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Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers
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A two-dimensional effective model for the semisoft elastic behavior of nematic elastomers is derived in the
thin film limit. The model is used to investigate numerically the force-stretch curves and the deformed shape,
and to resolve the local patterns in the director orientation in a stretching experiment. From the force-stretch
curves we recover the two critical stretches which mark the transition from hard to soft and back to hard
response. We present an analytical model for their dependence on the aspect ratio of the sample, and compare
it with numerical results.
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I. INTRODUCTION

Nematic elastomers combine the typical entropic ela
properties of cross-linked polymer networks with the orie
tational instabilities of liquid crystals~@1–3#, and references
therein!. In addition to their appeal as a model system, ne
atic elastomers have several potential applications, ran
from optical waveguides@4# to thermomechanical actuato
@5# and artificial muscles@6#. Recent investigations have als
focused on dynamical effects@7#, microscopic analyses o
the effects of disorder@8–10#, and alternative actuation
mechanisms, such as UV light@11#.

Stretching experiments on sheets of nematic elastom
have revealed semisoft elastic response and formation
characteristic striped pattern of the director orientat
@12,13#. Theoretically, the presence of an instability relat
to the coupling of elastic deformations to the alignment
the nematic director was predicted by Golubovic´ and Luben-
sky @14#, and an expression for the elastic free energy w
derived by means of the Gaussian approximation by Blad
Terentjev, and Warner~BTW! @15#. The force versus stretc
diagrams computed with this energy are ideally soft, in
sense that the force is zero up to a critical stretch. The typ
experimentally observed behavior, however, is semis
More precisely, three different response regimes emerge
increasing stretch: an initially hard response without a
movement of the director, then a soft response accompa
by striped patterns in the director orientation field, and,
nally, a hard response with the director aligned along
direction of maximal stretch. This semisoft behavior h
been attributed to fluctuations in the director orientation
cross linking by Verwey, Warner, and Terentjev~VWT! @8#.
They obtained a correction to the BTW energy and were a
to reproduce, within a macroscopically affine approximati
the main features of the experimental observations. T
work focuses on uniform macroscopic deformation gradie
and does not attempt to resolve the nonuniform structu
present around the clamps in the typical experimental ge
etry ~see Fig. 1!, such as those observed by Zubarevet al.
@16#. To derive the force versus stretch diagrams, VWT co
puted a formula for the effective energy corresponding t
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macroscopic uniaxial deformation as a function of a sca
stretching parameter. The dependence of the effective en
density on the full strain tensor was not addressed.

In this paper, we investigate the reorientation process
function of position and applied stretch, including the inh
mogeneities around the clamps, based upon a determina
of the two-dimensional effective energy describing the m
roscopic behavior of thin sheets. This procedure yield
coarse-grained description of the system, with~energetically
optimal! fine-scale oscillations correctly accounted for in t
energetics, but averaged out in the kinematics. In Sec. II
formulate a reduced two-dimensional theory describing t
films of nematic elastomers, and in Sec. III we derive t
corresponding macroscopic effective energy. Then we us
Sec. IV the effective energy to compute numerically~with
finite elements! the local deformation, the director orienta

FIG. 1. Experimental geometry. The sample is a thin sheet~typi-
cally the thickness is less than 0.5 mm, and the lateral dimens
are of the order of 10 mm!. The top figure represents the initia
condition, where the orientation of the director is uniform and p
allel to the y axis. Extension with rigid clamps~thicker lines! in
direction x leads then to striped patterns in the orientation of
director. These patterns disappear again at large stretches~bottom
figure!.
©2002 The American Physical Society10-1



a
ul
iti
n
t

ee
th

n
o

c-
a
n

tio
n

in

a
at

ft
ec
ri

th

-
he

e-

on

nal

-
of
of

e-

m-
en
her

ti-

wo

o

os-

not

CONTI, DESIMONE, AND DOLZMANN PHYSICAL REVIEW E66, 061710 ~2002!
tion, and the force transmitted by the sample in the stand
experimental geometries. Combining the numerical res
with an analytical model, we propose a formula for the cr
cal stretch marking the transition from soft to hard mecha
cal response and a procedure to extract the values of
material parameters from force-stretch curves. A thr
dimensional analysis, including numerical simulations, of
ideally soft BTW model was reported in@17–20#.

II. DIMENSIONAL REDUCTION

The free energy density derived by VWT can be writte
after an affine change of coordinates in the reference c
figuration @21#, as

W̃VWT~ F̂,n̂,n̂0!5uF̂u22auF̂Tn̂u22buF̂n̂0u2, ~1!

where F̂5“û is the gradient of the deformation fieldû,
uF̂u25F̂ i j F̂ i j , n̂ is a unit vector denoting the nematic dire
tor, andn̂0 is a unit vector parallel to the average director
cross linking. The caret is used to denote three-dimensio
vectors and tensors. From now on we assume thatn̂0 is a
constant unit vector parallel to they axis, in agreement with
the experimental configurations. The customary assump
of incompressibility is incorporated by requiring that the e
ergy be infinite whenever detF̂Þ1. The parametera (0
,a,1) includes both the strength of the nematic order
and the strength of the coupling to the elastic degrees
freedom, and has typically a value of order 0.5. The sm
parameterb accounts for the fluctuation of the director
cross linking, and is typically of order 0.01 to 0.2. Forb

50, W̃VWT reduces to the BTW ideally soft energy.
Experiments are performed in a thin film geometry~see

Fig. 1!, and numerical investigations with the ideally so
BTW energy revealed no structure in the out-of-plane dir
tion @18#. Since we are only interested in stretching expe
ments~and not in compression, where buckling can play
role! we assume that the director is in plane and that
deformation is linear inz. This gives

û~x,y,z!5„ux~x,y!,uy~x,y!,g~x,y!z…, ~2!

and from the incompressibility constraint we getg
51/det“u, where“u is the 232 in-plane deformation gra
dient. For films thinner than the scale of variation of t
in-plane determinant we can neglectz“g in computing the
full deformation gradient. The VWT energy~1! gives then, in
the thin film limit, the expression

W~F,n!5uFu21
1

det2F
2auFTnu22buFn0u2, ~3!

whereF5“u. For deformation gradients with negative d
terminant ~which never appear in tension experiments! we
setW5`. Minimizing Eq. ~3! over n we get

W~F !5l1
21~12a!l2

21
1

l1
2l2

2
2buFn0u2, ~4!
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wherel1<l2 denotes the singular values of the deformati
gradientF, i.e., the eigenvalues of (FTF)1/2. The rest of this
paper is concerned with a detailed analysis of the variatio
problem

minimizeE W~“u!dxdy ~5!

which determines the deformation fieldu from the energy
~4!.

III. EFFECTIVE ENERGY

The energy density~4! is not convex, and indeed the en
ergy of affine deformations can be reduced by formation
fine structures. The aim of this section is a determination
the effective energyWeff , also called the quasiconvex env
lope @22#, which results from minimizing Eq.~4! over all
possible fine structures with a given average. We first co
pute the minimum over specific microstructures, and th
show that our result is optimal, in the sense that no ot
microstructure can deliver a lower energy.

We start by writing the energy in the equivalent form

W~F !5~12b!l1
2~F !1~12a2b!l2

2~F !1
1

l1
2~F !l2

2~F !

1buFn0
'u2, ~6!

where (x,y)'5(2y,x), and where we have used the iden
ties uFu25l1

2(F)1l2
2(F)5uFn0u21uFn0

'u2. The last two
terms in Eq.~6! are convex. Indeed,uFn0

'u2 is convex inF,
and (detF)22 is convex in the determinant ofF, and taking
the determinant of a gradient vector field“u commutes with
taking spatial averages@see our discussion after Eq.~16!#.
We thus consider fine structures where only the first t
terms in Eq.~6! are modified. At the level of deformation
gradients, we replaceF with the two gradientsFd1

andFd2
,

where

Fd5F1da^ n0 , ~7!

d1,0,d2 , (a^ b) i j 5aibj , and a is a unit vector which
solves a•F21n050. The latter condition is equivalent t
detFd5detF, and sinceuFdn0

'u5uFn0
'u the last two~con-

vex! terms of Eq.~6! are unchanged by replacingF with Fd .
The fact that the differenceFd1

2Fd2
is a rank-1 matrix guar-

antees that there exists a continuousv(x) whose gradient
takes valuesFd1

and Fd2
. Thus, the affine deformation

u(x)5Fx can be perturbed by superimposing fine-scale
cillations, according to

v~x!5Fx1«axS x•n0

« D , ~8!

wherex(t) is a periodic function of periodud1u1ud2u, with
derivatived1,0 for 2d2,t,0, and derivatived2.0 for
0,t,2d1 ~see Fig. 2!. Here« is a small parameter which
represents the length scale of the microstructure. We do
0-2
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resolve this scale explicitly, since experiments show a c
separation between the microstructure size («.1 –10mm)
and the sample size~10 mm!. Models which explicitly re-
solve these length scales, by including Frank-type energ
have been considered within simple geometries, e.g.
@9,23–26#.

Now we choosed1 andd2 so that the average energy p
unit area of the microstructure

« W~“v!5
ud2u

ud1u1ud2u
W~Fd1

!1
ud1u

ud1u1ud2u
W~Fd2

! ~9!

is minimal. Since the productl1(Fd)l2(Fd)5detFd does
not depend ond, the sum of the first two terms in Eq.~6! is
minimal whenever they are equal. This happens whenl1
5m1 andl25m2, where

m15a1/4~detF !1/2, m25a21/4~detF !1/2, ~10!

and

a512
a

12b
. ~11!

In the following we shall eliminatea from all equations in
favor of a, which gives a more direct characterization of t
phase boundaries@27#. The valuesd1 andd2 must therefore
be the solutions of the equationuFdu25m1

21m2
2, which is

equivalent to the quadratic equation

d212da•Fn01uFu22~m1
21m2

2!50. ~12!

This equation has two real roots of opposite sign foruFu2

,m1
21m2

2. We conclude that all deformation gradien
which obeyl1(F).a1/2l2(F) are unstable toward forma

FIG. 2. Sketch of the functionx(t) as defined in Eq.~8!. The
sketch in the upper right corner indicates the corresponding pa
generated in the sample, which from an elastic viewpoint cons
of alternating in-plane shears, with interfaces with normaln05ey .
06171
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tion of microstructure as above. We call the correspond
region in the space of deformation gradients the soft~S!
phase, and the rest, where the energy cannot be lowere
laminates as in Eq.~8!, the hard~H! phase.

Our result is

Weff~F !5g„l2~F !,detF…1buFn0
'u2, ~13!

where

g~s,d!5H d221~12b!~d2/s21as2! in H,

d2212a1/2~12b!d in S.
~14!

As above,S represents all deformation gradientsF such that
detF>a1/2l2

2(F), andH those where the opposite inequali
holds.

Equations~13! and ~14! were obtained by evaluating th
energy~6! on the laminates constructed in Eqs.~7!–~12!. We
now show that this construction is optimal. To do this, w
consider a generic perturbationu of a given affine deforma-
tion Fx and show that its average energy density

« W~“u!>«Weff~“u!5« @g~l2~“u!,det“u!

1bu~n0
'
•“ !uu2# ~15!

is at leastWeff(F). Sinceg is a convex function, as can b
checked by verifying that the matrix of its second derivativ
is positive semidefinite, we obtain from Jensen’s inequa
@28# that Eq.~15! is greater than or equal to

gS « l2~“u!,« det“uD1bU« ~n0
'
•“ !uU2

. ~16!

Now «det“u5detF by the Gauss-Green formula, and sin
l2(F) is convex in F we get, again by Jensen,«l2(“u)
>l2( «“u)5l2(F). Sinceg is increasing in its first argu-
ment, we conclude that

« Weff~“u!>WeffS «“uD5Weff~F !. ~17!

This shows that the construction of Eqs.~7!–~12! is optimal.
Energy reduction by formation of stripe domains

shown in Fig. 2 is well known in the literature on nemat
elastomers@1,2,8#, at least for uniaxial deformations. Th
arguments in this section extend the construction to all
formation gradients, and prove optimality. It is interesting
observe that, even in this larger class of constructions,
lamination direction~i.e., the normal to the stripes in th
reference configuration! remainsn0, whereas the widths o
the stripes are no longer equal~since, in general,d1Þ2d2)
@29#.

IV. RESULTS

We have solved numerically the minimization proble
*Weff(“u), whereWeff is the effective energy of Eqs.~13!
and~14!, subject to the boundary conditions sketched in F
1. More precisely, we work on the rectangle (0,l x)3(0,l y)

rn
ts
0-3
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and imposeux(0,y)50, uy(0,y)5uy( l x ,y)5b21/3y, and
ux( l x ,y)5sb1/6l x , whereb512a2b and s is the applied
stretch. Our computations have been performed with aMAT-

LAB finite element toolbox developed by F. Alouges, bas
on linear elements on an unstructured triangulation of

FIG. 3. Force versus stretch ata50.5, r 53, b50.1, 0.05, 0.01,
and 0.001~from highest to lowest curve!. The dot marks the value
obtained from Eq.~19!. The inset shows a blowup of the regio
arounds2 for b50.01, and the two linear fits used to determines2.
The dots in the blowup mark the computed points. Here and be
we plot the total force per unit cross section transmitted by
sample.

FIG. 4. Force versus stretch atb50.1, r 53, a50.8, 0.7, 0.6,
0.5, 0.4, and 0.3~from highest to lowest curve!.
06171
d
e

domain, which was generated using the public-domain m
generatorTRIANGLE by J. R. Shewchuk. Typical meshe
ranged from a few hundred to a few thousand nodes,
they were refined close to the clamps and to the free ed

Figure 3 shows the transmitted force as a function of i
posed stretch for different values ofb and a typical aspec
ratio r 5 l x / l y53 @30#. For smallb the response approache
the ideally soft behavior, which is characterized by ze
force up to a threshold~called s2 below!. For finite b the
force-stretch diagram is Z shaped, in agreement with exp
ment~see, e.g.,@1,2#!. The additional kink appearing at sma
stretches~calleds1 below! marks the transition from an ini
tially hard response to the intermediate semisoft behav
and is absent forb50. The effect of changing the materia
parametera is shown in Fig. 4.

Figure 5 shows the effect of sample geometry at fix
material parameters. To better elucidate the influence of
geometry on the response, we compare our results with
affine approximation, on which most previous theoretic
analyses are based@1,2,4,8#. This is obtained by neglecting
the constraint exerted by the clamps against contraction
the directiony, and gives for the force the expression

2~12b!1/3a1/3~s2s22!, 1,s,s1
aff ,

2b~12b!1/3a1/3s, s1
aff,s,s2

aff , ~18!

2~12b!1/3a1/3@a~12b!1b#s2
2~12b!1/3

a1/6s2
, s.s2

aff ,

w,
e

FIG. 5. Force versus stretch ata50.5, b50.1, r 50.5, 1.5, 3, 5,
and 20~from highest to lowest curve!. The dashed curve shows th
affine approximation, which is appropriate forr→`. The inset
shows a blowup of the region at small stretches~the computed
points are marked by crosses!.
0-4
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wheres1
aff5(12b)21/3 ands2

aff5a21/2(12b)21/3. For large
aspect ratios the importance of the clamps decreases, an
numerical curves converge to the affine approximation~see
Fig. 5!. From the data it is also clear that the first critic
stretchs1 has very little dependence on the aspect ratior ~see
inset of Fig. 5!. We now investigate in more detail the d
pendence ofs2 on the geometry. This is relevant since t
formulas fors1

aff ands2
aff are often used to identify the value

of the material parametersa andb from experiments. Thus a
better understanding of the effect ofr on s2 will lead to a
more accurate estimate of the material parameters, as
gested in@2#.

For simplicity we start from the ideally softb50 case. In
the explicit construction shown in Fig. 6 the deformati
gradient“u takes only four different values, and all of the
are in the zero set ofWb50(F) @Eq. ~4!, with b50]. This
means that all of them have singular valuesa21/3 anda1/6; in
regionA the eigenvector corresponding to the largest eig
value isey , in C it is ex , whereas inB6 the orientation is
determined from continuity of the deformationu along the
interfaces.

A straightforward computation@19# shows that the con
struction of Fig. 6 can be performed for stretches up to

s2
05a21/22

r 0

r
~a21/221! ~19!

where

r 05
11a21/2

2 SA11
4a1/2

~11a1/2!2
21D . ~20!

It follows that, for b50, the force transmitted for al
stretches up tos2

0 is exactly zero. The numerical values ofs2
0

FIG. 6. ~Color on line! Ideally soft (b50) piecewise affine
deformations including the effects of the clamps. The upper pa
shows the reference configuration, the lower one the deformed
figuration. The maximal stretch at zero strain is attained when
B6 regions touch the clamps~so that theA regions are reduced to
triangles!. The figure has been drawn withr 53, a50.5.
06171
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are in good agreement with the values ofs2 obtained numeri-
cally for very smallb ~see Fig. 3!.

For finite b, we superimpose ther-dependent correction
just derived ons2

aff @defined after Eq.~18!#, and get the esti-
mate

s2* 5a21/2~12b!21/32
r 0

r
~a21/221! ~21!

for the critical stretchs2.
We now turn to the numerical validation of this approx

mation. Values ofs2 are extracted from a finite set of stretc
force data points with a method analogous to the one use
@2# to get s2 from experimental data. Indeed, we sele
ranges of points to the left and to the right of the kink, and
them with straight lines. The first coordinate of their inte
section definess2. Small changes in the set of points used f
this fitting give an estimate of the error intrinsic in this pr
cedure, which is typically less than 0.05%. The results
obtained are in good agreement with the prediction of E
~21!, but small systematic deviations are still observable.
plot in the inset of Fig. 7 the deviations22s2* . We observed
that the dependence of such differences ona is approxi-
mately quadratic. In Fig. 7 we also plot the scaled quanti
a2(s22s2* ) as a function of aspect ratio. The resulting d
pendence can be well approximated by

a2~s22s2* !.
0.014

r 3/2
. ~22!

el
n-
e

FIG. 7. Deviation of the numerically computed values ofs2

from s2* as given in Eq.~21!, scaled witha2 ~dots!, as a function of
the inverse aspect ratio 1/r . The points are the numerical results, th
curve is Eq.~22!. The inset shows the unscaled values ofs22s2* .
The data points correspond toa50.4, 0.5, 0.6, and 0.7;b50.01
and 0.1.
0-5
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The figure shows that this fit is satisfactory for alla andb
we explored up to inverse aspect ratios of order 1.

In order to illustrate the use of the present results in
constructing material parameters from experimental m
surements, and to assess the relevance of the prop
method, we now give an example based on a numerical
periment. We choose a material with typical parametera
50.5, b50.1, andr 51.5 @30#. From the numerical force
stretch curve, as plotted in Fig. 5, we extract by fitting w
straight liness1

sim51.036 ands2
sim51.361. From the affine

approximation, i.e., by settings1
sim5s1

aff ands2
sim5s2

aff as after
Eq. ~18!, one can then estimate

b512~s1
sim!23.0.101, aaff5S s1

sim

s2
simD 2

.0.579. ~23!

This corresponds to the calculation done, e.g., in@2# starting
from experimental data. To improve the result, one sho
solve the nonlinear equations2(a)5s2

sim, where s2(a) is
given by Eqs. ~20!–~22!. The numerical solution isa
.0.500. A simpler method is to first compute the correct
Ds25s2(aaff)2s2

aff(aaff).20.0986, whereaaff is the ap-
proximation obtained fora with the affine approximation
@Eq. ~23!#, and then to compute

a.
s1

2

~s22Ds2!2
.0.52. ~24!

Iteration of the procedure leads in a few steps to a very g
solution of the nonlinear problem. This shows that the p
posed scheme can correct the 15% error in the identifica
of the material parametera given by the simple affine
scheme of Eq.~23!. The correction remains significant fo
larger r: for r 53 it is around 8%, forr 57 around 4%.

FIG. 8. Rotation angle in the center of the sample fora50.5
andb50.2, 0.1, 0.05, 0.01, 0.005~lowest to top curve!.
06171
-
a-
sed
x-

d

d
-
n

The local orientation of the director has been measure
stretching experiments by x-ray scattering@13,16,24#. To
compare our results with these observations, we have re
structed the local orientation of the director from the co
puted deformation gradients. For gradientsF5“u in phase
H the eigenvector associated with the largest eigenvalu
FFT gives the desired orientation. Gradients in phaseS can
be decomposed uniquely into their two components as
cussed in Sec. II; then for each component the direction
recovered as above. These directions can be ident
through the angles they form withey . By symmetry, these
two angles differ only in the sign for points along the cent
axis of the sample, and we only plot the positive one. In F
8 we plot the director orientation in the center of the sam

FIG. 9. Rotation angle at various points along the axis of
sample fora50.5 andb50.01. The highest curve is the point a
the center of the sample, at distancel x/2 from each clamp, i.e., the
same as plotted in Fig. 8. The other curves correspond to poin
distance 3l x/8, l x/4, andl x/8 from one clamp, still along the axis o
the sample, as displayed in Fig. 10. The dashed curve gives
theoretical prediction of Eq.~25!, expressed in terms ofs1 ands2 as
determined in the text.

FIG. 10. Direction of the stripes across the sample fora50.5,
b50.1, r 53, at a typical stretch in the semisoft ranges51.3.
Stripes can only form parallel to thex axis in the reference configu
ration; the picture shows the corresponding orientation in the
formed configuration. The dots mark the points used for display
the local director rotation in Fig. 9.
0-6
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SEMISOFT ELASTICITY AND DIRECTOR . . . PHYSICAL REVIEW E 66, 061710 ~2002!
as a function of the imposed stretch for different values ofb.
In Fig. 9 we fix one value ofb and explore the directo
orientation at different points along the axis of the samp
The plots are compared with the theoretical expression

sin2u5
s2

2

s2
22s1

2 S 12
s1

2

s2D , ~25!

which was derived in the affine approximation in@8,24#.
We observe a change in behavior for the lower cur

~corresponding to points close to the clamps! for stretches
slightly above the one where the director in the central po
is fully reoriented (angle590°). This is due to the shar
increase in stress transmitted following the passage of pa
the sample from phaseS to phaseH. Figure 10 reports the
expected direction of the stripes across the sample, as sh

FIG. 11. Sample profile~full curves! at various stretches forb
50.01 anda50.5, compared with the corresponding result for
neo-Hookean material~dotted curves! and with the results obtaine
with three-dimensional simulations withb50 and a neo-Hookean
regularization in@18# ~dashed curves!.
X

er
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be seen in optical experiments. They are mostly paralle
the x axis, except for the regions around the clamps.

Figure 11 shows the sample profiles at different stretch
For stretches larger thans2 the curvature of the free edge
much more localized in nematic elastomers than in m
conventional rubbers, as shown by the comparison wit
neo-Hookean material@an incompressible material with th
isotropic, convex energy densityW(F)5uFu2]. In the figure
we also compare with results from three-dimensional sim
lations performed withb50, but with the addition of a
small neo-Hookean regularization, which gives the same
ture at large stretches.

V. CONCLUSIONS

We have investigated the behavior of thin sheets of ne
atic elastomers in stretching experiments, through a com
nation of analytical and numerical techniques. Our meth
identifies an effective energy, which depends only on
average in-plane deformation gradient. The effective ene
results from an instability toward formation of fine-scale o
cillations, for deformation gradients in part of the pha
space, leading to two distinct macroscopic modes of
sponse, called soft and hard. In the soft response mode s
domains, corresponding to small-scale oscillations in the
rector orientation, are expected. We identify all possi
stripe patterns and show that no other small-scale struc
can further reduce the energy.

Numerical simulations, based on the effective ener
give accurate estimates of force-stretch characteris
sample profiles, and spatially resolved director rotation. O
results lead to a method for an accurate identification of m
terial parameters from experimental force-stretch curv
This procedure was demonstrated with a concrete exam
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