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Shear-induced shift of spinodal line in entangled polymer blends
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We study the shear-flow effects on phase separation of entangled polymer blends by incorporating into the
chemical potential a nonequilibrium contribution due to the flow. The results are compared with those of a
previous analysis by other authors which did not modify the chemical potential but used a different assumption
for the stress tensor of the blend.
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Shear-induced effects in polymer solutions and blends are In [4], this coupling plays an essential role in the shift of
very interesting in thermodynamics, statistical mechanicsthe spinodal line, whereag.,, and wug are the local-
hydrodynamics, and engineering and, accordingly, much reequilibrium chemical potentials of polymefsandB, respec-
search is being carried out on thefi—3]. Clarke and tively. Thus, the shear-induced effects are attributed to a
McLeish[4] recently studied the shear-flow effects on phasepurely dynamical origin.
separation of entangled polymer blends. They considered a As the memory function for the stress relaxation of the
two-fluid model, taking into account the effects of mutual blend, Clarke and McLeish take
friction among the chains, of shear stress, and of the inho-

mogeneities in the chemical potential of the components. G(t—t")=(pa{Gaexd — (t—t")/ 7a]}"
They assumed that the chemical potential keeps its local- e UA2
equilibrium form (i.e., that it does not depend on the flow *de{Goexd —(t-t)/7]™% (3

T v e e o P racast messys s LT . and v respeciely, he volume facion
diffusion flux. On this basis, they showed the possibility of a ateau modulus, and relaxation time of polymeThis non-

rich variety of changes of the phase diagrams of flowin linear mixing rule, following from the model of double rep-
polymer bl)énds 9 P 9 %ation [9,10], is the simplest one to describe the details of

. . . ._coupled stress relaxation in polymer blends. It yields for the
Our aim here is to present an alternative study by keepm%teady viscous stresses the following expressions:
for the stress tensor the usual upper-convected Maxwell form '

and incorporating nonequilibrium contributions into the

chemical potentials. Such an approach has been used in therxy: Y

description of shear-induced diffusion and of phase separa-

tion in polymer solution$1,2,5—7. A comparison of the two =GamayY(ha), (4)

approaches may be useful for discussion of the role of dy-

namical and thermodynamical effects in this active field of

research. N1 = oy oyy=2%?
First of all, we summarize the results by Clarke and

TATB

PAGATAT 4¢adbe(GaGE) A —

2
+ G 7s
At 7B

PACATA+ Bdads(GaGE)

McLeish [4], who use a two-fluid description proposed by Tatg |2
Doi and Onuki[8]. The main result of this approach is the — + $p3Gp75
following expression for the evolution of the volume fraction TAT T8
¢ of one of the polymers, say, polymér =2GA(TaY)2X(bn), (5)
dba where vy is the shear rate, and($,) andY(¢,) are poly-
i~V (Vo) +V-M-[V(up—pg)—aV- o], (1)  nomials defined in order to have more compact expressions
and whose explicit forms are given in Eq42) and(A3) in
the Appendix.
wherev is the volume average velocity] the mobility ten- The diagonal components of the stress tensor are assumed

sor, o the viscous stress tensor, ane parameter depending to have the fornj4]
on the ratio of entanglements in both polymers. Then the
viscous stress is coupled to the diffusion fldx which is =2N,

given by Tyy=05=— 3Ny, (6)

so that Tor=0. Note that the forn{6) for the diagonal com-
J=—M-[V(up—ug)—aV-ol. (2 ponents of the viscous stresses is not unique, as one might
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assume. For instance, if an upper-convected Maxwell modevhere¥ and® are parameters that depend on the sysjem,
[11] is used to describe the viscous stress tensor, it followdts value on the quiescent spinodal, aathe interfacial en-
that ergy. The spinodal line indicating the onset of instability of

the homogeneous phase is given by the condibiR=0.

ox=N1, oy=0,,=0. (7)  Indeed, for positive values @ ¢, inhomogeneities will tend

to disappear, whereas negative valueDgf will enhance
Although the stress tensor can only be determined within athhomogeneities [8,12,13. Thus, Ay, describes the
isotropic constant, the optiort§) and(7) do not differ by a  3-dependent shift in the spinodal line. Whary.<0, shear-
constant, but a variable, namely,5N;, and thus they are induced demixing occurs, i.e., phase separation is enhanced,
not equivalent. whereas Ax.>0 corresponds to shear-induced mixing,

The different choices6) and (7) lead to very different  \yhich contributes to the stability of the one-phase system. In

results concerning the flow effects on the diffusion flux. In-the approach by Clarke and McLeif#], A x. is given by

deed, consider for instance tigecomponent of], which ac-
cording to Eq.(2) is given by 2a - , X(pp)Y' (Pa)
Axc(ay)= w(ﬁ?’) Ga EX (Pn) — TNy

(133

Jdo Jdo Jo
xy 2%y PTzy
ox ay 0z

1%
Jy=- M{E(MA_MB)_ a(
€S)

In the steady state, one has,,/dx=0 anddo,,/dz=0,
and one is left with

AXe(0) = 3 g OalTaYX (6, (13D

whereX’ andY' denote the derivatives with respectdq .

The result413) have been taken as the basis for the analysis
_ (99  of some experiments by assuming an effective diffusion co-

efficient of the formD ¢=Deg— ay?, whereD g is the diffu-
) . ) sion coefficient at equilibrium and is taken as a parameter

If Eq. (6) is assumedey,,=— 3N, and the coupling term 5 pe identified by fitting the experimental d4ts].

contributes taly, whereas if Eq(7) is considered, the cou- | contrast with[4], we include in the chemical potential
pling term QOes not contribute to the diffusion flux. This is contributions from the flow, which may be expressed in
the main difference between the approach[4} and the terms of the viscous stress in a macroscopic approach, or of
present one. If4], ua andug do not depend on the flow and the macromolecular configuration tensor in a more micro-
all the shear-induced effects are attributed to the coupllngcopiC approacfi,2,5-7,17. In particular, in extended irre-
term. In the approach proposed[ih7,12,13 for dilute poly-  yersible thermodynamics the nonequilibrium contribution of

mer solutions and applied here to polymer blendgs,and  the viscous stress tensor to the Gibbs free engrig/given
ug depend on the flow and the coupling term vanistfes by [1,2,18-22,1%

the plane Couette flow studied in this paper, but not in some

other flows such as the cone-and-plate ¢hé,15). Thus, AG=VI02,=v4(NsNa+NgNg)Jo2 (14)
from now on we will use Eq(7) and a nonequilibrium con- y Xy
tribution for w.

=M Jd dayy
y— 0y(MA Mp)— @ ay

. V being the total volume] the steady-state complianGee.,
Anyway, we will follow the standard procedufé,8,12 the ratio of the viscoelastic relaxation time to the shear vis-

g d((egn:cng &n eﬁect|veFd|ﬁ95|C)tn CO?H'C'eﬁ:e{Lby revtvrlténgt]. cosity), n; the number of moles of specieper unit volume,
d- or theé space Fourier transiorm of the perturba 'OnSNi the number of monomers of polyme(i=A,B), andv,

d¢, in the volume fraction of polymeA in the form the molar volume of the monomer, which in this simple il-
95 lustration is supposed the same farand B, although the
A__ D025, (10)  result could be straightforwardly generalized to different mo-
at lar volumes. This contribution is supported by several micro-
) ) scopic argumentfl] and, in summary, it takes into account
whereq is the wave vector. For wave vectors in h@ndz  he contribution to the Gibbs free energy of the orientation
directions (when the velocity is in thex direction and the  anq stretching of the macromolecules due to the flow. From
velocity gradient in they direction, the effective diffusion g4 (14), one may derive the nonequilibrium contributions to

coefficient is the chemical potentials,
De(0i) =2M[xe— x+ x0f +Axc(a)]  (i=Y,2), IAG B A,
11 = —= = . A -
11 A ( an, )Typ’(,-x UONJ J+(6ia— da) Jda Oxy
wherey is the Flory-Huggins interaction parameter, which is g
a function of the temperature of the form (i=A,B, i#j), (15

T being the temperaturgy the pressure, and;; the Kro-
(12) '
necker delta.

S
=3 VT
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The explicit form of the steady-state compliandefor

polymer blends may be obtained from the general formula

[11]

z Ti 2 TizGi

~ | I
J: = 7,

$o) (3ol

and from the fact that the memory functi@(t) in Eq. (3)
may be explicitly rewritten as

(16)

)=2, Gi(t)=paGaexp —t/7a) + $p3Gg exp( —t/7p)

+2pada(GaGp) ™2 exp( —t/7¢), (17)
where 7c'=2(74'+51). By combining Egs.(16) and
(17), it follows that
S_ _$ATAGA+ $57sCrt20ada7e(GaGE)

[HaTaGAT d57eCr+ 2¢adaTc(GaGE) ]
_ 1 X(¢a)
Ga Y(dp)*

(18
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FIG. 1. Borders of instability in thg direction whenG=1. The
continuous curve is calculated from E@1) whenA=1 and the
dashed curve corresponds to the res(dk calculated from Eg.

(13a.

In Fig. 1 we compare our resulf&1) with (133 obtained
in [4]. In this figure is plotted the border of the instability
behavior, namelyA x.=0, in a diagram of logy 7 vs ¢, for
G=1. In the Clarke and McLeish results, such a border is a

Therefore, the following expressions for the nonequilibriumsingle line, whereas in our model two different lines arise.

contribution(15) to the chemical potentials are obtained:

Z +W
A/.LA:U()NAGA( TA’.)/)Z %A)(M ’ (19)
App=0oN5Ga(7a¥)? ((2‘\)) (20)

whereZ(¢,) andW(¢,) are polynomials given in the Ap-
pendix[Egs.(A4) and (A10), respectively.

The zones where\ y.<0 correspond to shear-induced de-
mixing, whereas wheré\ y.>0 the shear induces mixing
and it enhances stability. The physical differences between
the predictions of Clarke and Mc Leish and ours are directly
seen: in the former, the nonequilibrium and equilibrium spin-
odal lines cross over each at a single point, whereas in the
latter there are crossings at two points, depending on the
range ofr and ¢, considered. It is also noted that, although
\ appears in Eg(21), calculations reveal only a minor influ-
ence o x.(q,) in our resultsg21), whereas it does not even

Therefore, the total shift of the spinodal line becomes inappear in Eq(133. The limit whenr<1 would correspond

our model

Axc(ay)= GA(TAY)ZL(—3WY' +Y W)

2kT

+(1-N\)(—3ZY'+YZ')]Y 2, (22)

when we consider thg direction (whereo,,=const) and

voNa . ,
Axc(a)= mGA( Ay [(—WY +YW)

+(1=N)(=ZY'+YZ)]Y? (22)
in the z direction(along whichy = const). The parametaris
defined as the ratio of the number of monomeétg.andNg,
in the polymeric chain® andB, i.e., A\=Ng/Nj4.

Note that, as well as Eqé&L3a and(l3b) the resultg21)

to an entangled polymer solution of chaid$n solventB; in

this case, the shear flow induces mixing and enhances stabil-
ity. When 7 increases, i.e., when the viscoelastic effects of
the solvenB increase, a demixing behavior appears. Follow-
ing Clarke and McLeisl4], the parametex can be written

as

- 1-\*
T AN ) pat N
with

NF =\ NA,ent

23
NB,ent ( )

whereN; ¢ is the degree of polymerization of an entangle-

and(22) point out that in the presence of the flow one shouldment segment in polymer The last equation shows that

consider an effective diffusion coefficient of the forbn.g

takes values near zero whénand B have equal degrees of

=Deq—a"yz, with a’ a coefficient different from the one polymerization and its entanglement behavior is simifar (
obtained in the Clarke and McLeish theory, but yielding=1). In this situation, the\ y. proposed in4] vanishes as

similar qualitative results.

follows from Eqgs.(133 and(13b).
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FIG. 2. Borders of instability in the direction whenG= 1. All FIG. 3. Spinodal lines predicted for the isotopic blend described

in the text. The dotted curve corresponds to the Flory-Huggins
model without interfacial contributions. The other curves are asso-
ciated with fluctuations in thg direction when the system is sub-
mitted to a shear stressg,,=250 Pa. The continuous curve and the
dashed curve are calculated from E(l) and (133, respectively.
The calculations have been carried out usi@g=1, loggr
=—0.5, and\*=0.5.

the curves have been calculated by means of(E2). using differ-
ent values of the parameter which are indicated on the respective
curves. For the considered value @f Eq. (13b) always predicts
Ax.<0, as was pointed out in Ref4].

In Fig. 2 we compare the results fdry.(q,) in our ap-
proach, namely, Eq22), and in that of Clarke and McLeish
Eq.(13b) for G= 1. In contrast with the method for obtaining .
Axc(q,), where the gradient ofia— ug is carried out at CM mode_l predicts a decrease; note, furthermc_)r_e, that the
constanta,,, in the analysis ofAx.(q,) this gradient is shift predicted by the CM mo_del is more sen_smve to the
performed at constant shear rateThus, the “spinodal line” value .of the shear rate than is thPT shift p_red|cted by EIT.
is no longer univocal, but depends on the direction of obserExperimental analysis of these spinodal lines could allow
vation. One difference o x.(q,) with respect toA x.(d,) one to gstabhsh which of these two theoretical models is
is that the former is sensitive to the ratlo (=Ng/N,)  More suitable.
whereas the second one remains practically unchanged under
modifications of\. ' ' : '

When aT-¢, diagram is considere¢rigs. 3 and 4 in 180 b
the zones wherd y.<0 the spinodal line is shifted toward T(X)
higher temperaturelaccording to the relatiofl2) between
x andT], whereas wherd y.>0 it is shifted in the opposite 160 -
direction. In order to apply the previous results to a real
system, we consider one of the isotopic blends of (uiiy-
ethylsiloxang¢ (PDMS) studied by Beaucaget al. [23]. In 140
this reference, neutron scattering experiments are reportec
which yield the values of the Flory-Huggins parameter and
its dependence on temperature. The system that we have chc 120
sen is the blend in which the degree of polymerization of
hydrogenous PDMS is 964 and that of deuterated PDMS is
957 (whose density is of the order of %7.0" 2 kg m™3) for 100
which ¥'=0.5013 and® =1.17 K. Taking into account the
values of the quoted degrees of polymerization, oneas
~1 andN,=957. From the rheological quantities reported
by Migler [24] we have estimate@,=1.5x10" Pa andry in the text. The dotted curve corresponds to the Flory-Huggins

_ -3 P
=2.0<10""°s. Note that in Fig. 3, both the Clarke and \,,qe| without interfacial contributions. The other curves are asso-
McLeish (CM) model and the extended irreversible thermo-gjated with fluctuations in the direction takingG=1, logy,7

dynamics(EIT) model predict an increase of the critical tem- = _ 5 and\ =1 when the system is submitted to a constant shear

perature of the same order. However, the shift of the value ofate. The continuous curves are calculated from &8) consider-
the critical concentration is opposite in the two models: it iSing two shear ratey=10 (curve 3 and 5 s (curve 2. All dashed

positive in the CM model and negative in the EIT model. Incurves correspond to E¢L3b): A*=0.9 andy=5s"* (curve 3,
contrast, in the situation reported in Fig. 4, EIT predicts ax*=0.5 and y=5s ! (curve 4, and A\*=0.5 and y=10s!
shear-induced increase in critical temperature whereas theurve 5.

1.0

FIG. 4. Spinodal lines predicted for the isotopic blend described
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In summary, we have pointed out here two different de- X(pp)= TZG+(8A261’2—2726)¢A
scriptions of the shear-induced shift of the spinodal line, due 1. o )
to the coupling betweed andV - o and the nonequilibrium +(1-8AG"+ 7°G) ¢y, (A2)

contribution to the chemical potentiajs. Whereas in the

plane Couette flow studied here the coupling term disappeary (¢,) = 7G+ (4AGY?—27G) o+ (1— 4AGY?+ 7G) ¢a.
when the upper-convected Maxwell model is used, this is not (A3)
so in other flow geometries, such as for instance the cone-

and-plate model. In such situations, the two contributions The polynomialZ(¢,) in Egs.(19) and(20) is found to
should be added, as was done, for instanc¢18). Indeed, be

in addition to the relative importance of the latter contribu-

tions to the steady-state nonequilibrium spinodal line out- Z(pa) =20+ 21ppt Zabat Z3dpt Zabn,  (Ad)
lined here, other good motivations to consider them arise in

the analysis of time-dependent phenomena, such as, for itvith coefficients given by

stance, the rate of shear-induced separation. Indegti4jrit

was shown(in a polymer dilute solution in a cone-and-plate 2o=1°G?, (A5)
experimenk that by keeping only the coupling between vis-
cous shear and diffusion fluk.e., by ignoring the nonequi- 7,=1277AG%?-673G?, (AB)

librium contributions to the chemical potenfiane predicts

a shear-induced polymer separation which is two to three  z,=(—7+64A3+57%) G+ (—24rA%—3672A)G3?
orders of magnitude slower than the one experimentally ob- 32

served. Instead, inclusion of nonequilibrium contributions +127°G7, (A7)
such as Eq(14) yields the correct order of magnitude for this

separation time, since the separation is accelerated because Z3=(4A+32A%)GY2+ (- 27—87°~160A%)G

of a thermodynamical instability due to the nonequilibrium 2 2 a2 32

terms of the chemical potentigl3]. The analysis of similar +(48rA"+36r°A) G- 107G, (A8)
experiments in polymer blends would be of much interest in _ o m1f2 ) 3
clarifying the physical relevance of the several kinds of non- 23=3+(—12A —24A") G+ (37+37°+96A°)G
equilibrium contribution to the effective diffusion coefficient. +(—24rA%— 1272A) G2+ 3:3G2. (A9)

We acknowledge financial support from the Spanish Min- . L
istry of Science and Technology under Grant No. BFM2000-__Analogously, we can write foiV(¢,) appearing in Eq.
0351-C03-01 and from the DirecciBeneral de Recerca of (19),
the Generalitat of Catalonia under Grant No. 2001 SGR

— 2 3
00186. Also, one of ué..F.C) acknowledges the support of W(p) =Wo+WidpatWoda+W3dhp, (A10)
the Direccio General de Asuntos de Personal Acad® of _ _ L
the UNAM (México) under Grant No. IN-119200. with the following coefficients:
Wo=(87A2—-87°A)G¥%+273G?, (A11)
APPENDIX
In order to obtain the explicit form of the polynomials W= (27— 47— 32A%) G + 247°A G¥?— 67°G?,
guoted in the previous sections, the following parameters are (A12)
introduced:
Wo=— 24A2GY?+ (6 72+ 96A %) G
.8 ™, T (AD) +(—24rA%—2470)G¥46:3G?,  (A13)
GA ! A ! 1 + T’

_ _ o W3=—2+(8A+16A%)G 4 (- 27-277-64A%)G
which allow us to write forX(¢,) andY(¢,) appearing in
Egs.(4) and(5), +(167A%+87°A)G¥2—-273G2. (A14)
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