PHYSICAL REVIEW E 66, 061705 (2002
Periodic deformations in nematic liquid crystals
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We reconsider the possibility of periodic deformations in nematic liquid crystal samples, and present a
simple method to analyze their stability near the threshold. Our method consists in finding the matrix charac-
terizing the total energy in terms of the integration constants of the linearized solutions of the variational
problem. In the undeformed state all the integration constants are identically zero. Hence the analysis of the
stability of the undeformed state reduces to the analysis of the sign of the determinants of the principal minors
of the matrix of the quadratic form representing the total energy of the nematic sample. We discuss the role of
the saddle-splay elastic constant and of the anchoring energy strength in the stability of the modulated struc-
ture. The role of the thickness of the sample, as well as of the polar and azimuthal anchoring energies, in the
phenomenon is also considered.
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[. INTRODUCTION ential equations depend linearly on the integration constants,
is considered in the same section. In this framework, the
The possibility of stable periodic deformations in nematicquadratic form expressing the total energy in terms of the
liquid crystal samples has been analyzed long ago by Lonintegration constants is deduced, and a new form of the sys-
berg and Meyef1]. In their analysis the nematic sample, tem determining the integration constants, equivalent to the
with a planar orientation, submitted to an external magneti®oundary conditions, is derived. Section IV is devoted to the
field perpendicular to the initial orientation was considered explicit solution of the problem treated, in general, in Sec.
They have shown that if the twist elastic constant is smallet!!, by considering a well defined form for the elastic energy
than a critical value, the magnetic field induces a periodicdensity and for the anisotropic part of the surface energy. In
deformation, instead of the aperiodic one. This problem ha$ec. V the critical thickness for the periodic instability is
been theoretically analyzed by different authf2s3]. Peri-  Obtained by analyzing the cases considered by Pergamensh-
odic deformations in hybrid nematic cells, in the absence ofhik [7,8]. The possibility to observe modulated structures in
magnetic or electric field, have been considered by StrigazAiematic samples with large thickness, and the role of the
and co-worker§4—6]. In all the cases considered above, anpolar and azimuthal anchoring energies in the predicted phe-
external field, electric, magnetic, or mechanical, is responfomenon are discussed in the same section. The main results
sible for the periodic instability. Recently, Pergamenshchikof our paper are reported in Sec. VI. The Appendix is de-
[7,8] has considered the possibility of a spontaneous appeayoted to the derivation of the surfacelike contribution to the
ance of periodic deformation in planar samples, induced bgnergy density.
surfacelike terms. He has shown that if the elastic constant of
saddle splayK,,, is large enough, the ground state of a Il. ELASTIC ENERGY DENSITY
nematic sample characterized by planar easy axes on both
surfaces could be periodically distorted. In our paper we re- \We consider the stability of the uniform planar alignment
consider the possibility of periodic deformations in nematicwith respect to periodic deformations. To this end, it is nec-
samples, and present a simple way to analyze their stabilitgssary to obtain the elastic energy density in terms of the
near the threshold. Our method consists in finding the matridirector components; . In our analysis we consider a nem-
characterizing the total energy in terms of the integratior@tic sample in the shape of a slab of thicknésghe Carte-
constants of the linearized solution of the variational prob-sian reference frame has taeaxis normal to the bounding
lem. Since in the nondeformed state all the integration consurfaces, az=0 andz=d, and the k,y) plane parallel to
stants are zero, the analysis of the stability of the nondethe surfaces. The unit vectors along the axeg andz are
formed state reduces to the study of the sign of thdndicated bye,, g, ande,, respectively. The nematic direc-
determinants of the principal minors of the matrix of thetor n, or the polar angles defining it with respect to our
quadratic form representing the total energy of the nematiteference frame, is supposed to dependyom)(coordinates.
sample. If n=n(z) only, the corresponding nematic deformation is
Our paper is organized as follows. In Sec. Il the elasticcalled aperiodic. On the contrary,it=n(y,z), they depen-
energy density of a nematic sample close to the homogedence will be assumed periodic, i.e(y,z)=n(y+N\,2),
neous planar alignment is obtained. In Sec. Il the bulk dif-wherex=2m/q is the spatial period of the deformation. The
ferential equations and the boundary conditions are deducedpatial derivatives are indicated b, = dX/dy. We assume
The particular case of small periodic distortions around thehat in the uniform staten,(0)=1 andn,(0)=n,(0)=0.
planar configuration, where the solutions of the bulk differ-For small fluctuations around the planar orientation, de-
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scribed byn, andn,, considered small quantities of first depending on the value of In the nematic phase>1, and
order, n, differs from 1 for a quantity of second order. In the first inequality is the dominant one. However, close to the
fact, from the conditiom?+nZ+n2=1, it follows thatn,  nematic-smectic temperature transition, the twist elastic con-
~1—(1/2)(n§+ n§)=1+ O(2). From the hypothesisn stant_diverges, Whereas_ the splay elastic constant re_mains
=n(y,z), V-n=ny,+n,, and VXxn=(ny,,—n,,)e prgct!cglly temperature mdepend.e[mo]. Qonsequently, in
+0(2). Consequently,n-(Vxn)=n,,—n,,+0(2) and this limit »—0, and the second inequality becomes domi-

nx (Vxn)=0(2). nant. The discussion reported above is relevant to the stabil-
The elastic energy density of the nematic liquid crystal isity of the planar orientation in a nematic sample of infinite
given by[9] thickness, in the absence of surface energy fixing the planar

orientation. Of course, if the sample is of finite thickness,

1 5 ) 5 and the anchoring energy strength different from zero, the
fe=51K1(V-n)*+Kadn- (VXN ]+ Kad nX (VXN ]} range ofu for which the planar orientation is stable differs
from the one reported above, as we will show in the follow-

— (Kot Koy V-[nV-n+nx(VXn)], D ing.
. . o If the nematic sample is submitted to a magnetic fidld
which at the second order in the variatiomsandn, reads  — e, the magnetic energy density connected with the dia-
1 magnetic anisotropy,= x| — x. » where| and.L refer ton,
erE{Kll(ny,y+nz,z)2+K22(nz,y_ny,z)2 IS
1 1
—4(Kpot+Kag)(nyyny ,— ny,znz,y)}- 2 fr=— EXangHZI — EXaHzeza (8)

The contribution of the surfacelike term to the energy density

is deduced in the Appendix. Using polar coordinates we havgt the second order if. The total bulk energy density is then
ny=cos#sing andn,=sin¢, that for $—0 and6—0 be-  f=f_+f, .

comeny=¢ andn,=¢. In terms of ¢ and ¢, f. can be We assume that the surface energy, characterized by an
rewritten as easy axis along the axis, is of the type
P Av(hy+0)2+(0,— b )2 1
e 22 v Yy TR 9s=5 Eﬁ [Wap(0)N4(0)Ng(0) +W,p(d)n,(d)ng(d)].
- Zﬂ(d’,yg,z_ d’,za,y)}a (3) (©)
where In the simple case wherev,;z(0)=wyé,5 and w,z(d)
=w; 6,5 We have, at the second order in the polar angles,
=i and  pmpi2l @
Kaz F77 Ky

1 2 2 1 2 2
gs=5Wo[ $7(0) + 07(0)]+ 5 wi[ $(d) + 67(d)].
fe is a quadratic form of¢,, #,, 6,, and 6,. In the (10)
absence of surface constraint the homogeneous planar orien-
tation corresponds to a minimum 6f only if the quadratic
form is positive definite. This happens if the determinants o
the principal minors of the matrix

possible generalization afg, that will be considered in
he following, corresponds to the case in which the two ei-
genvalues of the matrixV of elementsw,,; are different. In
this case the effective anchoring energy in terms of the polar

v 0 0 vom angles reads
o 0 1 pn—1 0 )
| o -1 1 0 1
g 95=5[Woy$2(0) +wo,6%(0)]
M=V 0 0 v
are positive. Simple calculations give 1 2 2
P ' P 9 +§[W1¢¢ (d)+wq0(d)]

_ _1\2
v>0, 1~ (u-1)?]>0, — ()

2 2 2
= (= DA = (v )10, © Expression(11) for gg is more realistic than Eq10) because
Sincer>0, from Eqs.(6) it follows that the uniform planar splay-bend deformation, involving just angle imply a
orientation is stable ifx(x—2)<0 andu(u—2v)<0, giv-  variation of the anisotropic part of the van der Waals inter-
ing action due to the change of the average distance between the
surface nematic molecule and the substrate. On the contrary,
0<wp<2 or O<u<2y, (7) in a pure twist deformation, where only is changing, the
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average distance does not change. As a particular case of Hmpear and homogeneous system. The critical parameter de-
(11), we will considerwy,=w, =0, corresponding to no- fining the threshold is deduced by putting the determinant of

azimuthal anchoring energy. the coefficients of this system equal to zero.
The analysis of the stability of the nondeformed state has
lll. BULK DIFFERENTIAL EQUATIONS to be performed by considering the total enefgyAs it is
AND BOUNDARY CONDITIONS well known, the nondeformed state is stable if it corresponds
to a minimum ofF.
~ The average total energy, per unit length alongytlaexis, As discussed above, in a linearized analysiand ¢ de-
is given, in general, by pend linearly on the integration constafs. Consequently,
1( (r (d F is a quadratic form of these integration constants. To know
E= _[ f f (6,40, ,¢)dydz if the nondeformed state is stable, it is necessary to analyze
M Jo Jo o the sign of the quadratic form representigwhich is sym-

\ \ metric. In other words, by substituting E@.6) into Eq.(12)
+f 9ol 9o,¢o)d)’+f 9 ( 01,¢1)dy}, (120  we obtain forF an expression of the type
0 0

where 6= 6(0), 6,=46(d), and §; meansd , and 4 , and _ E ey
$o0, ¢1, and¢; have similar meanings. In I%/q12) \ is the k=3 % M; GGy 9
wavelength of the periodic deformation we are looking for.
The actual director orientation is the one minimiziagiven

by Eqg.(12). By imposing that the functional derivatives Bf
with respect tof and ¢ vanish, routine calculations give

whereM;;=M;; , because the asymmetric part of the matrix
M, of elementsM;; , does not contribute t&. The quanti-
ties C; are obtained by minimizindg- with respect toC;,

of of of of dF/9C;=0. We obtain
7 a0 g% g, 0 0
for 0=<z=d and Osy=<\, wherea=Yy,z, and 2 M;; C=0. (18)
af  dgo of 90
~a0, T a0,- % T ag + WZO at z=0, (14  System(18) is equivalent to the boundary conditiof4),
' 0 ' 0 (15), but the knowledge of the matri®1 allows a simpler
and investigation of the stable state. In fact, the undeformed state
C;=0, fori=1, 2, 3, and 4 corresponds to a minimumFrof
Jf  dgq af  dgq if all four determinants of the principal minors of the matrix
(992+a_,91: , <9¢z+l?751:0 at z=d. (19  \q, m;=My;, my=M;Ma—M2,, and so on, are positive.

On the contrary, the knowledge of the system obtained by
Equations(14) and (15) are the boundary conditions of the Egs.(14) and(15) does not allow to conclude anything about
bulk differential equation§l3). Note that the other boundary the stability of the undeformed state.
conditions aty and y+\ are automatically satisfied if we The elements of the matri®1 can be easily obtained by
look for a periodic deformation along In fact, if n(y,z) substituting solutiong16) into Eg. (13). In this way F is
=n(y+N\,z) we have alsadn(y,z)=dn(y+A\,z). transformed in an ordinary function of the integration con-

In a linearized analysis around the nondeformed state, thetantsC;, F=F(C;). From this function we obtain

periodic solutions of the bulk differential equations are cho-
ien of' the form 0(y,z)=0(z)cosqy) and <¢?(y,z) IF 1J’XH( of 390) 96,
=®(z)sin(@y). In this case®(z) andd(z) are solutions of — == ——t | ==
two coupled differential equation of the second order. The 9Ci A 90, o) IC;
differential equation determinin@ (z) is a linear differential of g\ ddo
equation of the fourth order. It follows th&(z) contains +< — + —> —}
four integration constant€; . The same procedure can be Ibz  do) ICi],_,
used to determiné(z), that contains also four integration
constantsC;. Sincef(y,z) and ¢(y,z) have to satisfy also [(i %) (?—91 (i+ @)%} ]d ,
the coupled second order differential equations, it is possible 90, 901] 9C; 1 dd,  dd1] ICi],_,
to obtain the integration constan®@ in terms ofC;. Con- (19
sequently, in the linearized case, the solutions of Efj3)
are of the kind

0

becaused(y,z) and ¢(y,z) are solutions of the bulk equa-
6=6(C;;y,2) and é=¢(C;1y,z), (16) tions(13). Asitis evident from Eq(19), 9F/JC; is obtained
by means of a linear combination of the boundary conditions
wherei=1, 2, 3, and 4 are four integration constants deter{14), (15). To proceed further, it is necessary to consider a
mined by the boundary conditior(44),(15), which form a  special system described by defirfed,, andg;.
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IV. PERIODIC INSTABILITY IN THE ABSENCE JE 1

Xy
OF EXTERNAL FIELDS

9C, 2 ; Vka_ci- (26)

The analysis presented above is valid even in the case in
which the nematic sample is in an external field, and hénce Since, as stated abovey=X=,Ac,Cr, by indicating with
includesf,,. In the following we limit our investigation to  Bik=dXk/dC;, the conditiondF/dC;=0 reads
the case in which external fields are absent, wiferd,

given by Eq.(3) andgy andg, by Eq.(11). In this frame- ﬁz } 2 BixAxCin=0. (27)
work, the bulk differential equations ref] daCi 2 icm
0 gyt v0,,+(v—1)¢,,=0, By comparing Eqs(27) with Egs.(18) we deduce
V¢’yy+ ¢,ZZ+ ( v= 1) 0,yz: O’ (20) M ij = (1/2)2 BikAkj . (28)
k

whose solutions are _ ) )
Using Egs.(21) we obtain for matrix3, of elementsB;,

0(y,z)=[C; coshiqz) + C,z cosh{qz) + C4 sinh(qz) defined above,
+C,zsinh(gz)]cogqy), 0 1 -S C
. 0 AC-dS dcC
¢(y,z)=[C, coshgz)+ C,zcoshqz) + Cssinh(q2) B= 1 0 _c s | (29
+Cyzsinh(g2z)]sin(qy), (21) 0 0 AS-dC dS
whereq=2m/\, and whereS=sinh@d) and C=cosh@d). We have, furthermore,
, , for the element®\,, of the matrix.A,
Cl:ACZ_C3, C2:_C4,
vA v
Ci=AC,—C,, C,=-C,, (22) A11=puq, A12=L—00, A13=—L—00, A= v(1-gA),
with 1
An=1—» A=qA(n—1)—1, Axp=—pund, Axu=0,
A v+1 23 04
a Q(V— 1) . v
_ _ Aq=—| quC+—S|,
In order to rewrite systenil9) in a more tractable form, 10
we put AC—dS
. Aso=v| (QA—1)S+ — dC,
Oo=Xicodqy), ¢Po=Xzsinqy, 2= (4 ) Lig } #a
0,=Xzco , =X, Si , 24 v
1=Xzcogqy), ¢1=X,sin(qy) (24 Assz_(QMSJFL—wC),
where, as it follows from Eqg21), X; are linear combina-
tions of C;. We put, furthermore, —dC
Ags= | (GA—1)C+ - pqds
7t , 99 iy 1o
36, " 96, ) 1cogqy), c
Ay=pgSt o
1¢
( of N ago) v, sin(ay)
-t — =V, si ,
a¢2 a¢0 7z=0 2 qy

Cd
A42:(1+qA)C+L——,uq(AC—dS),
1¢

( of N agl) v ) s
—+ — =V;co ,
(962 (961 7=d 8 qqy A43:/ch+_,
L1¢
RARELES Ry sin(qy) (25) Sd
06, g, AW Au=(1+aMS+— - pa(AS-dC), (30
where also the quantitieg; are linear combinations df; . wherelgp=K11/Wog, L1g=K11/Wig, Lop=Kz/Wg,, and

By substituting Egs(24) and (25) into Eq. (19), we obtain L14=Kgz/w,, are extrapolation lengths.
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V. CRITICAL THICKNESS
FOR THE PERIODIC INSTABILITY

We can now evaluate, by means of our formalism, the
critical thickness to observe periodic instabilities. The critical
thickness is obtained, for Cramer’s rule, by putting ¢t
=m,=0. In this case systeif18) can have solutions differ-

PHYSICAL REVIEW E66, 061705 (2002

ent from the trivial onesC;=0. The condition detM =0,
for Eq. (28), is equivalent to ddB- det.A=0. Since

_ v+1 2 5
detB= q(V_l)smt‘(qd) —d“>0, (31

for d>0, the critical thickness is given by the equation
detA=0, which coincides with the same condition of insta-

bility deduced by means of the boundary conditidig),
(15).

A. No azimuthal anchoring energy

As an example, we consider the case in whigh,
=w,;,=0, already analyzed by Pergamenshdhilg], cor-

responding td.q, andL,,—. In this case, as it follows

from Eq. (30), we haveA,,;=0, and
Au=pdS, Agp=(1+9qA)C—uq(AC—-d9),

A= pnqC,  Ay=(1+9A)S—uq(AS-dC). (32

nar orientation.
Let us first consider the matri¥1 in the limit g—0. By

o

Our aim is to analyze the stability of the homogeneous pla- i
«

=

using Mathematica we obtain for the determinants of the

principal minors of the matrix\ the expressions
vd
m1=(L—+2,u)dq2+O(3),
1

_v(1+ v)2d[vd+2(Lo+Lq)u]

m,= +0(1),
? (v—1)%LoL, W
413d  vd+2(Ly+L
= vdvd+2(L, 1)M]q2+o(3),
(v—1)%LoL,
L6v°d’ [v2d+ 20(Lo+ L) u— (Lot Ly) 2]
my=———|[v v -
4 (v—1)4L0L1 oTLym oTLyu"lq
+0(3), (33)

where Lo=Lgy and L;=L;,. The condition detM=m,
=0 gives

m—2v
de=(Lo+ Ll)MT- (34

Since v>0, d.>0 implies w(x—2v)>0, from which we
obtain u>2v, or u<0, which correspond tK,,;>Kj4

o 20 4
-]
2
g 10 +
0+ 1 | |
0 0.05 0.1 0.15
q (um™)
4 —
g 51
s
—]
0
-2 I ! | \

0 0.05 0.1 0.15
q (um™)
30 +
0 ‘/\
_30 ——
-60 +
| | 1 |
I ) 1
0 0.05 0.1 0.15
q (um™)
10 +
5 —t—
mE 0
=]
-
-5 4
-10 1 1 I l
1 1 | 1
0 0.05 0.1 0.15
q (um™)

FIG. 1. my(q),m,(q),ms(q),ms(q) in the case of a symmetric
cell without azimuthal anchoring, for=3, v=0.5, L,=1 um,
andd=12 um<d,=48 um. The planar orientation is never stable.

—K,, and toK,4,<—K,,. The critical thickness given by
Eq. (34) coincides with the one obtained by Pergamenshchik
in the casd_o=L,=L [7,8].

If d.>0, ford>d,. the quadratic form is positive definite,
and the homogeneous state stable. d~ad. the planar ori-
entation is unstable with respect to the periodic deformation,

061705-5



ALEXE-IONESCU, BARBERO, AND LELIDIS

my (10? p it

|
| |
0.03 0.06
q(m™)

10 —

)

106 my

c__\

[ |
0.03 0.06
q (um™)

v

m; (10% pm?)

e 1

0.03 0.06
q(um™)

-

| |
0.03 0.06
q (um™)
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0 0.0005 0.001
q (um™)

FIG. 3. my(q) in the case of a symmetric cell without azimuthal
anchoring, foru=3, »=0.5, andL,=1 um. The planar orienta-
tion becomes unstable when crossihg d.=48 wm (dot-dashed
line), d=d;+1 nm(solid line), andd=d.—1 nm (dashed ling

of physical parameterg =3 and v=0.5. According to the
value of the thickness of the sample we have two different
behaviors ofm,=m,(q).

Ford<d, (Fig. 1), m4(q) has a maximum foq=0 and a
negative minimum. It becomes positive fip= q* . However,
since my remains negative fog>q*, while m, becomes
zero for a wave vectoq larger thang* and after remains
negative, the planar orientation is never stable.

For d>d. (Fig. 2, my(g) has a minimum fog=0, a
positive maximum and it vanishes fg=qg . Then it has a
negative minimum, and becomes positive againderqy .
The determinantsn, and m; become negative abowg qg
<g<qj , and remain negative far>q; . We conclude that
the planar orientation is stable only fo<qg , sincem,
m,, mg, andm, are all positive in this range.

Figure 3 showsn,(q) around the transition from planar
(d>d., solid line to striped texture d<d., dashed ling
The dot-dashed line corresponds to the critical thickness,
d.=48 um.

The case wherd—o can be treated analytically. In this
limit gd>1 and consequently sinipf)=cosh@d). We indi-
cate byx=(1/2)exp€d) their common value. Simple calcu-
lations give for the determinants of principal minors of ma-
trix M the expressions

v+2Lliuq ,
m1=L—lx ,

FIG. 2. my(q),m,(q),ms(q),m,(q) in the case of a symmetric
cell without azimuthal anchoringy{=3,»=0.5L,=1 um), ford
=70 um>d,=48 um. The planar orientation is stable fqr qg
=0.0602um™1. g} goes tog=0.0667um ! with increasing
thickness.

for every polar anchoring energy strength. In this case our
linear analysis does not allow to determine the wave vector
of the periodic deformation.

In Fig. 1 and Fig. 2 we show the determinants of the
principal minors of the matrix\ for arbitraryq, for the set
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-~ (v+1)[V(M—4)+,u]}2(1_ﬁ><l_ﬁ)x4, 80 T
(v—1)2 q q
(39
where

. 212
D= ulw(rr1)-40]" o L . .

212 0 0.1 0.2

qI:Ll,u,[,u(v-l— 1)—4v]’ (36) q (pm™)

From the asymptotic expressions reported in B2p) we
derive that, ifLo>L,, m, vanishes forqs, and for g}
>(qg , and in the rangey <q<qj it is negative. As regards
the other determinants we have; is always positive, for
u>—vl(2L,q), whereasn, andms vanish forqg~q7 , and
are positive forq<qj} and negative forq>q; . Conse-
quently, forq<qg the planar homogeneous orientation is
stable, whereas it is unstable fipr-q7 . From the discussion -0.5 T

reported above it follows that, in the limit of thick sample, I

limited by two identical surface@vhich impliesL,=L,, and 0 0.1 0.2
henceqd =q7 =g*), the homogeneous planar orientation is q (um™)

unstable. Due to the presence of thermal fluctuations, the

stable nematic orientation is modulated with a wave vector

q*

105 my

The critical wave vector of the instability has to be posi-
tive. Consequently, the existence of modulated structures ir TE
thick sample in the presence of finite anchoring energy for 5
the polar angles requires

[ ]

m; ( 10°

4y
(37)

< > .
# OOI',LL 1+v -2

We note that forv>1,

= 11

0.1 0.2

4 1
Yoo (39) @ ()

as well as

my
=3

=20, (39

1+v

for v<<1. This means that the range defined by BY) is
larger than the one defined by E@), as expected. In fact, in _1 4
the presence of finite anchoring for thengle, theK,, term,

responsible for the mechanical instability, has to be larger

than the term that can induce periodic structure in an un- 0.1 0.2
bounded sample. q (um™)

= 1+ 1

B. Influence of the azimuthal anchoring energy ) )
on the modulated structure FIG. 4. my(q),m,(q),ms(q),ms(q) in the case of a symmetric
) ) cell with azimuthal anchoringl(,=10 um, the other parameters
In the preceeding subsection we have analyzed the possire the same as previouglyor a thin sampled=12 um. Long
bility of periodic structures in nematic sample, in the hypoth-wavelength deformations are forbidden, i.e., the uniform texture is
esis that the surface treatment was such to induce plangtable, no critical thickness exists. An instability may appear when
orientation. We have also assumed that no azimuthal anchoriv,<0. g* is the wave vector of the periodic instability in the limit
ing energy was present in the anisotropic part of the surfacef larged.
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tension characterizing the interface between the nematic lig-

uid crystal and the solid substrate. The aim of this subsectio

is to generalize the previous results to take into account ¢

finite azimuthal anchoring energy. We limit our investigation
to the case in which the two limiting surfaces are identical,
a.nd henc¢00= L]_g: Lg, a.nd Lo¢= le,: L‘f’ .

The trends of the determinants of the principal minors of

the matrix M, for the set of elastic parameters=0.5 and
u=23 are reported in Fig. 4. As it follows from this figure,
m, is positive for everyg. For what concernm,, it is posi-
tive for g=0. It has a positive maximum and a negative
minimum. This minimum tends to zero for large The be-
haviors ofm, and m; are also reported in the same figure.
They are positive in the limit off—0, and can change their
sign, for larged, for a value ofq close to the one for which
m, vanishes.

In the limit of smallq, it is possible to expand again,,
m,, ms, and m, in power series ofg. However, in the
present case

i -2
iy ma(a) =

; _ v v+1 |?
claanOmZ(q)_4L(,L¢|q(v—1)J '
v3(d+2L,)d

lim mg(q)=38 ;
a0 (v=1)%L4L3

4d(d+2L ) (d+2L,)
L5L3

fmma-16(27) 0

It follows that the critical thickness, as defined before, does
not exist any longer. This means that if the azimuthal anchor-

ing is not identically zero, it is impossible to findda such
that ford<d. the planar orientation is unstable with respect
to periodic deformations fog— 0. This result can be easily
understood: ifw,#0 a period deformation involving twist

deformation costs also in surface energy. Consequently, lon

wave deformations, having— 0, are forbidden.
In the limit of larged (Fig. 5, where coshqd)=sinh@d)
the expressions for the determinants are

1:(V+2,LLL0q)L¢+L€X2[1+O(X_2)]’
Lol g
(v+DLv(n—4)+u] q;)
my,= — - —
(v—1)%L, q
q§> 4 -2
X 1—? X 1+0O(x )],

(v+ DL v(p—4)+pu]
my=—

(v—1)2L2

e-

*

b

da 4 >x4[1+ O(x~2)],

1- —
q

X
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FIG. 5. Same conditions as Fig. 4. Thick samplez 100 pem,
the wave vector of the periodic instability goesgb.

oo, g

where, as befores=(1/2)exp€d), andq} andqg are given
by

*\ 2
Qb) N

q
(41)

(v+D)Lv(u—4)+ u]
(v—1)%L,

%

q
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easily performed if the quadratic form representing the total
energy in terms of the integration constant is known. We
have indicated how to obtain the matrix of the coefficients of
the quadratic form. As an application, we have used our for-
2 —_ . . . . .

malism to obtain the critical thickness of a nematic sample
characterized by planar easy axes on both surfaces to observe

‘TA periodic deformations. We have also considered the possibil-
g ity of periodic deformations in a thick sample, taking into
3 account the presence of polar and azimuthal anchoring en-
=
=14+ ergy.
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0 5 _110 15 The aim of this appendix is to derive the contribution of

1/Lg (um™) the surfacelike term to the elastic energy density. We\vput
=nV-n+nxX(VxXn). In Cartesian coordinatesV-n
=Ny andV X N=8gy4Na,,E5. Wheresﬂm i_s the antisyr_n-
metric tensorLevi-Civita tenso), and Einstein’s convention
has been used. Consequently, -n=n,n, .e,, and

FIG. 6. Dependence of the periodic instability wave vectpr
on L, in the limit of larged. The periodicity tends to molecular
dimensions with azimuthal anchoring energy.

VY TR
qt = Vvt (Ly/Ly)] NX(VXn)=g,,3n,(VXN)s€,=€,,N,€5,0N: €,
2 Lou[v(u—4)+pu] (A1)
\/( v[v+(LolLy)] |2 v(v+1) Since £,,5=€p,,, We have &,,585,0= €348 pya
Loulv(n—24)+u] Lol gl v(p—4) + ]’ =0,y0,0— 0,46,,, and from Eq.(Al) we get
o = v[v+(Ly/Ly)] NX(VXN)=(8,y6,0= 84461,)NNa,,84
" Lou[v(p—4)+u] =(NgNg =Ny, )6, . (A2)
. \/( v+ (Ly/Ly)] \° v(v+1) By taking into account than|=1, and hencen,n,=1, a
Loul (u—24)+ Ll (-3 +ul simple calculation gives,n, ,=0. Consequently, from Eq.
oul =4+ p2] shonlv(p=d)+ pl (A2) we obtainnx(Vxn)=-n,n, e, . It follows that

(42 vectorv can be written ay=(n,n, ,—n,n, Je,, and its

From Egs.(42) it follows that even in the case of finite divergence is found to be

azimuthal anchoring energy the condition to have periodic
deformations in nematic samples is that inequaliti@g)
hold. =Ny Ny~
The critical wave vectors); andqj , in the limit of w, . _
—0, become 0 and*, respectively, as obtained in the pre- In the case considered in our papes n(y,z). Hence,
ceding subsection. In the opposite casagf~0, g3 <0 and

V.v=v,,=(M,n, ,—n

n, N (A3)

Vb Y

7n/wy)u

2

2
n,,n nyy+2nyynz,+n

gy >0. Consequently, the wave vector of the instability is mpl Y zz
qy - In this case the presence of a finiitg is responsible for n.n. =n2 +2n n..+n2 Ad
an increase of the value of the critical wave vector, i.e., a VRTRY VY yziny s e (A4)

reduction of the spatial periodicity of the deformation. If the |, this frameworkV -v=2(n, ,n, ,—n, ,n,,), and the sur-

azimuthal anchoring is strong, and hericg—0, the spatial  facelike contribution to the elastic energy density we are
periodicity tends to molecular dimensioffsig. 6). looking for, given by— (K ,+ K,V -v, is

VI. CONCLUSION — (Kot Kog) V-v=—2(Kpt Ky (ny yn, ,— Ny N, ),

We have shown that the analysis of stability of the uni- (AS)

form state, with respect to the periodically deformed one, isas reported in Eq(2).

061705-9



ALEXE-IONESCU, BARBERO, AND LELIDIS PHYSICAL REVIEW E66, 061705 (2002

[1] F. Lonberg and R.B. Meyer, Phys. Rev. Léif, 718(1985. [6] A. Sparavigna, O. Lavrentovich, and A. Strigazzi, Phys. Rev. E

[2] C. Oldano, Phys. Rev. Leth6, 1098(1986. 49, 1344(1994.

[3] E. Miraldi, C. Oldano, and A. Strigazzi, Phys. Rev3A, 4348 [7] V.M. Pergamenshchik, Phys. Rev.4#, 1881(1993.
(1986. [8] V.M. Pergamenshchik, Phys. Rev.6&, 3936(2000.

[4] A. Sparavigna, L. Komitov, B. Stebler, and A. Strigazzi, Mol. [9] P.G. de GennesThe Physics of Liquid Crystal@Clarendon
Cryst. Lig. Cryst.207, 265 (1991). Press, Oxford, 19794

[5] A. Sparavigna and A. Strigazzi, Mol. Cryst. Lig. Cry&21, [10] L. Cheung, R.B. Meyer, and H. Gruler, Phys. Rev. Létt,
109 (1992. 349(1973.

061705-10



