The characterization of the long-range order and fractal properties of DNA sequences has proved a difficult
though rewarding task mainly due to the mosaic character of DNA consisting of many interwoven patches of
various lengths with different nucleotide constitutions. We apply here a recently proposed generalization of the
detrended fluctuation analysis method to show that the DNA walk construction, in which the DNA sequence is
viewed as a time series, exhibits a monofractal structure regardless of the existence of local trends in the series.
In addition, we point out that the monofractal structure of the DNA walks carries over to an apparently
alternative graphical construction given by the projection of the DNA walk into thed spatial coordinates,
termed DNA trails. In particular, we calculate the fractal dimensionDt of the DNA trails using a well-known
result of fractal theory linkingDt to the Hurst exponentH of the corresponding DNA walk. Comparison with
estimates obtained by the standard box-counting method allows the evaluation of both finite-length and local
trends effects.
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I. INTRODUCTION

The search for patterns in nature and their interpreta
in terms of general principles is one of the main purposes
science. The explosive accumulation of DNA sequence d
in the last two decades has provided a rich source of
material that hides valuable hints about the evolution
mechanisms of the genome organization. Unveiling the p
terns in those sequences has become an exciting challen
the present generation of statistical physicists and infor
tion scientists. In that vein, a truly remarkable result was
finding that intron-containing DNA coding regions exhib
long-range power-law correlations extending across m
than 104 nucleotides, whereas intron-less coding regions d
play only short-range correlations@1,2#.

Characterizing the long-range correlations in DNA s
quences is a highly nontrivial task because of the mos
structure of DNA consisting of patches with different nuc
otide composition@3#. In fact, in order to use the standa
techniques~e.g., power spectrum andR/S fluctuation analy-
sis! to study the correlations of DNA sequences, it is nec
sary first to eliminate the local biases in nucleotide com
sition ~trends!, thus avoiding spurious effects due to th
mosaic character of the sequence. In the context of time
ries or records, there are two main techniques to elimin
these trends, namely, the detrended fluctuation ana
~DFA! @2# and the wavelet transform~WT! @4#. The former is
a physically appealingad hoctechnique of easy implemen
tation and the latter is a mathematically well-establish
transform used to study the regularity of arbitrary functio
via the systematic elimination of local polynomial behavi
Both techniques can be readily applied to the analysis
ordered linear sequences, such as DNA, by considering
reading direction as the time axis~see, e.g., Refs.@2,5# for
the DFA and Refs.@6,7# for the WT analyses of DNA se
quences!.

A common strategy to represent graphically a given DN
sequence consists of transforming it into ad-dimensional
random walk, so-called DNA walk, by associating a spa
1063-651X/2002/66~6!/061906~6!/$20.00 66 0619
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direction to each nucleotide (A,C,T,G) or class of nucle-
otides~e.g., purine and pyrimidine! and the time direction to
the reading direction of the sequence@1#. Here,A, C, T, and
G are the bases adenine, cytosine, thymine, and guan
respectively. In particular, a very popular representation
the one-dimensional walk, in which a purine (A or G) at
position i is associated to one step down (yi521) while a
pyrimidine (T or C) is associated to one step up (yi51). We
note that the purine-pyrimidine classification is related to
hydrophobic-hydrophilic characteristics of the encod
amino acids. Of course, there are many alternative D
walks and the most complete one that considers the
bases equivalently in base space is the three-dimensi
DNA walk @8#, in the sense that its projections on appropria
axes or planes recover all possible one- and two-dimensi
walks.

For the sake of concreteness, in this section, we will fo
on the fluctuations of the cumulative variable of the purin
pyrimidine random walk only, defined as

s~n!5(
i 51

n

yi n51, . . . ,N, ~1!

whereN is the length of the sequence. This variable is d
played in Fig. 1 for the intron-rich humanb-globin region
~GenBank name HUMHBB!, for whichN573 326 as well as
for a shuffled sequence with same length and nucleo
composition. The statistical quantity that characterizes
fluctuations ofs(n) is the root mean square fluctuationF2( l )
defined as

F2~ l !5$@Ds~ l !#22@Ds~ l !#2%1/2, ~2!

whereDs( l )5s(n1 l )2s(n) and the bars indicate an ave
age over all positionsn in the record. We expectF( l ) to
increase with increasingl, the length of the window consid
ered. Explicitly, in the case of stationary series, the fluct
tions are described by a power law
©2002 The American Physical Society06-1
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F2~ l !; l H, ~3!

where the scaling exponent~Hurst exponent! H equals 1/2 in
the case of random and short-ranged correlated seque
Any value different from 1/2 is the evidence of the existen
of long-range correlations in the sequence@9–11#. In addi-
tion, for self-affine records~e.g., DNA walks!, there is a
simple relation betweenH and thelocal fractal dimension of
the record,Dr522H. We note that the power-law behavio
implies that there is no characteristic length scale, i.e., v
large fluctuations are likely due to the same mechanism
smaller ones.

Complex records are unlikely to be fully characterized
a single scaling exponent as evidenced by the case, wher
scaling behavior is different in distinct parts of the series
that H is actually dependent on the part of the record be
analyzed. A complete framework to describe the situati
where a multitude of scaling exponents is required is p
vided by the multifractal formalism@11,12# and, in this
sense, the multifractal spectrum may be viewed as the
mate tool to characterize a stationary time series. Howe
the direct calculation ofF2( l ) using Eq.~2! or the applica-
tion of the standard multifractal formalism yields wrong r
sults for nonstationary time series that are affected by lo
trends. In this contribution, we apply a generalization of
DFA recently proposed by Kantelhardtet al. for the charac-
terization of nonstationary time series to study the multifr
tal properties of DNA walks@13#. In agreement with a pre
vious multifractality analysis based on the wavelet transfo
modulus maxima~WTMM ! method @6#, we find that the
DNA walks exhibit a simple monofractal scaling behavio
The multifractality analysis of one-dimensional DNA walk
is the subject of Sec. II.

A seemingly alternative graphical representation of DN
sequences that has received less attention and so less
cism than the aforementioned DNA walks is the so-cal
DNA pseudo-random-walks@14–18#. They are simply the
projection of the DNA walks into theird spatial components
i.e., thetrails of the DNA walks. Of course, drawing thes

FIG. 1. Purine-pyrimidine random walk plot of the huma
b-globin region~black line! and a shuffled sequence of the sam
nucleotide composition~gray line!.
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trails makes sense ford>2 only, and Fig. 2 illustrates such
trail for a d52 representation of the HUMHBB sequenc
where right, left, up, and down steps correspond to the p
ence of nucleotidesT, A, G, andC, respectively. This repre
sentation preserves some basic symmetries of the DNA s
as complementarity, reflection, substitution, and compati
ity @15#.

Despite the clear visual evidence of local trends in
trails exhibited in Fig. 2, it has been a common practice
apply standard fractal and multifractal methods~e.g., box
counting @9# and sandbox@19#! to characterize their shape
without much concern about the mosaic structure of the
derlying DNA sequence. Actually, the efforts focused on t
understanding of the disturbing effects of the finite length
the sequences on the estimate of the fractal dimensionDt as
well as on the multifractal characterization of the trail. F
instance, although it is well known that in two dimension
an infinite-length true random walk~i.e., a sequence of base
generated at random! is space filling and soDt52, the box-
counting and sandbox methods yield estimates significa
lower than 2 even for walks as large as 105 steps@15#. More-
over, finite-length random walks exhibit an effective mul
fractal spectrum mainly due to crossover effects between
usually distinct bulk and surface properties of the trail@16#.
These caveats, however, have not prevented claims that
tively short ~typically 23104 bp) mitochondrial DNA ge-
nomes have a definite multifractal structure@18#. In Sec. III
of this contribution, we invoke a classical result of fract
theory to link the Hurst exponent of the DNA walk to th
fractal dimension of the corresponding trail in space~see,
e.g., Refs.@9,10#! then arguing in favor of the monofractalit
of DNA trails too.

II. DNA WALKS

Consider a record, such as that given in Eq.~1!, where the
variablesyi are not necessarily Ising variables but must fo
a compact support, i.e.,yi50 for a very small fraction of the

FIG. 2. Trail of the humanb-globin region~black line! and a
shuffled sequence of the same nucleotide composition~gray line!
using the two-dimensional representationT (xi51), A (xi521),
G (yi51), andC (yi521).
6-2
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elements only. The generalized multifractal DFA~MF-DFA!
involves the following steps~we refer the reader to Ref.@13#
for a thorough presentation of the method!. First, divide the
entire sequence intoNl5 int(N/ l ) nonoverlapping segment
of lengthl. Second, for each segmentn51, . . . ,Nl of length
l, calculate the local trend by a least-square fit of the rec
in the segment, and denote bysn(n) the fitting polynomial in
segmentn. Then evaluate the variance

F2~ l ,n!5
1

l (
n51

l

$s@~n21!l 1n#2sn~n!%2 ~4!

for each segment. An important parameter is the ordem
50,1,2, . . . of thepolynomialsn(n) used in the fitting pro-
cedure. The choices ofm correspond to different orders o
DFA, denoted by DFAm, which differ in their capability of
eliminating trends in the series. For instance, DFA0 c
eliminate only constant trends in the series, DFA1 elimina
constant as well as linear trends, and so on, so that a c
parison of the results for different orders of DFA yields i
formation on the type of trend in the series. Third, determ
the orderq fluctuation function averaging over all segmen

Fq~ l !5H 1

Nl
(
n51

Nl

@F2~ l ,n!#q/2J 1/q

, ~5!

where, in general, the index variableq takes on any rea
value, except zero. As the final step, analyze log-log plots
Fq( l ) versusl for each value ofq in order to determine the
scaling behavior of the fluctuation functions. For large valu
of l, we expect these functions to increase with increasinl
as a power law

Fq~ l !; l h(q). ~6!

Clearly, forq52, one hash(2)5H by construction, and in
the case that the scaling behavior ofF2( l ,n) is identical for
all segmentsn, i.e., the record is a monofractal, the expone
h(q) is independent ofq as expected. The definition~5! is
well suited to detect discrepancies in the scaling behavio
the large and small fluctuations. In particular, for positiveq,
h(q) yields the scaling behavior of the segments with la
fluctuations while for negativeq, h(q) yields the scaling of
the segments with small variances. In addition, there i
simple relation betweenh(q) and the scaling exponentst(q)
defined by the standard partition function-based multifrac
formalism @13#,

t~q!5qh~q!21. ~7!

The importance of this relation is that it allows comparis
of the results obtained in the MF-DFA scheme with those
the standard multifractal analysis in the case of station
series, and with those of the WTMM in the case of nons
tionary series.

In Fig. 3, we show the multifractal spectrumt(q) ob-
tained by the application of different orders of the MF-DF
method to the intron-rich HUMHBB sequence. The resu
for orders larger than five are indistinguishable in the scale
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the figure, so the data form55 (n) yields the trendless
spectrum. Analysis of this figure gives valuable informati
on the nature of the correlations of the DNA walk. In pa
ticular, the linearity of the trendless spectrum indicates t
the records(n) depicted in Fig. 1 is monofractal. Actually
this conclusion is not affected by the presence of trends
the series, since theq dependence oft(q) is linear regardless
of the value ofm. However, the value of the scaling expone
H5h(q);q, given by the slope of the straight lines that
the data, is sensitive to local trends. For example, we fi
H50.7260.02 for m50, H50.6860.02 for m51, andH
50.6060.02 form55. As expected,H50.5060.02 for the
shuffled sequence. All these numerical values are in per
agreement with the values obtained using the WTM
method@6#. Since the trendless scaling exponent is defi
tively different from 1/2, we can conclude for the existen
of long-range correlations in this particular intron-containi
sequence. The long-range correlation induced by the lo
trends is reflected in the larger value of the scaling expon
calculated with the MF-DFA0, which overestimates t
value of H in about 20%. It is interesting to note that th
trends influencing the large fluctuations (q.0) are practi-
cally unaffected by the application of DFA1.

The results of the application of the MF-DFA method
the characterization of a sequence composed predomina
of coding regions is summarized in Fig. 4. The seque
considered is a portion of theE. coli K12 genome~GenBank
name ECO110K!, for which N5111 401. We findH50.60
60.02 form50 andH50.5160.02 form>1 as well as for
the shuffled sequence. As before, the monofractal structur
the record is confirmed by the linearity of thet(q) spectrum.
Moreover, failure to eliminate the local trends leads to
wrong conclusion about the existence of long-range corr
tions in this DNA walk, as evidenced by the overestimate
H that results from the application of MF-DFA0. The loc
trends in this sequence seem to have a particularly sim
linear nature since application of MF-DFA1 is sufficient
eliminate them altogether.

FIG. 3. Multifractal spectrumt(q) vs q for the DNA walk of the
intron-rich HUMHBB sequence depicted in Fig. 1. The data cor
spond to different orders of DFA,m50 ~s!, 1 ~,!, 3 ~3!, and
5 ~n!. The symbol1 corresponds to the data for the shuffled s
quence.
6-3
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To conclude this section, we note that we have conside
several alternative one-dimensional representations, suc
the strong-weak bond classification, whereC or G are asso-
ciated to one step up (yi51) andA or T to one step down
(yi521). All the alternative schemes analyzed have p
duced within the numerical precision exactly the same ex
nents of the purine-pyrimidine classification. Our resu
could also be obtained within the WTMM framework and,
fact, the wavelet analysis of the HUMHBB sequence can
found in Ref.@6#. The aim of this section was to give add
tional support to the claim of Kantelhardtet al. that, despite
the operational and conceptual simplicity of the MF-DF
method, it yields results that are identical to those derived
the sophisticated WTMM method@13#. For instance, this
easiness of implementation has allowed us to study hig
dimensional DNA walks, an awkward task to be carried o
using the WTMM method, for several representations p
posed in the literature~see, e.g. Refs.@8,15,17,18#!. As we
will show in the sequel, the results were essentially the sa
as those reported here for the one-dimensional DNA wa

III. DNA TRAILS

As pointed out before, a DNA trail is the projection of
two-dimensional DNA walk into the space plane. Figure
shows the time record of the walk that gives rise to the t
illustrated in Fig. 2 for the HUMHBB sequence. We begin
noting that the generalization of the MF-DFA method to tw
or higher-dimensional records is straightforward as o
needs only to change the basic Eq.~4!, which is rewritten as

F̂2~ l ,n!5
1

l (
n51

l

$s@~n21!l 1n#2sn~n!%2, ~8!

wheres(n)5x(n) i1y(n) j and similarly for the fitting poly-
nomial vectorsn . Over an interval ofl steps, the position
vector in the trail will vary by typicallyudr u'F2( l )5 l H

while the ‘‘mass’’ M of the trail, i.e., the number of point
generated by these steps isM; l , provided the contribution

FIG. 4. Same as Fig. 3 but for the DNA walk of theE. coli
chromosomal sequence ECO110K composed primarily of cod
regions.
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of overlapping points is negligible. HenceM;udr u1/H, from
where one concludes thatDt51/H. This relation is valid
only if 1/H,d, whered is the space dimension. When 1/H
.d, overlap cannot be neglected and soDt5d ~see Refs.
@9,10# for mathematical and pictorial details of this arg
ment!. Thus, knowledge of the Hurst exponentH for the
d-dimensional DNA walks determines uniquely the frac
dimension of the DNA trail. Calculation ofH or, more gen-
erally, of h(q) follows the same procedure sketched befo
for the one-dimensional case, except that the variance g
in Eq. ~4! is now replaced byF̂2.

Application of the MF-DFA method to two-dimensiona
DNA walks representing the HUMHBB~see Fig. 5! and the
ECO110K sequences yields, within the numerical precisi
the same results as for the one-dimensional case. Actuall
far as the value of the Hurst exponentH is concerned, this
agreement is expected since using Eqs.~8! and ~5! for q
52, we have simplyF2; l Hx1 l Hy, whereHx andHy are the
scaling exponents of the one-dimensional DNA walks in
plane (n,x) and (n,y). Hence for largel, one hasH
5max(Hx ,Hy). In Table I, we present the estimate of th
fractal dimensionDt of the HUMHBB and ECO110K trails,
as well as of a random trail characterized by the same len
and base frequency as the ECO110K sequence. The erro
the estimates ofDt are statistical errors. For the box-countin
method, the systematic errors are probably much larger t
those shown in Table I, due mainly to finite-length effec
@16#.

g

FIG. 5. Two-dimensional DNA-walk representation of th
HUMHBB sequence whose projection into the space plane yie
the trail of Fig. 2.

TABLE I. Estimates of the fractal dimensionDt of two-
dimensional trails. The MF-DFAm estimates are based on the fo
mula Dt51/H, whereH is the Hurst exponent of the record~e.g.,
Fig. 5!. The box-counting method is applied directly to the tra
~e.g., Fig. 2!.

Sequence N MF-DFA5 MF-DFA0 Box counting

HUMHBB 73 326 1.6760.06 1.3960.04 1.4060.01
ECO110K 111 401 1.9660.08 1.6760.06 1.3860.01
Random 111 401 2.0060.08 2.0060.08 1.4560.01
6-4
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Interestingly, although theDt estimates of the MF-DFAm
method are based on the analysis of finite-length records,
has practically no effect on the results, as evidenced by
correct calculation ofDt for the random sequence, a te
which the box-counting method clearly fails. Moreove
these data corroborate the intuition, stemming from the
sual inspection of Fig. 2, that the effect of the local trends
to decrease the fractal dimension of the trail. The excel
agreement between the box-counting estimate, which
affected by both local trends and finite-length effects, and
MF-DFA0 estimate, which is affected by local trends on
indicates that the surface effect is negligible for t
HUMHBB sequence. In fact, this is expected since the b
counting method is very reliable to calculate the fractal
mensions of structures that do indeed exhibit fractality, p
dictably failing in the case of space-filling structures. T
results for the ECO110K sequence illustrate the bad per
mance of box counting when the two sources of system
errors are present. The aforementioned agreement betw
the box-counting and the MF-DFA0 methods demonstra
inequivocally that the spurious effects of local trends must
filtered out for a correct account of the fractal or multifrac
properties of DNA trails, a procedure that has been igno
in all previous analyses presented in the literature@8,14–18#.

Since the MF-DFA analysis has indicated that even
higher-dimensional DNA walks are monofractals, one co
cludes that the varianceF̂2( l ,n) defined in Eq.~8! is the
same for all segmentsn of the record. As a result, the varia
tion of the position vectorudr u in the trail will be indepen-
dent of the segmentn and so the trail must have a mon
fractal structure too. This conclusion seems at odds w
those of multifractal analyses based on the sandbox and
counting methods@16–18#. However, we note that the origi
nal claim of Ref.@16# was that finite-length DNA trails, as
well as randomly generated trails, are characterized byeffec-
tive multifractal spectra. Clearly, these spectra are artifact
the sandbox and box-counting methods, which cannot d
adequately with the surface effects. The unjustified dropp
of the adjective ‘‘effective’’@17,18# led then to the apparen
disagreement between the two approaches. These effe
multifractal spectra might indeed be an useful tool for co
paring random or biological sequences of similar leng
@17#, especially if one manages to free them from the lo
trends effects.

IV. CONCLUSION

The main purpose of this contribution was to point o
that the statistical properties of two apparently distinct a
pictorially appealing representations of DNA sequenc
namely, DNA walks~Figs. 1 and 5! and DNA trails~Fig. 2!
are in fact closely related. In particular, we argued that
i-
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patchiness of the DNA sequences, which has greatly h
dered the characterization of the long-range correlations
DNA walks @2,3# also plagues the fractal and multifract
analyses of the DNA trails, a fact that has been largely ov
looked in previous investigations@16–18#. Using the re-
cently proposed multifractal detrended fluctuation analy
~MF-DFA! method @13# to filter the local trends of DNA
walks in d51 and 2 dimensions, we were able to show th
these walks are monofractals. This conclusion holds true
the nondetrended walks as well, since the multifractal sp
trum t(q) is linear regardless of the orderm>0 of the fitting
polynomials used to eliminate the local trends~Figs. 3 and
4!. More importantly, the independence of the varian
F2( l ,n) @see Eqs.~4! and~8!# on the segmentn of the DNA
walk carries over to the DNA trail, which is thus monofract
too. In particular, the fractal dimension of the trail isDt
51/H, whereH is the Hurst exponent of the record@9,10#.
In the case 1/H.d, as for the one-dimensional walks, on
hasDt5d. Although we have presented data for the HUM
HBB and the ECO110K sequences only, which probably a
respectively, the most popular examples of intron-rich a
intron-poor sequences, we have verified that our main res
hold true for many other sequences in the GenBank.

Once one has discarded the simple local variations
nucleotide composition along DNA sequences as the ca
of the long-range correlations observed in intron-rich
quences~though these variationsdo cause the spurious long
range correlations in intron-poor sequences!, it is natural to
ask then what are the sources for these correlations, wh
as shown above, are also responsible for the nontrivial~frac-
tal! geometry of the DNA trails. The answer is that neith
the internal structure of patches nor their order in the
quence are relevant: it is the power-law distribution of pa
lengths that determines the true long-range correlations@5#.
This as well as several other findings concerning the sta
tical properties of DNA sequences have prompted the p
posal of minimal evolutionary models, based on biologica
motivated mechanisms, to account for those features~see,
e.g., Refs.@20–22#!. In fact, rather than providing measure
to characterize or distinguish classes of sequences, we t
that the thrust of the research on large-scale statistical p
erties of genomes is to provide quantitative standards
modeling the inherently stochastic process of molecular e
lution @23#, bearing thus on fundamental issues such as
origin of life and the evolution of complexity@24#.
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