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Multifractal analysis of DNA walks and trails
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The characterization of the long-range order and fractal properties of DNA sequences has proved a difficult
though rewarding task mainly due to the mosaic character of DNA consisting of many interwoven patches of
various lengths with different nucleotide constitutions. We apply here a recently proposed generalization of the
detrended fluctuation analysis method to show that the DNA walk construction, in which the DNA sequence is
viewed as a time series, exhibits a monofractal structure regardless of the existence of local trends in the series.
In addition, we point out that the monofractal structure of the DNA walks carries over to an apparently
alternative graphical construction given by the projection of the DNA walk intodtispatial coordinates,
termed DNA trails. In particular, we calculate the fractal dimendigrof the DNA trails using a well-known
result of fractal theory linkindD, to the Hurst exponertt of the corresponding DNA walk. Comparison with
estimates obtained by the standard box-counting method allows the evaluation of both finite-length and local
trends effects.
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[. INTRODUCTION direction to each nucleotideA(C,T,G) or class of nucle-
otides(e.g., purine and pyrimidineand the time direction to
The search for patterns in nature and their interpretatiothe reading direction of the sequeridd. Here, A, C, T, and
in terms of general principles is one of the main purposes ofs are the bases adenine, cytosine, thymine, and guanine,
science. The explosive accumulation of DNA sequence datéespectively. In particular, a very popular representation is
in the last two decades has provided a rich source of rathe one-dimensional walk, in which a puriné (or G) at
material that hides valuable hints about the evolutionaryositioni is associated to one step dowy} £ —1) while a
mechanisms of the genome organization. Unveiling the patRyrimidine (T or C) is associated to one step up€1). We
terns in those sequences has become an exciting challengeitete that the purine-pyrimidine classification is related to the
the present generation of statistical physicists and informahydrophobic-hydrophilic - characteristics of the encoded
tion scientists. In that vein, a truly remarkable result was theémino acids. Of course, there are many alternative DNA
finding that intron-containing DNA coding regions exhibit Walks and the most complete one that considers the four
long-range power-law correlations extending across mor&ases equivalently in base space is the three-dimensional
than 10 nucleotides, whereas intron-less coding regions disDNA walk [8], in the sense that its projections on appropriate
play only short-range correlatio$,?]. axes or planes recover all possible one- and two-dimensional
Characterizing the long-range correlations in DNA se-walks.
quences is a highly nontrivial task because of the mosaic For the sake of concreteness, in this section, we will focus
structure of DNA Consisting of patches with different nucle-0n the fluctuations of the cumulative variable of the purine-
otide compositior3]. In fact, in order to use the standard Pyrimidine random walk only, defined as
techniquege.g., power spectrum ari@/'S fluctuation analy-
sig) to study the correlations of DNA sequences, it is neces- "
sary first to eliminate the local biases in nucleotide compo- S(”)?Zl yi n=1,...N, (1)
sition (trendg, thus avoiding spurious effects due to the o
mosaic character of the sequence. In the context of time se- . . . L
ries or records, there are two main techniques to eIiminat?éVhereN IS t.he length of _the sequence. This va.r|ab|e.|s dis-
these trends, namely, the detrended fluctuation analys layed in Fig. 1 for the mtron-nc_h humag-globin region
(DFA) [2] and the wavelet transforWT) [4]. The former is GenBank name HUMHBR fpr whichN=73 326 as well as .
a physically appealingd hoctechnique of easy implemen- for a shgfﬂed sequence with same length and ngcleoude
tation and the latter is a mathematically well-establishe ompos_ltlon. The _statlstlcal quantity that charact_erlzes the
transform used to study the regularity of arbitrary functions'Uctuations ofs(n) is the root mean square fluctuatibp(l)
via the systematic elimination of local polynomial behavior, 9€finéd as
Both techniques can be readily applied to the analysis of
ordered linear sequences, such as DNA, by considering the Fa()={[As()]*~[As(])]?}*?, 2
reading direction as the time axisee, e.g., Ref42,5] for
the DFA and Refs[6,7] for the WT analyses of DNA se- whereAs(l)=s(n+1)—s(n) and the bars indicate an aver-
qguences age over all positions in the record. We expedt(l) to
A common strategy to represent graphically a given DNAincrease with increasing the length of the window consid-
sequence consists of transforming it intodadimensional ered. Explicitly, in the case of stationary series, the fluctua-
random walk, so-called DNA walk, by associating a spaceions are described by a power law
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FIG. 1. Purine-pyrimidine random walk plot of the human  F|G, 2. Trail of the humarB-globin region(black line and a
B-globin region(black ling and a shuffled sequence of the same gpffleq sequence of the same nucleotide compositicay lin®

nucleotide compositiofgray ling. using the two-dimensional representatibrix;=1), A (x;=—1),

G (yi=1), andC (y;=—1).

Fa()~1", )

trails makes sense fak=2 only, and Fig. 2 illustrates such a
where the scaling exponeftiurst exponentH equals 1/2 in trail for_a d=2 representation of the HUMHBB sequence,
the case of random and short-ranged correlated sequenc¥d1ere right, left, up, and down steps correspond to the pres-
Any value different from 1/2 is the evidence of the existence®NC€ Of nucleotides, A, G, andC, respectively. This repre-
of long-range correlations in the sequeri®e-11. In addi-  Sentation preserves some basic symmetries of the DNA such
tion, for self-affine recordge.g., DNA walks, there is a S complementarity, reflection, substitution, and compatibil-
simple relation betweeH and thelocal fractal dimension of 'Y [15] i ) ) )
the recordD,=2—H. We note that the power-law behavior ~ Despite the clear visual evidence of local trends in the
implies that there is no characteristic length scale, i.e., veryf@ils exhibited in Fig. 2, it has been a common practice to

large fluctuations are likely due to the same mechanisms &PPIY standard fractal and multifractal methosg., box
smaller ones. counting[9] and sandbox19]) to characterize their shapes

Complex records are unlikely to be fully characterized bywithout much concern about the mosaic structure of the un-

a single scaling exponent as evidenced by the case, where tH8"Ying DNA sequence. Actually, the efforts focused on the

scaling behavior is different in distinct parts of the series sg'nderstanding of the disturbing effects of the finite length of

thatH is actually dependent on the part of the record beingh€ Sequences on the estimate of the fractal dimerisjcas

analyzed. A complete framework to describe the situationyve” as on the muIt_lfr_actaI characterlzatl_on of th_e trall._ For

where a multitude of scaling exponents is required is proinstance, although it is well known that in two dimensions,

vided by the multifractal formalisn{11,12 and, in this @n infinite-length trug random Wa[ke., a sequence of bases

sense, the multifractal spectrum may be viewed as the ultigenerated at randone space filling and s®,=2, the box-

mate tool to characterize a stationary time series. Howevefounting and sandbox methods yield estimates significantly

the direct calculation oF (1) using Eq.(2) or the applica- ower than 2 even for walks as large 6}§ Beps[15]. More-

tion of the standard multifractal formalism yields wrong re- OVer, finite-length random walks exhibit an effective multi-

sults for nonstationary time series that are affected by locdfactal spectrum mainly due to crossover effects between the

trends. In this contribution, we apply a generalization of theusually distinct bulk and surface properties of the tfaB).

DFA recently proposed by Kantelharett al. for the charac- These caveats,'however, have not preventeq claims that rela-

terization of nonstationary time series to study the multifracfively short (typically 2 10‘? bp) mitochondrial DNA ge-

tal properties of DNA walk§13]. In agreement with a pre- nomes have_a d_eflmte rr_lultlfractal struc_tlﬁﬂﬁ]. In Sec. Il

vious multifractality analysis based on the wavelet transfornPf this contribution, we invoke a classical result of fractal

modulus maxima(WTMM) method [6], we find that the theory to link @he Hurst exponent of.the DNA walk to the

DNA walks exhibit a simple monofractal scaling behavior. fractal dimension of the corresponding trail in spasee,

The multifractality analysis of one-dimensional DNA walks €-9-» Refs[9,10) then arguing in favor of the monofractality

is the subject of Sec. II. of DNA trails too.
A seemingly alternative graphical representation of DNA

sequences that has received less attention and so less criti-

cism than the aforementioned DNA walks is the so-called

DNA pseudo-random-walk§l4—-18. They are simply the Consider a record, such as that given in 8, where the

projection of the DNA walks into theid spatial components, variablesy; are not necessarily Ising variables but must form

i.e., thetrails of the DNA walks. Of course, drawing these a compact support, i.ey;=0 for a very small fraction of the

Il. DNA WALKS
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elements only. The generalized multifractal DBMF-DFA) T " T " T " T " T
involves the following stepéwe refer the reader to Rgf13] )
for a thorough presentation of the methoHBirst, divide the
entire sequence intl,=int(N/I) nonoverlapping segments
of lengthl. Second, for each segment1, ... N, of length

[, calculate the local trend by a least-square fit of the record
in the segment, and denote §)(n) the fitting polynomial in
segmenty. Then evaluate the variance
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for each segment. An important parameter is the order
=0,1,2 ... of thepolynomials,(n) used in the fitting pro- .
cedure. The choices of correspond to different orders of q
DFA, denoted by DFfn, which differ in their capability of
eliminating trends in the series. For instance, DFAO can FIG. 3. Multifractal spectrum(q) vsq for the DNA walk of the
eliminate only constant trends in the series, DFA1 eliminatedtron-rich HUMHBB sequence depicted in Fig. 1. The data corre-
constant as well as linear trends, and so on, so that a coriPond to different orders of DFAn=0 (O), 1 (V), 3 (x), and
parison of the results for different orders of DFA yields in- > (&)- The symbol+ corresponds to the data for the shuffled se-
formation on the type of trend in the series. Third, determinel€nce-
the orderq fluctuation function averaging over all segments, the figure, so the data fan=5 (A) yields the trendless
N, 1 spectrum. Analysis of this fig_ure gives valuable information
_ ) a2 on the nature of the correlations of the DNA walk. In par-
Fa(h= ﬁl Vzl [F=(l,v)] ' (5) ticular, the linearity of the trendless spectrum indicates that
the records(n) depicted in Fig. 1 is monofractal. Actually,
this conclusion is not affected by the presence of trends in
the series, since thpdependence of(q) is linear regardless
of the value ofm. However, the value of the scaling exponent
=h(q)Vq, given by the slope of the straight lines that fit
he data, is sensitive to local trends. For example, we find
H=0.72+0.02 form=0, H=0.68+0.02 form=1, andH
=0.60*=0.02 form=5. As expectedH =0.50+ 0.02 for the
|:q(|)~|h(q)_ (6) shuffled sequence. All these numerical values are in perfect
agreement with the values obtained using the WTMM

Clearly, forq=2, one hai(2)=H by construction, and in mMethod[6]. Since the trendless scaling exponent is defini-
the case that the scaling behaviorff(l, ) is identical for tively different from 1/2, we can conclude for the existence
all segments;, i.e., the record is a monofractal, the exponentof long-range correlations in this particular intron-containing
h(q) is independent of] as expected. The definitiof%) is ~ Sequence. The Iong-range correlation induced.by the local
well suited to detect discrepancies in the scaling behavior offénds is reflected in the larger value of the scaling exponent
the large and small fluctuations. In particular, for posiiye ~Calculated with the MF-DFAO, which overestimates the
h(q) vields the scaling behavior of the segments with |argevalue of H in about 20%. It is interesting to note that the
fluctuations while for negative, h(q) yields the scaling of ~trends influencing the large fluctuationg<0) are practi-

the segments with small variances. In addition, there is &ally unaffected by the application of DFAL.

where, in general, the index variabtptakes on any real
value, except zero. As the final step, analyze log-log plots o
Fq4(l) versusl for each value ofy in order to determine the
scaling behavior of the fluctuation functions. For large value
of |, we expect these functions to increase with increaking
as a power law

Simple relation betweeh(q) and the Sca“ng exponentéq) The results- Of-the application of the MF-DFA metho-d to
defined by the standard partition function-based multifractafh® characterization of a sequence composed predominantly
formalism[13], of coding regions is summarized in Fig. 4. The sequence
considered is a portion of tHe. coli K12 genomgGenBank
7(q)=qgh(q)—1. (77  name ECO110K for which N=111 401. We findH=0.60

+0.02 form=0 andH=0.51+0.02 form=1 as well as for
The importance of this relation is that it allows comparisonthe shuffled sequence. As before, the monofractal structure of
of the results obtained in the MF-DFA scheme with those ofthe record is confirmed by the linearity of théq) spectrum.
the standard multifractal analysis in the case of stationaroreover, failure to eliminate the local trends leads to a
series, and with those of the WTMM in the case of nonstawrong conclusion about the existence of long-range correla-
tionary series. tions in this DNA walk, as evidenced by the overestimate of

In Fig. 3, we show the multifractal spectrun{q) ob-  H that results from the application of MF-DFAO. The local

tained by the application of different orders of the MF-DFA trends in this sequence seem to have a particularly simple
method to the intron-rich HUMHBB sequence. The resultslinear nature since application of MF-DFAL is sufficient to
for orders larger than five are indistinguishable in the scale oéliminate them altogether.
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chromosomal sequence ECO110K composed primarily of coding
regions. . . . .

g of overlapping points is negligible. Hendé~ | 5r|*", from
To conclude this section, we note that we have considere§fNre one concludes tha,=1/H. This relation is valid

several alternative one-dimensional representations, such galy if 1/H<d, whered is the space dimension. WherHL/
the strong-weak bond classification, wh@er G are asso- - d» Overlap cannot be neglected and Bp=d (see Refs.

ciated to one step upy(=1) andA or T to one step down [9,10] for mathematical and pictorial details of this argu-
(y;=—1). All the alternative schemes analyzed have pro-(rjng_no' Th_us, Ikrlljo[:l/vpl\edgtlakofdthe H_urst expone:ﬁt fﬁr tfhe |
duced within the numerical precision exactly the same expoaf |mer_1$|on? h wa S‘I etelzrrr:m_es Léglquey the fracta
nents of the purine-pyrimidine classification. Our resultsdimension of the DNA trail. Calculation dfl or, more gen-

could also be obtained within the WTMM framework and, in €"@/ly, of h(q) follows the same procedure sketched before

fact, the wavelet analysis of the HUMHBB sequence can pdor the one-dimensional case, except that the variance given
found in Ref.[6]. The aim of this section was to give addi- in Ed. (4) is now replaced by-?.
tional support to the claim of Kantelharet al. that, despite Application of the MF-DFA method to two-dimensional
the operational and conceptual simplicity of the MF-DFA DNA walks representing the HUMHBEBsee Fig. $ and the
method, it yields results that are identical to those derived bjyFCO110K sequences yields, within the numerical precision,
the sophisticated WTMM methofiLl3]. For instance, this the same results as for the one-dimensional case. Actually, so
easiness of implementation has allowed us to study highefar as the value of the Hurst exponehtis concerned, this
dimensional DNA walks, an awkward task to be carried outagreement is expected since using E@.and (5) for g
using the WTMM method, for several representations pro=2, we have simply,~1"x+1"y, whereH, andH, are the
posed in the literaturésee, e.g. Refd8,15,17,19. As we  scaling exponents of the one-dimensional DNA walks in the
will show in the sequel, the results were essentially the samplane @,x) and (,y). Hence for largel, one hasH
as those reported here for the one-dimensional DNA walks=maxH,,H,). In Table I, we present the estimate of the
fractal dimensiorD, of the HUMHBB and ECO110K trails,
IIl. DNA TRAILS as well as of a random trail characterized by the same length
and base frequency as the ECO110K sequence. The errors in
As pointed out before, a DNA trail is the projection of a the estimates db, are statistical errors. For the box-counting
two-dimensional DNA walk into the space plane. Figure Smethod, the systematic errors are probably much larger than
shows the time record of the walk that gives rise to the traikhose shown in Table |, due mainly to finite-length effects
illustrated in Fig. 2 for the HUMHBB sequence. We begin by [16].
noting that the generalization of the MF-DFA method to two-
or higher-dimensional records is straightforward as one TABLE |. Estimates of the fractal dimensio®, of two-
needs only to change the basic E4), which is rewritten as dimensional trails. The MF-DFA estimates are based on the for-
mula D= 1/H, whereH is the Hurst exponent of the recofd.g.,

. 1 ! 5 Fig. 5. The box-counting method is applied directly to the trail
Flm=7 2 {d=Dl+nl=sm}% @  (eg,Fig.2

wheres(n) =x(n)i+y(n)j and similarly for the fitting poly- >cauence N MF-DFAS  MF-DFA0  Box counting

nomial vectors,. Over an interval ofl steps, the position HUMHBB 73326 1.670.06 1.38-0.04 1.46-0.01

vector in the trail will vary by typically|sr|~F,(1)=1"  ECO110K 111401 1.960.08 1.670.06 1.38-0.01
while the “mass”M of the trail, i.e., the number of points Random 111401 2.090.08 2.06-0.08  1.45-0.01
generated by these stepshis~1, provided the contribution
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Interestingly, although thB, estimates of the MF-DF&  patchiness of the DNA sequences, which has greatly hin-
method are based on the analysis of finite-length records, thidered the characterization of the long-range correlations of
has practically no effect on the results, as evidenced by thBNA walks [2,3] also plagues the fractal and multifractal
correct calculation oD, for the random sequence, a test analyses of the DNA trails, a fact that has been largely over-
which the box-counting method clearly fails. Moreover, looked in previous investigationgl6—18. Using the re-
these data corroborate the intuition, stemming from the vi€ently proposed multifractal detrended fluctuation analysis

sual inspection of Fig. 2, that the effect of the local trends isMF-DFA) method[13] to filter the local trends of DNA
galks ind=1 and 2 dimensions, we were able to show that

to decrease the fractal dimension of the trail. The excellen ’ -
ese walks are monofractals. This conclusion holds true for

agreement between the box-counting estimate, which i detrended walk I si i ltifractal
affected by both local trends and finite-length effects, and th € nondetrended walks as well, since the muitiiractal Spec-
rum 7(q) is linear regardless of the order=0 of the fitting

MF-DFAO estimate, which is affected by local trends only, polynomials used to eliminate the local trer@gs. 3 and

indicates that the surface effect is negligible for the4) More importantly. the independence of the variance
HUMHBB sequence. In fact, this is expected since the box-_, P Y: P

2
counting method is very reliable to calculate the fractal di—F (I.v) [see Eqs(4) and(8)] on the segment of the DNA

mensions of structures that do indeed exhibit fractality, preyv alk carries over to the DNA trail, which is thus monofractal

dictably failing in the case of space-filling structures. The 0% In particular, the fractal dimension of the trail &

results for the ECO110K sequence illustrate the bad perfor-_ LH, whereH is the Hurst eXpO”er_“ of the recofd, 10).
the case HM>d, as for the one-dimensional walks, one

mance of box counting when the two sources of systemati
d 4 sD,=d. Although we have presented data for the HUM-

errors are present. The aforementioned agreement betwe .
the box-counting and the MF-DFAO methods demonstrate B an_d the ECO110K sequences only, whm_h p“’ba?b'y are,
espectively, the most popular examples of intron-rich and

inequivocally that the spurious effects of local trends must bé N h ifind that . it
filtered out for a correct account of the fractal or multifractal " lrgr:—poofr sequencr—iﬁ, we have verifie th aGouermalln results
properties of DNA trails, a procedure that has been ignoreéi10 rue for many other sequences in the ensank.

in all previous analyses presented in the literaf@r&4—18. Oncg one has q!scarded the simple local variations in
Since the MF-DFA analysis has indicated that even théwcleotlde composition along DNA sequences as the cause

higher-dimensional DNA walks are monofractals, one Con_of the long-range correlations observed in intron-rich se-

N though th iatiorso th [ long-
cludes that the variance?(l,v) defined in Eq.(8) is the quencesthough these variatiordo cause the spurious long

for all fth d It th range correlations in intron-poor sequencésis natural to
same for all segments of the record. As a result, the varia- ,qy"then what are the sources for these correlations, which,
tion of the position vectotdr| in the trail will be indepen-

as shown above, are also responsible for the nontrifriat-

dent of the segment and so the trail must have a mono- (5 geometry of the DNA trails. The answer is that neither
fractal structure too. This conclusion seems at odds Withha internal ‘structure of patches nor their order in the se-

those of multifractal analyses based on the sandbox and boyyence are relevant: it is the power-law distribution of patch
counting method§16-18. However, we note that the origi- |gngths that determines the true long-range correlatishs

nal claim of Ref.[16] was that finite-length DNA trails, as  Thjs a5 well as several other findings concerning the statis-
well as randomly generated trails, are characterizedffgc- 5 properties of DNA sequences have prompted the pro-

tive multifractal spectra. Clea}rly, these spectra are artifacts Oﬁ‘osal of minimal evolutionary models, based on biologically
the sandbox and box-counting methods, which cannot deal, iy ated mechanisms, to account for those featises,

adequate_ly V\_/ith the su_rface effects. The unjustified droppings_g” Refs[20—22)). In fact, rather than providing measures
of the adjective “effective’[17,18) led then to the apparent ¢, characterize or distinguish classes of sequences, we think
disagreement between the two approaches. These effectiyigy; the thrust of the research on large-scale statistical prop-
mu!tlfractal spectra mlght_lndeed be an usefullto_ol for COM-grties of genomes is to provide quantitative standards for
paring random or biological sequences of similar lengthgygqejing the inherently stochastic process of molecular evo-
[17], especially if one manages to free them from the locajsion [23], bearing thus on fundamental issues such as the
trends effects. origin of life and the evolution of complexit24].
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