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Shear-induced shift of spinodal line in entangled polymer blends
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We study the shear-flow effects on phase separation of entangled polymer blends by incorporating into the
chemical potential a nonequilibrium contribution due to the flow. The results are compared with those of a
previous analysis by other authors which did not modify the chemical potential but used a different assumption
for the stress tensor of the blend.
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Shear-induced effects in polymer solutions and blends
very interesting in thermodynamics, statistical mechan
hydrodynamics, and engineering and, accordingly, much
search is being carried out on them@1–3#. Clarke and
McLeish @4# recently studied the shear-flow effects on pha
separation of entangled polymer blends. They considere
two-fluid model, taking into account the effects of mutu
friction among the chains, of shear stress, and of the in
mogeneities in the chemical potential of the compone
They assumed that the chemical potential keeps its lo
equilibrium form ~i.e., that it does not depend on the flow!,
and the shear-flow effects were entirely attributed to the c
pling between the divergence of the viscous pressure and
diffusion flux. On this basis, they showed the possibility o
rich variety of changes of the phase diagrams of flow
polymer blends.

Our aim here is to present an alternative study by keep
for the stress tensor the usual upper-convected Maxwell f
and incorporating nonequilibrium contributions into th
chemical potentials. Such an approach has been used i
description of shear-induced diffusion and of phase sep
tion in polymer solutions@1,2,5–7#. A comparison of the two
approaches may be useful for discussion of the role of
namical and thermodynamical effects in this active field
research.

First of all, we summarize the results by Clarke a
McLeish @4#, who use a two-fluid description proposed b
Doi and Onuki@8#. The main result of this approach is th
following expression for the evolution of the volume fractio
fA of one of the polymers, say, polymerA:

]fA

]t
52“•~vfA!1“•M•@“~mA2mB!2a“•s#, ~1!

wherev is the volume average velocity,M the mobility ten-
sor,s the viscous stress tensor, anda a parameter dependin
on the ratio of entanglements in both polymers. Then
viscous stress is coupled to the diffusion fluxJ, which is
given by

J52M•@“~mA2mB!2a“•s#. ~2!
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In @4#, this coupling plays an essential role in the shift
the spinodal line, whereasmA and mB are the local-
equilibrium chemical potentials of polymersA andB, respec-
tively. Thus, the shear-induced effects are attributed to
purely dynamical origin.

As the memory function for the stress relaxation of t
blend, Clarke and McLeish take

G~ t2t8!5„fA$GA exp@2~ t2t8!/tA#%1/2

1fB$GB exp@2~ t2t8!/tB#%1/2
…

2, ~3!

wheref i , Gi , andt i are, respectively, the volume fraction
plateau modulus, and relaxation time of polymeri. This non-
linear mixing rule, following from the model of double rep
tation @9,10#, is the simplest one to describe the details
coupled stress relaxation in polymer blends. It yields for
steady viscous stresses the following expressions:

sxy5ġFfA
2GAtA14fAfB~GAGB!1/2

tAtB

tA1tB
1fB

2GBtBG
[GAtAġY~fA!, ~4!

N15sxx2syy52ġ2FfA
2GAtA

218fAfB~GAGB!1/2

3S tAtB

tA1tB
D 2

1fB
2GBtB

2 G
[2GA~tAġ !2X~fA!, ~5!

where ġ is the shear rate, andX(fA) and Y(fA) are poly-
nomials defined in order to have more compact express
and whose explicit forms are given in Eqs.~A2! and~A3! in
the Appendix.

The diagonal components of the stress tensor are assu
to have the form@4#

sxx5
2
3 N1 , syy5szz52 1

3 N1 , ~6!

so that Trs50. Note that the form~6! for the diagonal com-
ponents of the viscous stresses is not unique, as one m
©2002 The American Physical Society03-1
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assume. For instance, if an upper-convected Maxwell mo
@11# is used to describe the viscous stress tensor, it follo
that

sxx5N1 , syy5szz50. ~7!

Although the stress tensor can only be determined within
isotropic constant, the options~6! and ~7! do not differ by a
constant, but a variable, namely,2 1

3 N1 , and thus they are
not equivalent.

The different choices~6! and ~7! lead to very different
results concerning the flow effects on the diffusion flux. I
deed, consider for instance they component ofJ, which ac-
cording to Eq.~2! is given by

Jy52M F ]

]y
~mA2mB!2aS ]sxy

]x
1

]syy

]y
1

]szy

]z D G .
~8!

In the steady state, one has]sxy /]x50 and ]szy /]z50,
and one is left with

Jy52M F ]

]y
~mA2mB!2a

]syy

]y G . ~9!

If Eq. ~6! is assumed,syy52 1
3 N1 and the coupling term

contributes toJy , whereas if Eq.~7! is considered, the cou
pling term does not contribute to the diffusion flux. This
the main difference between the approach in@4# and the
present one. In@4#, mA andmB do not depend on the flow an
all the shear-induced effects are attributed to the coup
term. In the approach proposed in@1,7,12,13# for dilute poly-
mer solutions and applied here to polymer blends,mA and
mB depend on the flow and the coupling term vanishes~for
the plane Couette flow studied in this paper, but not in so
other flows such as the cone-and-plate one@14,15#!. Thus,
from now on we will use Eq.~7! and a nonequilibrium con
tribution for m.

Anyway, we will follow the standard procedure@4,8,12#
of defining an effective diffusion coefficientDeff by rewriting
Eq. ~1! for the space Fourier transform of the perturbatio
dfA in the volume fraction of polymerA in the form

]dfA

]t
52Deffq

2dfA, ~10!

whereq is the wave vector. For wave vectors in they andz
directions ~when the velocity is in thex direction and the
velocity gradient in they direction!, the effective diffusion
coefficient is

Deff~qi !52M @xc2x1kqi
21Dxc~qi !# ~ i 5y,z!,

~11!

wherex is the Flory-Huggins interaction parameter, which
a function of the temperature of the form

x5
1

2
1CS Q

T
21D , ~12!
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whereC andQ are parameters that depend on the systemxc
its value on the quiescent spinodal, andk the interfacial en-
ergy. The spinodal line indicating the onset of instability
the homogeneous phase is given by the conditionDeff50.
Indeed, for positive values ofDeff , inhomogeneities will tend
to disappear, whereas negative values ofDeff will enhance
inhomogeneities @8,12,13#. Thus, Dxc describes the
ġ-dependent shift in the spinodal line. WhenDxc,0, shear-
induced demixing occurs, i.e., phase separation is enhan
whereas Dxc.0 corresponds to shear-induced mixin
which contributes to the stability of the one-phase system
the approach by Clarke and McLeish@4#, Dxc is given by

Dxc~qy!5
2a

3kBT
~tAġ !2GAF1

2
X8~fA!2

X~fA!Y8~fA!

Y~fA! G ,
~13a!

Dxc~qz!5
a

3kbT
GA~tAġ !2X8~fA!, ~13b!

whereX8 andY8 denote the derivatives with respect tofA .
The results~13! have been taken as the basis for the analy
of some experiments by assuming an effective diffusion
efficient of the formDeff5Deq2aġ2, whereDeq is the diffu-
sion coefficient at equilibrium anda is taken as a paramete
to be identified by fitting the experimental data@16#.

In contrast with@4#, we include in the chemical potentia
contributions from the flow, which may be expressed
terms of the viscous stress in a macroscopic approach, o
the macromolecular configuration tensor in a more mic
scopic approach@1,2,5–7,17#. In particular, in extended irre
versible thermodynamics the nonequilibrium contribution
the viscous stress tensor to the Gibbs free energyG is given
by @1,2,18–22,15#

DG5VJ̃sxy
2 5v0~nANA1nBNB!J̃sxy

2 , ~14!

V being the total volume,J̃ the steady-state compliance~i.e.,
the ratio of the viscoelastic relaxation time to the shear v
cosity!, ni the number of moles of speciesi per unit volume,
Ni the number of monomers of polymeri ( i 5A,B), andv0
the molar volume of the monomer, which in this simple
lustration is supposed the same forA and B, although the
result could be straightforwardly generalized to different m
lar volumes. This contribution is supported by several mic
scopic arguments@1# and, in summary, it takes into accou
the contribution to the Gibbs free energy of the orientat
and stretching of the macromolecules due to the flow. Fr
Eq. ~14!, one may derive the nonequilibrium contributions
the chemical potentials,

Dm i5S ]DG
]ni

D
T,p,sxy

5v0NjF J̃1~d iA2fA!
] J̃

]fA
Gsxy

2

~ i 5A,B, iÞ j !, ~15!

T being the temperature,p the pressure, andd i j the Kro-
necker delta.
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The explicit form of the steady-state complianceJ̃ for
polymer blends may be obtained from the general form
@11#

J̃5

(
i

t ih i

S (
i

h i D 2 5

(
i

t i
2Gi

S (
i

Git i D 2 , ~16!

and from the fact that the memory functionG(t) in Eq. ~3!
may be explicitly rewritten as

G~ t !5(
i

Gi~ t !5fA
2GA exp~2t/tA!1fB

2GB exp~2t/tB!

12fAfB~GAGB!1/2 exp~2t/tC!, ~17!

where tC
2152(tA

211tB
21). By combining Eqs.~16! and

~17!, it follows that

J̃5
fA

2tA
2GA1fB

2tB
2GB12fAfBtC

2 ~GAGB!1/2

@fA
2tAGA1fB

2tBGB12fAfBtC~GAGB!1/2#2

5
1

GA

X~fA!

Y~fA!2 . ~18!

Therefore, the following expressions for the nonequilibriu
contribution~15! to the chemical potentials are obtained:

DmA5v0NAGA~tAġ !2FZ~fA!1W~fA!

Y~fA! G , ~19!

DmB5v0NBGA~tAġ !2
Z~fA!

Y~fA!
, ~20!

whereZ(fA) andW(fA) are polynomials given in the Ap
pendix @Eqs.~A4! and ~A10!, respectively#.

Therefore, the total shift of the spinodal line becomes
our model

Dxc~qy!5
v0NA

2kBT
GA~tAġ !2@~23WY81YW8!

1~12l!~23ZY81YZ8!#Y22, ~21!

when we consider they direction ~wheresxy5const) and

Dxc~qz!5
v0NA

2kBT
GA~tAġ !2@~2WY81YW8!

1~12l!~2ZY81YZ8!#Y22 ~22!

in thez direction~along whichġ5const). The parameterl is
defined as the ratio of the number of monomers,NA andNB ,
in the polymeric chainsA andB, i.e., l5NB /NA .

Note that, as well as Eqs.~13a! and~13b!, the results~21!
and~22! point out that in the presence of the flow one sho
consider an effective diffusion coefficient of the formDeff
5Deq2a8ġ2, with a8 a coefficient different from the one
obtained in the Clarke and McLeish theory, but yieldi
similar qualitative results.
06180
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In Fig. 1 we compare our results~21! with ~13a! obtained
in @4#. In this figure is plotted the border of the instabilit
behavior, namely,Dxc50, in a diagram of log10t vs f, for
G51. In the Clarke and McLeish results, such a border i
single line, whereas in our model two different lines aris
The zones whereDxc,0 correspond to shear-induced d
mixing, whereas whereDxc.0 the shear induces mixing
and it enhances stability. The physical differences betw
the predictions of Clarke and Mc Leish and ours are direc
seen: in the former, the nonequilibrium and equilibrium sp
odal lines cross over each at a single point, whereas in
latter there are crossings at two points, depending on
range oft andfA considered. It is also noted that, althoug
l appears in Eq.~21!, calculations reveal only a minor influ
ence onDxc(qy) in our results~21!, whereas it does not eve
appear in Eq.~13a!. The limit whent!1 would correspond
to an entangled polymer solution of chainsA in solventB; in
this case, the shear flow induces mixing and enhances st
ity. When t increases, i.e., when the viscoelastic effects
the solventB increase, a demixing behavior appears. Follo
ing Clarke and McLeish@4#, the parametera can be written
as

a5
12l*

~12l* !fA1l*

with

l* 5l
NA,ent

NB,ent
, ~23!

whereNi ,ent is the degree of polymerization of an entang
ment segment in polymeri. The last equation shows thata
takes values near zero whenA andB have equal degrees o
polymerization and its entanglement behavior is similarl̃
51). In this situation, theDxc proposed in@4# vanishes as
follows from Eqs.~13a! and ~13b!.

FIG. 1. Borders of instability in they direction whenG51. The
continuous curve is calculated from Eq.~21! when l51 and the
dashed curve corresponds to the results@4# calculated from Eq.
~13a!.
3-3
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In Fig. 2 we compare the results forDxc(qz) in our ap-
proach, namely, Eq.~22!, and in that of Clarke and McLeish
Eq. ~13b! for G51. In contrast with the method for obtainin
Dxc(qy), where the gradient ofmA2mB is carried out at
constantsxy , in the analysis ofDxc(qz) this gradient is
performed at constant shear rateġ. Thus, the ‘‘spinodal line’’
is no longer univocal, but depends on the direction of obs
vation. One difference ofDxc(qz) with respect toDxc(qy)
is that the former is sensitive to the ratiol ([NB /NA)
whereas the second one remains practically unchanged u
modifications ofl.

When aT-fA diagram is considered~Figs. 3 and 4!, in
the zones whereDxc,0 the spinodal line is shifted towar
higher temperatures@according to the relation~12! between
x andT#, whereas whereDxc.0 it is shifted in the opposite
direction. In order to apply the previous results to a r
system, we consider one of the isotopic blends of poly~dim-
ethylsiloxane! ~PDMS! studied by Beaucageet al. @23#. In
this reference, neutron scattering experiments are repo
which yield the values of the Flory-Huggins parameter a
its dependence on temperature. The system that we have
sen is the blend in which the degree of polymerization
hydrogenous PDMS is 964 and that of deuterated PDMS
957 ~whose density is of the order of 9.731023 kg m23) for
which C50.5013 andQ51.17 K. Taking into account the
values of the quoted degrees of polymerization, one hal
'1 andNA5957. From the rheological quantities report
by Migler @24# we have estimatedGA51.53104 Pa andtA
52.031023 s. Note that in Fig. 3, both the Clarke an
McLeish ~CM! model and the extended irreversible therm
dynamics~EIT! model predict an increase of the critical tem
perature of the same order. However, the shift of the valu
the critical concentration is opposite in the two models: it
positive in the CM model and negative in the EIT model.
contrast, in the situation reported in Fig. 4, EIT predicts
shear-induced increase in critical temperature whereas

FIG. 2. Borders of instability in thez direction whenG51. All
the curves have been calculated by means of Eq.~22! using differ-
ent values of the parameterl, which are indicated on the respectiv
curves. For the considered value ofG, Eq. ~13b! always predicts
Dxc,0, as was pointed out in Ref.@4#.
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CM model predicts a decrease; note, furthermore, that
shift predicted by the CM model is more sensitive to t
value of the shear rate than is the shift predicted by E
Experimental analysis of these spinodal lines could all
one to establish which of these two theoretical models
more suitable.

FIG. 3. Spinodal lines predicted for the isotopic blend describ
in the text. The dotted curve corresponds to the Flory-Hugg
model without interfacial contributions. The other curves are as
ciated with fluctuations in they direction when the system is sub
mitted to a shear stresssxy5250 Pa. The continuous curve and th
dashed curve are calculated from Eqs.~21! and~13a!, respectively.
The calculations have been carried out usingG51, log10 t
520.5, andl* 50.5.

FIG. 4. Spinodal lines predicted for the isotopic blend describ
in the text. The dotted curve corresponds to the Flory-Hugg
model without interfacial contributions. The other curves are as
ciated with fluctuations in thez direction taking G51, log10 t
520.5, andl51 when the system is submitted to a constant sh
rate. The continuous curves are calculated from Eq.~22! consider-
ing two shear ratesġ510 ~curve 1! and 5 s21 ~curve 2!. All dashed
curves correspond to Eq.~13b!: l* 50.9 andġ55 s21 ~curve 3!,
l* 50.5 and ġ55 s21 ~curve 4!, and l* 50.5 and ġ510 s21

~curve 5!.
3-4



e
u

ea
n
n
n

u
u

r

te
s-
-

re
ob
ns
is
a
m

t i
n
t.

in
0
f
G
f

ls
a

SHEAR-INDUCED SHIFT OF . . . PHYSICAL REVIEW E 66, 061803 ~2002!
In summary, we have pointed out here two different d
scriptions of the shear-induced shift of the spinodal line, d
to the coupling betweenJ and“•s and the nonequilibrium
contribution to the chemical potentialsm. Whereas in the
plane Couette flow studied here the coupling term disapp
when the upper-convected Maxwell model is used, this is
so in other flow geometries, such as for instance the co
and-plate model. In such situations, the two contributio
should be added, as was done, for instance, in@13#. Indeed,
in addition to the relative importance of the latter contrib
tions to the steady-state nonequilibrium spinodal line o
lined here, other good motivations to consider them arise
the analysis of time-dependent phenomena, such as, fo
stance, the rate of shear-induced separation. Indeed, in@14# it
was shown~in a polymer dilute solution in a cone-and-pla
experiment! that by keeping only the coupling between vi
cous shear and diffusion flux~i.e., by ignoring the nonequi
librium contributions to the chemical potential! one predicts
a shear-induced polymer separation which is two to th
orders of magnitude slower than the one experimentally
served. Instead, inclusion of nonequilibrium contributio
such as Eq.~14! yields the correct order of magnitude for th
separation time, since the separation is accelerated bec
of a thermodynamical instability due to the nonequilibriu
terms of the chemical potential@13#. The analysis of similar
experiments in polymer blends would be of much interes
clarifying the physical relevance of the several kinds of no
equilibrium contribution to the effective diffusion coefficien

We acknowledge financial support from the Spanish M
istry of Science and Technology under Grant No. BFM200
0351-C03-01 and from the Direccio´ General de Recerca o
the Generalitat of Catalonia under Grant No. 2001 S
00186. Also, one of us~L.F.C.! acknowledges the support o
the Dirección General de Asuntos de Personal Acade´mico of
the UNAM ~México! under Grant No. IN-119200.

APPENDIX

In order to obtain the explicit form of the polynomia
quoted in the previous sections, the following parameters
introduced:

G5
GB

GA
, t5

tB

tA
, L5

t

11t
, ~A1!

which allow us to write forX(fA) andY(fA) appearing in
Eqs.~4! and ~5!,
.

06180
-
e

rs
ot
e-
s

-
t-
in
in-

e
-

use

n
-

-
-

R

re

X~fA!5t2G1~8L2G1/222t2G!fA

1~128L2G1/21t2G!fA
2, ~A2!

Y~fA!5tG1~4LG1/222tG!fA1~124LG1/21tG!fA
2.

~A3!

The polynomialZ(fA) in Eqs. ~19! and ~20! is found to
be

Z~fA!5z01z1fA1z2fA
21z3fA

31z4fA
4, ~A4!

with coefficients given by

z05t3G2, ~A5!

z1512t2LG3/226t3G2, ~A6!

z25~2t164L315t2!G1~224tL2236t2L!G3/2

112t3G2, ~A7!

z35~4L132L2!G1/21~22t28t22160L3!G

1~48tL2136t2L!G3/2210t3G2, ~A8!

z4531~212L224L2!G1/21~3t13t2196L3!G

1~224tL2212t2L!G3/213t3G2. ~A9!

Analogously, we can write forW(fA) appearing in Eq.
~19!,

W~fA!5w01w1fA1w2fA
21w3fA

3, ~A10!

with the following coefficients:

w05~8tL228t2L!G3/212t3G2, ~A11!

w15~2t24t2232L3!G124t2LG3/226t3G2,
~A12!

w25224L2G1/21~6t2196L3!G

1~224tL2224t2L!G3/216t3G2, ~A13!

w35221~8L116L2!G1/21~22t22t2264L3!G

1~16tL218t2L!G3/222t3G2. ~A14!
c-
@1# D. Jou, J. Casas-Va´zquez, and M. Criado-Sancho,Thermody-
namics of Fluids under Flow~Springer, Berlin, 2000!.

@2# D. Jou, J. Casas-Va´zquez, and M. Criado-Sancho, Adv. Polym
Sci. 120, 207 ~1995!.

@3# A. Onuki, J. Phys.: Condens. Matter9, 6119~1997!.
@4# N. Clarke and T. C. B. McLeish, Phys. Rev. E57, R3731

~1998!.
@5# C. Rangel-Nafaile, A. B. Metzner, and K. F. Wissbrun, Ma
romolecules17, 1187~1984!.

@6# B. Wolf, Macromolecules17, 615 ~1984!.
@7# M. Criado-Sancho, D. Jou, and J. Casas-Va´zquez, Polymer36,

4107 ~1995!; Phys. Rev. E56, 1887~1997!.
@8# M. Doi and A. Onuki, J. Phys. II2, 1631~1992!.
@9# J. des Cloizeaux, Europhys. Lett.5, 437 ~1988!.
3-5



e

ys

d

-

.

n.

.

d D.

M. CRIADO-SANCHOet al. PHYSICAL REVIEW E 66, 061803 ~2002!
@10# J. D. Ferry,Viscoelastic Properties of Polymers~Wiley, New
York, 1980!.

@11# R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassag
Dynamics of Polymeric Liquids~Wiley, New York, 1987!,
Vol. 2.

@12# J. Casas-Va´zquez, D. Jou, and M. Criado-Sancho, Europh
Lett. 23, 469 ~1993!.

@13# L. F. del Castillo, M. Criado-Sancho, and D. Jou, Polymer41,
2633~2000!; M. Criado-Sancho, D. Jou, L. F. del Castillo, an
J. Casas-Va´zquez,ibid. 41, 8425~2000!.

@14# M. J. Mc Donald and S. J. Muller, J. Rheol.40, 259 ~1996!.
@15# J. Casas-Va´zquez, L. F. del Castillo, D. Jou, and M. Criado

Sancho, Phys. Rev. E63, 057101~2001!.
@16# H. Gerard, J. S. Higgins, and N. Clarke, Macromolecules37,

5411 ~1999!.
@17# A. Onuki, Phys. Rev. Lett.62, 2472~1989!; J. Phys. Soc. Jpn
06180
r,

.

59, 3423~1990!; 59, 3427~1990!.
@18# D. Jou, J. Casas-Va´zquez, and G. Lebon,Extended Irreversible

Thermodynamics, 3rd ed.~Springer, Berlin, 2001!; Rep. Prog.
Phys.51, 1105~1988!; 62, 1035~1999!.

@19# R. E. Nettleton and S. L. Sobolev, J. Non-Equilib. Thermody
20, 205 ~1995!; 21, 297 ~1996!.

@20# L. S. Garcı´a-Colı́n and F. J. Uribe, J. Non-Equilib. Thermodyn
16, 89 ~1991!.

@21# I. Müller and T. Ruggeri,Extended Thermodynamics~Springer,
New York, 1993!.

@22# Extended Thermodynamic Systems, edited by S. Sieniutycz and
P. Salamon~Taylor and Francis, New York, 1992!.

@23# G. Beaucage, S. Sukurmaran, S. J. Clarson, M. S. Kent, an
W. Schaefer, Macromolecules29, 8349~1996!.

@24# K. B. Migler, J. Rheol.44, 277 ~2000!.
3-6


