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Periodic deformations in nematic liquid crystals
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We reconsider the possibility of periodic deformations in nematic liquid crystal samples, and present a
simple method to analyze their stability near the threshold. Our method consists in finding the matrix charac-
terizing the total energy in terms of the integration constants of the linearized solutions of the variational
problem. In the undeformed state all the integration constants are identically zero. Hence the analysis of the
stability of the undeformed state reduces to the analysis of the sign of the determinants of the principal minors
of the matrix of the quadratic form representing the total energy of the nematic sample. We discuss the role of
the saddle-splay elastic constant and of the anchoring energy strength in the stability of the modulated struc-
ture. The role of the thickness of the sample, as well as of the polar and azimuthal anchoring energies, in the
phenomenon is also considered.
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I. INTRODUCTION

The possibility of stable periodic deformations in nema
liquid crystal samples has been analyzed long ago by L
berg and Meyer@1#. In their analysis the nematic sampl
with a planar orientation, submitted to an external magn
field perpendicular to the initial orientation was consider
They have shown that if the twist elastic constant is sma
than a critical value, the magnetic field induces a perio
deformation, instead of the aperiodic one. This problem
been theoretically analyzed by different authors@2,3#. Peri-
odic deformations in hybrid nematic cells, in the absence
magnetic or electric field, have been considered by Striga
and co-workers@4–6#. In all the cases considered above,
external field, electric, magnetic, or mechanical, is resp
sible for the periodic instability. Recently, Pergamenshc
@7,8# has considered the possibility of a spontaneous app
ance of periodic deformation in planar samples, induced
surfacelike terms. He has shown that if the elastic constan
saddle splay,K24, is large enough, the ground state of
nematic sample characterized by planar easy axes on
surfaces could be periodically distorted. In our paper we
consider the possibility of periodic deformations in nema
samples, and present a simple way to analyze their stab
near the threshold. Our method consists in finding the ma
characterizing the total energy in terms of the integrat
constants of the linearized solution of the variational pro
lem. Since in the nondeformed state all the integration c
stants are zero, the analysis of the stability of the non
formed state reduces to the study of the sign of
determinants of the principal minors of the matrix of t
quadratic form representing the total energy of the nem
sample.

Our paper is organized as follows. In Sec. II the elas
energy density of a nematic sample close to the homo
neous planar alignment is obtained. In Sec. III the bulk d
ferential equations and the boundary conditions are dedu
The particular case of small periodic distortions around
planar configuration, where the solutions of the bulk diff
1063-651X/2002/66~6!/061705~10!/$20.00 66 0617
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ential equations depend linearly on the integration consta
is considered in the same section. In this framework,
quadratic form expressing the total energy in terms of
integration constants is deduced, and a new form of the
tem determining the integration constants, equivalent to
boundary conditions, is derived. Section IV is devoted to
explicit solution of the problem treated, in general, in Se
III, by considering a well defined form for the elastic ener
density and for the anisotropic part of the surface energy
Sec. V the critical thickness for the periodic instability
obtained by analyzing the cases considered by Pergame
chik @7,8#. The possibility to observe modulated structures
nematic samples with large thickness, and the role of
polar and azimuthal anchoring energies in the predicted p
nomenon are discussed in the same section. The main re
of our paper are reported in Sec. VI. The Appendix is d
voted to the derivation of the surfacelike contribution to t
energy density.

II. ELASTIC ENERGY DENSITY

We consider the stability of the uniform planar alignme
with respect to periodic deformations. To this end, it is ne
essary to obtain the elastic energy density in terms of
director componentsni . In our analysis we consider a nem
atic sample in the shape of a slab of thicknessd. The Carte-
sian reference frame has thez axis normal to the bounding
surfaces, atz50 andz5d, and the (x,y) plane parallel to
the surfaces. The unit vectors along the axesx, y, andz are
indicated byex , ey , andez , respectively. The nematic direc
tor n, or the polar angles defining it with respect to o
reference frame, is supposed to depend on (y,z) coordinates.
If n5n(z) only, the corresponding nematic deformation
called aperiodic. On the contrary, ifn5n(y,z), they depen-
dence will be assumed periodic, i.e.,n(y,z)5n(y1l,z),
wherel52p/q is the spatial period of the deformation. Th
spatial derivatives are indicated byX,y5]X/]y. We assume
that in the uniform statenx(0)51 and ny(0)5nz(0)50.
For small fluctuations around the planar orientation, d
©2002 The American Physical Society05-1
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scribed byny and nz , considered small quantities of firs
order, nx differs from 1 for a quantity of second order. I
fact, from the conditionnx

21ny
21nz

251, it follows that nx

;12(1/2)(ny
21nz

2)511O(2). From the hypothesisn
5n(y,z), “•n5ny,y1nz,z and “3n5(nz,y2ny,z)ex
1O(2). Consequently,n•(“3n)5nz,y2ny,z1O(2) and
n3(“3n)5O(2).

The elastic energy density of the nematic liquid crysta
given by @9#

f e5
1

2
$K11~“•n!21K22@n•~“3n!#21K33@n3~“3n!#2%

2~K221K24!“•@n“•n1n3~“3n!#, ~1!

which at the second order in the variationsny andnz reads

f e5
1

2
$K11~ny,y1nz,z!

21K22~nz,y2ny,z!
2

24~K221K24!~ny,ynz,z2ny,znz,y!%. ~2!

The contribution of the surfacelike term to the energy den
is deduced in the Appendix. Using polar coordinates we h
ny5cosu sinf and nz5sinu, that for f→0 andu→0 be-
come ny5f and nz5u. In terms of u and f, f e can be
rewritten as

f e5
1

2
K22$n~f ,y1u ,z!

21~u ,y2f ,z!
2

22m~f ,yu ,z2f ,zu ,y!%, ~3!

where

n5
K11

K22
and m52

K221K24

K22
. ~4!

f e is a quadratic form off ,y , fz , u ,y , and u ,z . In the
absence of surface constraint the homogeneous planar o
tation corresponds to a minimum off e only if the quadratic
form is positive definite. This happens if the determinants
the principal minors of the matrix

Q5S n 0 0 n2m

0 1 m21 0

0 m21 1 0

m2n 0 0 n

D ~5!

are positive. Simple calculations give

n.0, n@12~m21!2#.0,

@12~m21!2#@n22~n2m!2#.0. ~6!

Sincen.0, from Eqs.~6! it follows that the uniform planar
orientation is stable ifm(m22),0 andm(m22n),0, giv-
ing

0,m,2 or 0,m,2n, ~7!
06170
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depending on the value ofn. In the nematic phasen.1, and
the first inequality is the dominant one. However, close to
nematic-smectic temperature transition, the twist elastic c
stant diverges, whereas the splay elastic constant rem
practically temperature independent@10#. Consequently, in
this limit n→0, and the second inequality becomes dom
nant. The discussion reported above is relevant to the sta
ity of the planar orientation in a nematic sample of infin
thickness, in the absence of surface energy fixing the pla
orientation. Of course, if the sample is of finite thicknes
and the anchoring energy strength different from zero,
range ofm for which the planar orientation is stable diffe
from the one reported above, as we will show in the follo
ing.

If the nematic sample is submitted to a magnetic fieldH
5Hez , the magnetic energy density connected with the d
magnetic anisotropyxa5x i2x' , wherei and' refer ton,
is

f h52
1

2
xanz

2H252
1

2
xaH2u2, ~8!

at the second order inu. The total bulk energy density is the
f 5 f e1 f h .

We assume that the surface energy, characterized b
easy axis along thex axis, is of the type

gS5
1

2 (
a,b

@wab~0!na~0!nb~0!1wab~d!na~d!nb~d!#.

~9!

In the simple case wherewab(0)5w0dab and wab(d)
5w1dab we have, at the second order in the polar angle

gS5
1

2
w0@f2~0!1u2~0!#1

1

2
w1@f2~d!1u2~d!#.

~10!

A possible generalization ofgS , that will be considered in
the following, corresponds to the case in which the two
genvalues of the matrixW of elementswab are different. In
this case the effective anchoring energy in terms of the p
angles reads

gS5
1

2
@w0ff2~0!1w0uu2~0!#

1
1

2
@w1ff2~d!1w1uu2~d!#

5g01g1 . ~11!

Expression~11! for gS is more realistic than Eq.~10! because
splay-bend deformation, involving justu angle imply a
variation of the anisotropic part of the van der Waals int
action due to the change of the average distance betwee
surface nematic molecule and the substrate. On the cont
in a pure twist deformation, where onlyf is changing, the
5-2
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average distance does not change. As a particular case o
~11!, we will considerw0f5w1f50, corresponding to no
azimuthal anchoring energy.

III. BULK DIFFERENTIAL EQUATIONS
AND BOUNDARY CONDITIONS

The average total energy, per unit length along they axis,
is given, in general, by

F5
1

l H E
0

lE
0

d

f ~u,f;u ,i ,f ,i !dy dz

1E
0

l

g0~u0 ,f0!dy1E
0

l

g1~u1 ,f1!dyJ , ~12!

whereu05u(0), u15u(d), andu ,i meansu ,y and u ,z and
f0 , f1, andf ,i have similar meanings. In Eq.~12! l is the
wavelength of the periodic deformation we are looking f
The actual director orientation is the one minimizingF given
by Eq.~12!. By imposing that the functional derivatives ofF
with respect tou andf vanish, routine calculations give

] f

]u
2(

a
]a

] f

]u ,a
50,

] f

]f
2(

a
]a

] f

]f ,a
50, ~13!

for 0<z<d and 0<y<l, wherea5y,z, and

2
] f

]u ,z
1

]g0

]u0
50, 2

] f

]f ,z
1

]g0

]f0
50 at z50, ~14!

and

] f

]u ,z
1

]g1

]u1
50,

] f

]f ,z
1

]g1

]f1
50 at z5d. ~15!

Equations~14! and ~15! are the boundary conditions of th
bulk differential equations~13!. Note that the other boundar
conditions aty and y1l are automatically satisfied if we
look for a periodic deformation alongy. In fact, if n(y,z)
5n(y1l,z) we have alsodn(y,z)5dn(y1l,z).

In a linearized analysis around the nondeformed state,
periodic solutions of the bulk differential equations are ch
sen of the form u(y,z)5Q(z)cos(qy) and f(y,z)
5F(z)sin(qy). In this caseQ(z) andF(z) are solutions of
two coupled differential equation of the second order. T
differential equation determiningQ(z) is a linear differential
equation of the fourth order. It follows thatQ(z) contains
four integration constantsCi8 . The same procedure can b
used to determineF(z), that contains also four integratio
constantsCi . Sinceu(y,z) andf(y,z) have to satisfy also
the coupled second order differential equations, it is poss
to obtain the integration constantsCi8 in terms ofCi . Con-
sequently, in the linearized case, the solutions of Eqs.~13!
are of the kind

u5u~Ci ;y,z! and f5f~Ci ;y,z!, ~16!

wherei 51, 2, 3, and 4 are four integration constants de
mined by the boundary conditions~14!,~15!, which form a
06170
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linear and homogeneous system. The critical parameter
fining the threshold is deduced by putting the determinan
the coefficients of this system equal to zero.

The analysis of the stability of the nondeformed state
to be performed by considering the total energyF. As it is
well known, the nondeformed state is stable if it correspon
to a minimum ofF.

As discussed above, in a linearized analysisu andf de-
pend linearly on the integration constantsCi . Consequently,
F is a quadratic form of these integration constants. To kn
if the nondeformed state is stable, it is necessary to ana
the sign of the quadratic form representingF, which is sym-
metric. In other words, by substituting Eq.~16! into Eq.~12!
we obtain forF an expression of the type

F5
1

2 (
i , j

M i j CiCj , ~17!

whereMi j 5M ji , because the asymmetric part of the mat
M, of elementsMi j , does not contribute toF. The quanti-
ties Ci are obtained by minimizingF with respect toCi ,
]F/]Ci50. We obtain

(
j

M i j Cj50. ~18!

System~18! is equivalent to the boundary conditions~14!,
~15!, but the knowledge of the matrixM allows a simpler
investigation of the stable state. In fact, the undeformed s
Ci50, for i 51, 2, 3, and 4 corresponds to a minimum ofF
if all four determinants of the principal minors of the matr
M, m15M11, m25M11M222M12

2 , and so on, are positive
On the contrary, the knowledge of the system obtained
Eqs.~14! and~15! does not allow to conclude anything abo
the stability of the undeformed state.

The elements of the matrixM can be easily obtained b
substituting solutions~16! into Eq. ~13!. In this way F is
transformed in an ordinary function of the integration co
stantsCi , F5F(Ci). From this function we obtain

]F

]Ci
5

1

lE0

lH F S 2
] f

]uz
1

]g0

]u0
D ]u0

]Ci

1S 2
] f

]fz
1

]g0

]f0
D ]f0

]Ci
G

z50

1F S ] f

]uz
1

]g1

]u1
D ]u1

]Ci
1S ] f

]fz
1

]g1

]f1
D ]f1

]Ci
G

z5d
J dy,

~19!

becauseu(y,z) and f(y,z) are solutions of the bulk equa
tions ~13!. As it is evident from Eq.~19!, ]F/]Ci is obtained
by means of a linear combination of the boundary conditio
~14!, ~15!. To proceed further, it is necessary to conside
special system described by definedf, g0, andg1.
5-3
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IV. PERIODIC INSTABILITY IN THE ABSENCE
OF EXTERNAL FIELDS

The analysis presented above is valid even in the cas
which the nematic sample is in an external field, and henf
includes f h . In the following we limit our investigation to
the case in which external fields are absent, wheref 5 f e ,
given by Eq.~3! and g0 and g1 by Eq. ~11!. In this frame-
work, the bulk differential equations read@5#

u ,yy1nu ,zz1~n21!f ,yz50,

nf ,yy1f ,zz1~n21!u ,yz50, ~20!

whose solutions are

u~y,z!5@C18 cosh~qz!1C28z cosh~qz!1C38 sinh~qz!

1C48z sinh~qz!#cos~qy!,

f~y,z!5@C1 cosh~qz!1C2z cosh~qz!1C3 sinh~qz!

1C4z sinh~qz!#sin~qy!, ~21!

whereq52p/l, and

C185AC22C3 , C2852C4 ,

C385AC42C1 , C4852C2 , ~22!

with

A5
n11

q~n21!
. ~23!

In order to rewrite system~19! in a more tractable form
we put

u05X1 cos~qy!, f05X2 sinqy,

u15X3 cos~qy!, f15X4 sin~qy!, ~24!

where, as it follows from Eqs.~21!, Xi are linear combina-
tions of Ci . We put, furthermore,

S 2
] f

]uz
1

]g0

]u0
D

z50

5V1 cos~qy!,

S 2
] f

]fz
1

]g0

]f0
D

z50

5V2 sin~qy!,

S ] f

]uz
1

]g1

]u1
D

z5d

5V3 cos~qy!,

S ] f

]fz
1

]g1

]f1
D

z5d

5V4 sin~qy!, ~25!

where also the quantitiesVi are linear combinations ofCi .
By substituting Eqs.~24! and ~25! into Eq. ~19!, we obtain
06170
in

]F

]Ci
5

1

2 (
k

Vk

]Xk

]Ci
, ~26!

Since, as stated above,Vk5(mAkmCm , by indicating with
Bik5]Xk /]Ci , the condition]F/]Ci50 reads

]F

]Ci
5

1

2 (
k,m

BikAkmCm50. ~27!

By comparing Eqs.~27! with Eqs.~18! we deduce

Mi j 5~1/2!(
k

BikAk j . ~28!

Using Eqs.~21! we obtain for matrixB, of elementsBik
defined above,

B5S 0 1 2S C

A 0 AC2dS dC

21 0 2C S

0 0 AS2dC dS

D , ~29!

whereS5sinh(qd) andC5cosh(qd). We have, furthermore
for the elementsAkm of the matrixA,

A115mq, A125
nA

L0u
, A1352

n

L0u
, A145n~12qA!,

A215
1

L0f
, A225qA~m21!21, A2352mq, A2450,

A3152S qmC1
n

L1u
SD ,

A325nF ~qA21!S1
AC2dS

L1u
G2mq dC,

A3352S qmS1
n

L1u
CD ,

A345nF ~qA21!C1
AS2dC

L1u
G2mq dS,

A415mqS1
C

L1f
,

A425~11qA!C1
Cd

L1f
2mq~AC2dS!,

A435mqC1
S

L1f
,

A445~11qA!S1
Sd

L1f
2mq~AS2dC!, ~30!

whereL0u5K11/w0u , L1u5K11/w1u , L0f5K22/w0f , and
L1f5K22/w1f are extrapolation lengths.
5-4
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V. CRITICAL THICKNESS
FOR THE PERIODIC INSTABILITY

We can now evaluate, by means of our formalism,
critical thickness to observe periodic instabilities. The critic
thickness is obtained, for Cramer’s rule, by putting detM
5m450. In this case system~18! can have solutions differ
ent from the trivial ones,Ci50. The condition detM50,
for Eq. ~28!, is equivalent to detB•detA50. Since

detB5H n11

q~n21!
sinh~qd!J 2

2d2.0, ~31!

for d.0, the critical thickness is given by the equatio
detA50, which coincides with the same condition of inst
bility deduced by means of the boundary conditions~14!,
~15!.

A. No azimuthal anchoring energy

As an example, we consider the case in whichw0f
5w1f50, already analyzed by Pergamenshchik@7,8#, cor-
responding toL0f and L1f→`. In this case, as it follows
from Eq. ~30!, we haveA2150, and

A415mqS, A425~11qA!C2mq~AC2dS!,

A435mqC, A445~11qA!S2mq~AS2dC!. ~32!

Our aim is to analyze the stability of the homogeneous p
nar orientation.

Let us first consider the matrixM in the limit q→0. By
using Mathematica we obtain for the determinants of
principal minors of the matrixM the expressions

m15S nd

L1
12m Ddq21O~3!,

m25
n~11n!2d@nd12~L01L1!m#

~n21!2L0L1

1O~1!,

m35
4n3d2@nd12~L01L1!m#

~n21!2L0L1

q21O~3!,

m45
16n3d3

~n21!4L0L1

@n2d12n~L01L1!m2~L01L1!m2#q2

1O~3!, ~33!

where L05L0u and L15L1u . The condition detM5m4
50 gives

dc5~L01L1!m
m22n

n2
. ~34!

Sincen.0, dc.0 implies m(m22n).0, from which we
obtain m.2n, or m,0, which correspond toK24.K11
06170
e
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e

2K22 and to K24,2K22. The critical thickness given by
Eq. ~34! coincides with the one obtained by Pergamenshc
in the caseL05L15L @7,8#.

If dc.0, for d.dc the quadratic form is positive definite
and the homogeneous state stable. Ford,dc the planar ori-
entation is unstable with respect to the periodic deformati

FIG. 1. m1(q),m2(q),m3(q),m4(q) in the case of a symmetric
cell without azimuthal anchoring, form53, n50.5, Lu51 mm,
andd512 mm,dc548 mm. The planar orientation is never stabl
5-5
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for every polar anchoring energy strength. In this case
linear analysis does not allow to determine the wave ve
of the periodic deformation.

In Fig. 1 and Fig. 2 we show the determinants of t
principal minors of the matrixM for arbitraryq, for the set

FIG. 2. m1(q),m2(q),m3(q),m4(q) in the case of a symmetric
cell without azimuthal anchoring (m53,n50.5,Lu51 mm), for d
570 mm.dc548 mm. The planar orientation is stable forq,q0*
50.0602mm21. q0* goes toq0* 50.0667mm21 with increasing
thickness.
06170
r
r

of physical parametersm53 andn50.5. According to the
value of the thickness of the sample we have two differ
behaviors ofm45m4(q).

For d,dc ~Fig. 1!, m4(q) has a maximum forq50 and a
negative minimum. It becomes positive forq5q* . However,
since m3 remains negative forq.q* , while m2 becomes
zero for a wave vectorq larger thanq* and after remains
negative, the planar orientation is never stable.

For d.dc ~Fig. 2!, m4(q) has a minimum forq50, a
positive maximum and it vanishes forq5q0* . Then it has a
negative minimum, and becomes positive again forq5q1* .
The determinantsm2 andm3 become negative aboveq: q0*
,q,q1* , and remain negative forq.q1* . We conclude that
the planar orientation is stable only forq,q0* , sincem1 ,
m2 , m3, andm4 are all positive in this range.

Figure 3 showsm4(q) around the transition from plana
(d.dc , solid line! to striped texture (d,dc , dashed line!.
The dot-dashed line corresponds to the critical thickne
dc548 mm.

The case whered→` can be treated analytically. In thi
limit qd@1 and consequently sinh(qd).cosh(qd). We indi-
cate byx5(1/2)exp(qd) their common value. Simple calcu
lations give for the determinants of principal minors of m
trix M the expressions

m15
n12L1mq

L1
x2,

m252
m~n11!@n~m24!1m#

~n21!2 S 12
q1*

q D x4@11O~x22!#,

m352
m~n11!~n12L0mq!@n~m24!1m#

~n21!2L0

3S 12
q1*

q D x4@11O~x22!#,

FIG. 3. m4(q) in the case of a symmetric cell without azimuth
anchoring, form53, n50.5, andLu51 mm. The planar orienta-
tion becomes unstable when crossingdc . dc548 mm ~dot-dashed
line!, d5dc11 nm ~solid line!, andd5dc21 nm ~dashed line!.
5-6
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m45H ~n11!@n~m24!1m#

~n21!2 J 2S 12
q0*

q D S 12
q1*

q D x4,

~35!

where

q0* 5
2n2

L0m@m~n11!24n#
,

q1* 5
2n2

L1m@m~n11!24n#
. ~36!

From the asymptotic expressions reported in Eq.~35! we
derive that, if L0.L1 , m4 vanishes forq0* , and for q1*
.q0* , and in the rangeq0* ,q,q1* it is negative. As regards
the other determinants we have:m1 is always positive, for
m.2n/(2L1q), whereasm2 andm3 vanish forq;q1* , and
are positive forq,q1* and negative forq.q1* . Conse-
quently, for q,q0* the planar homogeneous orientation
stable, whereas it is unstable forq.q1* . From the discussion
reported above it follows that, in the limit of thick sampl
limited by two identical surfaces~which impliesL05L1, and
henceq0* 5q1* 5q* ), the homogeneous planar orientation
unstable. Due to the presence of thermal fluctuations,
stable nematic orientation is modulated with a wave vec
q* .

The critical wave vector of the instability has to be po
tive. Consequently, the existence of modulated structure
thick sample in the presence of finite anchoring energy
the polar angles requires

m,0 or m.
4n

11n
. ~37!

We note that forn.1,

4n

11n
.2, ~38!

as well as

4n

11n
.2n, ~39!

for n,1. This means that the range defined by Eq.~37! is
larger than the one defined by Eq.~7!, as expected. In fact, in
the presence of finite anchoring for theu angle, theK24 term,
responsible for the mechanical instability, has to be lar
than the term that can induce periodic structure in an
bounded sample.

B. Influence of the azimuthal anchoring energy
on the modulated structure

In the preceeding subsection we have analyzed the po
bility of periodic structures in nematic sample, in the hypo
esis that the surface treatment was such to induce pl
orientation. We have also assumed that no azimuthal anc
ing energy was present in the anisotropic part of the surf
06170
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FIG. 4. m1(q),m2(q),m3(q),m4(q) in the case of a symmetric
cell with azimuthal anchoring (Lf510 mm, the other parameter
are the same as previously!, for a thin sample:d512 mm. Long
wavelength deformations are forbidden, i.e., the uniform textur
stable, no critical thickness exists. An instability may appear wh
m4<0. q* is the wave vector of the periodic instability in the lim
of larged.
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tension characterizing the interface between the nematic
uid crystal and the solid substrate. The aim of this subsec
is to generalize the previous results to take into accoun
finite azimuthal anchoring energy. We limit our investigati
to the case in which the two limiting surfaces are identic
and henceL0u5L1u5Lu , andL0f5L1f5Lf .

The trends of the determinants of the principal minors
the matrixM, for the set of elastic parametersn50.5 and
m53 are reported in Fig. 4. As it follows from this figure
m1 is positive for everyq. For what concernsm4, it is posi-
tive for q50. It has a positive maximum and a negati
minimum. This minimum tends to zero for larged. The be-
haviors ofm2 and m3 are also reported in the same figur
They are positive in the limit ofq→0, and can change the
sign, for larged, for a value ofq close to the one for which
m4 vanishes.

In the limit of smallq, it is possible to expand againm1 ,
m2 , m3, and m4 in power series ofq. However, in the
present case

lim
q→0

m1~q!5 2
Lf

,

lim
q→0

m2~q!54 n
LuLf

H n11
q~n21!J

2
,

lim
q→0

m3~q!58
n3~d12Lf!d

~n21!2LuLf
2

,

lim
q→0

m4~q!516~ n
n21!

4 d2~d12Lu!~d12Lf!

Lu
2Lf

2
. ~40!

It follows that the critical thickness, as defined before, do
not exist any longer. This means that if the azimuthal anch
ing is not identically zero, it is impossible to find adc such
that for d,dc the planar orientation is unstable with respe
to periodic deformations forq→0. This result can be easil
understood: ifwfÞ0 a period deformation involving twis
deformation costs also in surface energy. Consequently,
wave deformations, havingq→0, are forbidden.

In the limit of larged ~Fig. 5!, where cosh(qd).sinh(qd)
the expressions for the determinants are

m15
~n12mLuq!Lf1Lu

LuLf
x2@11O~x22!#,

m252
~n11!Lu@n~m24!1m#

~n21!2Lu
S 12

qa*

q D
3S 12

qb*

q D x4@11O~x22!#,

m352
~n11!Lu@n~m24!1m#

~n21!2Lu
2 @n1~Lu /Lf!12mqLu#

3S 12
qa*

q D S 12
qb*

q D x4@11O~x22!#,
06170
q-
n
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s
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t

ng

m45H ~n11!Lu@n~m24!1m#

~n21!2Lu
J 2S 12

qa*

q D 2S 12
qb*

q D 2

x4,

~41!

where, as before,x5(1/2)exp(qd), andqa* andqb* are given
by

FIG. 5. Same conditions as Fig. 4. Thick sample:d5100 mm,
the wave vector of the periodic instability goes toq* .
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qa* 5
n@n1~Lu /Lf!#

Lum@n~m24!1m#

2AS n@n1~Lu /Lf!#

Lum@n~m24!1m# D
2

1
n~n11!

LuLfm@n~m24!1m#
,

qb* 5
n@n1~Lu /Lf!#

Lum@n~m24!1m#

1AS n@n1~Lu /Lf!#

Lum@n~m24!1m# D
2

1
n~n11!

LuLfm@n~m24!1m#
.

~42!

From Eqs.~42! it follows that even in the case of finit
azimuthal anchoring energy the condition to have perio
deformations in nematic samples is that inequalities~37!
hold.

The critical wave vectorsqa* andqb* , in the limit of wf

→0, become 0 andq* , respectively, as obtained in the pr
ceding subsection. In the opposite case ofwfÞ0, qa* ,0 and
qb* .0. Consequently, the wave vector of the instability
qb* . In this case the presence of a finiteLf is responsible for
an increase of the value of the critical wave vector, i.e.
reduction of the spatial periodicity of the deformation. If th
azimuthal anchoring is strong, and henceLf→0, the spatial
periodicity tends to molecular dimensions~Fig. 6!.

VI. CONCLUSION

We have shown that the analysis of stability of the u
form state, with respect to the periodically deformed one

FIG. 6. Dependence of the periodic instability wave vectorqb*
on Lf in the limit of larged. The periodicity tends to molecula
dimensions with azimuthal anchoring energy.
06170
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easily performed if the quadratic form representing the to
energy in terms of the integration constant is known. W
have indicated how to obtain the matrix of the coefficients
the quadratic form. As an application, we have used our
malism to obtain the critical thickness of a nematic sam
characterized by planar easy axes on both surfaces to obs
periodic deformations. We have also considered the poss
ity of periodic deformations in a thick sample, taking in
account the presence of polar and azimuthal anchoring
ergy.
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APPENDIX

The aim of this appendix is to derive the contribution
the surfacelike term to the elastic energy density. We puv
5n“•n1n3(“3n). In Cartesian coordinates“•n
5ng,g , and“3n5«bgana,geb , where«bga is the antisym-
metric tensor~Levi-Civita tensor!, and Einstein’s convention
has been used. Consequently,n“•n5nmng,gem , and

n3~“3n!5«mnbnn~“3n!bem5«mnbnn«bgana,gem .
~A1!

Since «mnb5«bmn , we have «mnb«bga5«bmn«bga
5dmgdna2dmadng , and from Eq.~A1! we get

n3~“3n!5~dmgdna2dmadng!nnna,gem

5~nana,m2ngnm,g!em . ~A2!

By taking into account thatunu51, and hencenana51, a
simple calculation givesnana,m50. Consequently, from Eq
~A2! we obtain n3(“3n)52ngnm,gem . It follows that
vector v can be written asv5(nmng,g2ngnm,g)em , and its
divergence is found to be

“•v5vm,m5~nmng,g2ngnm,g!m

5nm,mng,g2ng,mnm,g . ~A3!

In the case considered in our paper,n5n(y,z). Hence,

nm,mng,g5ny,y
2 12ny,ynz,z1nz,z

2 ,

ng,mnm,g5ny,y
2 12ny,znz,y1nz,z

2 . ~A4!

In this framework“•v52(ny,ynz,z2ny,znz,y), and the sur-
facelike contribution to the elastic energy density we a
looking for, given by2(K221K24)“•v, is

2~K221K24!“•v522~K221K24!~ny,ynz,z2ny,znz,y!,

~A5!

as reported in Eq.~2!.
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