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Statistical model for receptor-ligand binding thermodynamics
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We present a simple statistical model to describe receptor-ligand binding in terms of the number of binding
contact residues and the number of separate binding regions as a function of the temperature. The fact that the
binding depends on various random factors is modeled by a distribution of local binding energies and we take
into account that the interaction between receptor and ligand is only of significance for the activation of the
receptor if the total binding energy exceeds a threshold energy. We interpret our results in the light of both
experimentally observed antibody-antigen binding configurations and theoretical studies in the zero-
temperature limit.
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[. INTRODUCTION [6], but also for a binding complex of T-cell receptor and
MHC molecule[7].

During recent years, there has been a growing interest in The existence of a typical size for the binding region has
the research directed towards the understanding and contrbeen successfully interpreted within a probabilistic model as
of molecular recognition in biochemical processes. Molecuthe optimal result of efficient self—nonself discrimination by
lar recognition is realized by the specific binding of ligandsantibodies and T-cell receptof8]. In this model, the recep-
to receptors. In the course of this process, the receptors bor (antibody and ligandantiger) are represented by strings,
come activated and may initiate a cascade of evElitsA  as is schematically shown in Fig. 1. Antibodies and antigens
well-known example of a molecular system that is controlledare composed of amino acids that belong to different
by receptor-ligand binding is the immune system, which percomplementarity classes. Based on empirical data, amino ac-
forms the important task of defending living organismsids are distinguished as being hydrophobic, or hydrophilic,
against malignantly transformed cells and pathogenic orgargnd if hydrophilic as being positively or negatively charged
isms. This is realized by immune responses that are mountd®,9]. This gives rise t@=3 complementarity classes, where
by the specific binding of antibody to antigen or T-cell re- hydrophobic is complementary to hydrophobic, positively
ceptor to major histocompatibility complékHC) molecule  charged is complementary to negatively charged, and vice
[2]. From a pharmacologic point of view, the understandingversa. In the probabilistic model, it is assumed that antibod-
and control of molecular recognition is an important issue inies and antigens are randomly taken from finite repertoires,
the context of drug design. This includes, for instance, theespectively, of sizewg andn_ . The probability that an an-
design of ligands which are supposed to bind highly specifidgibody repertoire of siz@r has the property that each of the
only to their target cell receptors in order to prevent undesn, different antigens is recognized by at least one antibody
ired side effects, or which should be particularly long-living has been calculated under the condition that none of the or-
and able to bind the receptors of tumor cells in order toganism’sng self-molecules is recognized by any of these
suppress their interactions with other cells. antibodies[8]. The result can be expressed in terms of a

In this paper, we study thermodynamic properties of thenumberr, which denotes the ratio between the size of the
receptor-ligand binding within a statistical binding model receptor-ligand binding region and the size of the receptor-
and discuss our results in the light of experiments onligand overlap region. In agreement with the experiments
antibody-antigen binding. X-ray crystallographic measure{3-7], the ratio is found to be of intermediate order of mag-
ments have revealed that the binding between the receptorstude:r ~15% [8]. That this value of reflects optimal an-
of the immune system and their ligands extends over an ard#&yen recognition by a finite antibody repertoire size can be
of roughly 600 & consisting of several linear binding re- understood as follows: If each antigen would be recognized
gions [3-7]. In particular, for an antibody-antigen

(lysozyme complex the receptor-ligand overlap region con- L
. ) . . . . nfnjn[h]n
sists typically of 100 amino acids. The receptor-ligand bind- - El lmﬂm
ing area of such a complex has been found in one experiment hlh|p{p ;h n
to consist of a single linear binding region formed by 17 R nfh[h[q] pEELER
amino acids[3] and in another experiment to involve 14 h —n
X . L . o n=1 101 Y o ey R n=2
amino acids distributed over three separate linear binding 123 M
m=1,.,5,.. ey

regions[4]. Similar sizes for the binding area have not only
been confirmed for another type of antibody-antigen com- g 1. Schematic representation of antibo@® and antigen
plex with a single linear binding region of 15 amino acids (L) as strings which are composed of amino acids that belong to
three different complementarity classes: hydrophottiy, (hydro-
philic positively charged f), and hydrophilic negatively charged
*Email address: m.t.figge@phys.rug.nl (n). See the text for details.
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over the entire overlap region, correspondingrte100%, E=E+AE,. (1)

one specific antibody would be required for each antigen,

which is not consistent with typical repertoire sizes. On thelhe energy of the unbound receptor and ligand is represented
other hand, if antibodies would recognize too short amindy Ej and does not depend dvi, andN, while the energy
acid patterns, say of the order-1%, they could as well change due to the formation of a particular receptor-ligand

bind to self-molecules. binding configuration is given by

A different route to model receptor-ligand binding is fol- N Mo
lowed in the present paper, where we calculfite (llhee)_ AE,=E+ 2 2 Ey(m). )
energy of the receptor-ligand complex and obtain a particular A=1 m=my,_1+1

binding configuration as the result of a minimization proce- )
dure. The statistical element in our model originates from thé1€re,E. denotes the threshold energy while the second term

fact that the local binding energy between two contact resil€Presents the binding energy since the sum runs over all the
dues of receptor and ligand is not the same for any such paiMp Pairs of binding contact residues with local binding en-
It rather depends on various random factors, such as the loc&9Y Eo(m). .

environment, the influence of neighboring contact residues, The local binding energy depends on various factors, e.g.,
and conformational effects of the binding. We take this intoth® type of interaction between two contact residues, the in-
account by a distribution of local binding energies. A secondluénce of neighboring contact residues, conformational ef-
feature of our model is that the interaction between receptot€cts of the binding, and also the environment. Because the
and ligand is only considered to be of significance for thePrecise distribution of local binding energies is usually not
activation of the receptor if the binding energy exceeds &nown, we will assume throughout this paper t&g{m) is
certain threshold value. We refer to this value as threshol@aussian distributed. We expect that, as far as the qualitative
energy. It is associated with the energy required to stabilize §onclusions are concerned, our results will not depend on
binding region against the steric interaction at its end pointsthis particular choice for the distribution, which has the tech-
where binding and nonbinding pairs of contact residues ar8ical advantage that properties of the receptor-ligand binding
located next to each other, and against the thermally inducegfn be calculated analytically. The corresponding probability
motion between receptor and ligand that is counteracting theensity,

binding. Recently, a similar model has been used to calculate )

the polymer-dimer binding probability as a function of the f(Ey(m))= _ [Ep(m) — Ey] 3)
threshold energy for different binding energy distributions 2me? 2&2 '

[10].

The paper is organized as follows: We introduce the bindiS characterized by the average local binding energy,
ing model in Sec. Il and show in Sec. Il that the formation —
of a binding configuration occurs with a finite probability. Eb:<Eb(m)>Eb' )
Next, in Sec. IV, we map the binding model on a model of i
the random-field Ising-type and calculate the correspondin&Ind by the standard deviation
free energy. This enables us to study thermodynamic proper- _ _E 92y 12
ties of the receptor-ligand binding in Sec. V and to interpret e={([Ep(m)—Ep]%)e,} )

our results in the context of experimentally Observedwhere<~--)5b denotes the Gaussian average with probability

antibody-antigen binding configurations. Finally, in Sec. VI, . . oo o
we summarize and conclude this paper. density Eq.(3). For a glven_blndlng—energy dls_trlb_ut|or_1 there
are M; contact residue pairs that favor the binding, i.e., the
corresponding local binding enerds,(m)<0. The ratiov
Il. BINDING MODEL =M;/M is the fraction of contact residues that favor the

Obinding and can be expressed in termsnganda,

(2]
l—er E ,  (6)

We introduce a binding model where the receptor an
ligand are considered to be bound by contact residues that 0 1
are distributed over several linear binding regions along the V:f f(Ep(m))dEp(m)==
receptor-ligand overlap region. This is indicated in Fig. 1, % 2
where we label the contact residues of the receptoimby

_ 2 .
=1,... M with M the total number of receptor contact resi- Where erf@)z(Z/ﬁ)féQze “ denotes the error function.
dues accessible to the ligand. Théh binding region This number plays an important role in characterizing how
=1,...N) is defined by its two ending contact residues,specific a particular binding configuration is, however,

respectivelym,,,_,+1 andm,,,, where we assume, without Whether binding between the receptor and ligand is realized
loss of generality, the orderingn; +1<m,<ms+1<m, depends on whether this is energetically favorable. In other
<. <Myy_1+1<m,y. We will refer to two binding con- wordsz as follows from Eq.1), receptor-ligand binding takes
tact residues as a pair of binding contact residues and theftace if
number is simply given b bzzwzl(mm—mm_l). AE.<0 @)

The binding model is defined by the energy associated e
with a receptor-ligand binding configuration and can be writ-meaning that the threshold energy is compensated by the
ten as the sum of two contributions, binding energy.
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The threshold energy consists of two parts, 0.05

E=NEs+MuE,(T), 8

whereEg accounts for the steric interactions that arise at the
end points of theN binding regions where binding and non-
binding pairs of contact residues are located next to each
other. The second contribution in E(B) accounts for the
thermally induced relative motion between binding contact
residue pairs. The vibrations counteract the binding and ulti-
mately cause the dissociation of the receptor and ligand at
sufficiently high temperatureb. This is modeled by the en-
ergy contributionE,(T), which is a function that increases
with the temperature from its zero-temperature velijéT 0
=0)=0 and will be specified below on phenomenological -02

grounds. The binding and the nonbinding pairs of contact Ey/E;
residues enter into the energy expression @&y with ther-
mal energy contributions of opposite sign, respectively,
+MpE,(T)/2 and — (M —Mp)E,(T)/2, so that the energy
of the unbound receptor and ligand becomes

0.03

0.01

FIG. 2. Probability for the occurrence of receptor-ligand binding
by M,=15 contact residue pairs along an overlap regionvbf
=100 contact residues as a function of the average local binding
energyE, /E;. The three curves correspond to standard deviation
e/E;=0.07 (dashed ling ¢/E;=0.10 (solid line), and¢/E;=0.13

M . L L
EH: _ ?EU(T). (9) (dashed-dotted lineof the binding-energy distribution.
M
It is instructive to calculate the probability for the occur- JO PdMy=1, (12

rence of receptor-ligand binding within the statistical model

Eq. (1). We do this in Sec. Ill before we study thermody- \yith respect to the numbevl, of binding contact residue
namic properties of the receptor-ligand binding in Sec. V. pairs.

IIl. BINDING PROBABILITY A. Occurrence of receptor-ligand binding

We start with the calculation of the probability that, for a

We consider the probability that receptor-ligand bindingyiyen distribution of local binding energies, binding between
occurs betweeM , pairs of contact residues distributed over M, contact residue pairs occurs at all. In this case

N binding regions along an overlap region that consistisl of
contact residues. Binding between the receptor and ligand
energetically favorable if the condition E(7) is satisfied,
however this condition is not sufficient to calculate the bind-

C(my,my; ... Mon_1,Myy) =1, meaning that all possible
'l§inding configurations with binding regionssN<M,, are
taken into account, and ELO) reduces to

ing probability of the optimal binding configuration with the 1 N Man
lowest energ\AE, . We take this into account in the formal P= N 0| —E— 2 E Ep(m) . (13
expression of the binding probability, n=1 m=mz-1+1 E,
1 We find [11]
P={O(—AE,)C(My,my; ... iMoy—1,Man))e,, 1
(10) P=5A1—erfg(My,N))], (14)
where the step function where we defined
o 1 for x=0 " E,+MyEp

(x)= 0 for x<0 (11 Q(Mb,N)=W- (15
ensures tha satisfies the condition Eq7), while the func-  In Fig. 2, we plot the probability Eq14) as a function of the
tion C(mqy,m,; ... :myy_1,Myy) Serves to guarantee thABt  average local binding enerdy, /E; for three different values

is the binding probability of the optimal binding configura- of the standard deviatiosVE; . We set the number of binding
tion. An expression fo€(m,m,) will be given in Sec. Il B,  contact residue pairs td,=15 and consider an overlap re-
where we consider the case of a single binding regidn ( gion of M=100 contact residues. These parameters corre-
=1). Finally, is determined by the normalization condi- spond to realistic values for antibody-antigen binding as ob-
tion, served in crystallographic x-ray experimens-6].
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At negative average local binding energids,/E;<
—1/M,, we find that the binding probability becomes inde- f(EE(Mb))Mb“eXP< -
pendent of the standard deviatierand approaches the con-
stant valueP=1/M. This result can also be derived directly is precisely the exponential factor appearing in EEg)
from Eq.(14) and has the simple interpretation that any kind_l_hIO I by dina- P fluctuati tﬁpt ?'b i o ifi.
of binding configuration can exist in this limit, because the us, all binding-energy Tiuctuations that contribute signifi

fraction of contact residues that favor the binding betweerfantly to the binding _probability are 'clo.se to the optimal
the receptor and ligand tends to=1 [see Eq.(6)]. For a luctuation. For the typical number of binding contact residue

vanishing average local binding ener@y,/E,=0, we have pairs,
v=0.5 and the probability Eq14) is a function of the stan- NE
dard deviatione of the binding-energy distributionPe«1 M;:—S_,
—erf(E /\Mye?). E,(T)+Ep

Two regimes have to be distinguished for positive average ) ) )
local binding energies. IEb/Et>s/Et, the fraction of con- the weight Eq(19) reaches its maximal value,
tact residues that favor the binding between the receptor and
ligand approacheg=0 gn(_:i, conse.quentlly, the probability f(E’g(Mf;))MEocexp< _
for the occurrence of binding configurations is found to be
strongly suppressed in this case. Most interesting, at positive
average local binding energi€s /E;<¢/E,, the probability —and is exponentially decreasing with increasing threshold en-
P has a sharp peak, which indicates that bindingNdy  ergy E;. Furthermore, Eq(20) reveals that the typical num-
=15 contact residues is most likely realized if the fraction ofber of binding contact residue pairs is the result of a compe-
contact residues that favor the binding is in the range 0.1ition, becauseM} is directly proportional to the steric
<p<0.5. This can be easily understood if one takes intonteraction energy and inversely proportional to the energy
account that antibodies and protein antigens are composed associated with the thermally induced vibrations within pairs
amino acids that belong to different complementarity classe®f binding contact residues.
Amino acids are distinguished as being hydrophobic or hy-
drophilic, and if hydrophilic, as being positively or nega- B. Optimized receptor-ligand binding
tively charged8,9]. This gives rise t@ =3 complementarity . . , . .
classes, where hydrophobic is complementary to hydropho-. we co_ns[der a b!ndmg _conﬂgura;mn that consists of a
bic, positively charged, is complementary to negativelySlngle b'ﬂd'”g_ region N=1), which we deno_te by
charged and vice versa. Neglecting for a moment the effec{tml'r.n.z}’ involving My, = m,—m, contact residue pairs. The
of all random sources on the binding, we estimate that thé:ond't'on Eq.(7) reduces to

M pSES (Mp)?

2&2 ’ 19

(20

2E,E,

82

: (21)

fraction of complementary pairs of amino acids along the m,
antibody-antigen overlap regionis=c~1~0.33. This value AE,[{my,my}]=E+ 2 Ep(m)=<0, (22)
is, in fact, within the relevant range far. Furthermore, it m=my+1
follows from Eq.(6) thatE, /e ~0.4 in this case, so that Eq. .
(14) may be replaced by with
Ei=Est+MyE, (T). (23

1 exp(—g(My,N)?) 16
2N Jrg(My,N) To determine the probabiliti? of the optimal binding con-

. ) ) ) figuration {m;,m,} with respect to all other configurations
which represents a valid asymptotic expression for averagfm! ml that also consist of a single binding region, we
local binding energies in the rang¢E,<E,/e<1. The in-  have to calculate Eq10) with
terpretation of the expression EL6) is that the optimal
fluctuation which can induce binding, i.e., the binding-

energy fluctuation with the largest weight, has a constant C(my,my)= H  OC(AE[{mg,ma}]
negative value between ti,, pairs of binding contact resi- my<mp
dues, — AE,[{my,mp}]). (24)

SinceC(m,,m,) does not account for binding configurations

and is zero between all other contact residues. The corrd¥ith more than one binding region, the corresponding bind-

sponding amplitude is determined from the energy balancdN9 probability will only be valid in a range of the parameters
AE,;=0, to be Ep ande, for which binding configurations wittN=1 will

o be the optimal ones. This restriction simplifies the calcula-
SEX (Mp ,N)=E,+E/M, (18 tion of the _binding probabilit)/P considerably._We presept
the calculation in the Appendix, where we arrive at the final
and the weight of the optimal binding-energy fluctuation, expression,

061901-4
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FIG. 3. Probability for receptor-ligand binding by a single bind-
ing region \N=1) as a function of the numbevl, of binding
contact residue pairsM=100). The three curves correspond to
three parameter sef&, /E, ,&/E;} for which P is maximal atM,,
=15: {0.062,0.07 (dashed ling {0.05,0.1¢ (solid line), and
{0.035,0.13 (dashed-dotted line

E,
K(M)EEM, Z(

2
B Mbs)
e(E+MpEp) Z(Eb)
&

(E—MpEp)?
Xexp( —tZMT), (25)
with Z(x) =tanh(1.14) and
8 g(My, 1) [ M
o222
M)\ )t
+ erf w)] (26)

containsM} as defined by Eq20).
The binding probabilityP is dominated by the exponential

factor which is just the normalized Gaussian weight of the

optimal binding energy fluctuation,

f(EX (MM
Poc(b( )

— %, (27)
F(Ex(Mp))Mo

as follows from Egs. (19 and (21) with EJ(My)
=—E;/M, [see Eqs(17) and (18)]. In Fig. 3, we plot the
binding probability Eq(25) for three different parameter sets
{Ep/E;,e/E;} as a function of the numbevl, of binding

contact residue pairs. For each set of parameters, the corre-

sponding binding probability? has its maximal value at
Mp=15 and the binding probability falls off exponentially
for smaller M,<15) or larger M,>15) binding regions.
Similarly, as can be deduced from Eg85), the binding prob-

PHYSICAL REVIEW B6, 061901 (2002

ability has a peak structure as a function of the threshold
energyE; . It is intuitively clear that the binding probability
P decreases with increasing threshold endtgyas has also
been found from calculations of the polymer-dimer binding
probability [10]. However, a less obvious result is that the
binding probability decreases exponentially for decreasing

threshold energieg;<M,E, . This behavior indicates once
again that all binding-energy fluctuations that contribute sig-
nificantly to the receptor-ligand binding probability are close
to the optimal binding-energy fluctuation.

We note that, while a rigorous calculation of the general
binding probability P=P(M,M,,N) is quite involved, it
may be estimated on the basis of the expression Zs).for
P(M,M,,1). This is done by dividing the receptor-ligand
overlap region intoN segments each containing a single
binding region. Treating theN segments as independent
units, we may write

N

P(M,Mb,N>~n[IlP(M(n),Mbm),l), (28)

whereM(n) andMy(n) are the number of contact residues
that are, respectively, accessible and binding inritreseg-
ment. We assume here thdi(n)>M(n) holds in each seg-
ment. Since different binding-energy distributions give rise
to clearly distinct receptor-ligand binding configurations as-
sociated with the corresponding optimal binding energy fluc-
tuations, we may conclude that the parameter set
{Ep/E;,e/E;} which maximizes the binding probability
P(M,M,,N) prefers an equal distribution of binding contact
residues withM§ (n) ~M} /N. Within this simplified picture,
we obtain a condition for the occurrence of receptor-ligand
binding by a rough estimate as follows: Assuming that the
typical numberM§ (n) is mainly determined by the expo-
nential factor in Eq.(25), we find from Eq. (20) that

Mg (n) ~Eg/[E,(T) +Eb]. It thus follows that the probabil-
ity for the occurrence of receptor-ligand binding becomes

zero forE,(T)~Es—E,, which can be related to the tem-
perature at which the receptor and ligand dissociate.

To summarize, the calculation of the binding probability
within the statistical model EqJ1) yields the qualitative re-
sult that distinct binding configurations occur at sufficiently
low temperatures with a finite probability.

IV. BINDING FREE ENERGY

In order to study thermodynamic properties of the
receptor-ligand binding, we calculate the free energy of the
binding model. This can be done by rewriting Ed) in
terms of a local binding variabler,,, which describes the
state of contact residum by one of its two possible values,

-1
41

if binding,
(29

m if nonbinding.

The energ)E of a particular binding configuratiofr,,} can
again be written as the sum of two parts,

E=Eo+Ei[{om}]. (30

061901-5
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Here, the first part, in units where Boltzmann’s constakg=1. It is straightfor-
ward to computéF )5 applying the transfer-matrix formal-

1 M ism, where the sum in Eq37) is written as an ordered
Eo=5 mE:1 Ep(m), (3D product of matriced;,:
M
is independent of the binding variable,, while the second > e EillomlT= M (o' 11 Tolo). (38
part is given by {om o0’ =*1 m=1
1M (1= 0rorms 1) Here, the final summation over,o’ accounts for all pos-
Ef{om]=2 > |E——2mt sible boundary conditions for the binding variable at the ends
2 m=1 2 of the receptor-ligand overlap region. On the basis spanned

by the two vectors/+) and |—) (corresponding, respec-

—E,(T)om—Ep(M)op,|. (320 tively, to o=+1 ando=—1), the transfer matri<,, reads

e-%—[EU(T)-%—Eb(m)]IZT e—[Es—Ev(T)—Eb(m)]IZT
The first two terms represent the threshold energy (BY. Tn=| o [EHE,(MExmI2T - [E,(T)+ Ex(myli2T

where the steric interactions are represented by the first term

since the sum over (39)
0 if om=0oms1 and is a function of thmlh contact residue through the local
2= omome) =) Tm=— Oms1 (33 binding energyEy(m)=E,+¢&s,. It is clear from Eq.(38)

that the numerical calculation of the free enef@y)s sim-
counts the number of binding-region end points within theply requires the repeated multiplication of a matrix with a
binding configuration{o,,}. The second term accounts for Vector.
the effect of the thermal vibrations which favor the nonbind-  Recently, we derived a closed analytical expression for
ing state,o,,=+ 1, becaus&,(T>0)>0. Finally, the third  the free energyF)s which is valid in the low-temperature

term in Eq.(32) corresponds to the local binding energy, limit. The tedious calculation is presented in REf2] and
Eb(m)EEb-i-SSm, wheres,, is a random variable that is will not be reprqduced here_. It requires the derlvatl_on pf the
Gaussian distributed according to the probability density ~cOntinuum version of the discrete model £§2), which is
found to describe the relaxation of a single quantum gpin-
1 in a magnetic field. The corresponding Hamiltonian can be
ex;{ - —sé) mapped onto a Brownian motion model which is defined in
—2_ (34) terms of a Langevin equation. Solving the corresponding
V2 Fokker-Planck equation yields a probability distribution
which is used to perform the average of the free energy Eq.

We note that EQ.(32) may be interpreted as a one- (_37) analytically. For temperature§<Eg; and energies

dimensional random-field Ising model, wherg, denotes an  E, ¢ E, (T)<E,, we obtain to leading order in the number

Ising spin at sitem of a chain and can be either upr{ M of contact residues the expressidr2]
=+1) or down (,=—1) due to the presence of(guite

f(sm) =

exotic) magnetic field that has a random component and a M| EU(T)JFEb
temperature-dependent component. (F)s=5 | Eo— | (40
. 2 tani( o)
The average free energy may be written as
where the dimensionless variable
(F)s=(Fo)st(Fu)s, (39 B
. : . (E,(T)+Ep)~
where(- - - )5 denotes the Gaussian average with probability e=———E4{T.¢) 41
density Eq.(34). The first term originates from the energy 3
contributionE,, . . . .
contains the effective steric interaction energy
M—
<Fo>s:7Eb- (36) B E.+4ke for T<T,
EiT,e)= (42)

T
L . E,—4T In(—) for T>T,.
The second term is given by the logarithm of the Boltzmann- eke

weighted sum over all possible binding configurations with
enegr]gyEl[{am}], P g J Here, To=ke andk=e"(7"2)%/\/2=0.195 contains Euler’s

constanty=0.577. The temperaturg, enters the expression

for the free energy in the course of deriving the model’s
(F1)s= —T< In 2 eEl[{"m}]’T> , (37 continuum versiof12]. The reason is that in the continuum
{om} s model, the end points of a binding region can take any posi-
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tion along the receptor-ligand overlap region and are not re- M sin(20)— 20
stricted to the discrete locations of the contact residues in the M b=" 1-———| (48)
original discrete model. In other words, each end point of a 2 sinf(o)

binding region enters in the expression E7) with a The solution of Eq(48) in terms of o= o(M,/M)* for a

weight given receptor-ligand binding configuration is easily ob-
e*Es(T'S)’2T=I(T,s)e*Es’ZT. 3 tained numerically and can be represented by the series
L 1/
b
Here,I(T,e) is the typical size per length of a contact resi- Q(Mb/M)*ICoJFIZl C'(V) : (49

due for the thermal fluctuation of the end-point position
along the receptor-ligand overlap region. We estinhgiee) For L=4 and coefficientsc,=8.546, c¢,=—0.107, c,

from the criterion that shifting the end position ou¢T,¢) =—21.745,c,=70.135, anct,= —58.005, the relative de-
from its optimal position requires a fluctuation of the orderyiation of * from the exact solution is already well below
of T: 1% over the entire rangesOM,,/M<0.5. Combining Egs.
o 12 _(41), (47), and(49), we can calcula_lte. the average chal bind-
<(2 £SO ) > =el(T,e)Y2~T (44) ing energy and the standard deviation of the binding energy
moo s ' ' distribution Eq.(3) at temperaturd=0. We find

Therefore, the continuum model gives incorrect results at Ep=K(M,Mp,N)Es (50

temperatures belovy~ e, where the thermal fluctuation of gnd

the end-point position and the length of a contact residue are

of the same orderl(Ty,e)~1. This explanation is con- NK(M,Mb,N)
firmed by numerical simulations of the discrete model Eq. T e o
(32), where forT<T, the corresponding free energy is in V2Nsinte*)
fact only weakly depending on the temperat{it&]. In the  \where we defined
analytical expression of the free energy this is taken into

account by the effective steric interaction energy &@). 2N sinh(o*)?

K(M,My,N)=
(M,My,N) 0*M —4+/2k\/MN sinh(o*)

) which is a positive number in the parameter regibs M
The calculation of the free energy enables us to study forle2 P P g b

a given distribution of local binding energies the correspond-
ing binding configuration as a function of the temperature. tin
follows directly from Eqgs.(35—(37) that the number of
binding regions is obtained by differentiation of the free en-
ergy with respect tde,

Es, (51

(52
V. BINDING THERMODYNAMICS

In order to analyze the specificity of the receptor-ligand

ding, we calculate the binding free ener@y(T=0))

and the fraction of contact residue pairs that favor the bind-

ing, v=M; /M, for any binding configuration characterized

by the parameter s¢M,My,N}. It follows from Eqgs.(40),

P (49), and(50) that

N= £ (Fs. (45) ME,
(F(T=0))s=—

1

- : (53
. . . . tanH g*)

and the number of blidmg contact residue pairs by differen-

tiation with respect t&,,, and from Egs(6), (50), and(51) that

e
Msml‘(g) . (54)

We plotv and(F(T=0))s as a function oM, /M for bind-
Here and from now on we denote Wand Mb the corre- |ng Configurations with 0.0&N/M<0.04, respectively, in
sponding thermally and Gaussian averaged quantities.  Fig. 4 and Fig. 5. It can be seen in Fig. 4 thais larger for
Using the analytical expression E@O) for the free en- @ larger number of binding contact residue paifg,, and is
ergy, we obtain expressions for the number of binding resmaller for a larger number of separate binding regidhsn
gions, Fig. 5, we see that, for a fixed number of binding regibhs
a binding configuration is energetically more favorable if
M[E (T)+Eb]2 more binding contact residue paik4,, are involved, while
= - (47) keeping the numbeM , fixed, the energetically most favor-
2¢e%sinh(@)? able binding configuration is that with the largest number of
separate binding regioié= M, . A criterion to quantify the
and for the number of binding contact residue pairs, specificity of a particular receptor and ligand may now be

1
d v=—=|1l—erf
Mp=—<(F)s. 46 2
b (9Eb< >s ( )
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05 =3, and thusyr~0.33. It can be seen in Fig. 4 that the range
0.25=v=<0.45 corresponds to values of the rateM,/M
that are of intermediate order of magnitude: 9rk0.2
(shaded region in Fig.)4 This parameter range has been
interpreted in Ref[8] within a probabilistic model as the
03 optimal result of efficient self—nonself discrimination by the
receptors of the immune system. Our model not only con-
firms these conclusions, but also relates the parammeter
0.2 the underlying distribution of binding energies. It follows
from Eqgs. (50)—(54) that for r~0.5 the characteristic fea-
tures for the binding-energy distribution are a relatively

04

0.1 (C()d) small standard deviatioa and an average local binding en-
b) ergyE,~0. In other words, in this regime it is equally likely
(a) . . . .
for receptor-ligand contact residue pairs to bind or not to
0.0 0.1 0.2 03 04 0.5 bind. For even larger values of the average local binding

M, /M energy is negativeE, <0, and if antibody-antigen binding

FIG. 4. The number of contact residues M /M that favor the would typically occur in this regime, it would be highly spe-
binding as a function of, /M for binding configurations witta)  Cific. However, the finite size of receptor repertoires cannot
N/M=0.01, (b) N/M=0.02, (c) N/M=0.03, and (d) N/M be reconciled with the limit~1, where one particular anti-
=0.04. The three dots refer to the three binding configurationd0dy is required for each antigen. This leads to the conclu-
{M,M,,N}={100,15,%, {100,17,%, and{100,14,3. The typical  Sion that receptor-ligand binding in the immune system is
regime for antibody-antigen binding configurations is indicated bymore efficiently realized by the binding of antibodies to sev-
the shaded region. eral, slightly different kinds of antigens involving fewer

binding contact residue pairs€1). On the other hand, for
formulated as follows: The larger the typical energy contri-r <0.1 the underlying binding-energy distribution is charac-
bution to the binding free energy per contact residue pair thaerized by a standard deviation which is much larger than the
favors the binding is, the higher is the specificity of the re-average local binding energy>E,. This means that ran-
ceptor and ligand. This energy contribution, domness plays a dominant role in this limit, so that binding
is realized by only a few contact residue pairs that are able to
_(F(T=0))s stabilize a binding configuration due to relatively large local
= M ’ binding energie€,(m)~ —Eg. Clearly, if r<0.1 were the
typical parameter regime for the receptors of the immune
can be calculated from Eq&3) and (54). system to function, they would bind equally well to the or-

We discussed in Sec. Ill A that for antibody-antigen bind-ganism's self-molecules. That this does not happen under
ing in the absence of any random soureds simply given  healthy conditions may be explained by arguing that the ran-
by the inverse of the number of complementarity classes, dom factors do not govern the binding between receptors and

ligands of the immune system, meaning that large local bind-

0.00 ing energies withE,(m)~—Eg are unlikely to occur. In

Table I, we present the values of binding configuration pa-
() rameters as obtained by analytical and numerical calculations
for three experimentally observed antibody-antigen binding
configurations[3,4,6]. The parameters of both calculations
g _002 ® show the same qualitative behavior and are even in quanti-
g

(59

-0.01

tative agreement in the limiE,,e<E;, where we expect
© our analytical calculation to be valid. We conclude that the
receptor and ligand of the binding configuration
{M,M,,N}={100,14,3 represent the most specific combi-
—0.04 @ nation, since the energy contributi@y to the binding free
energy is the largest of the three binding configurations.
Comparing the binding configuration$100,15,% and
-0.05 {100,17,3, the specificity of the receptor and ligand is found
g ol 02 63 04 DS to be only slightly higher for the latter.
My /M We now turn to the discussion of our results at finite tem-
FIG. 5. The binding free energfF (T=0)); as a function of ~Peratures. The temperature dependence of the et&i(gh)
M, /M for binding configurations witi@ N/M=0.01, (b) N/M associated with thermal vibrations of the receptor and ligand
=0.02,(c) N/M=0.03, andd) N/M=0.04. The three dots refer to iS obtained by arguing in a phenomenological way as fol-
the three binding configurations{M,M,,N}={100,15,3, lows: At temperatures well below the steric interaction en-
{100,17,1, and{100,14,3. ergy, 0=sT<T;<Eg, pairs of binding contact residues may

®(T=
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TABLE I|. Parameters for three different binding configurations as obtained from analytical and numerical
calculations aff =0 for experimentally observed antibody-antigen binding.

Binding Analytical Numerical
configuration calculation calculation

M M, N EJE, ¢/Es v (F)JEs E(/Es E,/E, €lEs v (F)JEs E(/Es
100 15 1 0.050 0.213 0.407-0.419 -0.010 0.050 0.229 0.414-0.431 -0.010
100 17 1 0.042 0.204 0.418—0.447 -0.011 0.042 0.217 0.423-0.457 —0.011
100 14 3 0.187 0.434 0.333-1.405 —0.042 0.213 0.507 0.337-1.607 —0.048

slowly move together but the relative motion of contact resi-where® (T—T;) denotes the step functigsee Eq(11)] and
dues against each other can be neglected, so Ehaf  the dimensionless parameterdetermines how fask,(T)
<T,) must be vanishingly small. The value of the tempera-evolves into the linear-temperature regime. Taking di-

ture T; may depend on various factors, e.g., on the mass derent binding-energy realizations into account, we per-
the contact residue pairs, and indicates the temperature #rmed numerical calculations for the parametefg
which the relative motion between binding contact residues=0.1Es and a=5, so thatE (T)«T for T>0.3s. We
becomes relevant. For temperatufes T;, the vibrations checked that qualitatively our results do not depend on this
may initially be described by small harmonic oscillations in Particular choice. , ,

the distance between contact residues of the same pair. As e plot the results of our numerical calculations for the

these oscillations take place in the plane perpendicular to th'%umbe,[ og_b:jn_ding contact ESidUGE gairsdagd the nL:_mblerfof
direction of the receptor-ligand binding region, we estimate>SParate binding regions In igs. ©, /, and o, respectively, for

. the zero-temperature binding configuratio§,M,,N}
for the corresponding temperature range #8g{T) ~4T, so
that for the unbound receptor and ligakd=E~2MT in {100,153, {100,173, and{100,14,3. Several common

accordance with the equipartition theorem. The thermally in{ﬁgtl:rrﬁ:ecz?ngﬁ] ot;soenr;i/ eSr:!\Ti(:Eg t\(jvm[()a?]r?:]ueretedrgpggtﬁ?geism
duced vibrations are only harmonic up to a certain tempera- 9 g ' P

ture, above which anharmonic effects and significant strucgggﬁazi?rrlonz:n?f a?;{‘g;eafﬁ.g‘"_'; Zn((j:’;lnlze()bs:r:\égdc:? the
tural changes of the receptor-ligand complex will become Inding configuration. ‘11is 1S a , quenc )
hermal fluctuation of the binding regions’ end-point posi-

important. However, as a starting point we will assume tha{. . .
ions along the receptor-ligand overlap region. It follows

harmonic oscillations represent a good approximation. . . ;
function that captures the essential behavior described abo%%om Eq.(44) that the Ztyplcal size for_ the thermal fluctuation
is given by scales WIthl(T,8)~T./s. and ef_fectlvely corresponds to a
decrease of the steric interaction energy according to Eq.
( ) (42). As a consequence, the binding configuration rearranges
4E (T =T by increasingM,, and N in order to minimize the binding
EU(T):(T_Tl)TIn( COS% E. D (50 free energy. This is only possible as long as the counteracting
thermal vibrations within contact residue pairs

0.19 0.22
0.19
0.16
0.16
= 0.13 =
~ ~
b= b= 0.13
. 0.10 N
E E 0.10
2 007 7 0.7
0.04 0.04
001 p=="" j { 0.01 ==~ T 1
0.0 0.2 04 0.6 0.8 0.0 02 04 0.6 0.8
T/Es T/Es
FIG. 6. The number of binding contact residue pditg/M FIG. 7. The number of binding contact residue paitg/M

(solid line) and the number of separate binding regiddévi (solid line and the number of separate binding regiddsM
(dashed ling as a function of the temperature for the zero- (dashed ling as a function of the temperaturg for the zero-
temperature binding configuratiofM,M,,N}={100,15,%. The temperature binding configuratiofM,M,,N}={100,17,%. The
arrow indicates thai,=N at temperaturd ~0.7CE;. arrow indicates thaM,=N at temperaturd ~0.6%;.
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0.16 that a binding configuration with a larger numbércan re-
tain a larger numbei , up to higher temperatures because it
has the freedom to rearrange and to gain energy by decreas-
ing the numbemN. To summarize, at finite temperatures our
model predicts that a high specificity of the receptor and
ligand is only preferable in terms of a large rahNdM, but
not in terms of a large ratid, /M. This may explain why
the immune system does not aim to realize receptor-ligand
binding by configurations with=M,/M~1.

We finally turn to a quantitative discussion of our results.
A typical value for the binding free energy requires an esti-
mate of the energ¥g, which sets the energy scale of the
model. Because of the fact that the binding configuration of

0.13

0.01
{ an antibody-antigen complex starts to change significantly
0.0 0.2 0.4 0.6 0.8 before it becomes unstable at temperatures abdve
T/E ~310 K, we may estimate from Figs. 6—8 thHht 300 K

FIG. 8. The number of binding contact residue pdifg/M correspond§ td~0.%s, so thates~1500 K~ 3 keal/mol.
(solid line and the number of separate binding regingv N these units, the binding free energyTat300 K for the
(dashed ling as a function of the temperatufE for the zero- Z€ro-temperature binding Conflgurgtlons{M,Mb,N}
temperature binding configuratioiM,M,,N}={100,14,3. The ={100,15,%, {100,17,3, and{100,14,3 is computed to be
arrow indicates thaM, =N at temperaturd ~0.66E,. (F(T=300 K))s=—16.14 kcal/mol, (F(T=300 K))s

= —16.11 kcal/mol, and F(T=300 K))s=—19.23 kcal/
are small. The inset of thermal motion between contact resimol, respectively. These values represent the correct order of
dues of binding pairs is seen at temperatlireT;, where  magnitude which is typically measured in biomolecular re-
the increase oM, andN becomes weaker. TheN|, andN  actions(—5 to —20 kcal/mo). Furthermore, using the values

reach a maximum before they start to decrease until finallyg, E, ande as given in Table I, also the typical value of the

at a temperature which is indicated by the arrow, the bindinginding energy for contact residues that favor the binding,
configuration is characterized bWl,=N. Increasing the

temperature further would result in the dissociation of the — 4 (°
receptor and ligand since binding configurations with E=v f_be(m)f(Eb(m))dEb(m)' (57)
Mp/N<1 cannot exist.

It has been suggested that the affinity of the receptoris found for all three binding configurations to be of the
ligand interaction may be related to the number of binding.,rect order of magnitudeE~—1 kcal/mol. It should be
contact residue paif]. We note that, if a minimum number \qeq that our model predicts a typical value for the disso-

Mp>1 is required to trigger the receptor, its proper function-qi5tion temperature of the receptor and ligafie; 1000 K,

ing may stop already well below the dissociation temperayhich s too large by about a factor 3. This indicates, as

ture. SinceN is seen to depend only weakly on the tempera-gynected, that the dissociation of the receptor and ligand can-
ture, a binding configuration which is most suited to function, simply be described by small thermal vibrations accord-
even at high temperatures is characterized by a large numbg{y 14 Eq. (56). It is obvious that the predicted dissociation
N at zero temperature, because then=N close o the temperature would be strongly decreased if significant
dissociation temperature may be still suff|C|entIy_ large tochanges in the structure of the receptor-ligand complex
keep the receptor activated. It can be seen from Figs. 6-8 §foid be taken into account by a suitable modification of
intermediate temperatures Fhmb de_creasgs by roughly a E,(T). However, we note that changirf,(T) within our
factor 2 slower for the binding configuration witt=3 as  odel would affect different binding configurations in a

compared to the binding configurations with=1. Inspec-  gimilar way and will not influence our qualitative conclu-
tion of Eq.(48) reveals that, in general, the decreas&lgfis  gjons.

smaller if the zero-temperature binding configuration is char-
acterized by a largeX and a smalleM,. Thus, although a
zero-temperature binding configuration with a larger number
M, is considered to be more specific, this is not advanta- In this paper, we studied thermodynamic properties of
geous at finite temperatures since a binding configuratiomeceptor-ligand binding within a simple statistical model.
with smaller numbeiM, can resist the destroying effect of The main ingredients of our model are a distribution of local
thermal motion better. This can be easily understood from &inding energies to account for the effect of various random
comparison of two binding configurations: The binding con-sources on the binding, and an energy threshold for the total
figuration with larger numbeM,, has a lower bindindgfree) binding energy associated with steric interactions and ther-
energy atT=0, however, due to thermally induced vibra- mally induced vibrations within the receptor-ligand complex.
tions its free energy increases faster with the temperaturd&,he calculation of the corresponding binding probability re-
and the binding configuration can only survive if the numbervealed that distinct binding configurations do occur depend-
M, is sufficiently reduced. Similarly, it can be understooding on the parameters of the binding-energy distribution. Af-

VI. SUMMARY AND CONCLUSIONS
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ter mapping the model on a random-field Ising model, theof sizes, respectively, larger and smaller thep contact
binding free energy could be calculated, which enabled us teesidues:
study the thermodynamics of binding configurations in terms
of the number of binding contact residue paiv,, and the P=N""PoPin- (A1)
number of separate binding regioms, ) ) ) ) ) )

In contrast to the configurational complexity of realistic It is now convenient to define the dimensionless variables

receptor-ligand binding configurations, our model is ex-

tremely simple, probably the main simplification being the t=E/e, (A2)
projection of the three-dimensional, entangled structures —

onto a one-dimensional, effective model. In particular, the b=E,/e, (A3)
influence of thermally induced changes in the receptor-ligand _

complex is an important issue that has to be addressed in Sm=[Ep(m)—E,]/e, (A4)

future research. Nevertheless, considering our results in the

light of antibody-antigen binding, we not only find that they SO that
are in convincing agreement with those of previous zero-
temperature studies, but that they allow us to formulate a Pour=(@(b+8r,)O(20+sm, +5m, 1)
plausible interpretation of receptor-ligand binding as it is re-
alized in the immune system. We find that the ratio between
the size of the receptor-ligand binding region and the size of
the receptor-ligand overlap region=M,/M, is a conse-
quence of two competing factors. On the one hand, for small XO(3b+Sp 1+ Sm, 427 Smye3) - )s  (AB)
r~1% large local binding energies are required to exceed

the threshold energy and to stabilize a binding configuration,, 4

In particular, for receptor-ligand binding in the immune sys-

tem, local binding energies of that order may be unlikely to my

occur, so that binding over short binding regions is sup- F’m=<®( —t—bM,— 2, Sm)HLHR> ., (AB)
pressed and self—nonself discrimination is realized in this m=my+1

way. On the other hand, for large>10% the binding would

be highly specific and a large receptor repertoire would bavhere(---)s denotes the Gaussian average with probability
required. However, our model predicts that binding configu-density

rations with a smaller number=M,/M<100% can resist

XO(3b+Sy +Sm —1+Sm —2) " )s

X<®(b+sm2+1)®(2b+sm2+l+Sm2+2)

S

the destroying effect of thermal motion better, so that a high exd — l 2
specificity of the receptor and ligand at finite temperatures is m
only preferable in terms of a large ratld/M, but not in f(sm)= \/E ' (A7)

terms of a large ratid/, /M. We conclude that the immune
system realizes receptor-ligand binding in an efficient way, .4 we introduced
by a finite number of different receptors that are able to bind

several, slightly different kinds of antigens. The binding con- 1, =@(—b—s,, ;1)O(—2b—S;, 11— Sm. 1) - -
figurations withr =M, /M of intermediate order of magni- ! ! !
tude reflect a high specificity of receptor and ligand by a x®(_be_Sm1+1_ e _sz) (A8)

large ratioN/M, .
We finally note that, although we considered receptorgng
ligand binding in the immune system as an example through-

out this paper, our model is more general and may as well be MMg=06(- b_smz)( — 2b—sm2—sm2_1)~ .

of relevance to other molecular systems that are controlled

by receptor-ligand binding. ><®(—be—sz— e _Sm1+l)- (A9)
ACKNOWLEDGMENT The reason for the factorization Bfinto P, andP;, is that

a binding configuratioqm,,m,} which is energetically fa-

The author gratefully acknowledges lively and stimulatingvorable compared to the binding configuratiodsn,
discussions with N. J. Figge. +n,,m,} and {m;,m,+n,} with one of the end position
fixed, is also energetically favorable compared to the con-
figuration {m;+n;,my,+n,} with both end positions
changed.

Note thatP, itself also consists of two independent fac-

The binding probability Eq(10) is calculated withAE, tors: the first factor excludes the configuration of binding
andC(my,m,) as given by Eqs(22) and(24), respectively.  regions with the end located to the left wf,+ 1, while the

We start by noticing thaP factorizes into two indepen- second one excludes end positions larger thanBoth these
dent partsP,, and P;,, which account for binding regions factors can be written in the form

APPENDIX: OPTIMIZED RECEPTOR-LIGAND
BINDING
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FIG. 9. Numerical solution of the functiof(b) (stars. The best
fit by a function of the fornZ(b) =tanh( b) yields k=1.14(solid
line).

s}

z()=1]

(A10)

“mdsmf(sm)@)(gl (b+s0 }

— o

so that
Pou=[Z(b) 1% (A11)

We note that if the conditions imposed by the fi&tfunc-
tions in Eq.(A10) are satisfied, the arguments of the l@st

PHYSICAL REVIEW E66, 061901 (2002

ing this in mind, we now calculate the inner factor £46).
First, we can rewrite EqA6) in the form

- +ice d\
szf de . Te_”s
t+bMy —joe 21

my Lo
x [ dspe Msmf (sp) 1 Ig, (AL4)

m=m;+1 J -

where the integration ovexr ensures that

m=my

S=- > sp
m=m;+1

(A15)

and the limits of the integration ové& follow from the first

0O function in Eq.(A6). We now shift the argument df(s,;,)

on each site by,
f(sm)—F(smtN)=e WM Asmf(s ) (A16)

so that the average value now beconsgs= —\ and Eg.
(Al14) reads

Pin= f  as f TR s
t+bMy, —je 277

my Yoo
x TI dsyf (St NI IR.

m=my+1 J -

(A17)

The integral ovein comes from the vicinity ok ,=S/M,

functions also almost certainly are positive. In other wordswhere the exponential in Eq(A17) has its maximum.

only the first few® functions in Eq(A10) are really restric-

tive and, therefore, we can replace the finite produc®of
functions by an infinite number of factors. To calculate Eq.

(A10), we introduce the functiod(s|b), satisfying the inte-
gral equation,

Z(s|b)=f:ds’f(s+b—s’)Z(s’|b). (A12)

Comparing the iterative solution of this equation to Eq.

(A10), one findsZ(b)=Z(0|b). The integral equatiofA12)

Saddle-point integration over then gives

* ds

P =
" Jivom, 27M,

my

x T1 wdsmf

m=mi+1 J -

e (U2My) s?

+

M, Tg. (A18)

Smt ——
m Mb

Next we note that, as we saw before, only the first féew
functions inIl, andIlg are really restrictive, because the

can be easily solved numerically. The result is shown as staf&levant binding-energy fluctuation is close to the optimal
in Fig. 9 and the solid line represents the best fit to thesductuation. This implies that the local binding-energy aver-

points by a function of the form
Z(b)=tanh «b) (A13)

with k=1.14.

The calculation of the inner factor is complicated by the

presence of the extr® function in Eq.(A6), which pre-

cludes the factorization d?;, in two independent averages.
However, considerable simplification is possible if we re-
strict our considerations to the average local binding energi

with 1<bt<t, where the main suppression factorHrs the

probability of the local binding-energy fluctuation necessary

to create a binding region at alkee Sec. lll A. In other
words, the most important contribution 8, (and alsoP)
comes from averaging the firét function in Eq.(A6). Bear-

ages ofll, andIlg in Eq. (A18) are approximately decou-
pled. Furthermore, it is easily seen from E410) that then
(I )y=(I1g)=2Z[(S/M}) —b], so that Eq(A18) becomes

o 2
p. = _9S e Z(i—b) _
t+bMp 27TM My,

(A19)

The integral overS comes from the vicinity of the lower

eI?mit, S=t+bMy. The result of the integration is

(t+bMy)2
- 2M,

- Mp[
N N2z (t+bMy)

4l
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where forS in the argument of the smooth functichwe ity Eq. (16) of the binding energy fluctuation necessary to
took its value at the lower limit of the integration. Combin- create binding betweeN, pairs of contact residues at all
ing Egs.(Al), (A11), and(A20), we obtain for the binding (see Sec. Ill A. The last term in Eq(A21) originates from
probability, the condition Eq(24), which ensures tha® is the binding
5 probability of the optimal binding configuration with respect
P 1 exp(—g9) Z(i to all configurations that also contain a single binding region.
2N mg My

As the functionZ is only slowly varying, we are able to

calculate N from the normalization condition Eq12) by
whereg=(t+bM,)/+2M, in accordance with the definition another saddle-point integration and obtain the final expres-
Eqg. (15). The most important contribution t@ is the expo-  sion Eq.(25) for the binding probability in the original set of
nential term in Eq(A21), which is identified as the probabil- variables Eqs(A2)—(A4).

2
Z(b)} , (A21)
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