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Eutectic colony formation: A phase-field study
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Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification
of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification
cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macro-
scopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that
diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity.
We investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent
highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much
larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis@M.
Plapp and A. Karma, Phys. Rev. E60, 6865 ~1999!#, which predicts a destabilization of the front by long-
wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assump-
tion commonly attributed to Cahn that lamellae grow perpendicular to the envelope of the solidification front
is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an
important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics
of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not
converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simu-
lated.

DOI: 10.1103/PhysRevE.66.061608 PACS number~s!: 68.70.1w, 81.30.2t, 02.60.Cb
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I. INTRODUCTION

Eutectic alloys can form a wealth of different two-pha
patterns during solidification. These alloys are of interes
metallurgists@1# because of their low melting points and
the superior mechanical properties associated with a fi
scale composite microstructure. Moreover, eutectic growt
a nontrivial example of pattern formation outside of equil
rium that has attracted the attention of physicists over the
two decades.

When the two solid phases (a andb) of a binary eutectic
alloy have rough interfaces with the liquid, solidification
or near the eutectic composition typically produces a s
tially periodic array structure consisting of lamellar plates
the two phases, or of rods of the phase with the sma
volume fraction embedded inside the matrix of the oth
phase. Since the pioneering mathematical analyses by H
@2# and Jackson and Hunt@3#, which built on earlier work by
Brandt @4# and Zener@5#, it is well established that thes
lamellar and rod morphologies can grow cooperatively
steady state for a continuous range of eutectic spacings,
both phases helping each other to grow via the diffus
transport of the two chemical components in the liqu
~coupled growth!.

In directional solidification experiments, a sample co
taining the alloy is pulled at a constant velocityvp in an
externally imposed temperature gradient of magnitudeG. In
such experiments, coupled growth typically produces a co
posite front that is perpendicular to the temperature gradi
and planar on a scale much larger than the lamellar spacil
~defined as the width of the basic spatially repeating u
consisting of onea lamella and oneb lamella!. Analytical
1063-651X/2002/66~6!/061608~17!/$20.00 66 0616
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@6# and numerical@7# studies of the morphological stabilit
of lamellar eutectics, as well as detailed experiments i
transparent organic system@8#, have shown that the stabl
range of lamellar spacings is restricted by a long-wavelen
instability leading to local lamellar termination at smalll,
and short-wavelength oscillatory instabilities at largel.
These studies clearly demonstrate that a large-scale mor
logical instability of the composite front does not occur in
binary eutectic alloy.

This picture is consistent with the experimental obser
tion that such a morphological instability occurs only when
small quantity of a ternary impurity is present, and whenvp
exceeds a critical value@9–19#. In a nonlinear regime, this
instability results in the formation of two-phase solidificatio
cells, also called eutectic colonies, with a typical width mu
larger thanl. A typical example of such cells is shown i
Fig. 1.

Experimental measurements to date@9–19# have consis-
tently shown that the onset of colony formation can be re
tively well described by a simple constitutional supercooli

FIG. 1. Eutectic colonies in a thin sample of the transpar
organic eutectic alloy CBr4-C2Cl6, doped with a small amount o
the ternary impurity naphtalene~from Ref. @18#!.
©2002 The American Physical Society08-1
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criterion with respect to the ternary impurity@20,21#, which
predicts that the instability occurs whenG/vp falls below a
critical value. This suggests that this instability may be qu
tatively similar to the well-known Mullins-Sekerka instabi
ity of a monophase front during directional solidification of
dilute binary alloy@22#. In a recent linear stability analysis o
a sharp interface model@23#, however, we showed that th
morphological instability of a composite front in the pre
ence of a dilute ternary impurity differs fundamentally fro
the instability of a monophase front, even though the onse
both instabilities is well predicted by constitutional supe
cooling. This analysis was based on the same procedure
previously by Datye and Langer@6# to analyze the stability
of binary lamellar eutectics, where the basic degrees of f
dom are the coordinates of thea-b-liquid trijunctions. Our
main finding was that the amplification of linear perturb
tions of the composite front can be either steady or osc
tory for experimentally relevant control parameters, in co
trast to the classical Mullins-Sekerka instability where fini
wavelength perturbations are amplified in a nonoscillat
way.

Furthermore, in Ref.@23#, we developed an ‘‘effective
monophase front’’ formulation of the dynamics of the com
posite interface that shed light on the origin of this diffe
ence. We showed that the long-wavelength dynamics of
envelope of the composite front is governed by a fr
boundary problem with boundary conditions for the conc
tration of the diffusing ternary impurity on the effective fro
that can be obtained by averaging over the properties of
two solid phases. As a self-consistency check, we a
showed that, when the wavelength of the perturbation
much larger thanl, the linear stability analysis of this free
boundary problem gives identical results to the full stabil
calculation expressed in terms of the trijunction coordina

Not surprisingly, this free-boundary problem turns out
be very similar to the one governing a ‘‘true’’ monopha
front in a dilute binary alloy. The nontrivial difference, how
ever, is that the local lamellar spacing, which appears in
boundary condition for the ternary impurity on the fron
constitutes an additional ‘‘internal degree of freedom’’ of t
front that modifies its stability properties, and gives rise
the oscillatory modes. Physically, this reflects the fact t
the local temperature of the front depends on the local lam
lar spacingl and that, in turn, the time rate of change ofl
depends on the shape of the front because of the geome
constraints imposed by the equilibrium conditions for t
angles between interfaces at the trijunctions~Young’s condi-
tions!.

In a recent experimental study of a transparent orga
model alloy, oscillatory patterns compatible with the resu
of our linear stability analysis were indeed observed@18#.
The same study, however, also revealed a wealth of o
possible structures that can be associated with the instab
of a planar front, and, in particular, localized two-phase fi
gers that may appear in an early stage of the morpholog
instability.

The two main goals of the present study are to check
validity of our previous linear stability analysis@23# by direct
simulation of the fundamental equations of motion, and
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investigate the nonlinear regime of colony formation. F
this purpose, we develop a phase-field model for the dir
tional solidification of a eutectic alloy with a dilute ternar
impurity. Simulations of this model enable us to character
quantitatively the amplification and decay of linear perturb
tions of the composite front and to study the complex int
face dynamics leading to the formation of well-develop
colonies.

The phase-field method is by now a well-established te
nique for simulating solidification patterns@24–29#. In par-
ticular, it has already been applied to the investigation
multiphase solidification in eutectic and peritectic allo
@30–35#. The advantage of this method with respect to t
boundary integral formalism used previously to perform d
tailed simulations of eutectic growth structures@7# is that
ternary impurities can easily be included. Furthermore,
phase-field method is able to handle automatically dram
changes in the interface morphology such as lamella ter
nation and creation, which are difficult to implement in th
boundary integral approach.

The phase-field model presented in this paper is spe
cally designed for computational efficiency and therefo
makes some simplifying assumptions. In particular, we us
generic eutectic phase diagram that is symmetric with res
to the exchange of the two solid phases, and we neg
crystallographic effects such as the anisotropy of the so
liquid and solid-solid interfacial energies. The computation
effort required to simulate fully developed colonies is non
theless considerable since the two-phase cell spacing is
order of magnitude larger thanl. For this reason, the larges
simulations of such structures were carried out on a mu
processor CRAY T3E and took the equivalent of a few tho
sand hours of single-processor workstation time.

The simulation results are found to be in good over
agreement with our sharp-interface linear stability analy
for compositions close to the eutectic point, where the t
solid phases have approximately equal volume fractions.
observe, indeed, the predicted large-scale oscillatory st
tures. Quantitatively, however, the simulated growth ra
differ from the predicted ones. A careful analysis of o
simulation results, extrapolated to the limit of vanishin
thickness of the diffuse interfaces, allows us to pinpoint
origin of this discrepancy. In particular, our stability analys
uses the assumption that the lamellae grow normal to
large-scale growth front. This assumption is commonly
tributed to Cahn and was also used previously by Datye
Langer @6# for their linear stability analysis of lamellar eu
tectics in binary alloys. We find that, in our simulations, th
rule is slightly violated. Hence, the stability analysis co
rectly describes all the qualitative features of the instabil
but would have to be extended to include this effect in or
to become quantitatively accurate. This violation also h
important consequences for the stability of binary eutec
that are discussed elsewhere@36#.

The linear instability of the planar front is followed by
nonlinear transient that leads to the formation of fully dev
oped colonies. The nature of the transient depends on
composition. In simulations carried out at the eutectic po
the long-wavelength modes grow until the front becom
8-2
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EUTECTIC COLONY FORMATION: A PHASE-FIELD STUDY PHYSICAL REVIEW E66, 061608 ~2002!
wavy and the first lamella terminations occur in the conca
parts. Subsequently, the grooves deepen and the tips
ahead of the front, such that the initial wavelength of t
colonies corresponds to the linear mode that dominates
stability spectrum. In contrast, for off-eutectic composition
the linear regime is much shorter, and localized two-ph
fingers centered around a thin lamella of the minority ph
grow rapidly ahead of the front and develop into colon
later on.

Finally, once formed, the colonies have a quite we
defined average size and shape at both eutectic and
eutectic compositions. However, the front does not se
down into a true steady state, but exhibits tip-splitting a
cell elimination events, not unlike the monophase front o
dilute alloy in the absence of interfacial anisotropy@37,38#.

The remainder of this paper is organized as follows. In
following section, we introduce the phase-field model a
analyze its sharp-interface limit. In Sec. III, we present sim
lation results for stable steady-state lamellar growth that
used to test our model. Section IV contains a brief review
our sharp-interface linear stability analysis@23#, and a de-
tailed comparison between the analytical and numerical
sults concerning the linear stability of the eutectic front. S
tion V is devoted to the simulations of well-develope
colony structures in a nonlinear regime. Finally, conclusio
and an outlook for future work are given in Sec. VI.

II. PHASE-FIELD MODEL

We consider directional solidification of thin samples,
used in many experimental studies of pattern formation d
ing solidification@8,12,18#. This allows us to treat the prob
lem as essentially two-dimensional and to neglect convec
in the liquid. Furthermore, we assume that the rejection
latent heat during solidification does not appreciably mod
the temperature field created by the experimental setup~fro-
zen temperature approximation!, and hence that growth i
limited by diffusion of the chemical constituents.

We are interested in the behavior of a ternary alloy clo
to a binary eutectic trough in the phase diagram. Specifica
we will consider a very low concentration of the third com
ponent, which can then be regarded as a dilute impurity. T
allows us to neglect various cross-coupling terms betw
the ternary impurity and the components of the binary eu
tic. In addition, we are more interested in generic aspect
two-phase cell formation than in modeling a specific ma
rial. Hence, we study a model eutectic alloy that has a s
metric phase diagram. This simplifies the setup of the pha
field model.

The principles of the phase-field method have been
scribed in detail in numerous publications@24–35#. The idea
is to distinguish between the different thermodynamic pha
with the help of one or several scalar fields, the phase fie
that have fixed values in the bulk phases and vary cont
ously across smooth and diffuse interfaces. A free ene
functional suitable for the problem at hand is then co
structed, and the equations of motion for the fields are w
ten in variational form. By now, various phase-field mod
for alloy solidification are available@27,29–35#. In particu-
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lar, much effort was spent to develop a thermodynamica
consistent approach and to base the free energy functiona
ideal or regular solution models@27,32,34#. In contrast, we
are interested here mainly in the phase-field model as a c
putational tool. We will therefore use a strongly simplifie
model that is chosen for its computational efficiency, w
the minimum of ingredients necessary to reproduce the m
features of eutectic solidification with a ternary impurity. Th
parameters of the model are related to physical quantities
performing a sharp-interface limit.

We choose as the set of dynamical field variables the c
centration~in molar fraction! c(x,z,t) of one of the compo-
nents of the binary eutectic, the concentrationc̃(x,z,t) of
impurities, and a single phase fieldf(x,z,t) that distin-
guishes between solid and liquid. To simplify the constru
tion of the free energy functional, we define the scaled c
centrationu by

u~x,z,t !5
c~x,z,t !2cE

~cb2ca!/2
, ~1!

wherecE , ca , andcb are the compositions of the liquid an
the two solid phases in the pure binary eutectic at the eute
temperatureTE @39#. For a symmetric phase diagram, th
scaled compositions of the two solids atTE areu561.

Building on a previous phase-field model for a bina
eutectic@30#, we take the~dimensionless! free energy func-
tional @40# of the form

F5E
V
dVFWu

2

2
~¹u!21

Wf
2

2
~¹f!21 f ~f,u,c̃,T!G , ~2!

whereV is the volume of the two-phase system. The dime
sionless free energy densityf (f,u,c̃,T) must have three lo-
cal minima to account for the three possible phases~liquid, a
solid, andb solid!, separated by potential barriers. We u
the phase field to distinguish between solid and liquid, a
the scaled concentration field to distinguish between the
solids. The gradient terms force the fields to vary contin
ously between the bulk equilibrium values and hence cre
interfaces of a characteristic thickness of orderWu ~solid-
solid interface! andWf ~solid-liquid interfaces!. In general,
there should also be a gradient term for the ternary impur
However, we may omit this term for simplicity sincec̃ has
no indicator function, but is slaved to the other fields; that
for specified phase fieldf, concentrationu and temperature
T, the equilibrium value ofc̃ is known.

A convenient choice for the free energy density is

f ~f,u,c̃,T!52
f2

4
1

f4

8
1

11h~f!

2
f sol~u,c̃,T!

1
12h~f!

2
f liq~u,c̃,T!. ~3!

Here, f sol and f liq are the bulk free energy densities in th
solid and the liquid, respectively, and
8-3



-

nd
m
ve
er
r

ng

a
re

ifi

e
in

a

he

at-

lt

g its
ed
a-

a-

tion
nal
ed
. In

ard

cit
f
or

s
us

les

ntly
lat-

M. PLAPP AND A. KARMA PHYSICAL REVIEW E 66, 061608 ~2002!
h~f!5
3

2 S f2
f3

3 D ~4!

is an interpolation function. The first two terms in Eq.~3!
generate a double well potential forf with minima at f
561. Sinceh(61)561, f (1,u,c̃,T)5 f sol(u,c̃,T) and f
(21,u,c̃,T)5 f liq(u,c̃,T), such thatf511 corresponds to
the solid andf521 to the liquid. Moreover, sinceh8
(61)50, the equilibrium values off, given by the solu-
tions ofd f /df50, always remain atf561, independently
of the values off sol and f liq . The expressions forf sol and f liq
are given in the Appendix.

The equations of motion for the three fields are

t] tf~x,z,t !52
dF

df~x,z,t !
, ~5!

] tu~x,z,t !5¹S M ~f,u,c̃!¹
dF

du~x,z,t ! D , ~6!

] tc̃~x,z,t !5¹S M̃ ~f,u,c̃!¹
dF

d c̃~x,z,t !
D , ~7!

where dF/d(•) denotes the functional derivative with re
spect to the field~•!, t is a~microscopic! relaxation time, and
M and M̃ are the mobilities of the eutectic component a
the ternary impurity, respectively. These variational for
reflect the fact that the two concentrations are conser
fields, whereas the phase field can be seen as a noncons
order parameter. The nonconserved phase field simply
laxes toward its local equilibrium value. Indeed, by inserti
Eq. ~3! into Eq. ~5! we obtain

t] tf5Wf
2 ¹2f1f/22f3/21h8~f!~ f liq2 f sol!. ~8!

The last term on the right-hand side always drives the ph
field to the value that corresponds to the lower local f
energy density~we recall thath8.0 and thatf51 corre-
sponds to the solid!.

The definition of the model is completed by the spec
cation of the mobility functionsM (f,u,c̃) and M̃ (f,u,c̃).
The dependence ofM and M̃ on the phase field and th
compositions allows us to obtain the desired diffusivities
the bulk phases. We want to simulate a one-sided model~i.e.,
vanishing diffusivity in the solid! with constant diffusivities
for eutectic components and impurities in the liquid. This c
be achieved by choosing

M ~f,u,c̃!5DF12S 11f

2 D nG , ~9a!

M̃ ~f,u,c̃!5D̃F12S 11f

2 D nG c̃, ~9b!

whereD andD̃ are the diffusion constants. Indeed, from t
equations of motion, we get that in the liquid (f[21)
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] tu5¹FM S ]2f liq

]u2
¹u1Wu

2¹~¹2u!D G , ~10!

] tc̃5¹S M̃
]2f liq

] c̃2
¹ c̃D . ~11!

In the first equation, we can neglect the termWu
2¹(¹2u) in

the brackets on the right-hand side, since the diffusion p
tern forms on a scale much larger thanWu , and hence this
term is small compared to (]2f liq /]c2)¹u. Using the expres-
sions for the mobilities andf liq , we obtain the desired resu
in the liquid,

] tu5D¹2u, ~12!

] tc̃5D̃¹2c̃. ~13!

The exponentn in the mobility plays a role only in the in-
terfacial region where the phase field varies, and changin
value modifies the interface kinetics. This will be address
in more detail below. The relation of the phase-field equ
tions to the classic free-boundary formulation of solidific
tion is discussed in the Appendix.

III. LAMELLAR STEADY STATES

We chose as a testing ground for our model the simula
of lamellar steady-state solutions. This has the additio
benefit of providing us with the initial configurations need
for the simulations of large-scale arrays described below
the laboratory frame, the sample is pulled with velocityvp in
a constant temperature gradientG along thez axis. This
means that in the sample frame, the isotherms move tow
the positivez direction with velocityvp . Consequently, the
temperature at a given point (x,z) of the sample is

T~z,t !5TE1Gz2vpt, ~14!

where we have chosen the origin of thez axis at the eutectic
isotherm fort50.

The equations of motion were simulated by an expli
Euler algorithm with time stepDt on a simple square grid o
spacingDx using standard finite-difference formulas. F
simplicity, we choseWu5Wf[W. In the following, unless
otherwise stated, lengths will be measured in units ofW,
time in units oft, and temperatures in units ofTE . We chose
~see the Appendix for the definitions of the parameters! D

5D̃51, a51,a51/8 ~parallel eutectic solidus and liquidu
lines!, G50.001, vp between 0.005 and 0.02, and vario
values ofb and K, with e l50 andes52b ln K. Since the
equation for the compositionu is of fourth order, the critical
time step for the occurrence of numerical instabilities sca
asDx4. The allowed grid spacingDx, however, is limited by
the requirement that the smooth interfaces be sufficie
well resolved to avoid strong numerical anisotropies and
tice pinning. We found thatDx51 andDt50.025 provided a
good compromise between efficiency and accuracy.
8-4
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The simulations were started with a single pair of fl
lamellae in contact with the liquid in a box of lateral sizel.
The concentrations were set to the equilibrium values in e
phase. For the subsequent evolution, periodic boundary
ditions were used in the direction parallel to the isotherm
while the concentrations in the liquid were kept at fixed v
uesu` andc̃` at the upper end of the simulation box. At th
lower ~solid! end, no boundary conditions are needed sin
the fields do not evolve. During the runs, the simulation b
was periodically shifted to follow the interface. Convergen
to the steady-state solution was checked by computing
average change of the phase field in the moving frame du
the advance of the isotherms by one lattice spacing. Furt
more, the interface shapes~given by the level setf50 for
the solid-liquid interface and byu50 in the solid, that is for
f.0, for the solid-solid interfaces! are extracted by inter
polation of the fields between the lattice points. This pro
dure yields a resolution far superior to the grid spacing. T
average undercooling of the interface is then

DT~ t !5TE2Tint~ t !52GS 1

lE0

l

z~x,t !dx2vpt D ,

~15!

where z(x,t) is the z position of the extracted solid-liquid
interface as a function ofx at time t. The simulations were
stopped when the undercooling was to within 1024 of its
extrapolated final value.

We first discuss the special case of a pure~binary! eutectic
at the eutectic composition,u`5 c̃`50 ~note that we omit
the impurity terms in the free energy and the equation
motion for the impurities whenc̃`50). For our symmetric
phase diagram, there is no global diffusion boundary laye
this case, and the diffusion field in the liquid decays exp
nentially on a scale ofl. Hence, a box length parallel to th
temperature gradient of about five timesl was sufficient to
obtain results that are independent of the box size. The in
face relaxes exponentially to its steady state, with relaxa
times of orderl2/D; on a typical modern workstation, th
convergence takes a few hours.

In contrast, foru`Þ0 and/orc̃`Þ0, solute redistribution
leads to a boundary layer of thicknessl D5D/vp , much
larger thanl. Its buildup takes a time of the orderD/(Kvp

2),
much larger thanl2/D. Therefore, larger box sizes~of sev-
eral timesl D along the growth direction! and longer simula-
tion times have to be used. As a consequence, the con
gence of a run takes several days of CPU time. Instea
relaxing exponentially as observed without boundary lay
the interface position follows a damped oscillation with e
ponential envelope. This is in agreement with the tim
dependent analysis of solute redistribution by Warren
Langer@41#.

Let us compare our results to the well-known Jacks
Hunt ~JH! relation between lamellar spacing and interfa
undercooling@3#, generalized to include the effect of the te
nary impurities,

DT~l!5DTJH~l!1m̃c̃` /K, ~16!
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DTJH5
1

2
DTminS l

lmin
1

lmin

l D . ~17!

The curveDT versusl exhibits a minimum at a spacin
lmin , where

DTmin5
2muDu

h~12h!
AG sinuP~h!vp

2DmuDu
, ~18!

lmin5A 2G sinuD

muDuvpP~h!
. ~19!

Here, Du5ub2ua52 is the concentration difference be
tween the two solids at the eutectic temperature,h5(ub
2u`)/Du is the volume fraction ofa phase in the solid,mu
is the liquidus slope in the binary eutectic phase diagr
~defined in the Appendix!, P(h)5(n51

` sin2(phn)/(pn)3, G is
the Gibbs-Thomson coefficient, andu is the contact angle
defined by Eq.~A18! below. For Wu5Wf51, we obtain
numerically gsl51.04, which together withgss52/3 gives
u'19°. Note that Eqs.~18! and ~19! are valid only for our
choice of a symmetric phase diagram; see Ref.@23# for a
discussion of the general case. It should be kept in mind
the JH theory is approximate since it uses a flat interface
calculate the diffusion field. Nevertheless, it has been sho
by boundary integral simulations@7# that the error is small
for small contact anglesu and close to the spacinglmin ,
such that it can be used as a semiquantitative test for
phase-field model.

We computed the interface undercooling in our model
various pulling speeds and two different values of the mo
ity exponentn in Eqs. ~9! of the mobility functions. Let us
first discuss the results forn51, which corresponds to the
simplest form of the mobility that has been widely used b
fore. The simulated undercoolings are slightly higher th
the JH prediction, but the overall shape of the curve is p
fectly reproduced. The difference can be attributed to
nonequilibrium effects~interface kinetics, solute trapping!
present in the phase-field model, but neglected in the
theory. Indeed, the differences between our simulations
the JH prediction are larger for highervp . Furthermore, we
obtainedlmin andDTmin by fitting our simulation results to
Eq. ~17! and found that the scaling relationlmin

2 vp5const
that can be derived from Eq.~19! is well satisfied. Regarding
the impurity contribution to Eq.~16!, we conducted simula-
tions for various impurity concentrations, impurity liquidu
slopes, and partition coefficients and found good agreem
with the predicted behavior. In particular, we verified that t
spacinglmin was not appreciably modified by the addition
impurities.

The range of lamellar spacings that can be simulated
limited by two effects that are intrinsic to our model. F
spacings smaller than;16W (;8W for each individual
lamella!, the diffuse interfaces at the two sides of a lame
start to overlap, which leads to strong corrections to
sharp-interface limit and ultimately to lamella elimination.

For too large spacings, in turn, new lamellae of the op
site phase nucleate in the centers of the initial lamellae, le
ing to a lamellar array with one third of the initial spacin
8-5
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This is the result of a ‘‘spinodal decomposition’’ that tak
place in the interface. Indeed, the equation for the comp
tion in the solid far from the interface is exactly the classi
Cahn-Hilliard equation@42#, which is known to exhibit phase
separation without nucleation in a composition range wh
the free energy density has a negative curvature (]2f sol/]c2

,0). Far inside the solid, this has no importance here
cause the mobility is zero and hence no dynamics ta
place. Well within the liquid, there is no unstable concent
tion range since the liquid free energy has a single well str
ture. But in the diffuse interface, new domains may fo
when the concentration falls within the unstable range. A
cording to the JH theory, the deviations of the concentrat
from the equilibrium value at the interface scale as Pe, wh
the Péclet number Pe5l/ l D5lvp /D; hence, the maximum
spacinglmax that can be simulated before nucleation sets
increases asvp decreases. Indeed, we findlmax/W;28 for
vp50.02 andlmax/W;58 for vp50.01.

It seems useful at this point to comment on the implic
tions of these limitations for the choice of the computatio
parameters for large-scale simulations. The range of in
lamellar spacings of interest for the present study ran
from lmin to about 1.5lmin . Since we want to simulate th
linear instability of a lamellar front, which may involve con
siderable variations of the local lamellar spacing, the mo
should work for a sizable range of spacings, say at least
spacings that are650% of the initial value. Therefore, w
need a model that works for spacings between'0.5lmin and
'2.25lmin .

The first consequence is that we must havelmin /W.32
because of the low-spacing limitation. Next,lmin should not
be much larger than this value, since the computer time n
essary to simulate the evolution of an array of initial spac
lmin can be estimated to scale aslmin

5 ~number of grid points:
lmin3lmin ; time for the interface to advance by one spacin
lmin /vp ; using lmin

2 vp5const, we gettCPU;lmin
5 ;vp

25/2).
From Fig. 2, we can see thatn51 andvp50.01 givelmin of
the right order of magnitude; however, sincelmax/W;58,

FIG. 2. Average interfacial undercooling versus lamellar spac
for several values of the pulling speedvp and the mobility exponen
n. Lines, prediction of the Jackson-Hunt theory, Eq.~17!; symbols,
simulation results. Filled circles correspond to steady states tha
unstable with respect to 1-l oscillations.
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the available range of lamellar spacings is somewhat sm
~for an initial spacing of 1.5lmin , nucleation would set in for
an increase of the local spacing by only 30%!. Since the
range of available spacings increases with decreasing pu
speed, one possible solution would be to further reducevp .
However, as discussed above, the necessary computer
rapidly becomes prohibitive.

Another way out is to change the exponent in the eq
tions for the mobilities, Eqs.~9!. If we choosen.1, the
diffusivity is increased in the whole interfacial region
whereas it remains zero in the solid. This leads to hig
diffusion currents along the surface than forn51. Hence,
the pileup of the rejected atoms at the interface is lower,
consequentlylmax is higher. The price to pay is that thi
model, in its sharp-interface limit, is not equivalent to t
classical JH model, but contains additional surface diffus
terms@43#. However, as shown in Fig. 2, the qualitative b
havior of the undercooling versus spacing curve does
change. Forvp50.01, lmin is larger than the theoretical JH
value by about 10%, whereasDTmin is about 15% too low.
On the other hand,lmax/W574, such that we now have a
our disposal a sufficient range of spacings.

For these parameters, we observe for large spacings
well-known period-preserving oscillatory instability that se
in at about 2lmin @7#. Even beyond the threshold of thi
instability, steady states can be reached to within an exce
precision, because we start from an exactly symmetric ini
condition and because the numerical noise of the phase-
approach is extremely low. To trigger the instability within
reasonable simulation time, an explicit perturbation th
breaks the symmetry between the two phases had to
added. Such unstable steady states are shown as filled
bols in Fig. 2.

The mechanism for lamella creation by nucleation is
fact very useful for the simulations of well-developed col
nies where lamellae are frequently created at the solidifi
tion front. We want to confront our simulations with the e
perimental findings of Akamatsu and Faivre@18#, who work
with thin samples of a transparent eutectic alloy enclo
between parallel glass plates. In their experiments, crea
of new lamellae indeed takes place predominantly in the c
ter of already existing lamellae. However, the detail
mechanism is still unknown. New lamella do not form b
nucleation, since the interfacial undercoolings are not h
enough. Most likely, the ‘‘pockets’’ in the center of larg
lamellae are ‘‘invaded’’ from preexisting neighboring lame
lae of the opposite solid by fingers that grow in the menis
between the glass plates and the growing solid. The p
here is that the modeling of such a process is out of reach
our present computational resources, since it is necess
three-dimensional. Within the framework of two
dimensional simulations, we simply need a criterion to d
cide when new lamella should form, and the ‘‘automati
implementation of a maximal lamellar widthlmax in our
model is an adequate solution that avoids the implementa
of an explicit nucleation rule, as done, for example,
Ref. @35#.

The last question to settle, then, is how to chooselmax for
the simulations of well-developed colonies. For this, we ne
to anticipate how the choice of this quantity influences

g

re
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EUTECTIC COLONY FORMATION: A PHASE-FIELD STUDY PHYSICAL REVIEW E66, 061608 ~2002!
outcome of the simulations. As will be detailed below, t
variation of undercooling with spacing is an important ing
dient of the pattern formation process; therefore, we ag
need a sizable range of lamellar spacings aroundlmin . How-
ever,lmax must not be too large either. As mentioned abo
the well-known short-wavelength instabilities appear forl
.2lmin . In the experiments of Ref.@18#, such oscillatory
structures are seen occasionally in the center of flat colo
before the creation of new lamellae. This indicates t
lamellae creation occurs at spacings only slightly larger t
2lmin . Therefore,n54 andvp50.01 withlmax/lmin'2.2 is
again a good choice. We did not carry out a systematic st
to test the influence oflmax on the final colony patterns
because this requires prohibitively long simulation tim
however, due to the arguments outlined above, we expec
patterns to be fairly insensitive to this parameter as long a
stays between'1.5 to'2.5 timeslmin .

IV. LINEAR STABILITY OF LAMELLAR ARRAYS

A. Theory

We have recently performed a detailed linear stabi
analysis of a lamellar eutectic interface in the presence
ternary impurities. Rather than repeating the calculati
here, we will give a brief summary of the main assumptio
and results before discussing the phase-field simulations.
analysis is an extension of the method used by Datye
Langer to analyze the stability of lamellar arrays witho
impurities @6#. It is based on a perturbation scheme for t
Jackson-Hunt solution and proceeds as follows.

~1! The coordinates of the trijunction points are chosen
fundamental variables to describe the state of the pertu
system. This amounts to a ‘‘discretization’’ of the origin
continuous system. Each trijunction point has two degree
freedom, namely, itsx and z positions~motion parallel and
normal to the isotherms, respectively!.

~2! For a lamellar interface that is gently curved on a sc
much larger thanl, the lamellae are assumed to grow p
pendicular to the envelope of the composite front~Cahn’s
hypothesis!. This connects the time derivative of the loc
lamellar spacing to the shape of the front. For example,
protrusion where the front curves outward, the local spac
increases during further growth.

~3! Given the positions of the trijunction points, the actu
interface shape is replaced by a piecewise planar interf
and a perturbed diffusion field is calculated. The Gibb
Thomson equation is then used to obtain an eigenvalue p
lem for normal modes, i.e., perturbations proportional
exp(ikx1vt), wherek is the wave number of the periodi
perturbation, andv its growth rate. The solutions of the e
genvalue equation give the dispersion relationsv(k). Since
there are four degrees of freedom per lamella pair~two for
each trijunction!, v(k) has four branches. Of those, there a
two that are relevant for the long-wavelength instability w
are interested in.

It turns out that the final result of this rather complicat
analysis can be understood in terms of an effective fr
approach. Namely, one can separate two scales: the
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lamellar spacing, and the large-scale smooth envelope o
lamellar front. The evolution of the local spacing is slaved
the shape of the front by the assumption of normal mot
~Cahn’s hypothesis!. On the scale of the smooth front, th
lamellar structure introduces an interfacial undercooling t
is approximately given by the JH law, taken with the loc
spacing and interface velocity. Using these ingredients, i
possible to include the lamellar geometry in the us
Mullins-Sekerka stability analysis and to obtain the disp
sion relation. This result can be recovered from the m
complicated discrete analysis, with one additional ingredie
The eutectic diffusion field that governs the exchange of
oms between neighboring lamellae gives, when perturbed
a large scale, a stabilizing contribution to the total interfac
undercooling. The functional form of this stabilization is th
same as for the surface tension terms, and this effect
therefore be included in the simple effective front approa
by simply ‘‘renormalizing’’ the capillary length.

The two main results of this analysis are that~i! the insta-
bility threshold is close to the well-known constitutional s
percooling criterion, with a small capillary correction, an
~ii ! in contrast to the Mullins-Sekerka instability, where u
stable modes always have real growth rates, the lame
structure may lead to complex growth rates, and hence
oscillatory modes. The origin of these oscillations can
understood as follows: in a protrusion of the front, the lam
lar spacing increases. This leads to a local change in the
undercooling that, for a small distortion of an array of spa
ing l0, is proportional to the slope of the JH plot. Forl0
.lmin , this provides a ‘‘restoring force’’ for the large-sca
front. Since only thechange with timeof the lamellar spac-
ing ~but not the spacing itself! is related to the shape of th
front, the dispersion relation becomes quadratic inv, instead
of the linear Mullins-Sekerka equation. There are two so
tions to this equation for each wave numberk. In physical
terms, this is the consequence of the additional ‘‘inter
degree of freedom’’l of the front. As discussed in detail in
Ref. @23#, real and complex growth rates may occur, depe
ing on the ratioG/vp , the lamellar spacing, and the impurit
content. For large enough spacings, when the ‘‘restor
force’’ mentioned above is strong enough, we expect that
complete dispersion relation is complex. One of the goals
the present paper is to test this prediction by direct simu
tion of the basic equations of motion.

B. Single mode simulations

Let us first study the behavior of a single unstable mo
of a lamellar array with initial spacingl0. The parameters
besidesl0 that control stability are the impurity content an
the ratioG/vp . We define the dimensionless parameters

L5l0 /lmin , ~20!

w5
m̃D c̃

muDu
5

m̃c̃`~1/K21!

mDc
, ~21!

g5
2DG

vpmuDu
5

2DG

vpmDc
. ~22!
8-7
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M. PLAPP AND A. KARMA PHYSICAL REVIEW E 66, 061608 ~2002!
Here,lmin is obtained from an interpolation of our simula
tion data shown in Fig. 2. Forn54 and vp50.01,
lmin'34. The freezing ranges of the eutectic and the im
rities are, expressed in the parameters defined in
Appendix, muDu52TE /a, and m̃D c̃5m̃(1/K21)c̃`

5b(12K)2TEc̃` /(Ka).
A lamellar array is prepared by replicating the steady-s

solution for one lamella pairN times. We apply a cosine
perturbation to the steady state and impose the initial co
tion

f~x,z,0!5f0„x,z1A0cos~2px/N!…, ~23!

wheref0(x,z) is the steady-state solution. The other fiel
(u andc̃) are perturbed in the same manner. The perturba
amplitudesA0 are usually much smaller than the interfa
width ~typically, A0 /W,0.1), and the values on the gri
points are obtained by linear interpolation of the numeri
steady-state solution.

To analyze the evolution of the system, we store perio
cally the positions of all the interfaces~solid-solid and solid-
liquid!. In addition, we determine the positions of all th
trijunction points by searching the intersections of the le
curvesf50 and u50. The coordinates of the trijunctio
point to the left of then lamella (n5a,b) in the lamella pair
numbern are labeled (xn

n ,zn
n). We define the deviations o

the trijunction point coordinates from their steady-state v
ues~see Fig. 3!,

jn
n5zn

n2 z̄, ~24a!

yn
n5xn

n2 x̄n
n , ~24b!

wherex̄n
a5nl0 and x̄n

b5(n1h)l0, as well as their discrete
Fourier transforms,

Xn~k,t !5
1

N (
n50

N21

jn
nexp~2p ikn!, ~25!

Yn~k,t !5
1

N (
n50

N21

yn
nexp~2p ikn!, ~26!

wherek5kl0 /(2p) is a dimensionless wave number.
In Fig. 4, we show the evolution of an array of five lame

lae, started in a single mode withk50.2. An oscillatory 5-l

FIG. 3. Sketch of a perturbed lamellar interface that shows
definitions of the displacementsj j

a , j j
b , yj

a , andyj
b .
06160
-
e

te

i-

n

l

i-

l

l-

mode develops. Its amplitude grows until a lamella termin
tion occurs atz/l0550. Subsequently, the system shows
decaying 4-l oscillation and approaches a steady-state so
tion with four lamella pairs. To analyze this evolution, w
use the Fourier componentsXn(k,t). Since the initial pertur-
bation is not proportional to the~unknown! eigenvector cor-
responding to a single mode of the complete~continuous!
system, the Fourier components forkÞ0.2 will not remain
zero. However, they remain sufficiently small to be neglec
in the data analysis. In Fig. 5, we show the evolution

e

FIG. 4. Evolution of oscillatory modes. Growth direction
from bottom to top, and three successive frames are shown from
to right. Shown are the solid-solid interfaces, as well as succes
snapshot pictures of the solid-liquid interfaces. The system is
turbed with a single cosine mode of dimensionless wave num
k50.2. Simulation parameters:vp50.01, G50.0005,l0540, K
50.5, c̃`50.08, b510, givingL51.175,w50.2, g50.05.

FIG. 5. Real part of the Fourier amplitudeXa(k,t) as a function
of time, for the run of Fig. 4. Also shown are the fits to growin
~decaying! oscillating exponentials.
8-8
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EUTECTIC COLONY FORMATION: A PHASE-FIELD STUDY PHYSICAL REVIEW E66, 061608 ~2002!
Re@Xa(k,t)# versus time, fork50.2 before the lamella
elimination, and fork50.25 afterwards~note that the elimi-
nation of one lamella pair corresponds to a change in
unperturbed lamellar spacingl0). Oscillating modes corre
spond to complex growth rates. We define the dimension
growth rate by

V5vl0 /vp5V r1 iV i , ~27!

with V r andV i real. The growth rate is determined by a
of the data to the function

Re@Xa~k,t !#5A exp~V r t !sin@V i~ t2t0!#, ~28!

wheret is measured in units ofl0 /vp . In practice, we obtain
a value oft0, i.e., the time of one of the zero crossings,
numerical interpolation, and then use a least-squares fit
procedure withA, V r , andV i as free parameters. As can b
seen from Fig. 5, the fit is excellent. Surprisingly, the
remains accurate up to the immediate vicinity of the lame
termination event. This indicates that the system is well
scribed by a single, exponentially growing mode even
large deformations of the initial array. In particular, the li
earization that is the basis for the theoretical analysis rem
valid even if the lateral displacements are large, i.e.,yi

n/l0

;1.

C. Dispersion relations

The simulation and fitting procedures outlined above w
carried out for various values of the control parameters
arrays of different sizes to construct the dispersion relati
V(k). In Fig. 6, we show a comparison of the obtained d
with the theoretical predictions of Ref.@23# for two different
values of the temperature gradient. For both dispersion r
tions, there are stationary (V real! and oscillatory (V com-
plex! modes. According to theory, forg50.05 the fastest
growing mode is stationary, whereas forg50.1 it is oscilla-
tory.

In all cases, the nature of the mode~stationary or oscilla-
tory! agrees with the theoretical predictions. Furthermo
the oscillation frequency of the complex modes (V i) is al-
ways in good quantitative agreement with theory. In contr
the growth rates (V r) are in good agreement only for sma
wave numbers; for large wave numbers, the simula
growth rates are systematically much smaller than predic
by theory, and the difference increases with the dimens
less wave number. Therefore, in the simulations atg50.1,
the fastest growing mode is stationary, and not complex
predicted by theory. ForL51.47 andg50.1, we obtain a
stability spectrum that is entirely complex~data not shown!,
both in theory and simulations.

Just as the JH theory, our stability analysis of a lame
array contains several simplifying assumptions. It is the
fore necessary to check whether the differences betw
theory and simulations are due to the approximations m
in the stability analysis, or due to the phase-field approa
which is a genuine representation of the original fre
boundary problem only in the limitW/l→0. Therefore, we
focused on a single complex mode atg50.1 andk50.2
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(5-l oscillation! and conducted a series of runs with d
creasing pulling speedvp . Sincelmin;vp

21/2, we increased
the spacingl0 to keep the reduced spacingL constant. The
temperature gradientG was also decreased to keepg con-
stant.

The results for the growth rateV r versusvp are shown in
Fig. 7. The data fall on a straight line, and by extrapolation
vp50 we findV r(vp50)50.085. In contrast, the variation
of the oscillation frequency is very small~from V i50.291 at
vp50.01 toV i50.302 atvp50.005). This linear variation
of V r with vp indicates that the dominant corrections to t
sharp-interface limit of the phase-field model scale asW/ l D
5Wvp /D. Corrections in the other involved small ratio
W/l0 andl0 / l D , seem to be subdominant, since both sc
as 1/Avp at constantL. An example for a correction tha
scales asW/ l D is the interface kinetics; however, inserting
kinetic term in the Mullins-Sekerka analysis does not lead
a linear variation of the growth rate with the kinetic coef
cient. The solute trapping effect also scales asW/ l D , but
since it is quite involved to evaluate its influence on t
growth rates, we have not investigated this issue in m

FIG. 6. Plots of the dimensionless growth rateV versus dimen-
sionless wave numberk. The main graphs show the real partV r ,
the insets the imaginary partV i for ~a! L51.175, w50.2, g
50.05 and ~b! L51.175, w50.2, g50.1. Filled symbols and
lines, theoretical predictions from Ref.@23#; circles, real modes
(V i50); squares, complex modes (V iÞ0). Open symbols, simu-
lation data; triangles, real modes; diamonds, complex modes.
8-9
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M. PLAPP AND A. KARMA PHYSICAL REVIEW E 66, 061608 ~2002!
detail. We checked, however, that the variation ofV r with vp
is not a consequence of the surface diffusion term introdu
by our choicen54 in the mobility function: a simulation
with n51 and comparableL yielded similar results.

D. Test of Cahn’s hypothesis

The simulated growth rate, extrapolated tovp50, is still
markedly different from the theoretical predictionV r
50.1365. We therefore checked several assumptions tha
used in the linear stability analysis, in particular, Cahn’s h
pothesis that the lamellae always grow perpendicular to
large-scale front. Expressed in terms of the trijunction po
coordinates defined in Eq.~24! and Fig. 3, this assumptio
reads

] tyn
b52

vp

l0
~jn11

a 2jn
a! ~29!

for the trijunction point to the left of thenth b lamella. From
the simulation data, explicit values of] tyn

b and the vertical
displacementsjn

a are available, and Eq.~29! can be directly
checked.

In Fig. 8, we plot the measured] tyn
b for one trijunction

together with the prediction of Eq.~29!. The two do not
agree: Cahn’s hypothesis is clearly violated. Most noticea
there is a phase shift between the measured and the pred
curves. We found that the difference between the two cur
is in phase with the lateral positions of the trijunctionyn

b .
However, the coordinate itself cannot appear directly in
extension of Eq.~29!, since the dynamics is invariant wit
respect to a global translation along thex direction. The sim-
plest local expression that has the required translationa
variance and is proportional toyn

b is yn11
b 1yn21

b 22yn
b .

Therefore, we tried to fit the trijunction motion with th
modified equation

] tyn
b52

vp

l0
~jn11

a 2jn
a!1

vp

l0
B~yn11

b 1yn21
b 22yn

b!

~30!

FIG. 7. Real part of the dimensionless growth rateV versus
pulling speed forL51.175,g50.1, w50.2, andk50.2. Symbols:
simulation result. Dotted line: linear extrapolation tovp50.
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that has a single adjustable parameterB. Note that the factor
vp /l0 has been included to make the parameterB a dimen-
sionless number. As shown in Fig. 8, the resulting best fi
much closer to the real trijunction trajectory than Eq.~29!.

Next, we repeated the above fit for all our simulation da
The results are shown in Fig. 9. Remarkably, the correct
given by Eq.~30! works both for oscillatory and stationar
modes, and the fit parameterB is independent of the wave
length. This shows that the violation of Cahn’s hypothesis
a consequence of the local front geometry, and not a co
erative effect depending on the nature of the mode. The d
for different temperature gradientsg and partition coeffi-
cientsK are statistically indistinguishable; the only param
eter that has a marked influence on the fit parameterB is the
spacingL.

To obtain more information about the coefficientB and its
dependence on the control parameters, it is quite cum
some to work with series of single mode runs as shown
Fig. 9. Therefore, we checked that the modified Eq.~30! also
works for lamellar arrays that are started from a rand

FIG. 8. Sideways velocity,dy/dt, of one trijunction point for
L51.175, g50.1, w50.2, k50.2, andvp50.007 51. Solid line:
data extracted from the simulated curvey(t). Dotted line: predic-
tion of Cahn’s hypothesis. Dashed line: best fit to Eq.~30!.

FIG. 9. Fit parameterB versus perturbation wave numberk for
various sets of control parameters. The data include both oscilla
and stationary modes.
8-10
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EUTECTIC COLONY FORMATION: A PHASE-FIELD STUDY PHYSICAL REVIEW E66, 061608 ~2002!
configuration, as will be described in more detail below. F
thermore, as can be guessed from the fact thatB depends on
the spacingL but not on the partition coefficientK or the
impurity content, the new term is also present in eutec
without impurities. Hence, we performed simulations wit
out impurities (c̃`50) of arrays consisting of 20 lamella
pairs and obtained the parameterB from a simultaneous fit of
all the trijunction trajectories with Eq.~30!.

We found thatB is almost independent ofg over at least
one decade ing: simulations atL50.96 andg50.1, 0.2,
0.5, and 1 yieldedB50.135, 0.136, 0.140, and 0.141, r
spectively. The dependence ofB on vp was checked in two
series of runs. The first series is the same as in Fig. 7:
velocity was decreased whileg and L were kept constant
Remarkably, the values ofB are independent of the velocit
as is shown in Fig. 10. Therefore,B is independent of the
ratios l0 /W and W/ l D , and it can be concluded that th
correction to Cahn’s rule is not an artifact due to the fin
interface width of the phase-field model. In the second se
of runs, we decreasedvp while keepingl0 fixed; sincelmin
changes withvp , this corresponds to a change inL. As can
be seen in Fig. 10, now the coefficientB is no longer a
constant. According to Eq.~30!, this implies that, at fixed
spacingl0, the new contribution to the sideways velocity
the trijunctions is not simply proportional to the pullin
speed. Finally, Fig. 11 shows the dependence ofB on the
reduced spacingL. All the data points for different tempera
ture gradients and pulling speeds fall on a single curve
can be reasonably well approximated by the simple form

B'0.15L. ~31!

To make the physical meaning of the parameterB more ap-
parent, Eq.~30! can be rewritten in a slightly different form

] tyn
b52

vp

l0
~jn11

a 2jn
a!1vpl0B

yn11
b 1yn21

b 22yn
b

l0
2

.

~32!

FIG. 10. Fit parameterB versus pulling speedvp , for con-
stant L (l0;vp

21/2, circles! and for constantl0 (L;vp
1/2,

squares!.
06160
-

s

e

s

at

The expression (yn11
b 1yn21

b 22yn
b)/l0

2 on the right-hand
side can be interpreted as a finite-difference approxima
for the continuous second derivative]xxy of a smooth func-
tion y(x) that interpolates between the lateral trijunction d
placements. Since the productvpl0 has the dimension of a
diffusion coefficient, this term describes a lateral diffusion
the trijunctions. Furthermore, fory(x) varying slowly on the
scale ofl0, we have

l~x!;l0~11]xy!, ~33!

such that the new contribution to the lateral trijunction spe
is proportional to the gradient of the local spacing. The m
tion of the trijunctions is therefore a combination of the pe
pendicular lamellar growth according to Cahn’s rule and
small lateral drift proportional to the gradient of the loc
spacing. Finally, by using again Eq.~33!, one can easily
show that the continuous version of Eq.~32! is equivalent to
a diffusion equation for the local spacingl(x), the so-called
phase-diffusion equation@44#. The new term constitutes
therefore a positive contribution to the phase-diffusion co
ficient, which makes immediately clear why it always has
stabilizing effect on the front. Putting together Eq.~31! and
the prefactorvpl0 in Eq. ~32!, we find that it scales as
vpl0

2/lmin . One can also write this result in terms of th
solute diffusion coefficient and dimensionless quantities
DLPe ~we recall that the Pe´clet number Pe5l0 / l D). We
could not find any obvious simple argument that expla
this scaling. The fact that the reduced spacingL appears in
Eq. ~31! indicates that the new term most likely arises fro
the interaction of the interlamellar diffusion field and th
nonplanar front geometry on the scale of the individu
lamellae.

Earlier theoretical studies of eutectic stability@45,46#
have shown that there exist corrections to the purely ‘‘g
metric’’ value of the phase-diffusion coefficient derived fro
Cahn’s rule@44# in the limit of large thermal gradients (g
@1), when the front is almost flat. This is important fo
binary eutectics, because in the absence of an impu
driven morphological instability, the long-wavelength stab
ity of the front is controlled by the zero crossing of th
phase-diffusion coefficient. It was shown that the small

FIG. 11. Fit parameterB versus reduced spacingL.
8-11
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possible eutectic spacing can become significantly sma
thanlmin . The correction to Cahn’s rule elucidated here a
produces a similar deviation, but with the important diffe
ence that it is quantitatively significant even for the sm
thermal gradients used here (0.1,g,1), where the solid-
liquid interfaces are round arcs connecting trijunctions.
this smallg regime, the study of Chen and Davis@46# pre-
dicts a negligible shift of the small spacing stability limit o
eutectic growth fromlmin , and no comparison can be mad
with the study of Brattkuset al. @45# that is limited to the
largeg limit. We therefore conclude that these earlier stud
do not capture the correction to Cahn’s rule found here. T
consequence of this new correction for the small spac
stability limit of eutectic growth in binary systems is e
plored in more detail in a recent paper that reports b
phase-field simulations and experimental results@36#.

Although Cahn’s rule is violated, the resulting deviatio
of the growth angles from 90° are very small. To see this,
us use the geometrical relation] tyn

b52vptandn
b , wheredn

b

is the angle between the solid-solid interface at the triju
tion and thez direction. From Eq.~30! we can calculate the
deviation of dn

b from the value predicted by Cahn’s rule
which is (jn11

a 2jn
a)/l0. In our simulations, this deviation

never exceeded 1°. Due to the finite interface width of
phase-field model, it is very difficult to measure angles
rectly at the trijunction points, and such small deviatio
cannot be resolved. Therefore, the procedure outlined ab
that uses the whole trajectory of a trijunction point is t
only way to obtain quantitative information about the viol
tion of Cahn’s rule directly from the simulations. It should b
emphasized, however, that while the deviation itself is sm
since the growth angledn

b is itself small, theratio of the two
is not necessarily small. Indeed, it can be seen from Fig
that the correction constitutes a sizable fraction of the gro
angle. This explains why such a small deviation can ind
quite large shifts in the stability spectrum.

The violation of Cahn’s hypothesis explains the remain
discrepancies between our simulation results and the the
To modify the theory by the inclusion of the corrective ter
in Eq. ~30! seems possible, but is out of the scope of
present paper.

V. DYNAMICS OF COLONY FORMATION

To study the instabilities that lead to the formation
colonies, we constructed large arrays as described be
and perturbed the steady-state solution by a spatial displ
ment of the fields along thez direction. The amplitude of the
displacement was a random variable ofx with a white noise
spectrum and an amplitude comparable to one lattice s
ing. The goal was to study the initial instability of such ra
dom arrays as well as the nonlinear dynamics of w
developed colonies. The latter required long runs in
systems. The necessary computational power was attaine
porting our simulation code on a parallel Cray T3E co
puter. We used a simple domain-decomposition scheme
parallelization, i.e., every processor calculated a part of
system. A load-balancing algorithm that adjusted the dom
boundaries as a function of the computational load for e
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processor was used to optimize the yield.
For u`50 ~eutectic composition!, the initial evolution of

the lamellar array is a linear superposition of the lon
wavelength modes described in the preceding section. T
is, if we decompose the set of trijunction displacements i
Fourier modes, each mode grows with the~real or complex!
growth rate that was determined in the single mode simu
tions of the preceding section. In Fig. 12, we show the
sulting evolution for the same control parameters as in F
6~a!. The fastest growing mode is real with a wavelength
about 12l0. Indeed, this mode dominates the interface sh
in the second snapshot, where the first lamella termina
events have occurred. At later times, the linear descrip
becomes invalid. The further evolution is characterized
the growth of long protruding fingers, as can be seen in

FIG. 12. ~Color online! Snapshot pictures of a run with 4
lamella pairs at eutectic composition andg50.1, L51.175, and
w50.2. From top to bottom:t/t50, 100 000, 375 000. In the liq-
uid, the smooth contours ahead of the front represent isoconce
tion lines of the ternary impurity; the small ‘‘halos’’ just in front o
the growing lamellae are a visualization of the interlamellar~eutec-
tic! diffusion field.
8-12
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EUTECTIC COLONY FORMATION: A PHASE-FIELD STUDY PHYSICAL REVIEW E66, 061608 ~2002!
last snapshot picture. These fingers, however, do not rea
steady-state configuration up to the end of our simulati
their shape continuously changes, and there are some
splitting and overgrowth events. To highlight this feature,
show in Fig. 13 a complete plot of the whole solidifie
sample, where we have omitted the gray scale for clarity,
where we have marked the trajectories of the ‘‘de
grooves’’ between neighboring fingers. This run was p
formed on a lattice of size 160031200 and totals 153106

iterations. On the Cray T3E, this run required about 300
single processor CPU time.

In Fig. 14, we show a run with again 40 lamella pairs, b
now with both a larger temperature gradient and a lar
initial spacing. Under these conditions, the instability dev
ops more slowly, and the dispersion relation is entirely co
plex, such that we expect propagating or oscillatory mod

FIG. 13. Global view of the same run as in Fig. 12, without gr
scale. Thin lines: solid-solid interfaces. Thick solid line: final sol
liquid interface. Thick dashed lines: trajectories of the grooves
tween fingers. There are two tip-splitting and one finger overgro
events. Note the concave part of the final front in the center of
leftmost finger: a tip-splitting event will soon take place.
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Indeed, on the right side of Fig. 14, there is an oscillato
‘‘breathing mode’’ with wavelength about 10l0, whereas on
the left side, a traveling perturbation of the lamellar patte
can be seen. The run was not continued after the first lam
termination events, since the nonlinear regime is expecte
lead to similar fingered patterns as in Fig. 12.

A quite different scenario occurs for off-eutectic comp
sitions. An example is shown in Fig. 15. The linear regime
still in good agreement with the predictions of Ref.@23#. In
particular, for sufficiently off-eutectic compositions, th
impurity-induced long-wavelength instability competes w
the 2l-oscillatory (2l-O) instability that is already presen
in binary eutectics. For the temperature gradient and im
rity content chosen in our example, the long-wavelength
stability is stationary and faster than the 2l-O instability.
Indeed, we find that the Fourier spectrum of the trijuncti
displacements is initially dominated by the smooth lon
wavelength modes, while the 2l-O instability develops
much more slowly. However, as soon as the instability
comes ‘‘visible,’’ that is, the amplitude of the perturbatio
exceeds;0.1L0, localized fingerlike structures develo
around a lamella of the minority phase and rapidly gro
ahead of the front. The fine lamellae act almost as ‘‘guide
for the well-developed fingers during the subsequent evo
tion. In particular, note the long minority lamella that is lik
a‘‘spine’’ for the rightmost finger in the third snapshot~we
remind the reader that we use periodic boundary conditi
in the lateral directions; hence, this is not a ‘‘wall effect’’!.

-
h
e

FIG. 14. Run with 40 lamella pairs at eutectic composition a
g50.2, L51.5, andw50.2. The dispersion relation is entirel
complex, and oscillatory patterns appear. Thin lines: solid-solid
terfaces. Thick solid line: final solid-liquid interface.
8-13
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FIG. 15. ~Color online! Snapshot pictures of a run with 2
lamella pairs at off-eutectic composition (u`50.3), g50.1, w
50.2, andl0 /W556. From top to bottom:t585 000, 105 000,
125 000, 225 000~in units of t).
06160
These structures, however, are only transient. In the fi
stage, when the colonies are well developed, they have ra
flat tops and sharper ‘‘corners’’ than the fingers at eutec
composition. In the flat parts at the center of the coloni
sometimes a 2l-O mode develops until it generates som
new lamellae and dies out.

Structures such as the initial localized fingers are e
dently nonlinear. It thus appears that the linear regime of
instability is much shorter for off-eutectic than for eutec
compositions. It is presently unclear what precisely trigg
the formation of such fingers, and under which conditio
they can form. In view of the necessary computer time,
did not carry out a detailed study to clarify these issues.

VI. CONCLUSIONS

We have presented a phase-field model for eutectic so
fication in the presence of ternary impurities. This model h
enabled us to carry out large-scale simulations of colony
mation starting from arrays of up to 40 lamellae pairs.

In the linear regime, i.e., for small perturbations of t
unstable steady-state growth front, these simulations h
allowed us to critically test our previous linear stabili
analysis@23#. We find a good overall agreement with ou
theoretical predictions. Furthermore, a detailed treatmen
the simulation data has allowed us to check the assumpt
made in the linear stability analysis, and to precisely pinpo
the reasons for the differences between the theory and s
lation results.

The most interesting conclusion is that the growth of t
lamellae is not exactly normal to the large-scale envelope
the composite interface, a rule originally proposed by Ca
and used in the subsequent stability studies by Datye-Lan
@6# and ourselves@23#. The motion of the trijunction points
can be roughly understood as a superposition of normal
tion as stipulated by Cahn’s rule and a slow ‘‘sliding’’ of th
trijunctions along the front with a sideways velocity that
proportional to the gradient of the local lamellar spacin
Equivalently, this motion can be understood as a diffusion
the local lamellar spacing~phase diffusion!; it hence tends to
stabilize the front. In mathematical terms, it gives a n
positive contribution to the phase-diffusion coefficient@44#
that scales asvpl0

2/lmin , or equivalently, asDLPe. This
effect seems to be qualitatively different from the correctio
to the phase-diffusion coefficient reported previously in th
oretical studies of binary eutectics submitted to a strong te
perature gradient@45,46#. The resulting deviations of the
growth angles from 90° are very small~below1°). Hence, a
direct measurement of this effect in experiments is imp
sible, since a precise measurement of the growth angle
complicated by crystallographic effects, in particular, t
anisotropies of the surface tensions@18#. However, the
growth rates of the long-wavelength modes are very se
tive to a small change in this angle. This is especially imp
tant for binary eutectics, where the impurity-driven morph
logical instability is absent. Indeed, it was recently fou
@36# that the new contribution to the phase-diffusion coe
cient leads to a large and experimentally detectable effec
the critical wavelength for the onset of the long-waveleng
8-14
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EUTECTIC COLONY FORMATION: A PHASE-FIELD STUDY PHYSICAL REVIEW E66, 061608 ~2002!
lamella elimination instability in binary eutectics.
Regarding the dynamics of fully developed colonies,

find that after the destabilization of the planar front, the ar
of two-phase cells undergoes a complicated and seemi
chaotic sequence of tip-splitting and cell elimination even
We were unable, in our simulations, to attain a steady-s
configuration of the large-scale pattern, that is, the envel
of the front. This result is consistent with the fact that mon
phase cellular arrays in directional solidification of dilu
alloys are unstable in the absence of crystalline anisotr
@38,37#. In fact, the lack of stability of the eutectic colonie
in the absence of anisotropy suggests that the large-s
composite eutectic interface behaves qualitatively as a mo
phase front even beyond the linear regime. In this analo
the addition of solid-liquid or solid-solid anisotropy cou
potentially produce an effective anisotropy of the compos
interface that stabilizes its large-scale envelope. The qua
tative exploration of this analogy, however, is far beyond
scope of the present work.

Regarding the comparison between our simulations
the experimental observations of Ref.@18#, we find many
similarities. In particular, we find in the simulations the o
cillatory unstable modes predicted by our stability analys
Such wavy structures are also observed in the experime
We also find that well-developed two-phase cells do
seem to reach a steady state up to the largest times simul
This is in agreement with the experiments, where no ste
state has been reached even on length and time scale
superior to the range of our simulations~compare our Fig. 13
with Fig. 14 of Ref.@18#!.

A number of experimental observations, however, rem
to be understood. First, unstable modes in the experim
are sometimes manifested as waves that are emitted b
calized perturbations, such as grain boundaries. These w
can propagate along the front, which remains planar, ra
than be a transient that precedes colony formation. Som
these propagating waves seem to have characteristics of
tary waves. No such structures have been observed in
simulations. Furthermore, we observe some localized t
phase fingers that play a role during the instability of pla
fronts at off-eutectic compositions, and that are similar
structures seen in the experiments~compare, in particular
our Fig. 15 with Fig. 6 of Ref.@18#!. However, other experi-
mentally observed patterns, such as ‘‘multiplet fingers’’ a
two-phase dendrites are not reproduced by our simulation
is possible that the existence of such patterns depends s
tively on the structure of the eutectic phase diagram, in p
ticular, on the asymmetry of the two solid phases and th
surface energies that have been shown to influence the
bility of binary lamellar eutectics@7#, and on crystalline an-
isotropy.

The present phase-field model could easily be modifie
include some degree of asymmetry between phases as
as both solid-liquid and solid-solid anisotropy. In additio
the use of more general phase-field models with severa
der parameters@32–35#, as well as the use of more efficien
phase-field formulations@29# and numerical algorithms
@47,48# that greatly enhance the accessible length and t
scales, could help to elucidate these questions in the fu
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The exploration of the enormously vast parameter spac
growth conditions and material properties that govern
formation of complex two-phase microstructures remai
however, a formidable numerical task.
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APPENDIX: PHASE DIAGRAM
AND SHARP-INTERFACE LIMIT
OF THE PHASE-FIELD MODEL

Here, we show how to choose the parameters of
phase-field model in order to obtain a suitable phase
gram, and we relate the phase-field model to the classic f
boundary formulation of solidification. Our starting point
Eq. ~3!. For the free energies of the solid and liquid phas
f sol and f liq , we take

f liq~u,c̃,T!5u2/21b~ c̃ ln c̃2 c̃!2e l c̃, ~A1!

f sol~u,c̃,T!5a~u221!21b~ c̃ ln c̃2 c̃!2esc̃2aDT/TE ,
~A2!

where DT5TE2T is the undercooling with respect to th
binary eutectic point, anda, b, es , e l , anda are constants.
This choice is motivated by the following consideration
Since there are two solid phases,f sol must have a double
well structure inu; in contrast,f liq has a single well. Without
impurities (c̃50), at the eutectic temperature all thre
phases must have the same free energy; forT.TE (T
,TE), the liquid minimum must be below~above! the solid
minima. This is conveniently achieved by the last term
the right-hand side of Eq.~A2! that simply shiftsf sol with
respect tof liq ; formally, a is equivalent to the latent heat.

The impurity terms have a form that is equivalent to t
dilute limit of a regular solution model. Indeed, the term
containingc̃ correspond to the dilute approximations for th
entropy of mixing and the energy cost of the impurities,
spectively, withen representing the difference in bond ene
gies upon replacing a solvent atom by an impurity in pha
n. The constantb, which sets the energy scale, should fo
mally be proportional to the temperature. Since we are, h
ever, only interested in a narrow temperature range aro
TE , we simply use a constant.

The various coefficients can be related to physical qu
tities through the construction of a phase diagram. The c
ditions for thermodynamic equilibrium between two distin
phases are~i! equal chemical potentials for the eutectic com
ponents,~ii ! equal chemical potentials for the ternary imp
rity, and ~iii ! equal grand potential, i.e.,

ms[] f sol/]uuus
5m l[] f liq /]uuul

, ~A3!
8-15
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m̃s[] f sol/] c̃u c̃s
5m̃ l[] f liq /] c̃u c̃l

, ~A4!

Vs[ f sol2msus2m̃sc̃s5V l[ f liq2m lul2m̃ l c̃l , ~A5!

whereun and c̃n , n5s,l , denote the equilibrium concentra
tions in solid and liquid. These conditions can be geome
cally described as a ‘‘common tangent plane’’ to the fr
energy surface, analogous to the well-known double-tang
construction for binary alloys. From Eq.~A4!, we get at once
the standard partition relation for a dilute alloy,

c̃s5Kc̃l , ~A6!

with a partition coefficient given by

K5exp@2~es2e l !/b#. ~A7!

Next, from Eq.~A3!, under the assumptionDT/TE!1 ~i.e.,
for temperatures close to the eutectic temperature!, we have
ul!1 andus'61, and we get

us5
ul

8a
61, ~A8!

where the two signs correspond to the two distinct so
liquid equilibria. Finally, using Eqs.~A5!, ~A6!, and ~A8!,
we obtain

aDT/TE5b~12K !c̃l6ul . ~A9!

Using the definition ofDT, this can be rewritten as

T5TE6muul2m̃c̃l , ~A10!

wheremu and m̃ are the magnitudes of the liquidus slop
for the eutectic components and the impurity, respective

mu5U dT

dul
U5 TE

a
, ~A11!

m̃5UdT

dc̃l
U5

b~12K !TE

a
. ~A12!

Note that the scaled liquidus slopemu can be related to the
‘‘true’’ liquidus slopem in the phase diagram with the help o
Eq. ~1!,

mu5m~cb2ca!/2. ~A13!

The parametera controls the ratio of the liquidus and solidu
slopes in the eutectic phase diagram; for simplicity, we w
fix in the following a51/8, which gives a concentratio
jump across the interface that is independent of tempera
~parallel liquidus and solidus lines!. The parameterb, to-
gether with the partition coefficientK, fixes the ratio of eu-
tectic and impurity liquidus slopes,m̃/mu5b(12K).

When the thickness of the diffuse interfaces is mu
smaller than all other physical length scales, and in partic
the lamellar spacingl, the above phase-field equations c
be related to the more conventional sharp-interface equat
06160
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of the macroscopic models of solidification by the techniq
of matched asymptotic expansions. This procedure has b
detailed in several publications for models that are simila
ours, and hence we will only outline the results. Each so
has to reject its minority component and the ternary impu
into the liquid in order to grow. Since the concentrations a
locally conserved quantities, mass balance at the inter
implies that they obey boundary conditions of Stefan type
the moving boundary, i.e.,

2D]nu5vn~ul2us!, ~A14!

2D̃]nc̃5vn~12K !c̃l . ~A15!

Here,vn and]n are the normal velocity of the interface an
the derivative normal to the interface, andul , us , andc̃l are
the values of the concentrations at the liquid and solid si
of the interface, respectively. These equations are valid
both solid-liquid interfaces; note that on thea-liquid inter-
face, ul2us.0, whereas on theb-liquid interface,ul2us
,0. The concentrations at the interface are related to t
perature, shape, and speed of the interface by a genera
Gibbs-Thomson condition,

T5TE7muul2m̃c̃l2GK2vn /mk , ~A16!

where the upper~lower! sign is for thea (b) phase, the
liquidus slopesmu andm̃ are given by Eqs.~A11! and~A12!,
G is the Gibbs-Thomson coefficient,K is the local curvature
of the interface,mk is the linear kinetic coefficient, and th
concentrations on the solid side are linked to those on
liquid side via Eqs.~A6! and~A8!. Without the last~kinetic!
term, Eq. ~A16! is a statement of local equilibrium at th
interface, including capillary effects. The Gibbs-Thoms
coefficient G is given in physical units byG5gslTE /L,
wheregsl is the surface tension of the solid-liquid interfac
andL is the latent heat of melting. In the units of our mod
this becomes

G5gslTE /a. ~A17!

The surface tensiongsl is obtained as in Ref.@30# by first
solving numerically the one-dimensional stationary versio
of the equations of motion to obtain the interface profile
and then computing the excess free energy per unit sur
by inserting the profiles into the free energy functional. No
that, since the free energy density is taken dimension
here, surface tensions have units of length. The solid-s
surface tension can be calculated analytically since along
ab interfacef[1, and we obtaingss5(2/3)Wu .

From the surface tensions, we can determine the con
angle u, that is, the angle between the horizontal and
solid-liquid interfaces at a trijunction point where the soli
solid interface is vertical. Using Young’s condition of me
chanical equilibrium, we get

sinu5
gss

2gsl
. ~A18!
8-16
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We have not explicitly calculated the value of the kine
coefficientmk that appears in the last term of Eq.~A16!. This
would require to compute several integrals in the coup
variablesu andf through the solid-liquid interface~see Ref.
@28# for more details in a simpler case!, which can only be
done numerically. Furthermore, we have neglected in
above analysis other nonequilibrium effects, and, in parti
lar, solute trapping@49# that is generally present in phas
field models for alloy solidification@29,50#. It is known that
solute trapping modifies the compositions on both the liq
on

, J

s.

. A

a-

06160
d

e
-

d

and the solid sides of a moving interface. This genera
correction terms both in the Gibbs-Thomson conditi
and the mass balance relations, Eqs.~A15! and ~A16!.
However, these corrections are proportional to the interf
velocity, and are expected to be small for the range of sol
fication speeds used in our present simulations. Indeed,
simulation results indicate that the nonequilibrium effects
not entirely negligible; however, they are not importa
enough to justify a detailed analysis that would be quite
volved @29#.
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