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Shear-induced instabilities in layered liquids

Gunter K. Auernhammérand Helmut R. Brand
Theoretische Physik IIl, UniversitdBayreuth, 95440 Bayreuth, Germany

Harald Pleiner
Max-Planck-Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
(Received 16 April 2002; revised manuscript received 11 September 2002; published 30 Decemper 2002

Motivated by the experimentally observed shear-induced destabilization and reorientation of gxiietic-
systems, we consider an extended formulation of sméctigrdrodynamics. We include both, the smectic
layering (via the layer displacement and the layer normab) and the directon of the underlying nematic
order in our macroscopic hydrodynamic description and allow both directions to differ in nonequilibrium
situations. In an homeotropically aligned sample the nematic director does couple to an applied simple shear,
whereas the smectic layering stays unchanged. This difference leads to alfiritasually smajl angle
betweenn and p, which we find to be equivalent to an effective dilatation of the layers. This effective
dilatation leads, above a certain threshold, to an undulation instability of the layers. We generalize our earlier
approachG. K. Auernhammer, H. R. Brand, and H. Pleiner, Rheol. &892215(2000] and include the cross
couplings with the velocity field and the order parameters for orientational and positional order and show how
the order parameters interact with the undulation instability. We explore the influence of various material
parameters on the instability. Comparing our results to recent experiments and molecular dynamic simulations,
we find a good qualitative agreement.
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[. INTRODUCTION temg form. In some of the systems a third regime is ob-
served at even higher shear rates with a parallel orientation
Submitted to an applied shear flow, many complex liquidg5,10]. If the starting point is rather a randomly distributed
show an interesting coupling between their internal structuréamellar phase, the first regime is not obseryegh,12,18.
and the flow field. For smectis-like systems(including  This last point illustrates that experiments on layered liquids
block copolymers, lyotropic systems, and side-chain liquigdepend on the history of the sample. In our further discussion
crystalline polymersthis coupling may induce reorientation We Wil restrict ourselves to systems showing a well aligned

of the layers. Experiments on a variety of systems whichParallel orientation before shear is applied.
differ significantly in their microscopic details show, never- € experimental similarities between different systems

theless, striking similarities in their macroscopic behaviormdicate that the theoretical description of these reorienta-

under shear. The systems under investigation include blocﬁions can be constricied, at least to some extent, from a

- . o common basis independent of the actual systemthe other
g;)pstiz;n[e;r_sg[]l I6(]),tr(|)0\?(l: grc::ﬁz:arh\;vseé%g(t;MLv'\\;iN“&uéi hand, a description including the differences between the
y » lyotrop AP . . . systems under investigation must refer closer to their micro-
12] and polymeric[13]), and liquid crystalline side-chain

| h . ith d scopic details When looking for a macroscopic description,
PO ymers_[l4,1€§|. These experiments use either a steadye yyg|| established standard smediittydrodynamic$17—
shear(typically for the low-viscosity systems, e.g.,

: ! Ina Cou- 7] is a good starting point for such a theoretical approach.
ette cel}_ or large amphFude oscillatory she{mften in the As first shown by Delayet al.[21] and Clark and Meyer
highly viscous polymeric systems, e.g., in a cone-plate 0[22) thermotropic smectié liquid crystals are very sensi-
plate-plate geomety Due to these experimental differences tjye against dilatations of the layers. Above a very small, but
a direct comparison between the different systems is not akinite, critical dilatation, the liquid crystal develops undula-
ways straightforward. The common features of all these extions of the layers to reduce the strain locally. Oswald and
periments can be described as follows. Starting with arBen-Abraham considered dilated smediander shea23].
aligned sample where the layers are parallel to the planes ahen a shear flow is applie@vith a parallel orientation of
constant velocity(“parallel” orientation), the layering is the layer$, the onset for undulations is unchanged only if the
stable up to a certain critical shear rd®5,8-11,13 At  wave vector of the undulations points in the vorticity direc-
higher shear rates two different situations are observed. Deion (a similar situation was later considered in Rgf4]).
pending on the system, either multilamellar vesicleswhenever this wave vector has a component in the flow
[10,12,13 (“onions,” typically in lyotropic systemgor lay-  direction, the onset of the undulation instability is augmented
ers perpendicular to the vorticity directiofl—5,8,9,14 by a portion proportional to the applied shear rate. No desta-
(“perpendicular” orientation, typically in solvent free sys- bilizing mechanism for well aligned parallel layers is present
in the standard smecti&-hydrodynamics.
Recently, we proposed an extended hydrodynamic de-
*Electronic address: guenter.auernhammer@uni-bayreuth.de  scription[25,26] of smecticA liquid crystals. Using both, the

1063-651X/2002/6@)/06170714)/$20.00 66 061707-1 ©2002 The American Physical Society



AUERNHAMMER, BRAND, AND PLEINER PHYSICAL REVIEW E66, 061707 (2002

=

FIG. 1. At the level of the approximation we use in this paper,
all experimental shear geometries are equivalent to a simple steady g|G. 2. A finite angled betweem andp leads to a tendency of
shear. We choose our system of coordinates such that the normal fge |ayers to reduce their thickness. Supposing a constant number of
the plates points along theaxis and the plates are locatedzat  |ayers in the sample, this tendency is equivalent to an effective
=*di2. dilatation of the layers. For small angles betwéleandf) the rela-
ive effective dilation is given by?/2.

director of the underlying nematic order and the layer norma}
inuced unduiation mstabity in well aigned paraliel ayer, 20ned SMeCtia\ iquid crystal i placed between two par-
Within the framework of irreversible thermodynamics a!el and Iaterally_mﬂmte plates. The ‘,*Epfr pliétecated at
(which allows the inclusion of dissipative as well as revers-2=d/2) moves with a constant velocity,=dye,/2 to the
ible effecty we derived macroscopic hydrodynamic equa-Nght f’i”‘_j the lower F_)latéfit __d/%) moves with the same
tions for the system and performed a linear stability analysigelocity in the opposite directionv{=—dvye,/2). Thus the
of these equationgusing a number of approximationsAs  sample is submitted to an average shear given by (

always, a linear stability analysis is limited to the onset of—y,)/d=y. As mentioned above, a three-dimensional stack
the first instability. Other theoretical approaches to these reof parallel fluid layers cannot couple directly to an applied
orientation phenomena have been undertaken by Bruinsnghear flow. Neither does the layer normal: it stays unchanged
and Rabin[27], Ziiman and Granek28] (both papers con- as long as the flow direction lies within the layers. In con-
sider the influence of the shear on layer fluctuatiomsd trast, it is well known from nematic hydrodynamics that the
Williams and MacKintosh[29] (minimizing a free energy director experiences a torque in a shear flow. This torque
density including a coupling to the applied shear sitebs  leads—in the simplest case—to a flow aligning behavior of
our knowledge, no macroscopic hydrodynamic approach bethe director. The key assumption in the model of R28§] is
sides Refs[25,26 has been published up to now. that this torque is still present in a smecfickquid crystal
The present paper is structured as follows. After a briet;§ gcts only on the direct@r and not on the layer normal

review of the model in Sec. Il A and its implementation in - An eneraetic couling betweanand b ensures that both
Sec. IIB we extend the basic model of R€f25,26 in the gi.rections 3re parallgl ir? equilibrium P
following sections. Especially, we include the cross coupling Submitted to a shear flow, the layer normal will stay un-

to the velocity field and the moduli of the nematic and smec-

tic order parameters. It turns out that the coupling terms té:hanged, but the director will tilt in the direction of the flow

the velocity are important since they can change the critic Vnt'l the torques due to the flow and due to the cquplmg to
parameters significantly. We find that the moduli of the orde he Iay(_ar_ normal balance one another. For any gAlver_l shear
parameters also show undulations and, thus, regions with &t€ a finite, but usually small, angiebetweem andp will
reduced order parameter can be identified. The comparisdigSult. This finite angle has important consequences for the
of the different levels of approximations shows that the basi¢ayers. Since the preferred thickness of the layers is propor-
model is contained in this more general analysis as a speci§Pna! to the projection of the director on the layer normal, a
case. We also compare our results to experiments and méhite angle between those two directions is equivalent to an

lecular dynamic simulations and show that an oscillatory in-€ffective dilatation of approximatel/2 (see Fig. 2. If we
stability is extremely unlikely to occur. assume a constant total sample thickness and exclude effects

of defects, the system can accommodate this constraint by
layer rotations. A global rotation of the layers is not possible,
but they can rotate locallgas in the case of dilated smec#c
A. Physical idea of the model liquid crystals[21,22)). This local rotation of the layers leads
In a smecticA liquid crystal one can easily define two to unduIa_tions, as shown in Fig._3. These.und.ulat_ions are a
o - compromise between the effective dilatatiomhich is not
directions: the normal to theAIayepsand an average over the favorable for the systejrand the curvature of the layers due
molecular axes, the directam, In the standard formulation to the undulationgwhich costs energy In the static case of
of smecticA hydrodynamics, these two directions are paral-gjlated smecticA liquid crystals no direction is preferred, but
lel by construction. Only in the vicinity of phase transitions Oswald and Ben-Abrahaf23] have shown that this symme-
(either the nematic—smecti or smecticA—smecticC*) it try is broken if an additional shear is applied to the system.
has been shown that director fluctuations are of phySical |n|'n this case, the standard formulation of Sme@(ih.ydrody_
terest[30—32. Neverthelessn and p differ significantly in  namics predicts that the wave vector of the undulations will
their interaction with an applied shear flow. point along the neutral direction of the shear. In this paper
We consider a situation, as shown in Fig. 1. A well we will assume that this result of Oswald and Ben-Abraham

II. MODEL AND TECHNIQUE
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TABLE |. Summary of the notation. In these definitions we use
the transverse Kronecker symb&#= d;;—nin; . Due to the ther-
modynamic stability of the systems, the following combinations of
constants must be positiv@,, B, K, Lo, L{™¥, L, and M}
—KL, . For the last relation we used the equivalenc&andK;.

Symbol Explicit form Comment

FIG. 3. Above a certain threshold the effective dilatation due to

the director tilt will lead to buckling of the layers. Note the differ- K Bending modulus of layers
ence in directions: the director is tilted in the flow direction, Bo Bo Compressibility of layers
whereas the wave vector points along yhexis. This configuration ~ B1 Bi Coupling between the director
cancels the direct coupling between the flow and the buckling. and the layer normal
LS L) Variations of the order
also holds in the case of our extended formulation of parametefnematic and
smecticA hydrodynamicgsee Fig. 3. smectic, respectively
L{D LIV s;+L{"nin, Gradient terms of the order
B. Implementation of the model parametenemati
To generate the macroscopic hydrodynamic equations weMiik Mo(8jne+8xn;)  Cross coupling between the
follow the procedure given by the framework of irreversible director and order parameter
thermodynamic$33]. This method has successfully been ap- (nematig
plied in many cases to derive the macroscopic hydrodynamicL$) L8 —pipy) Gradient terms of the order
equations of complex fluidésee, e.g., Refg.18,20,25,3%. +LPPpip; paramete(smecti¢

The advantage of this method is its systematic way of deduc

ing the governing quations. Once Fhe set .Of variables ig‘,ymmetry variables and the order parameters, while for
given, the macroscopic hydrodynamic equations follow byiermg aiready present in the isotropic fluid see, e.g., Refs.
applying basic symmetry arguments and thermodynamifzo 33,

considerations. Let us first consider the energy density. The conventions

Let us briefly review the essential ingredients to this pro-of notation introduced by the following equations are sum-
cedure(for more details of the method, see ReX0], and for  marized in Table |.

our model, see Ref25]). For a given system the hydrody-
namic variables can be split up in two categories: variables €= €const Esynt €Syt €y 1)
reflecting conserved quantitigg.g., the linear momentum . . . . o
density, the mass density, 8tand variables due to sponta- €cons: which is identical to the isotropic fluid, is discussed
neously broken continuous symmetrigsg., the nematic di- €/Sewherg20,33. The symmetry part reads,
rector or the layer displacements of the smectic lgyexd- 1 . 1 . R
ditionally, in some cases, nonhydrodynamic varialiles., EsymIEKl(V'n)Z-F EKz[n-(VXn)]2
the strength of the order paramef86]) can show slow dy-
namics that can be described within this framewdske, 1 . R
e.g., Refs[20,34). +§K3[n><(V><n)]2

Using all these variables, the relations, which form the
starting point for the further calculations, can be constructed. 1
These relations are: the energy densitythe dissipation +§K(Vfu)2
function R, the Gibbs relation-, and the Gibbs-Duhem rela-
tion. To illustrate the idea of our model, we split e@ndR 1 1 5
into several parts according to the different origin of the +5Bo Vau+(1-ny)—5(VLu)
variables: conserved quantitiGadex cong, symmetry vari-
ables(index sym, and the modulus of the order parameter Al n,
(indexord), In the spirit of our model, two order parameters +5Bi(nxp)”. 2
play a role: the nematic tensorial order param@lgrand the
smecticA complex order parametdr. For practical reasons In Eq.(2) the spirit of the model becomes clear. We combine
we use the directon and the modulus™ in the uniaxial th'e properties of a nem_atic quuid_crys(dhe first two lineg
nematic case[Q”-=§S(”)(ninj—%6ij)] and the layer dis- with these of a smecti@ (the third and fourth lm)a anAd
placementu and the modulusS® in the smecticA case couple both partsthe last ling in such a way thah andp
[® =S expligy(z—u)}]. Here, as in the rest of the paper, we are parallel in equilibrium. As already discussed eaff],
refer to the system of coordinates defined in Sec. Il A. We€sym Simplifies considerably by dropping higher-order terms
note thatu is only a good variable if we consider small and assuming a small angle betweeand p. Splay defor-
deformations of the layers. For large layer deformations thenations of the director are generally considered as higher-
phasep=z—u is the appropriate variablg36,37]. In our  order corrections to dilatations of the smectic layers. Twist
further discussion, we will concentrate on the parts due taleformations are forbidden in standard smeétitydrody

2
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TABLE II. Variables and their conjugates, i.e., the correspond-where R, summarizes further terms due to conservations

ing thermodynamic forces. laws, which do not enter our further calculation, afadter
Ref.[38])
Name Variable  Conjugate
Vi = Va( 85 Si + 6, 6
Mass density p u ijkl 2( jl Cik il ]k)
Momentum density g 0 +2(vy+vy—2vz)niningn,
Nematic director n h
_ _ n h + (v3—v2) (NN S+ NN S
Smectic layer displacement u v
Variation of the modulus of the order ~ s(™9) =AU + NN S +Nin; i)

parametereither nematic or smectic

+(v4—v3) 6y

. N +(V5_V4+ Vz)(aijnkn|+5k|ninj). (10)
namics and must be small as long as the angle betweenl

p is small. Additionally, the difference between the splayAS mentioned in Sec. IIA we consider a shear induced
deformation of the director fiell ;/2(V - 7)2 and bending of smecticC-like situation (but with a small tilt angle, i.e., a

the IayersK/2(Vfu)2 is negligible. Consequently, we com- weak biaxiality. We neglect this weak biaxiality in the vis-

. . ; . ; . i nsor an it in the uniaxial formulation given
bine splay and bend in a single term with a single elasuccOs ty tensor and use it in the uniaxial formulation give

. . A » .» _ above(with the directorn as the preferred directionThis
con?tantzwrych we caIIK + Ky/2(V-n) +K,/2(Viu) assumption is justified by the fact that the results presented
~K'/2(V7u)“. In the following, we drop the prime and call

the new elastic constait The approximated version ef,, in this paper do not change significantly if we ysénstead

is now given by of n in the viscosity tensor.
Throughout our calculations, we will not assume any re-
1 1 1 2 striction on the viscosity constants except the usual require-
fsymZEK(VfU)ZJF 5Bo VzU+(1—nz)—§(VLU)2 ments due to thermodynamic stabilityee, e.g., Ref.20]).

Later on, we will impose the incompressibility of the fluid by
~ assuming a constant mass dengitgf the fluid. We empha-
+ §Bl(n>< p)°. () size that this procedure does not require any further assump-
tion about the material parameters.
In our model the moduli of the nematic and smectic order The set of basic equations is completed by the Gibbs-
parameters play similar roles, so we will deal with both. Duhem relation(the local formulation of the second law of
Since we consider a situation beyond the phase transitioftermodynamicsand the Gibbs relatiotwhich connects the
regime, the equilibrium value of the order parameter is nonPressureP with the other thermodynamic quantitjesvhich
zero (S, for both nematic and smectiand only its ~We will use in the following form:

variationss(™® can enter the energy densit{-9=s{"® - _
sy, 0y densitg (=S de=deg+v-dg+ e dVin +h/dn + 2 Mds™

) . +E"MdVsW+ 2" Ods®+ 2" Odvis®,  (12)
fgpdzzl—o(s(n))zﬂL EL(lr}}(ViS(n))(VjS(n))ﬁL MijicVini Vis™,

" P=—et+up+To+ou-g. (12)
The newly defined quantities in E(L1) are connected to the
1 1 thermodynamic forceéTable 1) by the following relations:
egsr>d=§Lo(s<S>)2+ ELgﬁ)j(Vis,<5>)(vjs,<5>). (5)
o€
By a similar construction we write down the dissipation hi=h/—V,¢j; =5 (13
function as(see Table Il for a list of the thermodynamic n
variables and their conjugajes Se
V=—Vi=—, (14
R=RconsT Rsym+ Rord s (6) o su
1 Se
=(n,s)_=r(ns)_g=nrns)_ __~~
Reons=75 vija (Vi) (Vi) + Ro, (7 EMO=EI 0 -vETY= 5 (15
1 Following the standard procedure within the framework
Rsymzz—hiﬁiij hj+X\ W2, (8)  of irreversible thermodynamics we find the following set of
"1 macroscopic hydrodynamic equatidrd,25,33,34
R —tamzmezy L ez ) O 0 VU= AT 16
ord_za —_— za =1 Il Eu v] JU_UZ p y ( )
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1
Mo Vim =5 IO =1) ik (V1) 90 1Yo

1
- 715ilk

17

0=Viv;, (18

d
p(ﬁvﬁv,-vjvi) = —V,-( Yi(Viu+ 8ig) + B IEM
1 | L
— S [A= 1) Gni+ (A +1) G Ihi

+VijkIVIUkJ_ViPy (19

J
ES(”*S)+UJ~V]S(”'5)= - Bi(jn'S)Vjvi - a,(n,s)E(n,s). (20)

For the reversible parts of the equations some coupling oyt

stants have been introduced. The flow-alignment tensor
1 | |

with the flow-alignment parametex (and using 5%1:5”-

—n;n;) and the coupling between flow and order parameter,

B =B 8+ B nin; (22

,Bi(js)zﬁ(f)(tsij_pipj)+,3ﬁs)pipj- (23

Furthermore, there is a reversible coupling between the layer

displacement and the velocity field in E@.6). But its cou-

PHYSICAL REVIEW E66, 061707 (2002

sing

Cos¢
T
siné

J
E(l)—l—vjVj(ﬁ:—Y Ysing (28

In the same way, we guarantee the normalizatiorp dfy
using

Px=0, (29
py=—Wu, (30
p=1-pJ. (31)

The different ways of normalizing and p arise from the
fact thatp is parallel toe, in zeroth order, whereas en-

closes a finite angle witk, for any given shear rate.

The set of macroscopic hydrodynamic equations we now
deal with (16),(18)—(20),(27),(28) follows directly from the
initial input in the energy density and the dissipation function
without any further assumptions.

To solve these equations we need suitable boundary con-
ions. In the following we will assume that the boundaries
have no orienting effect on the direct@he homeotropic
alignment of the director is only due to the layering and the

coupling between the layer normpl and the directomn).
Any variation of the layer displacement must vanish at the
boundaries,

1
u(izd =0. (32

For the velocity field the situation is a little more complex.

We assume no-slip boundary conditions, i.e., the velocity of
the fluid and the velocity of the plate are the same at the
surface of the plate. It is convenient to split the velocity field

pling constant has to be unity due to the Gallilei invarianceln tWo parts: the shear field, which satisfies the governing

of the equations. As mentioned above, the use isflimited
to small layer deformations.
The transverse Kronecker symbofﬁ in Egs. (17) and

(21) guarantee the normalization of This implies that only
two of the Eqs(17) are independent. For the following cal-

culations it turned out to be useful to guarantee the normal-

ization of the director by introducing two angular variabkes
and ¢ to describe the director,

n,=sin 6 cosq¢, (29
ny=singsing, (25)
n,=cosé. (26)

Consequently, Eq917) have to be replaced using angular
variables. Denoting the right-hand side of E€is?) with Y;,
this can be done the following way:

J
pn 6+v;V;0=Y, cosf cos¢+ Y, cosdsing—Y,sin,
(27)

equations and the no-slip boundary condition and the correc-

tion v, to this shear field. The boundary condition for
now reads,

- 1
v1<i§d)=0. (33

Making use of the following considerations this condition
can be simplified. Due to Eq16) the zcomponent of; is
suppressed by a factor af, (which is typically extremely
small[19,23)). Making use of the results of RgR23] we can
assume thaﬁl depends only oty and z and thus conclude
[with Eq. (18)] that they component of ; is also suppressed
by N, . For this reason, one can assume thgtandv, , are
negligible and the only relevant boundary condition for the
velocity field is

v1x=0. (34)
The validity of this assumption is nicely illustrated by our
results. Figure 7 shows that, andv, are indeed suppressed
by Ay
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TABLE Ill. If the symmetry under inversion of is given for  external parametergshear rate and material parameters
one component oK;, the symmetry of all other components fol- above whichX,; grows. Typically we hold the material pa-
lows directly from the linearized set of equations. Here we give theigmeters fixed and the only external parameter is the shear
zsymmetry of all components, assuming thds an even function  rate The solvability condition of the corresponding set of
of z linear equations gives a relation between the shear aaig
tilt angle 6,, which is directly connected to the shear rate,

Quantity Z symmetry Quantity z symmetry see Eq.(38) below], w, and the wave vectog. For every
u Even Uy Even given g a specific shear rat@nd tilt anglef,) can be deter-
0 Odd vy odd mined which separates the stable regitelow) from the
& Even v, Even unstable regiorfabovg. This defines the so called curve of
= odd 59 odd marginal stability(or neutral curve 64(q). If, for any given

set of external parameters, the tilt andlg lies above the
curve of marginal stability for at least one value @fthe

C. Technique of solution spatial homogeneous state is unstable and undulations grow.
The smallest shear ratélt angle) for which undulations can
grow is called the critical shear ratglt angle). Technically

The aim now is twofold. Finding a spatially homogeneous

i [ ' i raje . - o
solution of the governing equatiorifor a given shear raj speaking, we solveX=iwX—in many cases we can set

and investigating the stability of this solution. In this section —0, see below. We point out that this linear analysis is only

ill ibe th I ive the results in_". ; o - . .
vSvZCW|”Idescr|bet e general procedure and give the results valid at the point where the first instability sets in. Without

. . 5 further investigations no prediction of the spatial structure of
We write  the solution —as the vectorX — ne geveloping instability can be made. Also, the nature of

=(0,¢,u,04 ’Uy,vUsz’S(n's)) consisting of the angular vari- e hifyrcation(backward or forwardmust be determined by
ables of the director, the layer displacement, the velocity ther investigations.

field, the pressure, and the modulus of thematic or smec- For practical reasons we used dimensionless units in our

tic) order parameter. For a spatially homogeneous situatiofmerical calculations. The invariance of the governing

the equations simplify significantly and the desired SOIUtionequations under rescaling time, length, and mass allows us to

Xo can directly be foundsee Sec. Il1A. To determine the  choose three parameters in these equations to be equal to
region of stability ofX, we perform a linear stability analy- unity. We will set

sis. That is, we add a small perturbatiﬁrl] to the homoge-

neous solutionXy: X=Xo+X; (with X;<X,) and linearize B,=1, y,-1, and d - (36

the governing equations in the small perturbations. In short, ™

the solution of the equationX, = 9/ tX is analyzed. Heré

denotes the operator for the linearized set of the governingnd measure all other quantities in the units defined by this

equations. The ansatz for the unknown quantities must fulfilchoice. Nevertheless, we will keep these quantities explicitly
the boundary conditionsee the discussion following Eq. in our analytical work.

(32)] and follow the symmetry scheme given by Table Ill.  To extract concrete predictions for experimental param-
Assuming an exponential time dependence and harmonieters from our calculations is a nontrivial task, because nei-
spatial dependence of;, ther the energetic constaBy nor the rotational viscosity,

are used for the hydrodynamic description of the sme&tic-
. 1 cogqy)| | co4q,2) phase(but play an important role in our modelTherefore,
Xl,i'\’eX[{ ( o+ —)t [ . ] { . ] » (39 we here rely on measurements in the vicinity of the nematic—
7/ Jsin(qy) ] | sin(q.2) : -

smecticA phase transition. Measurements on low molecular
. . . N weight liquid crystals made by Litst¢B1] in the vicinity of
fulfills all requwements(wnt\ anAoscHIaAtlon ratev, a growth the%emgtic—srzectia-transitio):w indifate] thaB, is appr):)xi-
rate 1/, and a wave vectaj=qe,+q,e;). In this ansatz we mately one order of magnitude less thag As for y;, we
made use of the results of Oswald and Ben-AbratiaB),  could not find any measurements that would allow an esti-
who have shown that in standard dilated smeéticnder mate of its value in the smectis- phase. In the nematic
shear the first instability will set ip Yvith a wave vector along phasey, increases drastically towards the nematic—smectic-
the neutral direction of the flowq(- e,=0). After inserting A transition(see, e.g., Ref39]). Numerical simulations on a
the above ansatz in the linearized se{mrtial differential ~ molecular scale are also a promising approach to determine
equations, a set of coupled linear equations is obtained tthese constan{giO].
determine 1# andw. From the standard smectichydrody- Due to the complexity of the full set of governing equa-
namics it is known that shear does not destabilize the layersions, we will start our analysis with a minimal set of vari-
Since our extended formulation of the smedidaydrody-  ables @, ¢, andu) and suppress the coupling to the other
namics is equivalent to the standard smegtibydrodynam-  variables(see Sec. llIB L Step by step, the other variables
ics for vanishing external field®.g., shear rajewe assume  will be taken into account. The general picture of the insta-
that the layers are stable for low enough shear rates, i.ehjlity will turn out to be already present in the minimal
1/7<0 for small shear rates. So7H#0 marks the set of model, but many interesting details will be added throughout
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the next sections. In comparison to our earlier W% we  In the following we consider perturbations around the spa-

now use the way of normalizing andp derived above. This tially homogeneous state given above.
will lead to some small differences in the results but leaves

the general picture unchanged. First we assume a stationary B. Stationary instability
instability (i.e., we letw=0); later on we discuss the possi-

. . . - 1. Minimal f variabl
bility for an oscillatory instability and have a look at some inimal set of variables

special features of the syste(@ecs. Il C and Il D. Let us first consider the effect of our modifications regard-
ing the normalization oh andp in comparison to our earlier
Il. RESULTS AND DISCUSSION results[25]. For this purpose we consider only a minimal set
) of variables: the directofcharacterized by the two anglés
A. Spatially homogeneous state and ¢) and the layer displacement We neglect all cou-

Looking for a spatially homogeneous solution, the gov-plings of these variables to other quantities describing the

erning equations simplify significantly. A linear shear profile system, namely, the velocity field and the moduli of the nem-
atic and smectic order parameters. Within these approxima-

Vo= Y28, (37) tions the equations to solve are,

is a solution to Eq(19) andu stays unchanged in this re-
gime. The only variables that have a zeroth order correction
for all shear rates are the tilt angheand the modulus of the

. B
0=A,| 2\ sin(8y)cos 6;) +y—o[sin2( 85) — COZ( 6;)
1

. ) B
nematic order parametes§?, +cog 0p)]— y—l[sinz( 0y) —cog(6o)]
1
N Nsir?(80) | y= 2 sin( o)cos bo) 5
—— —\si = —si co :
2 YTy SRR ~ Ay Sinf)dz, (42)
1
Bo .
+—Sln(60)[1—COS(90)]y 1. Bl
71 0=A;5Y(A+1)—A,—q, (43

(38)
0=Au\pBosin(6y)q,+ Ay ,B1q sin( 6y)cod 6,)

aMLos = (8" — B sin( do)cot bp) y.  (39) , .
— AN [ —Bog?[1—cog 6p) ]+ B19* coS( o)
Equation(39) shows that nematic degrees of freedom couple

to simple shear, but not the smectic degrees of freedom; the

modulus of the nematic order parameter has a nonvanishinlq .
) . ere we inserted an ansatz of the ty3&) and denoted the
spatially homogeneous correctifsee Eq(39)], whereas the linear amplitudes o, ¢, andu by A, )A¢ and A, re-
I [l [l [l u

smectic order parameter stays unchanged. The reason for t@sectively. One can solve these equations either by expand-

difference lies in the fact th"ﬁi(jn) andB{y’ includen andp,  ing them in a power series a, (expecting to get a closed
respectively, which coupled differently to the flow fidlsee  regyt for the critical valugsor numerically. It turns out, that
Egs.(22) and(23)]. Equation(38) gives a well defined rela-  one has to take into account terfas least up to orderdj in

tion between the shear rat;eand the director tilt anglé,, Eqs.(42)—(44) to get physically meaningfubut rather long
which we will use to eliminatey from our further calcula- and complicated analytical results. For this reason the
tions. To lowest orderg, depends linearly ory, closed expressions have no advantage over the purely nu-
merical solutions and we do not give the analytical approxi-
yr A1 5 m_ations _expli_citly. A cor_nparison vyith the results o_f RE5]

0= Y. 2 +0O(6y). (400 will be given in Appendix A. We will present and discuss our

! findings using the minimal set of variables in Sec. llI B 2, in

We are not aware of any experimental data, which Woulodirect comparison to the results of the full set of equations.

allow a direct comparison with these results. We stress, how-
ever, that molecular dynamics simulations by Soddemann
et al. [40] are in very good agreement with Eq88) and In the preceding section we have shown that already a
(40). minimal set of variables supports our picture of the physical

In contrast to the director tilt, the lowest-order correctionmechanism. But neglecting the coupling between velocity
to the nematic order parameter is quadratic in the shear rafield and nematic director and vice versa is a rather crude

+Kqg*+Bog?]. (49)

2. Coupling to the velocity field

(tilt angle), approximation since it is well known that this coupling plays
an important role in nematic hydrodynamid®,20. So the
2 B, ﬂﬁn)_ﬁin) natural next step is to include this coupling and to perform a
siW= — 63+0(63). (41)  linear stability analysis of Eqg16)—(19), (27),(28). In this
M1y oL case, the standard procedure leads to a system of seven
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FIG. 6. Plotting the critical values as a function of the bending
modulusK shows a convergence of the curves, which is, neverthe-
less, not as pronounced as in the case of Fig. 5. The influence of

FIG. 4. A typical picture for the comparison of the neutral on the (;ritical tilt angle is sigr.1ifican1?\(=.2 ?n the upper curves and
curves using the minimal set of variables-) and including the = 1.1 in the lower on@sAgain the solid lines{—) show resuits
velocity field (— — —). The overall behavior does not change, but Including the velocity field and the dashed lines (- ) corre-
the critical values are altered due to the coupling with the velocitySPOnd to the minimal set of variables.
field. For this plot we use¢in the dimensionless units discussed in
Sec. 1Q Bo=10, K=10"° =11, my=w,=vs=1,=v5=0.1,  critical values(especially in the critical tilt ang)eis already
and,=10"°. The inset shows the linear amplitudas (wherei  yisiple. The inset shows the relative amplitudes of the linear
stands forf, ¢, etg at onset. Since the logarithm of the ampli- solutions at onset on a logarithmic scale. Bo, andu the
tudes is shown, amplitudes with different sign are shown with Yeft bars correspond to the minimal model and the right bars
different line style. Using the minimal sgeft barg all amplitudes to the extended version. Note that amplitudes with a different
have the same sign-{—). Including the velocity fieldright bars - i . . P i :
some amplitudes are positive (— ), others negative .. ). sign are shown.wnh a dn‘fe.rent line style in the histograms
Note that we use in this and all following plots the dimensionless(Se€ figure caption for detalls
units defined by Eq(36). Let us have a closer look at the differences between the
minimal and the extended set of equations and follow these

coupled linear differential equations. Following the discus-differences along some paths in the parameter space. As
sion after Eq(32) these equations can be solved by an ansatfentioned in Sec. IIC, we can omit some of the physical
of the type given in Eq(35). This reduces the system of parameters by using dimensionless p_a_lrameters. In Figs. 5—9
equations to seven coupled linear equations which are easilf¢ show the dependence of the critical values of the tilt
solved using standard numerical totsich as singular value 2angle and wave vector on the dimensionless paramgders
decomposition and inverse iteration to find the eigenvetors defined in Eq.(36)]. For all these figures we used the same
Due to the complexity of the equations, we used Maple tdasic set of parameterBy=10, K=10"°% A=1.1, v;=v,
determine the final set of linear equations. The key ingredi=¥s=v4=vs=0.1, and\,=10"°. These values are esti-
ents of this Maple script are given in Appendix B. mates for a typical thermotropic LMW liquid crystal, where

Figure 4 gives a comparison of typical neutral curves forve made use of the results of Ref81,39 (as far asB; and
the minimal model and calculations including the velocity Y1 aré concerned, see also the last paragraph in Sec. JII B 1
field. The overall shape of the neutral curve is not changedor flow alignment parameters in the ranged<3 the
due to the coupling to the velocity field but a shift of the critical values vary strongly wittx (see Fig. 9. Therefore

we discuss in addition the situation far=2 to indicate the

1 range of possible values.
' ' 150
T 03 100 1 l ]
£ s
< 0.1 < 10-3 g
50
0.03 30 € 10—6 v
1 10 102 103 vl,y/vl,w
By 10-° F V1,2/V1,5 === 2
] ]
FIG. 5. A significant difference between the various approaches 10~° 10°% 1073 1
is only visible forB;=<100. At higher values 0B, the number of Ap
free variables plays no noticeable role and the critical values follow ) _ o
a master curve. The solid lines<—) show results including the FIG. 7. In all our calculations,  is the dominating component
velocity field, the dashed lines(— —) correspond to the minimal of v,. This graph demonstrates that the other components are sup-
set of variables. At lowB, in the upper curves we used=2. pressed by, (making them almost negligible
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0.3 150
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0.01
55 50
0.001 0.01 0.1 1 0.001 0.01 0.3
12
T T 150
03 - 70
= 100 o
E 0.1
< 0.03 5 o0 ¢ °F ]
- 50 F =
0.01 [
55 B 1 1
0.001 0.01 0.1 1 0001 0.01 01 1 0.3 1 3 10 0.3 1 3 10
%) Vo A A
FIG. 9. Plotting the critical values as functions of the flow align-
70 - ment parametek reveals an interesting structure fosh=<3. In
the upper row we plot this dependence for a sefisftropig vis-
cosities ranging fromy;=1 (thick solid line down to »;=10"3
> (thick dashed ling The dotted line reveals that this dependence on
S 1 \ is absent in the minimal model. The lower row illustrates the
55 [ —amime behavior for varying layer compressibili§, with By~3 for the
] ] 1 ] thick solid curve andBy,=100 for the thick dashed curve. In all
0.001 0.01 0.1 1 0.001 0.01 0.1 1 plots the thin solid lines give the behavior for some intermediate
Vs Vs values. For an interpretation of this behavior see the text.

FIG. 8. Only the viscosities, andv3 can influence the critical

including the velocity fieldl show, despite all similarities to

parameters significantly. The upper row depicts the dependence dhe standard model of smecticand to our earlier analysis,
a isotropic variation of the viscosity. In the middle and lower row differences in the details of the instability.

we present the variation with, and v setting the other viscosities

A similar, but less pronounced, situation is apparent, when

to »;=0.1. Here the thick solid lines represent the minimal set ofplotting the critical values as a function of the bending
variables. For the full set of variables we have chosen four differenmodulus(see Fig. 6. The curves tend to converge for large
values of\: the thin solid curves withh=0.7, the dashed curves K, but there remains a difference between the minimal set of
with A=1.1, the dotted curves with =2, and the dot-dashed variables and the calculations including the the velocity field.

curves withh =3.5. Note the similarities between the curves for F|tt|ng the K dependence with power |aws]ere for K

small and largex in the upper and middle rows. In these regimegs
is the dominating viscosity.

>10"%) only the critical wave number exhibits an exponent
close to the values expected from dilated smectic
A(~—0.26 vs—3). This illustrates the fact that shearing a

Considering the critical values as a function of the com-lamellar system is similar to dilating it but not equivalent.

pression moduluB results in a rather simple situatigRig.

5). For small values 0B a significant influence of the cou-

In contrast to the cases discussed above, the permeation
constant , has no strong influence on the critical values. For

pling between the director and velocity field is apparentdimensionless valuex,<10 ° the critical values do not

which also shows a strong dependence\ofror largeB, all

change at all with\,. For large values, variations within a

these differences vanish and only one single curve is obfactor of two are possible. The permeation constant is known

tained. At this point a comparison to dilated smeckids
instructive. It is well knowr[21,27 that in a dilated smectic

to be very small. In our dimensionless units we expect it to
be of the order ok 10~ ° for LMW thermotropic liquid crys-

the critical wave vector and the critical dilatation show atals and neglect its influence on the critical values for this

power law behavior as a function &, with exponents 1/4
and—1/2, respectively. In the limit of largB, we found the
same exponents already in our earlier anal{28. If we fit
power laws to our results fd,>10? we find the exponents
equal to~0.235 and~ —0.37 forq. and 6., respectively
(note that the dilatation in our model is 362). So both

reason. In Sec. IIB we have emphasized that ythend z
components of the velocity field are suppressed Nvja
These qualitative arguments are clearly confirmed by our nu-
merical results: In all our calculations, 4 is the dominating

component oﬁl and the ratiw, /v,y is of the order of ,
over the whole range of physical relevant values\gf(see

approachegthe minimal set of variables and the calculationsFig. 7). This fact nicely supports our argument that we can
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neglect the boundary condition fer,,, becausev,, van- 1 1N | =
ishes anyway.

Out of the five viscosities only twoi, and v3) show a 0.1 05 .
significant influence on the critical values. In Fig. 8 we _
present the dependence@fandg. on an assumed isotropic <2 10~2 OF 7
viscosity (upper row and on these two viscosity coefficients 05k i
(middle and lower row Since the flow alignment parameter 1073 e
N has remarkable influence on these curves, we have chose : : : a1k : \
four different values of\ in this figure, namelyh =0.7, A 10-3 10-2 0.1 1 -0.01 0 0.01
=1.1,A=2, andA=3.5. The curves fok<=1 and\A=3 for o™ ﬂl(ln) _ 5:»)

an isotropic viscosity tensor are very similar to the corre-

sponding curves where only, is varied. In this parameter FIG. 10. Evaluating Eqg41) and(45) at onset gives an impor-

range the coefficient, dominates the behavior. Note that the tant restriction on the range of possible parameter valbes the

influence ofvz on the critical values is already much smaller cases oix(™ and 8" — 8{"). Note that the criticaby is a function

than that ofv,. We left out the equivalent graphs for the of the material parameters.

other viscosity coefficients, because they have almost no ef-

fect on the critical values. For further comments on the in-component. For this reason, we expect that—in the linear-

fluence of an anisotropic viscosity tensor see also Sec. lll Dized set of equations—some coupling terms change their
All the parameters we have discussed up to now causesign forh=1, others forn=3. For example, theb compo-

variations in the critical values that did not select specificnent of the director is coupled to theand z component of

values of the considered parameter. In this aspect the situéhe velocity field by the terms N—1)/2V v, and (

tion is completely different in the case of the flow alignment —1)/2 cot(@,)V,v,. Similarly, the reversible part of the cou-

parametei. As shown in Fig. 9, there is a clear change inpling of v, to ¢ vanishes folh =3. The monitored structure

behavior forA=~1 and\~3. The critical tilt angle is in- in the plots cannot be attributed to one single cross-coupling

creased for values of in this interval and the critical wave term, but the given examples demonstrate that something

vector tends to rise only at the boundaries of the interval andhould happen in this parameter range.

is reduced in between. Figure 9 illustrates how this structure

depends on the viscositiéassuming all five viscosities to be 3. Including the order parameters

equa) and on the elastic constants of the layers. In the first In the preceeding paragraphs we investigated undulations

r_0\1v éve fOHtOW tf'fot,)ghg'or Ifort\f/]lsgofslltles var;r/\njg from assuming a constant modulus of the order parangfe?
— - down 1ow;= - early, Ine nfiuence ok 1s more  _ (9) + (™S In general, one would expect that the undu-
pronounced the lower the viscosities are. Both elastic con;

o ; lations in the other observable quantities should couple to
stants of the layers, the compressibilBy and the bending ;
. . . . . some extent to the order parameter. In the formulation of the
modulusK (in our dimensionless uni®;=1), have, in gen-

AN ., free energy(see Sec. Il Bwe have assumed that" varies
eral, a similar influence on the shape of the graphs: the v sliaghtly aroundS™ and thus onlv the lowest-order
smaller the elastic constants are, the more pronounced gy S19nty So y

structure becomes. For this reason we just give the plot foE;erms ins(™$) contribute to the free energy. For the spatially
B, (second row in Fig. Pand omit the plot foiK. omogeneous state we higte Eqs(39) and(41)] a correc-

These dependencies on the system parameters give soffn o the nema’ucs(“) p_roportlonal to the square of the
important hints for an interpretation of Fig. 9. The currentsshear rate fo~y for low y),
and quasicurrents for the velocity field and the director con-
sist of two parts[see Eqs(17) and (19)]: a diagonal one - 2 B Igﬁ“)— (m ) .
(coupling, e.g., the components @famong each othgand S N i oa™L 05+ 0(6p).
an off-diagonal ongcoupling the director to the velocity 0
field). The former ones are proportional to the elastic con- ") (n.s)
stants or to the viscosity tensor, whereas the latter one is AS & consequences;” must be small compared tﬁ?n 9
function of the flow alignment parameter. So reducing eithefWhich is by construction limited to the range<t"
the elastic constants or the viscosities increases the portion 5f1). Thus a reasonable restriction is
the cross-coupling terms in these equations. That is, the ob-
served tendencies are exactly what one would expect. The IsV|<0.5. (45)
next step in the interpretation of the shape of the curves is to

have a closer look at the structure of the cross-coupling termag shown in Fig. 10, evaluating this relation at the onset of
The flow alignment tensor Aj=3[(A—1)&;nc+ (X the instability reduces significantly the physically reasonable
+1)8;n;] obviously changes its behavior far=1: the first  range for some parameters. This restriction applies only for
part changes its sign. Note that we are in a region of thehe nematic material parameters and, in general, nothing can
parameter space, whekg is a dominating terngsince ei-  be said about the corresponding smectic parameters. We will,
ther the viscosities or the elastic constants are gmadidi- however, take the smectic parameters in the same range as
tionally, 5ﬁjnk contains up to the third power of one director the nematic ones. If not indicated otherwise we used
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0.006 F‘l;mecticl ] slmect.icl | pressed depends in the phenomenological cons;@ﬁt@
" [nematic ------ ; 5 x 10-5 pematic ===~ i — "™ andM,, which have not been measured up to now.
B 0.094 I o _ 1000 The above results reveal some interesting features. As
Sl . ‘. S X . . .

‘; ; Lo 0 \ shown in Table Ill, the modulations of the order parameter
© 0.002 F % . = change sign under inversion of tlzeaxis. Considering the
-5x107% | .~ - boundary conditiorii.e., taking our ansaj}zthis leads to the
0.09 N, fact that the effect on the modulus of the order parameters is
. . . —10¢ 4 . . maximum at the boundaries. So the linear analysis predicts
'0'0(1,,’3) 0 ("2')01 '0'0(1",3) 0 (,9,')01 that the regions where the order parameter is influenced most
ﬂll - AL /3|| — B by the undulations are close to the boundaries. Since the
- probability for the formation of defects is higher in places
10-1 smectic L . smectic — where the order parameter is lower, we have identified areas
nematic ------ . . . .
— 10°6 - . - where the creation of defects is facilitated. But our analysis
2. 10-6 B = - does not allow to predict the structure of the defects. Never-
= = 0l R . theless, this effect gives a possible way to reorient the paral-

10-8 | x1000 % | lel layers. Interestingly, experiments in block copolymers by

—10-% | _ Laureret al.[3] show a defect structure close to the bound-

10710 1 ! N aries, which is consistent with this picture.

0.01 1 -0.001 0 0.001
) M,

C. Oscillatory instability

FIG. 11. Out of the material parameters connected with the or- - Al our arguments in the previous sections were based on
der parameter, onhg("9—B{"* has a measurable effect on the the assumption that the undulations set in as a stationary
critical values. Some more parameters can influence the amplltudqﬁstabi”ty_ That is, that the oscillation rate in our ansatz
of the order parameter undulation, namel§® andM, (the latter Eq. (35) vanishes at onset. In this section we will discuss the
one is only present in the case of the nematic order paramater situation for nonzeras and find that our previous assump-
amplitudes have been normalized such thg=1. Note that the tion was justified. In our linear analysis enters ntfor the
smecticAgs) has been multiplied by £an the right column. Fora . i in thi ) ith d itv of th ¢ hich
better comparison w?)used a log-log scale in the lower left plot anr\gllvr : V\;lrITI] ifl:)oslg 'E)oart;i ec?ur:IatS(’)Suneitr;pSI—ylo € system, whic

. s) : . (I .
changed the sign ok in this plot. The search for a possible oscillatory instability is slightly
ns ns ns ns different from the procedure used in the stationary case. The
Lg"9=01, L{"9=001, L*-L{"9=0005 My solvability conditio% of the linearized set of equati{)ns deter-
=104, p"9=0.01, g{"9~-p"9=0.005, a(™9=0.001 mines both the neutral curve and the frequency along this
for the plots of this sectioialong with parameter set speci- curve. When searching for such a solution we scanned ap-
fied in the preceding sectian proximately the same parameter space as used for Figs. 5-7.
The ansatz fos{™ following Eq. (35) reads Since the frequency tends to zero when the oscillatory neu-
tral curve gets close to the stationary one, we concentrated
) on the frequency rangesOw<2 and check in some cases
sin(g,z)cogqy). (46)  for higher frequencies.

It turned out that only in cases when the director field is
very weakly coupled to the layering a neutral curve for an
oscillatory instability is possible. This weak coupling mani-
fests itself in smalB; andy,, which is, in our set of dimen-
sionless variables, equivalent to lafBg and v; . Oscillatory

S(ln,s):Agn,s) ex;{

) 1
lo+ —|t
T

The modulations o8 in the linear analysis are maximum
at the boundaries and in phase with the layer displacement
The sign of the amplitudA{"™> depends on the coupling to
the velocity field(only the anisotropic parg” - A" isrel- neytral curves were only found f&@,=100 or»,=1. In all
evan} and on the coupling to the director undulatidv®  jnyestigated cases a oscillatory neutral curve is either absent
Mij, only for the nematic amplitudes(”). If one assumes oy jies above the neutral curve for a stationary instability.
that shear reducdand does not increasthe modulus of the  \when an oscillatory neutral curve is possible, it ends in the
order parameter, the nemap¢” — 8" is positive[Egs.(39)  points where it meets the stationary neutral cufsee Fig.
and(41)]; once again nothing can be said about the smectig2). The corresponding frequency approaches zero in the end
Bﬁs)— (). points of the oscillatory neutral curve. If we ignore for the

In general, the critical values are not at all or only very moment the stationary neutral curve and consider only the
slightly influenced by the coupling to the modulus of the oscillatory instability, the corresponding critical values are
order parametefsee Fig. 11 Figure 11 summarizes the pa- found to be rather close to the stationary one and to approach
rameters with the largest influence @é”’s). In almost all them the weaker the coupling between the director and the
investigated cases the modulation of the nematic order ikyers becomes. To summarize, an oscillatory instability was
much larger than in the smectic order. Whether the order isiot found to be possible in all investigated cases and seems
reduced or increased in regions where the layers are conte be extremely unlikely to occur.
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3 hydrodynamics. When the director can show independent dy-
§1r namics, an appropriate anisotropy of the viscosity tensor can
indeed reduce the threshold values of an undulation instabil-
oo i ity.
Ear '. i
< ' IV. COMPARISON TO EXPERIMENTS AND SIMULATIONS
L . In the previous sections we have shown that the inclusion
8 of the director of the underlying nematic oder in the descrip-
tion of a smecticA-like system leads to some important fea-
0 | T I tures. In general, the behavior of the director under external

1 10 100 108 10 fields differs from the behavior of the layer normal. In this
paper we only discussed the effect of a velocity gradient, but
the effects presented here seem to be of a more general na-
FIG. 12. In most parts of the scanned parameter space, no podre and can also be applied to other fields. The key results of
sibility for an oscillatory instability was found. If the director field our theoretical treatment are a tilt of the director, which is
is only very weakly coupled to the layerin@n this plot we used proportional to the shear rate, and an undulation instability
Bo=50 and »;=5) a neutral curve for an oscillatory instability which sets in above a threshold value of the tilt angle
(— — —) appears above the stationary neutral curve-). Note  equivalently the shear rate
that the critical wave vectors are close to each other for both oscil- Both predictions are in agreement with experimental ob-
latory and stationary instability. The inset shows the frequencyservations. For side-chain liquid crystalline polymers Noirez
along the neutral curve. [15] observed a shear dependence of the layer thickness. In
the parallel orientation the layer thickness is reduced by sev-
eral percent with increasing shear. To our knowledge, two
In Fig. 8 we have illustrated that a small viscosity coeffi- groups have investigated the evolution of a parallel align-
cient v, facilitates the onset of undulations. In this sectionment to the vesicle state for lyotropic systefase Miller et
we will have a closer look at the effect of an anisotropical. [11] and Zipfel et al. [41]). In both papers the authors
viscosity tensor and ask whether undulations can be causedgue that cylindrical structurdwith an axis along the flow
only due to viscosity effects without any coupling to the direction are observable as intermediates. These observed
director field(i.e., we consider standard smecfidhydrody-  cylindrical intermediates are very close to the undulations
namics in this section proposed by our theoretical treatment.
Let us start our considerations by looking at the spatially For an approximate quantitative comparison of our theo-
homogeneous state. In a sample with parallel alignment theetical results with the experiments on lyotropic liquid crys-
apparent viscosity i3, which can easily be seen from the tals we make a number of assumptions about the material

D. Anisotropic viscosity

force on the upper boundary, parameters. As we have shown in Sec. llI B, the different
o o approaches cause only small variations in the critical wave
Fl=€,0=yvse,. (47 number. For this estimate it suffices to use the critical wave

number obtained in our earlier wofkee Eq(A2)]. For lyo-
Similarly, the viscosity of a perpendicular alignment is giventropic liquid crystals it is knowh42,43 that the elastic con-
by v, stants can be expressed as

K= (50)

FL=6,0=7y10,. (48 K
For v,<wj a simple shear flow in a perpendicular alignment !
causes less dissipation than in a parallel alignment. The ne
step is to study the stability of these alignments in the linear
regime. Following the standard procedufas described 9 _(kgT)2 |
above we find a solvability condition of the linearized equa- B= — 22 (51)

™ ’
tions which does not depend on the shear ragte 64 o (1-6)

0={02+ [ v3(q>— )%+ 2(v,+ v3)g%q2]}(Boas+ Kg*)  wherex=a kgT is the bending modulus of a single bilayer,
5 5 | is the repeat distance, is the membrane thicknesky is
X(v2q°+ v3dy). (49 the Boltzmann constari,is temperature, and, is a dimen-
. . ... sionless number of order of unity. With these relations we
Consequently, a parallel alignment of smectic layers is lin., estimate the critical wave vector for a sample of thick-
early stable against undulations even if the perpendiculaﬁessd using Eq.(A2)
alignment might be more preferable due to some thermody- '
namic considerations. As we have shown in Fig. 8, this rig- 372 |
orous result of standard smec#ichydrodynamics is weak- o2~ I S (52)
ened in our extended formulation of smechc- ¢ 8a,d (I-96)?
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The parameters of the experiment by Zipétlal. [41] are: B, B,

d=1 mm, §=2.65 nm,|=6.3 nm, andx,=1.8[41,44). On 0=As—0—A,—q, (A3)
this basis we estimate the critical wavelength to be of the " "

order of

0=—A,\ [qu2+ Kg*+ Boq2—302q2(30+251)
Ac~6.4 um. (53) v z 270

Zipfel et al. [41] observed a vesicle radius of @m, which +AgApB16o0. (A4)

is glearly compatible with our cal_culation. We notg that this-l-he solvability condition of Eqs(A3) and (A4) defines the
estimate assumes that the experiments are done in the hydros -, curved(q) and its minimum directly gives the criti-

dynamic regime. - T )
. cal valuesf. andq, (within the approximations of this sec-
In Sec. Il B 3 we have pointed out that the effect on thetion) ¢ e ( PP

order parameter is maximum close to the boundaries of the
layer. In a reoriented sample Laurtral.[3] have identified 2_ \/E
defects near the boundary of the sample which are in accor- 9c=9: '
dance with the predicted influence on the order parameter.
Molecular dynamic simulations recently made by Sodde- ) Bo \/?
mannet al.[45] offer a very precise insight into the behavior 9c24qu By’ (A6)
of the layered systems under shear. Direct comparison of
these simulations to the analytic theory presented above B B K
show a very good agreement between both approdeites y.=4 1 \/q 0 \/: (A7)
The mechanism we have proposed here is somewhat simi- © Tyi(Z+1) “By+2B; Y By
lar to a shear induced smect@ike situation. Conse- )
quently, undulations should also be observed near théhe differences between Eqal) and(A2), and(AS)—(A7)
smecticA—smecticE transitions. Indeed, Johnson and are mainly due to the correct normalization pf{see Egs.
Saupg46], and later Kumaf47], reported such undulations (29)—(31)] used in the present paper.
just below the transition temperature. In the same spirit, Ri- To summarize, we conclude that our former results are a
botta and Durand48] reported a compression induced special case of the present analysis when the correct normal-
smecticC-like situation. ization ofp is implemented. Especially, the divergence of the
~ To conclude, we have shown in this work that the inclu-critical values atB,=2B; turns out to be an artifact of the
sion o_f ne_matlc degrees of freedom in the descrlptlon ot ormalization ofp used in Ref[25].
smecticA-like systems opens the way for a shear induced
destabilization of the layers under shear. Our result are com-
patible with experimental observations and are in good
agreement with molecular dynamics simulations.

(A5)

APPENDIX B: GENERATING THE SET
OF LINEAR EQUATIONS

Since the theoretical methods used in this pdpesvers-

ACKNOWLEDGMENT ible thermodynamics and linear stability analysiger well
_ ] defined algorithms for the generation and analysis of macro-
Partial support of this work through SFB 481 “Komplexe gcopic hydrodynamic equations, we performed parts of the
Makromoleku- und Hybridsysteme in inneren undideren  cajcylation using Maple. In this appendix we describe the
Feldern” of the Deutsche Forschungsgemeinschaft is gratekey ingredients of a suitable Maple program. A good starting

fully acknowledged. point for such an approach are the balance equations for the
unknown quantities(16), (18)—(20), (27), and (28) along
APPENDIX A: MINIMAL ANALYTIC MODEL with the energy densityl) in the appropriate approximation.

These equations are entered directly in Maple, with the un-
known quantities being functions of time and the spatial co-
ordinates. The thermodynamic forces used in these equations
are determined by Eq$13)—(14). For an implementation of
B, K these equations one must take into account that Maple can
\/» (A1) only compute the derivative with respect to constants and not
B with respect to functions, i.e., the relevant functions in the
energy density must be substituted temporarily by constants.
For the linearized set of equations we substitute the un-

B, known quantities by expressions of the type
qg_ z’\ K

In our earlier work[25] we considered two independent
variables(the layer displacement and theeomponent of the
directon and found the critical values to be

2

nx,c: 4m q;

and

(A2) . .
0(t,X,y,z)= 6+ ahA,sin(g,z)cogqy)expiwt) (Bl)

To compare our present analysis to these results we expail the governing equations. Hegeis a small parameter and
Egs.(43) and(44) in power series irf, (up to 03) and take A, is the relative amplitude of the linear correction dg.
only the terms connected wit#h andu, Expanding the substituted set of equations in a power series
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in a gives in zeroth order the spatially homogeneous equaenly the first order terms. After dividing by the terms which
tions and in first order the linear set of equations, which aralepend on the spatial and temporal coordinatestmaRAN

no longer differential equations but algebraic ones. One obeode of this matrix representation is generated using the
tains a matrix representation of these equations by expandingoDEGEN, FORTRAN function of Maple and subsequently
them in power series of the relative amplitudes and takingolved using standard numerical procedures.
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