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Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers
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A two-dimensional effective model for the semisoft elastic behavior of nematic elastomers is derived in the
thin film limit. The model is used to investigate numerically the force-stretch curves and the deformed shape,
and to resolve the local patterns in the director orientation in a stretching experiment. From the force-stretch
curves we recover the two critical stretches which mark the transition from hard to soft and back to hard
response. We present an analytical model for their dependence on the aspect ratio of the sample, and compare
it with numerical results.
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[. INTRODUCTION macroscopic uniaxial deformation as a function of a scalar
stretching parameter. The dependence of the effective energy
Nematic elastomers combine the typical entropic elastiglensity on the full strain tensor was not addressed.
properties of cross-linked polymer networks with the orien-  In this paper, we investigate the reorientation process as a
tational instabilities of liquid crystal§1-3], and references function of position and applied stretch, including the inho-
therein. In addition to their appeal as a model system, nemMogeneities around the clamps, based upon a determination
atic elastomers have several potential applications, rangingf the two-dimensional effective energy describing the mac-
from optical waveguide$4] to thermomechanical actuators "0Scopic behavior of thin sheets. This procedure yields a
[5] and artificial musclefs]. Recent investigations have also coarse-grained description of the system, wethergetically
focused on dynamical effec{g], microscopic analyses of optlmal)_flne-scale oscHIatlons_correct_Iy accqunted for in the
the effects of disordef8—10,, and alternative actuation €nergetics, but averaged out in the kinematics. In Sec. Il we
mechanisms, such as UV ligft1]. fprmulate a reduced two—d|menS|onaI theory descnbl.ng thin
Stretching experiments on sheets of nematic elastomef§ms of nematic elastomers, and in Sec. lll we derive the
have revealed semisoft elastic response and formation of @rresponding macroscopic effective energy. Then we use in
characteristic striped pattern of the director orientationS€C. IV the effective energy to compute numericalyith
[12,13. Theoretically, the presence of an instability relatedfinite elements the local deformation, the director orienta-
to the coupling of elastic deformations to the alignment of
the nematic director was predicted by Goluboar@ Luben- y
sky [14], and an expression for the elastic free energy was
derived by means of the Gaussian approximation by Bladon, 1l
Terentjev, and WarngBTW) [15]. The force versus stretch : : :
diagrams computed with this energy are ideally soft, in the
sense that the force is zero up to a critical stretch. The typical

experimentally observed behavior, however, is semisoft. ~——
More precisely, three different response regimes emerge with o
increasing stretch: an initially hard response without any SN

movement of the director, then a soft response accompanied
by striped patterns in the director orientation field, and, fi-
nally, a hard response with the director aligned along the -
direction of maximal stretch. This semisoft behavior has -
been attributed to fluctuations in the director orientation at
cross linking by Verwey, Warner, and Terentj@/WT) [8].
They obtained a correction to the BTW energy and were able X

to repro_duce, within a macroscopically affine apprpximation: FIG. 1. Experimental geometry. The sample is a thin stigpt-

the main features of the experimental observations. Theiga|ly the thickness is less than 0.5 mm, and the lateral dimensions
work focuses on uniform macroscopic deformation gradientgre of the order of 10 mm The top figure represents the initial
and does not attempt to resolve the nonuniform structuregondition, where the orientation of the director is uniform and par-
present around the clamps in the typical experimental geonylel to they axis. Extension with rigid clampgéhicker line$ in

etry (see Fig. 1, such as those observed by Zubast\al.  directionx leads then to striped patterns in the orientation of the
[16]. To derive the force versus stretch diagrams, VWT com-director. These patterns disappear again at large stretbbésm
puted a formula for the effective energy corresponding to digure).
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tion, and the force transmitted by the sample in the standardthere\ ;<\, denotes the singular values of the deformation
experimental geometries. Combining the numerical resultgradientF, i.e., the eigenvalues of(F)Y2. The rest of this
with an analytical model, we propose a formula for the criti- paper is concerned with a detailed analysis of the variational
cal stretch marking the transition from soft to hard mechaniproblem
cal response and a procedure to extract the values of the
material parameters from force-stretch curves. A three-
dimensional analysis, including numerical simulations, of the

ideally soft BTW model was reported [A7-20.

minimize| W(Vu)dxdy (5)

which determines the deformation field from the energy
Il. DIMENSIONAL REDUCTION (4).

The free energy density derived by VWT can be written, IIl. EFFECTIVE ENERGY
after an affine change of coordinates in the reference con-
figuration[21], as The energy density4) is not convex, and indeed the en-
ergy of affine deformations can be reduced by formation of

Wywr(F,n,no) =|F|>~a|Fn|>~ g|Fng|?, (1)  fine structures. The aim of this section is a determination of
. . . the effective energyW.¢, also called the quasiconvex enve-

where F=Vu is the gradient of the deformation field, lope _[22],_Which results fr_om mi_nimizing Eq(4) over all

|E|2= 'A:ijr:ij , N is a unit vector denoting the nematic direc- POSsible fine structures with a given average. We first com-

tor, andﬁo is a unit vector parallel to the average director atpUte the minimum over specific microstructures, and then

cross linking. The caret is used to denote three-dimensioneﬁhow that our result is optimal, in the sense that no other

o microstructure can deliver a lower energy.

vectors and tensors. From now on we assume nigas a We start by writing the energy in the equivalent form
constant unit vector parallel to theaxis, in agreement with
the experimental configurations. The customary assumption
of incompressibility is incorporated by requiring that the en- W(F)=(1—B)A3(F)+(1—a— B)\5(F)+ o
ergy be infinite whenever dét#1. The parametew (O M(FIX(F)
<a<1) includes both the strength of the nematic ordering +BIFnS |2, (6)
and the strength of the coupling to the elastic degrees of
freedom, and has typically a value of order 0.5. The smallyhere ,y)"=(—y,x), and where we have used the identi-
parameterB accounts for the fluctuation of the director at tjes |F|2=)\§(F)+)\§(F)=|Fno|2+|Fn$|2. The last two
cross~linking, and is typically of order 0.01 to 0.2. FBr  terms in Eq.(6) are convex. IndeedFn}|? is convex inF,
=0, Wywr reduces to the BTW ideally soft energy. and (defF) 2 is convex in the determinant &, and taking

Experiments are performed in a thin film geometsge  the determinant of a gradient vector fi&fdi commutes with
Fig. 1), and numerical investigations with the ideally soft taking spatial averagegsee our discussion after E(L6)].
BTW energy revealed no structure in the out-of-plane direc\e thus consider fine structures where only the first two
tion [18]. Since we are only interested in stretching experi-terms in Eq.(6) are modified. At the level of deformation

ments(and not in compression, where buckling can play agradients, we replace with the two gradients ; andF;,
role) we assume that the director is in plane and that th‘?/vhere

deformation is linear irz. This gives
. Fs=F+da®ng, )
U(X,Y,2) = (Ux(X,Y),Uy(X,Y), ¥(X,Y)2), 2
) o ) 01<0<9,, (a®b);;=a;b;, anda is a unit vector which
and from the incompressibility constraint we get  gplvesa.F 1n,=0. The latter condition is equivalent to
=1/detVu, whereVu is the 2x 2 in-plane deformation gra- detF ;= detF, and since|F5n$|=|Fn$| the last two(con-

_dient. For films_thinner than the scale_ of variati_on of thevex) terms of Eq(6) are unchanged by replacifigwith F ;.
in-plane determinant we can negleX y in computing the The fact that the diﬁerendé(;l— F(;2 is a rank-1 matrix guar-

full deformation gradient. The VWT ener ives then, in . . .
9 4%) 9 antees that there exists a continuos) whose gradient

the thin film limit, the expression X i
P takes valuesF,s1 and Fs,- Thus, the affine deformation

) 1 . ) u(x)=Fx can be perturbed by superimposing fine-scale os-
W(F,n)=|F| +E_Q|F n?=BIFngl?, (3  cillations, according to

whereF=Vu. For deformation gradients with negative de- V(X)=Fx+eay ﬂ) (8
terminant(which never appear in tension experimenise €

setW=o. Minimizing Eqg. (3) overn we get

where x(t) is a periodic function of periodis;|+|8,|, with
1 derivative 6;<0 for —§,<t<0, and derivative5,>0 for
W(F)=\{+(1—a)\5+ —— — BIFng|?, (4) 0<t<-—§, (see Fig. 2 Heree is a small parameter which
A3 represents the length scale of the microstructure. We do not
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o] 1S tion of microstructure as above. We call the corresponding
region in the space of deformation gradients the $6ft
phase, and the rest, where the energy cannot be lowered by
laminates as in Eq8), the hard(H) phase.
Our result is

ful
=
u_

NNV

Wer( F)=g(\o(F),detF)+ g|Fng|?, (13)

x(t) where

N TN TN TN TS
~~

d 2+ (1-pB)(d*/s*>+as?) in H,
d=2+2a'(1-pB)d in S.

, , As above Srepresents all deformation gradieftsuch that
\/\/\/\/\/\/ detF=a'?\5(F), andH those where the opposite inequality
: i holds.
Equations(13) and (14) were obtained by evaluating the
iy iy t energy(6) on the laminates constructed in E¢8)—(12). We
2 ! now show that this construction is optimal. To do this, we
consider a generic perturbationof a given affine deforma-
tion Fx and show that its average energy density

g(s,d)= (14)

FIG. 2. Sketch of the functio(t) as defined in Eq(8). The
sketch in the upper right corner indicates the corresponding pattern
generated in the sample, which from an elastic viewpoint consists f W(VU)Z{FWeﬁ(Vu)=J/[g()\2(Vu),detVu)
of alternating in-plane shears, with interfaces with normgte, .

. o . +Bl(ng - V)ul?] (15

resolve this scale explicitly, since experiments show a clear
separation between the microstructure size=(—-10um) is at leastW,(F). Sinceg is a convex function, as can be
and the sample siz€l0 mm). Models which explicitly re-  checked by verifying that the matrix of its second derivatives
solve these length scales, by including Frank-type energiess positive semidefinite, we obtain from Jensen’s inequality
have been considered within simple geometries, e.g., ifi28] that Eq.(15) is greater than or equal to
[9,23-24.

2
Now we choose’; and &, so that the average energy per 1
unit area of the microstructure 9| f A2(Vu).fdetVu |+ 5 f(n-V)ul . (16)
2 = - ’ [
| 5, | 64 Now /detVu=detF by the Gauss-Green formula, and since
f W(Vv)= [81]+ 5] W(F§1)+ |51|+|52|W(F52) ©) \,(F) is convex inF we get, again by Jensef\,(Vu)

=\,(/Vu)=\,(F). Sinceg is increasing in its first argu-
is minimal. Since the product,(Fs)\,(Fs)=detFs; does ment, we conclude that
not depend ord, the sum of the first two terms in E€p) is

minimal whenever they are equal. This happens when fWeﬁ(Vu)BWeﬁuVu =W, q(F). (17)
=g andi,= u,, where
wi=at(detF)2 u,=a Y(detF)¥? (100 This shows that the construction of Ecj%)—(lZ) is optimal.
Energy reduction by formation of stripe domains as
and shown in Fig. 2 is well known in the literature on nematic
elastomerd1,2,8, at least for uniaxial deformations. The
a=1- " (11) arguments in this section extend the construction to all de-
B 1-8° formation gradients, and prove optimality. It is interesting to

observe that, even in this larger class of constructions, the
In the following we shall eliminater from all equations in  lamination direction(i.e., the normal to the stripes in the
favor of a, which gives a more direct characterization of thereference configuratiorremainsn,, whereas the widths of
phase boundarig27]. The valuess; and 6, must therefore the stripes are no longer equaince, in generald; # — 8,)
be the solutions of the equatidff ;2= u2+ w3, which is  [29].
equivalent to the quadratic equation

IV. RESULTS
82+ 28a-Fng+|F|?— (u2+ u3)=0. (12)

We have solved numerically the minimization problem
This equation has two real roots of opposite sign [l6f° TWe(VUu), whereW, is the effective energy of Eq$13)
<u?+pu3 We conclude that all deformation gradients and(14), subject to the boundary conditions sketched in Fig.
which obey\(F)>a'2\,(F) are unstable toward forma- 1. More precisely, we work on the rectanglel(Px (0J)
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FIG. 3. Force versus stretch@at0.5,r =3, $=0.1, 0.05, 0.01, FIG. 5. Force versus stretchat0.5,3=0.1,r=0.5, 1.5, 3,5,
and 0.001(from highest to lowest curyeThe dot marks the value and 20(from highest to lowest curyeThe dashed curve shows the
obtained from Eq(19). The inset shows a blowup of the region &ffine approximation, which is appropriate for-<. The inset
arounds, for £=0.01, and the two linear fits used to determige ~ Shows a blowup of the region at small stretchise computed
The dots in the blowup mark the computed points. Here and belowP0ints are marked by crosses
we plot the total force per unit cross section transmitted by the
sample. domain, which was generated using the public-domain mesh
generatorTRIANGLE by J. R. Shewchuk. Typical meshes
ranged from a few hundred to a few thousand nodes, and
u(l,,y)=sb",, whereb=1—a— 3 ands is the applied they were refined close to the clamps and to the free edge.

stretch. Our computations have been performed witina Figure 3 shows the transmitted force as a function of im-
LAB finite element toolbox developed by F. Alouges, based?osed stretch for different values gfand a typical aspect

on linear elements on an unstructured triangulation of théatio r=I,/I,=3 [30]. For smallg the response approaches
the ideally soft behavior, which is characterized by zero

force up to a thresholdcalled s, below). For finite 8 the
force-stretch diagram is Z shaped, in agreement with experi-
ment(see, e.g.,1,2]). The additional kink appearing at small
stretcheqcalleds; below) marks the transition from an ini-
tially hard response to the intermediate semisoft behavior,
and is absent foB=0. The effect of changing the material
paramete@ is shown in Fig. 4.

Figure 5 shows the effect of sample geometry at fixed
material parameters. To better elucidate the influence of the
geometry on the response, we compare our results with the
affine approximation, on which most previous theoretical
analyses are baséd,2,4,8. This is obtained by neglecting
the constraint exerted by the clamps against contractions in
the directiony, and gives for the force the expression

and imposeu,(0y)=0, uy(0y)=uy(l.,y)=b""3, and

08 -

0.6 - ]

force
T
1

04 - 1

0.2 - T 2(1-B)Rat¥(s—s7?), 1<s<si"

2B(1-B)Falls, siM<s<sdM (18)

1 1.2 1.4 1.6 1.8 2
stretch
2(1_,8)1/3
FIG. 4. Force versus stretch g&=0.1,r=3, a=0.8, 0.7, 0.6, - "7
allbg2 '

aff
s>s5,
0.5, 0.4, and 0.3from highest to lowest curye

2(1-p)Ra ¥ a(1-p)+ Bls—
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FIG. 6. (Color on line Ideally soft (3=0) piecewise affine 0 —
deformations including the effects of the clamps. The upper panel PR YT [T T N N Y T T YT ST N N ST S
shows the reference configuration, the lower one the deformed con 0 0.2 04 0.6 0.8 1
figuration. The maximal stretch at zero strain is attained when the 1/AR
B~ regions touch the clampso that theA regions are reduced to o )
triangles. The figure has been drawn with=3, a=0.5. FIG. 7. Deviation of the numerically computed values s3f

from s} as given in Eq(21), scaled witha? (dots, as a function of
Wheresi‘ﬁz (1-B) ~1/3 andsazu‘f: a- 1/2(1_ ,6’)_1/3. For large the inverse aspect ratiorl/The points are the numerical results, the

i i *
aspect ratios the importance of the clamps decreases, and @#g%;;gé?ﬂ% Igﬁégsgaih;g 3 Zheousn Sgaéedar\]/?%e%fg 201

numerical curves converge to the affine approximatisee

. o . - and 0.1.
Fig. 5. From the data it is also clear that the first critical
stretchs; has very little dependence on the aspect natgee
inset of Fig. 5. We now investigate in more detail the de- cally for very small (see Fig. 3
pendence ok, on the geometry. This is relevant since the y for very B > F19. .
formulas fors™ ands2™ are often used to identify the values For finite 3, we superimpose the-dependent correction

1 2 i i aff ; i
of the material parametessand 8 from experiments. Thus a just derived ors;” [defined after Eq(18)], and get the esti-
better understanding of the effect ofon s, will lead to a mate
more accurate estimate of the material parameters, as sug-
gested in2].
For simplicity we start from the ideally sof=0 case. In

the explicit construction shown in Fig. 6 the deformation
gradientVu takes only four different values, and all of them fq the critical stretcts,.

are in the zero set ofV,_o(F) [Eq. (4), with g=0]. This We now turn to the numerical validation of this approxi-
means that all of them have singular valaes”® anda™; in  mation. Values o, are extracted from a finite set of stretch-
regionA the eigenvector corresponding to the largest eigenforce data points with a method analogous to the one used in
value isey, in C it is &, whereas inB~ the orientation is  [2] to get's, from experimental data. Indeed, we select
determined from continuity of the deformatianalong the  ranges of points to the left and to the right of the kink, and fit
mterfaceg. ) them with straight lines. The first coordinate of their inter-
A straightforward computatiofi19] shows that the con-  section defines,. Small changes in the set of points used for
struction of Fig. 6 can be performed for stretches up to  thjs fitting give an estimate of the error intrinsic in this pro-

cedure, which is typically less than 0.05%. The results so

are in good agreement with the valuesgbbtained numeri-

_ _ fo, _
nga 1/2(1_3) 1/3_T(a 1/2_1) (21)

Lo 12 r—o(a‘”z— 1) (19 obtained are in good agreement with the prediction of Eq.
2 r (21), but small systematic deviations are still observable. We
plot in the inset of Fig. 7 the deviaticsy—s5 . We observed
where that the dependence of such differencesais approxi-
mately quadratic. In Fig. 7 we also plot the scaled quantities
1+ 12 43172 a®(s,—s5) as a function of aspect ratio. The resulting de-
fo=——% — + m—l (200  pendence can be well approximated by
It follows that, for B=0, the force transmitted for all a%(s,— S )= 0'014_ (22)
stretches up ts) is exactly zero. The numerical valuessjf 2 r3/2
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FIG. 8. Rotation angle in the center of the sample der0.5 FIG. 9. Rotation angle at various points along the axis of the
and3=0.2, 0.1, 0.05, 0.01, 0.00%owest to top curve sample fora=0.5 andB=0.01. The highest curve is the point at

the center of the sample, at distari¢l® from each clamp, i.e., the
The figure shows that this fit is satisfactory for aland 8 same as plotted in Fig. 8. The other curves correspond to points at
we explored up to inverse aspect ratios of order 1. distance 8,/8, 1,/4, andl,/8 from one clamp, still along the axis of
In order to illustrate the use of the present results in rethe sample, as displayed in Fig. 10. The dashed curve gives the
constructing material parameters from experimental meatheoretical prediction of Eq25), expressed in terms sf ands, as
surements, and to assess the relevance of the proposégfermined in the text.
method, we now give an example based on a numerical ex-
periment. We choose a material with typical parameters The local orientation of the director has been measured in
=0.5, 8=0.1, andr=1.5[30]. From the numerical force- stretching experiments by x-ray scatterift3,16,24. To
stretch curve, as plotted in Fig. 5, we extract by fitting with compare our results with these observations, we have recon-
straight liness;™=1.036 ands3™=1.361. From the affine structed the local orientation of the director from the com-
approximation, i.e., by settingf "= s2" ands3™=s3" as after  puted deformation gradients. For gradiefts Vu in phase
Eg. (18), one can then estimate H the eigenvector associated with the largest eigenvalue of
FFT gives the desired orientation. Gradients in ph&sen
_ iim 2 be decomposed uniquely into their two components as dis-
B=1-(si™ 3=0.101, a*'=| | =0.579. (23  cussed in Sec. II; then for each component the direction is
S2 recovered as above. These directions can be identified
through the angles they form witg),. By symmetry, these
&WO angles differ only in the sign for points along the central
axis of the sample, and we only plot the positive one. In Fig.
8 we plot the director orientation in the center of the sample

This corresponds to the calculation done, e.g[2ihstarting
from experimental data. To improve the result, one shoul
solve the nonlinear equatios,(a)=s3", where s,(a) is
given by Egs.(20—(22). The numerical solution isa
=0.500. A simpler method is to first compute the correction
As,=s,(a?) — s3"(a?) = —0.0986, wherea® is the ap-
proximation obtained form with the affine approximation
[Eq. (23)], and then to compute

2
S;
a=—— =052, (24)
(52_A32)2

AN
ST

Iteration of the procedure leads in a few steps to a very good g, 10. Direction of the stripes across the sampleder0.5,
solution of the nonlinear problem. This shows that the pro-g=g.1, r=3, at a typical stretch in the semisoft range 1.3.

posed scheme can correct the 15% error in the identificatioBtripes can only form parallel to theaxis in the reference configu-
of the material parametea given by the simple affine ration; the picture shows the corresponding orientation in the de-
scheme of Eq(23). The correction remains significant for formed configuration. The dots mark the points used for displaying
largerr: for r=3 it is around 8%, for =7 around 4%. the local director rotation in Fig. 9.
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' T be seen in optical experiments. They are mostly parallel to
C 1 the x axis, except for the regions around the clamps.
i 1 Figure 11 shows the sample profiles at different stretches.
B N For stretches larger thasy the curvature of the free edge is
" {1.31}~ i much more localized in nematic elastomers than in more
i i conventional rubbers, as shown by the comparison with a
I il neo-Hookean materidan incompressible material with the
I 11.38] i isotropic, convex energy densiy/(F)=|F|?]. In the figure
I ] we also compare with results from three-dimensional simu-
I 76! lations performed with3=0, but with the addition of a

== small neo-Hookean regularization, which gives the same pic-

I ture at large stretches.
= 1.57 -
L ] V. CONCLUSIONS
F 11.68} 1 We have investigated the behavior of thin sheets of nem-
i 1 atic elastomers in stretching experiments, through a combi-
T e nation of analytical and numerical techniques. Our method

0 05 1 1.5 identifies an effective energy, which depends only on the
average in-plane deformation gradient. The effective energy
FIG. 11. Sample profiléfull curves at various stretches fg8  results from an instability toward formation of fine-scale os-
=0.01 anda=0.5, compared with the corresponding result for a j||ations, for deformation gradients in part of the phase
neo-Hookean materigtotted curvesand with the results obtained space, leading to two distinct macroscopic modes of re-
with three-dimensional simulations wiii=0 and a neo-Hookean ghonge called soft and hard. In the soft response mode stripe
regularization in18] (dashed curves domains, corresponding to small-scale oscillations in the di-
rector orientation, are expected. We identify all possible
as a function of the imposed stretch for different valuegof  stripe patterns and show that no other small-scale structure
In Fig. 9 we fix one value of3 and explore the director can further reduce the energy.
orientation at different points along the axis of the sample. Numerical simulations, based on the effective energy,
The plots are compared with the theoretical expression  give accurate estimates of force-stretch characteristics,
sample profiles, and spatially resolved director rotation. Our
results lead to a method for an accurate identification of ma-

s% sf terial parameters from experimental force-stretch curves.
siff= ———| 1 =1 (25  This procedure was demonstrated with a concrete example.
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