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Dynamic and correlation properties of solid supported smecticA films
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Dynamic properties and layer displacement—layer displacement correlation functions of the gafeetic-
on a substrate are investigated. The eigenfrequencies spectrum and eigenmotions of the film are calculated
within the framework of a discrete model. It was found that the static as well as dynamic properties of freely
standing and solid supported smedhdiims differ significantly. In particular, the acoustic mode is absent in
the films on a substrate and the surface tension is not essential for the film dynamics. The correlation length of
the spatial layer displacement correlation functions is finite for films on a substrate in contrast to the free
standing films. An effect of thermal fluctuations on the specular and diffuse x-ray scattering was analyzed.
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[. INTRODUCTION spatial correlation functions and eigenfrequencies of the
smecticA film on the plane substrate. It is shown that there
The smecticA films have been intensively investigated exists no acoustic motion with the constant interlayer dis-
during the past decade. The static and dynamic properties &&nces. The center of mass of the film motion is presented in
the freely standin§il—14] and solid supportefll5—19 films  all modes in contrast to optic oscillations in freely standing
have been studied both theoretically and experimentally. S6mecticA films. We calculate dependencies of the eigenfre-
far the freely standing films have been studied in more detailguencies and relaxation times on the in-plane compoggent
The spatial layer displacement—layer displacement correleef the wave vector within the framework of the discrete
tion functions[2,5], eigenfrequencies and relaxation times of model[2,7,13. Due to the presence of plane substrate the
the film oscillations are analyz€,8,10,11,1% The x-ray correlation lengths are finite contrary to the case of the freely
scattering from layered films is the basic experimentalstanding films. In conclusion, we calculate the input of ther-
method of investigation of the static and dynamic film prop-mal fluctuations into intensities of the specular and the dif-
erties[1,2,4-9,12 Information on the spatial correlations fuse x-ray scattering.
have been obtained from experiments on the specular and The paper is organized as follows. In Sec. Il we present
diffuse x-ray scattering in Refl,4—6. Recent experiments the equations of motion for the film on substrate within the
on the temporal correlation function of the x-ray scatteringframework of the discrete model. The eigenfrequencies and
intensities[7,9,17 enable one to study the dynamic film relaxation times are also calculated. In Sec. Ill we obtain the
properties. spatial layer displacement—layer displacement correlation
Considerable attention has been drawn to the study dunctions. Thick films are considered in Sec. IV. The contri-
smecticA films on a substrat€15—19. Similar to the free bution of the thermal fluctuations to the intensity of x-ray
standing films, the basic experimental method in this case iscattering is calculated in Sec. V.
the x-ray scattering. This experiment yields information on
the substrate roughnef§9—-21]. The correlation properties
of solid supported films are studied in REL9], where the
layer displacements have been calculated for boundary con- Let us consider a smectig-film located on the plane
ditions determined by the substrate roughness. In contrast &ubstrate. For axis directed normally to the substrate the
freely suspended films the layer displacement correlatiorlastic part of the free energy can be written as
function is caused by thermal fluctuations of layers as well as
by replication of the substrate roughness. These contributions ou
Y
were supposed to be noncorrelafd®] and the results ob- F= —f dr B(— + —f dr, |V, ul?
tained for the free standing film$&] were used to determine 2)v 9z 2)s
the thermal fluctuations. Such an approach seems to be suit- 2.9
able for films with large elastic compression constamthen
the thermal fluctuation contribution to the layer correlationHereu is the displacement along tlzeaxis, B andK are the
function is small. In the general case this contribution maylayer compression and layer band elastic constants, respec-
be of the same order as the input of the substrate roughnegs:ely, y is the surface tension. The first and the second terms
As far as the quantitative information about substrate can b Eq. (2.1) describe the volume deformation and distortion
obtained from x-ray scattering experimefit®—21] itis nec-  of the free film surface, respectively.
essary to describe the thermal layer fluctuation spectrum We will analyze the dynamic and static films properties
more accurately with the account for the boundary condiwithin the framework of the discrete model that has been
tions on the solid surface. successfully used in studying freely suspended films
In the present work we calculate the layer displacemeng2,7,13. According to this model, equilibrium smectic layers

II. BASIC EQUATIONS

2
+K(A, u)?
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are flat with constant interlayer distancdsIn a discrete
model, Eq.(2.1) for N-layer film acquires the form

1 B N—-2
F= Efsdrl{a( 21 (un+1_un)2+uﬁ1)

N—1
-I—dKZl (A, up)2+ y(VLul)z}. (2.2)

Here we suppose that tidth layer is fixed by the substrate,

un=0, while the first layer refers to the free surface. Equa-
tions of layer motion are written within an assumption that
the motion of thenth layer is caused by elastic and viscous

forces, —d 1(S6F/éu,) and 73A, (du,/dt), correspond-
ingly, where 75 is the layer sliding viscosity. The set of

equations of motion in a linear approximation has the form

[7,13

azul(rL !t) u2(rL !t)_ul(rL lt)
=B
Jt? d?

—KAZuy(r, 1)

Z aul(rL !t)

F AL D+ pph,

&Zun(rL vt)
P

-B ul’H’l(rL 1t)_2un(rL 1t)+un*1(rl 1t)
at?

= -
auy(r, ,t)
—KAZun(r, )+ ﬂsAi%:

n=2,3,...N—1, uy(r,,H)=0. (2.3

Assuming that the film is infinite in they plane we can
complete two-dimensional Fourier transformation. For th
plane waves

un(ch ,w)eiqi»rlfiwt

we obtain a set of linear homogeneous equations

. B y B
po’+iowny’ — — —Kql - a(ﬁ) up+—up=0,

e
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where the vector of layer displacementsand tridiagonal
matrix A are[13]

Uy
U
u= . ,

Un-1
(2x+1-a) 1 O 0 O
1 2x 1 0 O
. 0 1 2 0 O

A= . .

0 0O O 2x 1

o
o
o
-

(2.6)
Here we used the notations
d? 2. 2 4
X:_l"'ﬁ(Pw +iwnsqr —Kay), 2.7
_dyq?
a—= B .

Equation (2.5 has nonzero solution if its determinant is
equal to zero,

detA=0. (2.9
This equation may be presented in the form
Un-1(X)+ (1= a)Uyn-2(x)=0, (2.9

where U,(x) is the Chebyshev polynomial of the second
kind [22—24]. It can be written as a determinant of the tridi-
agonal matrix of thenth order,

e q 2x 1 0 0 O
1 2x 1 0O O
_ B B B 1 2 0 0
Pw2+|w7]3qi_2¥_KQi>un+ U1t gUnea=0, U, (x)= (2.10
0 O 2 1
n=23,...N-2, (2.4 "
0O O 1 2x
B B
pw2+iwn3qf—2—2—qu) Un—1+ —Un—2=0. Equation(2.9) hasN—1 rootsx", 1=1,2, ... N—1, which
d d in general could be found numerically. For each root it is

In EqQ. (2.4) we omitted the arguments)( ,w) in the ampli-
tudes of Fourier harmonias, .

It is convenient to present these equations in the matrix
form

cording to Eq.(2.7),

2
+ 2p
(2.9
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possible to get the pair of the system eigenfrequencies ac-

2B
\/—(1+x<'>)+
pd?

Kay

4

2 4
734,
4p°

(2.1)



DYNAMIC AND CORRELATION PROPERTIES OF SOLID . .. PHYSICAL REVIEW E6, 061701 (2002

If o isequalto 0, 1, 2 or ir—, EQ.(2.9) has an exact u

) ) 5 2 up ug ug
solution. For casesa<1(q{<B/yd) and a>1(qf u u u 0
>B/yd), which are important for the analysis, it is possible 3 2 !
to find approximate solutions. o PO Us | | U 0

If in the caseq? <B/yd we use the trigonometrical rep- X ta
resentation for Chebyshev polynomig&2—24,
UN-1 UN-2 UN-3 0
sinf(n+1) 6] 0 Un-1 Un-—2 0
U,(cosh) = —sing__’ (212 (2.19

Using Eqg.(2.195, we can express the amplitudes of layer
. o . displacements through the amplitude of the first layer, which
then we get the following roots of the characteristic equationcan pe choosen arbitrary. Taking into account the recursion

(2.9: relation between Chebyshev polynomifke—24
U —2xU,_ +U,_ =0, 2.1
" (2|—1)7T 2a (2|—1)7T n(X) XUp 1(X) n Z(X) ( @
x=—cos———+ 2N_lco§ 2(2N=1)" and supposing formally that
Uo(x)=1, U_4(x)=0, (2.17
1=12,...N—-1. (213 we get from Eq(2.15),

M= n—1 0] - 0
u 1 U1 (X)) +(1—a)U,_ (X ,
Forqf>B/yd we get n = (T DT U+ JUn—2(x7]

nl=12...N-1. (2.18
| [ 7 1 Sy The amplitude of the first layer is assumed to be equal to
xN=—cos - sir? : ity f h mod
N—-1 a(N—-1) N—1 unity 1or eacn mode.

Now let us compare the dynamic properties of solid sup-
B N-1)_ % ported and freely standing smec#cfilms. First of all the
1=12,...N=-2, x™"=5. (214 role of surface tension essentially differs in these systems. In
freely standing films, the surface tension forces produce the
acoustic mode having the largest relaxation time or the low-
For determination of the layer displacement amplitudes itest frequency13]. In contrast to this case, in the solid sup-
is necessary to solve the set of homogeneous equafd)s ported film dynamics the surface tensigrdoes not notice-
for each eigenfrequency. For this purpose we present E@bly affect the spectrum of eigenfrequencies. Indeed, as it
(2.5 in the form follows from Eq.(2.13, Eqg. (2.11) may be written as

2 2 2 2 4
o_ 1k, \/Esinz(Zl—l)ﬂ- 4yt (-1 Ka! sid!

W=l b2 T 22N-1) T 2N-1pd P 22N-1) T p a2 (219

For typical values of the smectis-material parameter$ 8yL 8y \2p
~2.5x10 erglen?, K~10®dyn, y~30erg/cd, d 1<qu<<—) —. (2.21)
~30 A, 73~1Pz p~1 Glen?, the inequalityK p/ 73<1 is B 73/ B

always fulfilled and hence we can neglect the contribution ) . L , .
containing the elastic constait. As it is seen from Eq. These inequalities cannot be valid simultaneously since in

(2.19 the surface tension is more important for the firstSmecticA the following relation between material constants
mode withl =1. In this case estimating $im2(2N—1)] as  is always valid:
/4N it is possible to present the expression for the radicand g
in Eqg. (2.19 in the form 7”7]’ %<1. (2.22
3
w8 2yat ot .
4p|_2+ pL - 4p2 ' (2.20 Therefore, the dynamics of a solid supported film of any
thickness is determined by elastic and viscous bulk proper-
whereL =Nd is the film thickness. If the term with the sur- ties.
face tension were the principal one, the following relation is Figure 1 shows the displacements of the five-layer
to be fulfilled: smecticA film on a plane substrate for all four modes. Con-
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FIG. 3. Dependences of relaxation timg§ on the wave num-
ber for 100-layer smectié-films. The dimensionless variables and
styles of lines are the same as in Fig. 2. The curves from top to
bottom relate td =1,2,3,10,20, respectively.

FIG. 1. Types of eigenmodes for the five-layer smegtifitm

on a substrate. ) ]
relaxation times

trary to the freely standing films in this system the acoustic

mode keeping the interlayer distances is absent. At the same _ _
time there are no purely optic oscillations with fixed position STy I=12,...N-1, (2.23
of the center of mass. In Figs. 2 and 3 the dependencies of

on wave numbelq, are presented. The calculations were
0'4'( F1 carried out for films containing five and 100 layers. The re-
sults of calculations for the freely standing films with the
0.31 a . same parameters are shown in these figures for comparison.
1-1,w>°°°°°' It is seen that the relaxation times of the first mode for solid
e 0.2] °¢°o°°"° supported and freely standing films approach each other with
: °° increasingy, value. The difference between relaxation times
for these two cases disappears for modes with large mode
numberd.

Ill. LAYER DISPLACEMENT FLUCTUATIONS

In order to obtain the spatial correlation functions of the
layer displacements we use the expressi@) for the free
energy. In Fourier representation it can be written as

F—}J dqg, Nil " - -
=5 (27T)2n,m:1 Un(g )Mpum(—0a,), (3.2

where the symmetric tridiagonal matmit of theN— 1 order
has the form

(2y+1—a) 1 O 0
1 2y 1

FIG. 2. Dependences of relaxation timg8 on the wave num- = — E 0 1 % - 0 0
ber for five-layer smectié films. The dimensionless timer d : : . : :
= T\/KB{ 73d and dimensionless wave .numbelt q, \/d.y/B are 0 0 0 --- 2y 1
used. Diamonds correspond to the solid supported film and solid
lines correspond to the freely standing film. The mode numbers are 0 0 o -~ 1 %
numerated from top to bottom. The relaxation times for the solid (3.2)
supported film are calculated li§) Eqgs.(2.13, (2.11), and(2.23);
(b) Egs.(2.14, (2.12), and(2.23. Here we used the notation
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d?Kq? ] . s
y=—1— ZBL' (3.3 143 .
.\212-
The spatial layer displacement—layer displacement correla- ~ 10
tion function is equal to é‘ 8 . e °
kBT . - S’ 6- a . . o ° - .
(Un(r ) u(0))= ZJ da, (N1, (3.9 £ . . T
(2m) FU Te,0 Lt
v * ° L PRGN °
. 2] ° %94 A o .
wherekg is the Boltzmann constant afids the temperature. 10,00 °° : LICI I P I 2
The inverse matrix eIements’.\A/l(‘l)nm can be obtained by 0 0 5 10 15 20
using the cofactordl,, of the matrix M elements. Using m
Eq. (2.10 for the Chebyshev polynomials we obtain the ex- .
pressions for the elements of the first row and first column of ~ 143 b
matrix M, °L 123
A10-
M =M =(—1)""Up_p_1(y), n=12,...N—1. S sl
3. 3 )
( 5) lo'ﬁ 6 " .
The cofactors of the remaining elements can be expressed as ;:’ 4 R S
2 ° ot
v ° .
Mom=(—1)""™MU,_ +(1-a)U,_ Unon- , 04 . . r —s
nm= ( ) [Um-1(y) +( a)Upm_o(Y) Uy n-a(Y) P 3 P P z "
n=m>1. (3.6 m-11|
. . ~ . FIG. 4. The dependence of the correlation function
Using the expression of the mati determinant, (un(0)um(0)) on the layer numbem for fixed nin a 21-layer film
~ with a fixed 21st layer(a) Squarespn=1; crossesn=>5; circles,
detM=Uy_1(y) +(1-a)Uyn-_2(y), (3.7 n=11: and diamonds)=17. (b) The dependence of the correlation
. . . functi 0)un(0)) for n=11 on the | ind diff
and Eq.(2.17) we obtain the elements of the inverse matrix unction (un(0)un(0)) for n on e ayer Intexes cliiersnce

] m—11|. Crosses and circles correspond to approaching a free sur-
in the form face and a substrate, respectively.
(M=) = (— 1)n+m+19 4(b). The mean square fluctuations for films of various thick-
B ness are shown in Fig. 5. The dependencies of correlation
B functions{u,(r, )un(0)) on the in-plane distanag for 11-
[Un-a(y)+ (2 a)Um‘z(y)]UN‘”‘l(y), layer film are presented in Fig. 6. It is shown that for the
Un-1(y) +(1—a)Un-2(Y) solid supported films with infinite surface the correlation
(3.9

length is finite contrary to the freely standing films. Note that

the correlation length decreases on approaching the solid sur-

(M1 =¥~ face. Formally the finite value of the correlation length re-
nm mn- sults from the absence of singularities at the lower and upper

The spatial layer displacement correlation functions in a

n=m, nm=12,... N—1,

¢ *° o o

solid supported smecti- film can be calculated by using . ® c.,
Egs. (3.4) and (3.8). Integrating over the angle in E¢3.4) 147 N ° -
we obtain o st N

(
-
N
1
o
¢

kT -
(U )un(0) = [ .0, 3o(, 7 ) 2l ),
(3.9

=
Q

«©

whereJy(x) is the zeroth-order Bessel function.

The results of numerical calculations of the layer dis-
placement correlation functions obtained from E&s8) and
(3.9 are shown in Figs. 4—-7. The dependencies of correla-
tion functions(u,(0)u,(0)) on the layer indices are pre-
sented in Fig. 4. It is seen that the correlation functions of the

»
1

<u,(0)u (0>

10
n

15

20

films on a substrate differ noticeably from the free standing FIG. 5. Thermal layer fluctuations iN-layer smecticA films
films. In particular, the correlation functions are not symmet-with a fixedNth layer and the free first layer. For circlbs=5, for
ric with respect to the center of the film as it is shown in Fig.crossesN=11, and for diamondsi=21.
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to the integral in Eq(3.9) is formed in the region that can be

,\12- obtained from Eq. (3.3, i.e., q,<qy, Wwhere qy
;L 101 =(2B/Kd?)Y* This value of the wave number corresponds
o to the characteristic length,=(Kd?/2B)Y4~20 A, this

value being in accordance with the results of numerical cal-
culations presented in Fig. 6. In the freely standing films for
small wave numbersg, —0, the inverse matrix elements

have the singularityNl ~%) ,m(q, )~ 1/¥q? , which results in
the logarithmic divergence at the lower integration limit in
. v Eqg. (3.9. Figure 7 shows the height difference correlation
1 70 100 600 functiong,m(r,), where

gnm(rL):<[un(rL)_um(o)]2>- (3.1
FIG. 6. The dependence of the spatial correlation function i .
(un(r, )un(0)) on the in-plane distanae for the 11-layer smectic- |t iS seen from the figures that for small functions
A film on a substrate. The free surface refers to the first layer.  9nm(r1) With equal differencen—m| coincide, excluding
cases when one of the layers is the film boundary.
limits of integration in Eq(3.9). The inverse matrix elements It is interesting to analyze the correlation function

for the solid supported film are finite for the zero wave num-(Un(r.)un(0)) behavior in limiting cases; —0 andr
berq, =0, —oo, If we expand the Bessel functialy(q, r,), Eq.(3.9),

in power series for, —0 we find that the correlation func-
tion decreases with decreasing distance as

(Un(r UM(0))=(Un(0)un(0)) = A2,  (3.12

. . whereA,, is positive coefficient. For analyses of the corre-
(M™Hpm=(M"Hmp. lation function{u,(r, )um(0)) behavior at a large distances
it is convenient to use the asymptotic expansion of the Bessel
In Eq. (3.9 the integrand decreases rapidly with increasingfunction [27],
wave numbenq, . Hence, we can expect that the main input

<uy(1, Jus(0)>

(M~ 1,(0)= g(N—n), n=m, nm=1,2,...N-1,
(3.10

fo ququ(qr)f(q%r‘zgo o K (r—e),
(3.13
where

k
2k+1r(—+1)

C= £(0(0), (3.14

| &

I'(x) is the gamma function, anf{q) is a regular function
for >0 and it decreases faj— +. Substituting the ex-
pansion(3.13 into Eqg. (3.9 we find that all coefficients of
the asymptotic expansion are equal to zetp=0. Indeed

<2 for k=21 we get 1'(—1)=0 and fork=2l+1 all deriva-
~ 201 tives of the functionf(q) at q, =0 are equal to zero,
3 f1*1(0)=0. Thus at large distances, —x, the correla-
b 181 tion function decreases faster than according to power law.
16
1 IV. THICK FILMS
y : r . Let us compare the results obtained for the solid sup-
1 10 100 1000

ported films with the correlation function of infinite Smectic
A calculated within the framework of the continual model

FIG. 7. The dependence of the height difference correlatio25]. In this model all characteristic lengths are supposed to
function g,,(r,) on the in-plane distance, for the 11-layer b€ much larger in comparison to the interlayer distadce
smecticA film on a substrate(a) n=m, (b) n#m. The free surface The layer displacement correlation functiongrrepresenta-
refers to the first layer. tion is equal to26]
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Ju@?y=—eT
Boz+Kqg?

74

(4.1)

For comparison it is convenient to usg (,z) representation.
Using Eq.(4.1) we get

<U(Zq )U(Zl —q )>:if+xdq eiqz(z_z/)kB—T
AN g |
_ kBT e_lz_zl‘)\qf, (42)
2BAQ?

where A =+K/B. According to Eq.(3.1) the correlation
function in the discrete model is equal to
(Un(A)Um(—01)) =KeT(M D)y 4.3
In thick films number of layers is large\>1. We shall
consider the inner layens and m determined by the condi-

tions 1<n,m<N. For comparison with the continual model
we also suppose that

g, > Jdx. (4.4

In this case Eqs(3.8) and (4.3 can be significantly simpli-
fied. Note that the argument of the Chebyshev polynongjal,
determined by Eq(3.3) is negative ang=<—1. Hence, it is
convenient to express the Chebyshev polynomldjgy)
through the hyperbolic functior4],

sinhin+1)6

Un(—coshd)=(—1)" snhg (4.5
where
coshf=—y=1+ dZqu (4.6)
2B
From Egs.(4.4) and (4.6) we have
6~drg? . 4.7

In this case for Chebyshev polynomials,(y) of the higher
orders,n>1, we get an approximate relation

e(n-¢—1)¢9

U,(—coshd)~(—1)" T

(4.9

Substituting this expression into E¢8.8) and(4.3) we get

kBT e—ln—m\d)\qf

4.9
2BA\Q? “9

(Un(a ) um(—ay))=

Using the notationjd=2z andmd=z' we obtain the con-
tinual model expression, Ed4.2). So for thick films the
results in the discrete and in the contin{2b] models coin-
cide. The same is valid for the free standing films.

PHYSICAL REVIEW E6, 061701 (2002

V. X-RAY SCATTERING

The obtained results for the layer displacement correlation
functions can be used for calculation of the intensity of x-ray
scattering from the solid supported smedicfilms. The
x-ray scattering intensity(q) is determined by the correla-
tion function of the electron densities,

L(a@)~(p(a)p(—q)),

where p(q) is the Fourier transformation of the electron
density, q is the scattering vector. In Gaussian approxima-
tion the correlation function of the electron densities,

(p(q)p(—Qq)), has the forn{1,5,7,14
N

<p<o|>p(—q>>=2wp§|pM<o|z>|2n;:1 exf —ig,(n—m)d]

(5.9

2
q
?Zgnm(rl)

A
X f rLdrlJo(QLrl)exl{ -

0
N

=2wp§|pM<qz>|2n;_l exd —ig,(n—m)d]

2
xexp{ - %Ruﬁ(ri:0)>+<u§n(ﬁ:0)>]}

XGnm(d1 ,02), (5.2)

where

A
G Q1 0y) = fo A1, 30(qu 1 )X AZ(Un(r ) Un(0))].
(5.3

Here pg is the surface density of molecules in the smectic
layer,pw(Q,) is the Fourier transformation of the linear elec-
tron density in the molecule along tlzeaxis, A is the linear
size of the film surface. The scattering vector has the com-
ponentsq=(q, ,q,).

The intensity of the specular x-ray scattering is deter-
mined by Egs.(5.2) and (5.3) with g, =0. The results of
calculations for the film containing five layers are shown in
Fig. 8. The material parameters of smediare the same as
in the previous sections. In these calculations we neglect the
molecular form-factor dependence on the wave nunaer
pM(qZ)zpf\’,l. It should be noted that the intensity of the
specular x-ray scattering tends to the constant value
mp2|py|2A? with increasing wave numbey, . This effect is
caused by the specular reflection from the plane boundary
layer uy=0. Such behavior of the specular x-ray scattering
from the solid supported smectiefilms differs significantly
from that for the freely standing filmfsl,5,6]. As it is seen
from Egs.(5.2) and (5.3 the intensity of the specular x-ray
scattering from the freely standing films tends to zero with
increasingg, [5].

For calculation of the diffuse x-ray scattering from the
smecticA film on a substrate we can fix the compongpbf
the scattering vector and vary the in-plane comporgnt
only. In the integralG,(q, ,q,) entering Eq.(5.2) we ex-
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FIG. 8. The calculated dependence of the intensity of the specu-
lar x-ray scattering from the five-layer solid supported sme#tic-
film on the wave numbeq, .

FIG. 9. The calculated dependence of diffuse x-ray scattering
intensity ong, near the first Bragg’s pea$§,=0.21 A~ for the
solid supported five-layer smectiefilm.

pand the exponential function into series keeping the first
two terms only. This approximation is valid for moderate
values of the wave numbey,. Usually the experiments on
the diffuse x-ray scattering are performed in the vicinity of
the first Bragg's peakg,=2m/d~2x10" cm 1. In the
smecticA film on a substrate the correlation function
(up(r )um(0)) attains the maximum value-10 A% at r |
=0. Therefore, the exponent(u,(r, )um(0)) is of the or-
der of 0.4 and decreases rapidly with increase of the in-plane

eflnfm\dxqf

(M) m(a) = (5.7)

2BAG?

For very large wave numberg, >1/\/d\, the elements of
M~ matrix decay with increasing, as

distancer, . At the same time according to E¢.3) the (M=), (q,)~ (q, —)
regionr, ~0 enter§ the integral vyith the zero vv_eight. . nmt AL B(\/ﬁql)élﬂ\nfml + '
As long as the in-plane film size obeys the inequality (5.8

>r . the upper integration limit in E(5.3) can by extended

to infinity. For g, # 0 integral(5.3) can be presented in the Note that this region of the wave numbers is not studied

form experimentally{19,21]. So the decrease of the diffuse x-ray
scattering intensity is not described by the universal power

* law. At the same time in some regionsaf the damping can
—~2
Gnm(d..02)~4; fo r1dr,Jo(a,r){un(r)um(0)), be approximated by the law, ¥, where the value ofy is
(5.4 within the limits 2< y<4 in accordance with Eq$5.8), and
(5.7).
where the correlation functiofu,(r, )u,(0)) is determined In x-ray scattering studies of solid supported smeatic-
by Eq.(3.9). Using the relation films, the roughness of substrate attracts considerable interest

[15-19. Usually, the correlation length of the substrate in-
> ) 1, homogeneity is of the order of610? A [16,17, i.e., suffi-
jo rdrdo(arJdo(q'r) = aé(q —a), (59 ciently larger than the correlation length of the layer thermal
fluctuations in this system. Thus the decreasing of x-ray scat-
tering caused by the roughness replication and thermal fluc-
tuations of layers occurs in different regions of the wave
keTQ? . numberq, values. It should be noted that this difference
Gom(q, .0, =~ 5 (M~ Y, m(d,). (5.6 increases in films with larger values of the elastic constant
& B~10°—10'° erg/cn?. Such films have been widely used in

. . . the experiment§15-19.
The results of the diffuse x-ray scattering calculations are In order to study the dynamic properties of solid sup-

\S,gﬁjvgg |n~|:f(.)59(.:r'nl'ble ;ﬁg%ifggf:?ﬂdz fgnisot:':f lé?];atch_%orted films it should be desirable to measure the x-ray scat-
o 9 tering intensities temporal correlation functions similar to ex-

teristic wave numbeqy~2x10° cm™1, this value is in ac- . , o
cordance with the correlation length . According to Eq. periments for the freely standing smecAcilms [7,9,13.

(5.6) the decrease of the diffuse x-ray scattering is deter-
mined by the matrixv ~ L. In the thick films for moderate

wave numbersg, <1/Jd\x, the elements oMM~ matrix This work was supported by the RFBR Grant No. 02-02-
have the form according to E¢4.9), 16577.

where 6(x) is the 6 function, we get
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