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Eutectic colony formation: A phase-field study
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Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification
of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification
cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macro-
scopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that
diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity.
We investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent
highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much
larger than the lamellar spacing. We find a good overall agreement with our recent linear stability gvalysis
Plapp and A. Karma, Phys. Rev. @0, 6865(1999], which predicts a destabilization of the front by long-
wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assump-
tion commonly attributed to Cahn that lamellae grow perpendicular to the envelope of the solidification front
is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an
important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics
of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not
converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simu-
lated.
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[. INTRODUCTION [6] and numerica[7] studies of the morphological stability
of lamellar eutectics, as well as detailed experiments in a
Eutectic alloys can form a wealth of different two-phasetransparent organic systef8], have shown that the stable
patterns during solidification. These alloys are of interest tdange of lamellar spacings is restricted by a long-wavelength
metallurgists[1] because of their low melting points and of instability leading to local lamellar termination at smal
the superior mechanical properties associated with a fineand short-wavelength oscillatory instabilities at larye
scale composite microstructure. Moreover, eutectic growth ig’hese studies clearly demonstrate that a large-scale morpho-
a nontrivial example of pattern formation outside of equilib-logical instability of the composite front does not occur in a
rium that has attracted the attention of physicists over the ladtinary eutectic alloy.
two decades. This picture is consistent with the experimental observa-
When the two solid phases(and3) of a binary eutectic tion that such a morphological instability occurs only when a
alloy have rough interfaces with the liquid, solidification at small quantity of a ternary impurity is present, and whegn
or near the eutectic composition typically produces a spaexceeds a critical valup9—19. In a nonlinear regime, this
tially periodic array structure consisting of lamellar plates ofinstability results in the formation of two-phase solidification
the two phases, or of rods of the phase with the smallegells, also called eutectic colonies, with a typical width much
volume fraction embedded inside the matrix of the othedarger thank. A typical example of such cells is shown in
phase. Since the pioneering mathematical analyses by HilleFig. 1.
[2] and Jackson and Huf3], which built on earlier work by Experimental measurements to da®e-19] have consis-
Brandt[4] and Zener[5], it is well established that these tently shown that the onset of colony formation can be rela-
lamellar and rod morphologies can grow cooperatively intively well described by a simple constitutional supercooling
steady state for a continuous range of eutectic spacings, with
both phases helping each other to grow via the diffusivej - ‘\W/ ¥
transport of the two chemical components in the liquid // \\\.’f// ! \\l . w»’ \,‘mfi} ’,/ ”//f\\\
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posite front that is perpendicular to the temperature gradient; A~ /\ il ‘A "’ ’?\\‘ Z
and planar on a scale much larger than the lamellar spacing  FIG. 1. Eutectic colonies in a thin sample of the transparent
(defined as the width of the basic spatially repeating unibrganic eutectic alloy CB¥C,Cls, doped with a small amount of
consisting of onex lamella and one3 lamella. Analytical  the ternary impurity naphtalené&om Ref.[18]).

1063-651X/2002/6@)/06160817)/$20.00 66 061608-1 ©2002 The American Physical Society



M. PLAPP AND A. KARMA PHYSICAL REVIEW E 66, 061608 (2002

criterion with respect to the ternary impurit20,21], which  investigate the nonlinear regime of colony formation. For
predicts that the instability occurs whé&v, falls below a  this purpose, we develop a phase-field model for the direc-
critical value. This suggests that this instability may be quali-tional solidification of a eutectic alloy with a dilute ternary
tatively similar to the well-known Mullins-Sekerka instabil- impurity. Simulations of this model enable us to characterize
ity of a monophase front during directional solidification of a quantitatively the amplification and decay of linear perturba-
dilute binary alloy[22]. In a recent linear stability analysis of tions of the composite front and to study the complex inter-
a sharp interface mod¢R3], however, we showed that the face dynamics leading to the formation of well-developed
morphological instability of a composite front in the pres- colonies.
ence of a dilute ternary impurity differs fundamentally from  The phase-field method is by now a well-established tech-
the instability of a monophase front, even though the onset ofique for simulating solidification patterig4—-29. In par-
both instabilities is well predicted by constitutional super-ticular, it has already been applied to the investigation of
cooling. This analysis was based on the same procedure usetlltiphase solidification in eutectic and peritectic alloys
previously by Datye and Langé6] to analyze the stability [30—35. The advantage of this method with respect to the
of binary lamellar eutectics, where the basic degrees of freeboundary integral formalism used previously to perform de-
dom are the coordinates of the B-liquid trijunctions. Our  tailed simulations of eutectic growth structurgd is that
main finding was that the amplification of linear perturba-ternary impurities can easily be included. Furthermore, the
tions of the composite front can be either steady or oscillaphase-field method is able to handle automatically dramatic
tory for experimentally relevant control parameters, in con-changes in the interface morphology such as lamella termi-
trast to the classical Mullins-Sekerka instability where finite-nation and creation, which are difficult to implement in the
wavelength perturbations are amplified in a nonoscillatoryboundary integral approach.
way. The phase-field model presented in this paper is specifi-
Furthermore, in Ref[23], we developed an “effective cally designed for computational efficiency and therefore
monophase front” formulation of the dynamics of the com- makes some simplifying assumptions. In particular, we use a
posite interface that shed light on the origin of this differ- generic eutectic phase diagram that is symmetric with respect
ence. We showed that the long-wavelength dynamics of theo the exchange of the two solid phases, and we neglect
envelope of the composite front is governed by a free<crystallographic effects such as the anisotropy of the solid-
boundary problem with boundary conditions for the concendiquid and solid-solid interfacial energies. The computational
tration of the diffusing ternary impurity on the effective front effort required to simulate fully developed colonies is none-
that can be obtained by averaging over the properties of thiéheless considerable since the two-phase cell spacing is one
two solid phases. As a self-consistency check, we alsarder of magnitude larger than For this reason, the largest
showed that, when the wavelength of the perturbation isimulations of such structures were carried out on a multi-
much larger than, the linear stability analysis of this free- processor CRAY T3E and took the equivalent of a few thou-
boundary problem gives identical results to the full stabilitysand hours of single-processor workstation time.
calculation expressed in terms of the trijunction coordinates. The simulation results are found to be in good overall
Not surprisingly, this free-boundary problem turns out toagreement with our sharp-interface linear stability analysis
be very similar to the one governing a “true” monophasefor compositions close to the eutectic point, where the two
front in a dilute binary alloy. The nontrivial difference, how- solid phases have approximately equal volume fractions. We
ever, is that the local lamellar spacing, which appears in thebserve, indeed, the predicted large-scale oscillatory struc-
boundary condition for the ternary impurity on the front, tures. Quantitatively, however, the simulated growth rates
constitutes an additional “internal degree of freedom” of thediffer from the predicted ones. A careful analysis of our
front that modifies its stability properties, and gives rise tosimulation results, extrapolated to the limit of vanishing
the oscillatory modes. Physically, this reflects the fact thathickness of the diffuse interfaces, allows us to pinpoint the
the local temperature of the front depends on the local lamelerigin of this discrepancy. In particular, our stability analysis
lar spacing\ and that, in turn, the time rate of change)f uses the assumption that the lamellae grow normal to the
depends on the shape of the front because of the geometridarge-scale growth front. This assumption is commonly at-
constraints imposed by the equilibrium conditions for thetributed to Cahn and was also used previously by Datye and
angles between interfaces at the trijunctigvisung’s condi-  Langer[6] for their linear stability analysis of lamellar eu-
tions). tectics in binary alloys. We find that, in our simulations, this
In a recent experimental study of a transparent organicule is slightly violated. Hence, the stability analysis cor-
model alloy, oscillatory patterns compatible with the resultsrectly describes all the qualitative features of the instability,
of our linear stability analysis were indeed obsery&é]. but would have to be extended to include this effect in order
The same study, however, also revealed a wealth of othéop become quantitatively accurate. This violation also has
possible structures that can be associated with the instabilitynportant consequences for the stability of binary eutectics
of a planar front, and, in particular, localized two-phase fin-that are discussed elsewhé¢Bgs].
gers that may appear in an early stage of the morphological The linear instability of the planar front is followed by a
instability. nonlinear transient that leads to the formation of fully devel-
The two main goals of the present study are to check theped colonies. The nature of the transient depends on the
validity of our previous linear stability analyqi&3] by direct  composition. In simulations carried out at the eutectic point,
simulation of the fundamental equations of motion, and tathe long-wavelength modes grow until the front becomes
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wavy and the first lamella terminations occur in the concavdar, much effort was spent to develop a thermodynamically
parts. Subsequently, the grooves deepen and the tips graveonsistent approach and to base the free energy functional on
ahead of the front, such that the initial wavelength of theideal or regular solution mode[27,32,34. In contrast, we
colonies corresponds to the linear mode that dominates there interested here mainly in the phase-field model as a com-
stability spectrum. In contrast, for off-eutectic compositions,putational tool. We will therefore use a strongly simplified
the linear regime is much shorter, and localized two-phasenodel that is chosen for its computational efficiency, with
fingers centered around a thin lamella of the minority phas¢he minimum of ingredients necessary to reproduce the main
grow rapidly ahead of the front and develop into coloniesfeatures of eutectic solidification with a ternary impurity. The
later on. parameters of the model are related to physical quantities by
Finally, once formed, the colonies have a quite well-performing a sharp-interface limit.
defined average size and shape at both eutectic and off- We choose as the set of dynamical field variables the con-
eutectic compositions. However, the front does not settleentration(in molar fraction c(x,z,t) of one of the compo-
down into a true steady state, but exhibits tip-splitting andnents of the binary eutectic, the concentrafi&x,z,t) of
cell elimination events, not unlike the monophase front of aimpurities, and a single phase field(x,z,t) that distin-
dilute alloy in the absence of interfacial anisotrd@y,38. guishes between solid and liquid. To simplify the construc-
The remainder of this paper is organized as follows. In thetion of the free energy functional, we define the scaled con-
following section, we introduce the phase-field model andcentrationu by
analyze its sharp-interface limit. In Sec. Ill, we present simu-
lation results for stable steady-state lamellar growth that are c(x,z,t)—cg
used to test our model. Section IV contains a brief review of u(x,z,t)= e 2"
our sharp-interface linear stability analy$®3], and a de- (Cp~Ca)
tailed comparison between the analytical and numerical re- » o
sults concerning the linear stability of the eutectic front. Sec\Wherece, ¢, , andc are the compositions of the liquid and
tion V is devoted to the simulations of well-developed the two solid phases in the pure blnary eutectic gt the eutectic
colony structures in a nonlinear regime. Finally, conclusiondeémperatureTe [39]. For a symmetric phase diagram, the

and an outlook for future work are given in Sec. VI. scaled compositions of the two solids&t areu=+1.
Building on a previous phase-field model for a binary

eutectic[30], we take the(dimensionlessfree energy func-
Il. PHASE-FIELD MODEL tional [40] of the form

@

We consider directional solidification of thin samples, as W2 W2
used in many experimental studies of pattern formation dur- F:f dv[_u VUl +—2(V) 2+ (b UT.T 2
ing solidification[8,12,1§. This allows us to treat the prob- v 2 (V) 2 (V) (puT T},
lem as essentially two-dimensional and to neglect convection

in the liquid. Furthermore, we assume that the rejection ofynerev is the volume of the two-phase system. The dimen-
latent heat during solidification does not appreciably modifygignless free energy densitys,u.E,T) must have three lo-
the temperature field cre{;\ted by the experimental sétup_ cal minima to account for the three possible phageid, «
zen temperature approximatiprand hence that growth is gqjig, andg solid), separated by potential barriers. We use
limited by diffusion of the chemical constituents. the phase field to distinguish between solid and liquid, and
We are interested in the behavior of a ternary alloy closgne scaled concentration field to distinguish between the two
to a binary eutectic trough in the phase diagram. Specificallyssjigs. The gradient terms force the fields to vary continu-
we will consider a very low concentration of the third com- 4,5l hetween the bulk equilibrium values and hence create
ponent, which can then be regarded as a dilute impurity. Thigyterfaces of a characteristic thickness of orthé (solid-
allows us to neglect various cross-coupling terms betweeg,jiq interface andW,, (solid-liquid interfaces In general,
the ternary impurity and the components of the binary euteCgre should also be a gradient term for the ternary impurity.

tic. In addition, we are more interested in generic aspects of; . ever we may omit this term for simplicity singehas

two-phase cell formation than in modeling a specific matey,, ingicator function, but is slaved to the other fields: that is,
rial. Hence, we study a model eutectic alloy that has a sym

. . o for specified phase fiel¢h, concentratioru and temperature
metric phase diagram. This simplifies the setup of the phaser the equilibrium value oF is known.

field model. ; ; TR
A h for the f
The principles of the phase-field method have been de- convenient choice for the free energy density s
scribed in detail in numerous publicatiof1—35. The idea 5 4 14h
is to distinguish between the different thermodynamic phases f(¢,uT,T)=— ‘ﬂ + & +ﬂfsol(u T, T)

with the help of one or several scalar fields, the phase fields, 4 8 2
that have fixed values in the bulk phases and vary continu- 1-h(¢)
ously across smooth and diffuse interfaces. A free energy + Tf“q(u@-r). (3)

functional suitable for the problem at hand is then con-

structed, and the equations of motion for the fields are writ-

ten in variational form. By now, various phase-field modelsHere, f, and f;; are the bulk free energy densities in the
for alloy solidification are availabl§27,29—3§. In particu-  solid and the liquid, respectively, and
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|
h(d)=5|6—
is an interpolation function. The first two terms in E®)
generate a double well potential f@¥ with minima at ¢
==+1. Sinceh(*x1)==*1, f(1,u,C,T)="Fs(u,c,T) and f
(=1uC,T)="fj4(u,C,T), such that¢p=+1 corresponds to
the solid and¢=—1 to the liquid. Moreover, sincén’
(£1)=0, the equilibrium values of), given by the solu-
tions ofdf/d¢$=0, always remain a= * 1, independently
of the values of s, andfji; . The expressions fdrg, andfj
are given in the Appendix.
The equations of motion for the three fields are

T P(X,Z,t)=— m, 5
oF

(9tU(X,Z,t)=V( M(¢,u,C)V m), (6)
~ oF

diC(X,z,t)=V M(gﬁ,u,E)Vm), (7)

where 6F/5(-) denotes the functional derivative with re-
spect to the field-), 7 is a(microscopig¢ relaxation time, and
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_ Zfliq 2 2
du=V| M P Vu+WiV(Vau) | |, (10
u
4E=V mazf”qv (11)
C= Cl.

In the first equation, we can neglect the teWﬁV(Vzu) in

the brackets on the right-hand side, since the diffusion pat-
tern forms on a scale much larger théf,, and hence this
term is small compared to?ff”q /9c?)Vu. Using the expres-
sions for the mobilities andi;,, we obtain the desired result
in the liquid,

(12

(13

The exponenti in the mobility plays a role only in the in-
terfacial region where the phase field varies, and changing its
value modifies the interface kinetics. This will be addressed
in more detail below. The relation of the phase-field equa-
tions to the classic free-boundary formulation of solidifica-
tion is discussed in the Appendix.

Ill. LAMELLAR STEADY STATES

M and M are the mobilities of the eutectic component and

the ternary impurity, respectively. These variational forms We chose as a testing ground for our model the simulation

reflect the fact that the two concentrations are conservedf lamellar steady-state solutions. This has the additional

fields, whereas the phase field can be seen as a nonconsengnefit of providing us with the initial configurations needed

order parameter. The nonconserved phase field simply rdor the simulations of large-scale arrays described below. In

laxes toward its local equilibrium value. Indeed, by insertingthe laboratory frame, the sample is pulled with veloeityin

Eq. (3) into Eq. (5) we obtain a constant temperature gradie@t along thez axis. This

means that in the sample frame, the isotherms move toward

the positivez direction with velocityv,. Consequently, the

temperature at a given poink,z) of the sample is

The last term on the right-hand side always drives the phase

field to the value that corresponds to the lower local free

energy densitywe recall thath’>0 and that¢=1 corre-

sponds to the solid where we have chosen the origin of thaxis at the eutectic
The definition of the model is completed by the specifi-isotherm fort=0.

cation of the mobility functionsvi(,u,€) and M(#,u,T). The equ_ations_of _motion were sirr_lulated by an e_xplicit

The dependence d¥l and M on the phase field and the Euler algorithm with time ste@t on a simple square grid of

compositions allows us to obtain the desired diffusivities inspacmgAx using standard finite-difference formulas. For

the bulk phases. We want to simulate a one-sided maee| simplicity, we choseW,=W,=W. In the following, unless

vanishing diffusivity in the soliwith constant diffusivities gms?g'jﬁitztiﬁed;r'%”tgeﬁs e";’;'tukr’ssri‘;ej;‘i‘;%i ”:N‘;”(':thgow’sé
for eutectic components and impurities in the liquid. This can T ¢ P S )
be achieved by choosing (see the Appendix for the definitions of the paramet&s

=D=1, a=1,a=1/8 (parallel eutectic solidus and liquidus

Top=W5V2p+ $l2— ¢%2+h' () (fig—fso). (8

T(z,t)=Teg+Gz—u,t, (14

1+ ¢\" lines), G=0.001, v, between 0.005 and 0.02, and various
M(¢,U,E)=D[1— > } (98  values ofb and K, with ¢ =0 ande;=—bInK. Since the
equation for the composition is of fourth order, the critical
1+ g\ time step for the occurrence of numerical instabilities scales
M(p,u)=D|1- (_ z, (9b) asAx*. The allowed grid spacingx, however, is limited by
2 the requirement that the smooth interfaces be sufficiently

B well resolved to avoid strong numerical anisotropies and lat-
whereD andD are the diffusion constants. Indeed, from thetice pinning. We found thatx=1 andAt=0.025 provided a
equations of motion, we get that in the liquigh£ —1) good compromise between efficiency and accuracy.

061608-4



EUTECTIC COLONY FORMATION: A PHASE-FIELD STUDY PHYSICAL REVIEW E6, 061608 (2002

17

The simulations were started with a single pair of flat 1 )N N min
lamellae in contact with the liquid in a box of lateral size ATJHZEATmin()\—_+ X )
The concentrations were set to the equilibrium values in each min
phase. For the subsequent evolution, periodic boundary corFhe curveAT versus\ exhibits a minimum at a spacing
ditions were used in the direction parallel to the isotherms) ..., where
while the concentrations in the liquid were kept at fixed val-
uesu., andt.,. at the upper end of the simulation box. At the AT = 2mAu [T'sin6P(n)v,
lower (solid) end, no boundary conditions are needed since min (11— 7) 2Dm,Au
the fields do not evolve. During the runs, the simulation box
was periodically shifted to follow the interface. Convergence [ 2I'singD
to the steady-state solution was checked by computing the Amin= m (19
average change of the phase field in the moving frame during e
the advance of the isotherms by one lattice spacing. FurtheHere, Au=uz—u,=2 is the concentration difference be-
more, the interface shapégiven by the level setp=0 for  tween the two solids at the eutectic temperatuye; (ug
the solid-liquid interface and by=0 in the solid, that is for —u.)/Au is the volume fraction ot phase in the solidn,
¢>0, for the solid-solid interfacesare extracted by inter- is the liquidus slope in the binary eutectic phase diagram
polation of the fields between the lattice points. This proce{defined in the AppendixP( 7)== _  sir?(wnn)/(7n)3 T is
dure yields a resolution far superior to the grid spacing. Thehe Gibbs-Thomson coefficient, artlis the contact angle
average undercooling of the interface is then defined by Eq.(A18) below. ForW,=W,=1, we obtain
numerically y;=1.04, which together withy,;=2/3 gives
1 (r #~19°. Note that Eqs(18) and(19) are valid only for our
AT(t):TE_Tint(t):_G(XJ Z(X,t)dX—vpt), choice of a symmetric phase diagram; see Reg] for a
0 (15) discussion of the general case. It should be kept in mind that
the JH theory is approximate since it uses a flat interface to
calculate the diffusion field. Nevertheless, it has been shown
by boundary integral simulatiorig’] that the error is small
for small contact angle® and close to the spacingm,,
such that it can be used as a semiquantitative test for our
phase-field model.

(18

where {(x,t) is the z position of the extracted solid-liquid
interface as a function of at timet. The simulations were
stopped when the undercooling was to within $0of its
extrapolated final value.

We first discuss the special case of a pilieary) eutectic We computed the interface undercooling in our model for

at the eutectic compositiomi,. =C..=0 (note that we omit  4joys pulling speeds and two different values of the mobil-
the impurity terms in the free energy and the equation ofyy eyponentn in Egs. (9) of the mobility functions. Let us
motion for the impurities whe,.=0). For our symmetric  first giscuss the results far=1, which corresponds to the
phase diagram, there is no global diffusion boundary layer inmpjest form of the mobility that has been widely used be-
this case, and the diffusion field in the liquid decays expOtyre The simulated undercoolings are slightly higher than
nentially on a scale of. Hence, a box length parallel to the he 31 prediction, but the overall shape of the curve is per-
temperature gradient of about five timeswas sufficient 10 factly reproduced. The difference can be attributed to the
obtain results that are .|ndeper_1dent of the box size. The '”,teﬁonequilibrium effects(interface kinetics, solute trapping
face relaxes exponentially to its steady state, with relaxatlorbresent in the phase-field model, but neglected in the JH
times of order\?/D; on a typical modern workstation, the theory. Indeed, the differences between our simulations and
convergence takes a few hours. _ the JH prediction are larger for highep. Furthermore, we

In contrast, foru,,#0 and/orcxfo, solute redistribution obtained ., and AT, by fitting our simulation results to
leads to a boundary layer of thicknets=D/v,, m%Ch Eq. (17) and found that the scaling relatiorf,v,=const
larger than\. Its bglldup takes a time of the ord®¥ (Kvp),  that can be derived from E4L9) is well satisfied. Regarding
much larger than\“/D. Therefore, larger box sizésf sev-  the impurity contribution to Eq(16), we conducted simula-
eral timeslp along the growth directignand longer simula-  tions for various impurity concentrations, impurity liquidus
tion times have to be used. As a consequence, the convefopes, and partition coefficients and found good agreement
gence of a run takes several days of CPU time. Instead Qfjth the predicted behavior. In particular, we verified that the
relaxing exponentially as observed without boundary Iayerspacing)xmm was not appreciably modified by the addition of
the interface position follows a damped oscillation with eX-impurities.

ponential envelope. This is in agreement with the time- Tnhe range of lamellar spacings that can be simulated is
dependent analysis of solute redistribution by Warren angmited by two effects that are intrinsic to our model. For
Langer[41]. spacings smaller than-16W (~8W for each individual
Let us compare our results to the well-known Jacksonigmelig, the diffuse interfaces at the two sides of a lamella
Hunt (JH) relation between lamellar spacing and interfacesiart to overlap, which leads to strong corrections to the
undercooling 3], generalized to include the effect of the ter- gparp.interface limit and ultimately to lamella elimination.

nary impurities, For too large spacings, in turn, new lamellae of the oppo-
site phase nucleate in the centers of the initial lamellae, lead-
AT(N)=AT;4(N) +MC., /K, (16) ing to a lamellar array with one third of the initial spacing.
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0.16 - y - - T - the available range of lamellar spacings is somewhat small
0v,=0.01, n=4 (for an initial spacing of 1.5 ,,, nucleation would set in for
0v,=0.02, n=4 an increase of the local spacing by only 30%ince the

0.14 ¢ A /7 Ov=00Ln=1 | range of available spacings increases with decreasing pulling

] A Av,=0.02,n=1 : .
V- . vi=0.0L, theory speed, one po$5|ble solution would be to further redygce _
@ 012 | D‘\_/’ 0 |--- v=002, theory |] However, as dlscussejd. gbove, the necessary computer time
e o” rapidly becomes prohibitive.
z %o DEDE °<>° o Another way out is to change the exponent in the equa-
01}  -oooo °<><>° o tions for the mobilities, Egqs(9). If we choosen>1, the
Woo° diffusivity is increased in the whole interfacial region,
o S0 oo°° whereas it remains zero in the solid. This leads to higher

0.08 | Coq, oooooo 1 diffusion currents along the surface than fo=1. Hence,

. °?°°°°C,’ ) ) ) the pileup of the rejected atoms at the interface is lower, and
10 20 30 40 50 60 70 80 consequently\ .« iS higher. The price to pay is that this
AW model, in its sharp-interface limit, is not equivalent to the

classical JH model, but contains additional surface diffusion

FIG. 2. Average interfacial undercooling versus lamellar spacingerms[43]. However, as shown in Fig. 2, the qualitative be-
for several values of the pulling speeg and the mobility exponent  havior of the undercooling versus spacing curve does not
n. Lines, prediction of the Jackson-Hunt theory, EL); symbols,  change. Fou,=0.01, Ny, is larger than the theoretical JH
simulation results. Filled circle§ cqrrespond to steady states that akgy| e by about 10%, whereasT ,, is about 15% too low.
unstable with respect to 1-oscillations. On the other hand ,,,/W=74, such that we now have at
our disposal a sufficient range of spacings.
For these parameters, we observe for large spacings the
ll-known period-preserving oscillatory instability that sets
in at about 2, [7]. Even beyond the threshold of this
instability, steady states can be reached to within an excellent
?)recision, because we start from an exactly symmetric initial
condition and because the numerical noise of the phase-field
approach is extremely low. To trigger the instability within a

This is the result of a “spinodal decomposition” that takes
place in the interface. Indeed, the equation for the compos'k;ve
tion in the solid far from the interface is exactly the classical
Cahn-Hilliard equatiof42], which is known to exhibit phase
separation without nucleation in a composition range wher
the free energy density has a negative curvatafé,/dc?
<0). Far inside the solid, this has no importance here be

cause the m_ob_|I|ty IS z€ro and h_ence no dynamics takePeasonable simulation time, an explicit perturbation that
place. Well within the liquid, there is no unstable concentra o ovs the symmetry between the two phases had to be

tion range since the liquid free energy has a single well StruCz 4404 g,ch unstable steady states are shown as filled sym-
ture. But in the diffuse interface, new domains may formbolS in Fig. 2

when the concentration falls within the unstable range. Ac- 1o mechanism for lamella creation by nucleation is in
cording to th.e. JH theory, the de\(lanons of the concentration., very useful for the simulations of well-developed colo-
from the equilibrium value at the interface scale as Pe, whergias \yhere lamellae are frequently created at the solidifica-

the Pelet number Pe M lp=Av,/D; hence, the maximum o front, We want to confront our simulations with the ex-
;pacmgkmax that can be simulated before nucleation sets iNerimental findings of Akamatsu and Faivie], who work
increases as,, decreases. Indeed, we fiigha/W=28 for \yith thin samples of a transparent eutectic alloy enclosed
vp=0.02 and\ ,,/W~58 forv,=0.01. _ . between parallel glass plates. In their experiments, creation
_ It seems useful at this point to comment on the implica-of heyy |amellae indeed takes place predominantly in the cen-
tions of these limitations for the choice of the computationalg, ¢ already existing lamellae. However, the detailed
parameters for large-scale simulations. The range of initiayechanism is still unknown. New lamella do not form by

lamellar spacings of interest for the present study rangegcleation, since the interfacial undercoolings are not high
from A iy t0 @bout 1.5y, Since we want to simulate the gnoygh. Most likely, the “pockets” in the center of large

linear instability of a lamellar front, which may involve con- |3 mellae are “invaded” from preexisting neighboring lamel-
siderable variations of the local lamellar spacing, the modej,e of the opposite solid by fingers that grow in the meniscus
should work for a sizable range of spacings, say at least fofeqyeen the glass plates and the growing solid. The point
spacings that are-50% of the initial value. Therefore, we pere js that the modeling of such a process is out of reach for
need a model that works for spacings betweeh3\ i, and  oyr present computational resources, since it is necessarily
~2.230\min- _ three-dimensional. ~ Within the framework of two-
The first consequence is that we must hayg,/W>32  gimensional simulations, we simply need a criterion to de-
because of the low-spacing limitation. Nexty;, should not  ¢ige when new lamella should form, and the “automatic”
be much larger than this value, since the computer time NeGmplementation of a maximal lamellar width,,, in our
essary to simulate the evolution of an array of initial spacingmodel is an adequate solution that avoids the implementation
Nmin Can be estimated to scaleXs;, (number of grid points:  of an explicit nucleation rule, as done, for example, in
A minX Amin; time for the interface to advance by one spacing:Ref. [35].
Nminfvp; using hﬁ“nvp:COHSt, we geﬁcpu~>\§1in~vr:5/2)- The last question to settle, then, is how to chopgg, for
From Fig. 2, we can see that=1 andv,=0.01 give\,, of  the simulations of well-developed colonies. For this, we need
the right order of magnitude; however, sinkg,,/W~58, to anticipate how the choice of this quantity influences the
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outcome of the simulations. As will be detailed below, thelamellar spacing, and the large-scale smooth envelope of the
variation of undercooling with spacing is an important ingre-lamellar front. The evolution of the local spacing is slaved to
dient of the pattern formation process; therefore, we agaithe shape of the front by the assumption of normal motion
need a sizable range of lamellar spacings araygd. How-  (Cahn’s hypothesjs On the scale of the smooth front, the
ever,\ max Must not be too large either. As mentioned aboveJamellar structure introduces an interfacial undercooling that
the well-known short-wavelength instabilities appear Xor is approximately given by the JH law, taken with the local
>2Nmin- In the experiments of Ref18], such oscillatory spacing and interface velocity. Using these ingredients, it is
structures are seen occasionally in the center of flat coloniggossible to include the lamellar geometry in the usual
before the creation of new lamellae. This indicates thaMMullins-Sekerka stability analysis and to obtain the disper-
lamellae creation occurs at spacings only slightly larger thargion relation. This result can be recovered from the more
2\ min- Thereforen=4 andv ,=0.01 With \ pax/\min~2.2 is complicated discrete analysis, with one additional ingredient.
again a good choice. We did not carry out a systematic studyhe eutectic diffusion field that governs the exchange of at-
to test the influence of .. on the final colony patterns Oms between neighboring lamellae gives, when perturbed on
because this requires prohibitively long simulation times;a large scale, a stabilizing contribution to the total interfacial
however, due to the arguments outlined above, we expect tHendercooling. The functional form of this stabilization is the
patterns to be fairly insensitive to this parameter as long as Bame as for the surface tension terms, and this effect can
stays betweer=1.5 to ~2.5 times\ ;. therefore be included in the simple effective front approach
by simply “renormalizing” the capillary length.
The two main results of this analysis are thiathe insta-

IV. LINEAR STABILITY OF LAMELLAR ARRAYS bility thresholq i; close. to the WeII—knoyvn constituti.onal Su-
percooling criterion, with a small capillary correction, and
A. Theory (i) in contrast to the Mullins-Sekerka instability, where un-

We have recently performed a detailed linear stabilityStab|e modes always have real growth rates, the lamellar
analysis of a lamellar eutectic interface in the presence o$tructure may lead to complex growth rates, and hence to
ternary impurities. Rather than repeating the calculation@scillatory modes. The_ origin of t.hese oscillations can be
here, we will give a brief summary of the main assumptionsunderstc_)od as follows: in a protrusion of the front, the_: lamel-
and results before discussing the phase-field simulations. OI" Spacing increases. This leads to a local change in the JH
analysis is an extension of the method used by Datye anHnderco’olmg that,. for a small distortion of an array of spac-
Langer to analyze the stability of lamellar arrays withouting Mo, i proportional to the slope of the JH plot. Fig
impurities [6]. It is based on a perturbation scheme for the™\min. this provides a “restoring force” for the large-scale
Jackson-Hunt solution and proceeds as follows. front. Since only thechange with timef the lamellar spac-

(1) The coordinates of the trijunction points are chosen ad"d (but not the spacing itselis related to the shape of the
fundamental variables to describe the state of the perturbeont, the dispersion relation becomes quadratiejrinstead
system. This amounts to a “discretization” of the original ©f the linear Mullins-Sekerka equation. There are two solu-
continuous system. Each trijunction point has two degrees dfons to this equation for each wave numberin physical
freedom, namely, itx and z positions(motion parallel and ~t€rms, this is the consequence of the additional “internal
normal to the isotherms, respectively degree of freedom\ of the front. As discussed in detail in

(2) For a lamellar interface that is gently curved on a scaleRef.[23], real and complex growth rates may occur, depend-
much larger than\, the lamellae are assumed to grow per-ing on the ratiocG/v,, the lamellar spacing, and the impurity
pendicular to the envelope of the composite fréGahn's ~content. For large enough spacings, when the “restoring
hypothesis This connects the time derivative of the local force” mentioned above is strong enough, we expect that the
lamellar spacing to the shape of the front. For example, in £0mplete dispersion relation is complex. One of the goals of
protrusion where the front curves outward, the local spacinghe present paper is to test this prediction by direct simula-

increases during further growth. tion of the basic equations of motion.
(3) Given the positions of the trijunction points, the actual
interface shape is replaced by a piecewise planar interface, B. Single mode simulations

and a perturbed diffusion field is calculated. The Gibbs-
Thomson equation is then used to obtain an eigenvalue pro%—f

lem for normal modes, i.e., perturbations proportional to- & lamellar array with initial spacingo. The parameters
S, 1.6, P prop .. ~besides\ that control stability are the impurity content and
exp(kx+wt), wherek is the wave number of the periodic

. . . .~ the rati . W fine the dimensionl rameter
perturbation, andv its growth rate. The solutions of the ei- the ratioG/v,. We define the dimensionless parameters

Let us first study the behavior of a single unstable mode

genvalue equation give the dispersion relatiar{&). Since A=No/Nin, (20)
there are four degrees of freedom per lamella (& for

each trijunction, (k) has four branches. Of those, there are MAT S, (1K —1)

two that are relevant for the long-wavelength instability we w= = , (21)
are interested in. m,Au mAc

It turns out that the final result of this rather complicated
analysis can be understood in terms of an effective front g= 2DG 2DG 22)
approach. Namely, one can separate two scales: the local

vpM,Au v,mAc
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FIG. 3. Sketch of a perturbed lamellar interface that shows the
definitions of the displacement§’, §j’3, v, andyjﬁ. 101 | 10
Here, \ min is Obtained from an interpolation of our simula-
tion data shown in Fig. 2. Fom=4 and v,=0.01,
Mmin=34. The freezing ranges of the eutectic and the impu-
rities are, expressed in the parameters defined in the
Appendix, mAu=2Tg/a, and MAT=m(1/K-1)T,
=b(1-K)?TgE../(Ka). o3 3 0,
Alamellar array is prepared by replicating the steady-state x/A x/A

solution for one lamella paiN times. We apply a cosine
perturbation to the steady state and impose the initial condi- FIG. 4. Evolution of oscillatory modes. Growth direction is

tion from bottom to top, and three successive frames are shown from left

to right. Shown are the solid-solid interfaces, as well as successive

#(X,2,0)= ¢o(X,2+ Agcog 2mx/N)), (23 snapshot pictures of the solid-liquid interfaces. The system is per-

. . . turbed with a single cosine mode of dimensionless wave number
where ¢o(x,2) is the steady-state solution. The other fields, _ 4 5 simulation parameters;,=0.01, G=0.0005, \,=40, K

(u andc) are perturbed in the same manner. The perturbation. g 5 %, =0.08, b=10, givingA=1.175,w=0.2, g=0.05.
amplitudesA, are usually much smaller than the interface
width (typically, Aj/W<0.1), and the values on the grid
points are obtained by linear interpolation of the numerica
steady-state solution.

To analyze the evolution of the system, we store periodi
cally the positions of all the interfacésolid-solid and solid-
liquid). In addition, we determine the positions of all the
trijunction points by searching the intersections of the level
curves =0 andu=0. The coordinates of the trijunction

point to the left of thev Iemslla v= “'ﬂ?) in the Iamlellla PAI"  7ero. However, they remain sufficiently small to be neglected
numbern are labeled X;,,z,). We define the deviations of i, the data analysis. In Fig. 5, we show the evolution of
the trijunction point coordinates from their steady-state val-

ues(see Fig. 3,

mode develops. Its amplitude grows until a lamella termina-
I’[ion occurs atz/\y=50. Subsequently, the system shows a
decaying 4x oscillation and approaches a steady-state solu-
tion with four lamella pairs. To analyze this evolution, we
use the Fourier componernts(«,t). Since the initial pertur-
bation is not proportional to th@inknown eigenvector cor-
responding to a single mode of the complétentinuou$
system, the Fourier components fet 0.2 will not remain

0.4

&=21-2, (249 ¢
v v_ v o 02 é %
Yn=Xn Xy, (24b) g $ g% &

— — = ¢ o 4%
wherexi=n\g andxnﬁz(n+ n)\o, as well as their discrete R s ¢ 2 b %
Fourier transforms, ><‘3 ;S 2% £ 3

il R4
N-1 ) 0 k=0.2, data 24 %
X, =% 3 glexp2min) (25 02— 02 194
v N = °" ’ © 1=0.25, data §
----- x=0.25, fit
1 N—1 -04 ’ .
Y. (k,t)=— Yaxp( 27 kN), 26 0 20 40 60 80 100
L= 2 yrexp(2ixn) (26 v i
wherex=k\o/(2m) is a dimensionless wave number. FIG. 5. Real part of the Fourier amplitude,(«,t) as a function

In Fig. 4, we show the evolution of an array of five lamel- of time, for the run of Fig. 4. Also shown are the fits to growing
lae, started in a single mode with=0.2. An oscillatory 5x (decaying oscillating exponentials.
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Re X,(x,t)] versus time, fork=0.2 before the lamella 03
elimination, and forx=0.25 afterwardgnote that the elimi-

nation of one lamella pair corresponds to a change in the
unperturbed lamellar spacing,). Oscillating modes corre- 0z
spond to complex growth rates. We define the dimensionless
growth rate by

0.1
Q=wkolvy=0Q,+iQ;, (27 G
with ), and(}; real. The growth rate is determined by a fit 00 }
of the data to the function
REX,(x,0]=AXpQDSINQi(t—t))], (28 01 . .
0.0 0.1 0.2 0.3
wheret is measured in units of, /v, . In practice, we obtain K
a value oftg, i.e., the time of one of the zero crossings, by o2

numerical interpolation, and then use a least-squares fitting
procedure withA, Q,, and(}, as free parameters. As can be

seen from Fig. 5, the fit is excellent. Surprisingly, the fit (b)
remains accurate up to the immediate vicinity of the lamella
termination event. This indicates that the system is well de- 01t f
scribed by a single, exponentially growing mode even for -

large deformations of the initial array. In particular, the lin- a
earization that is the basis for the theoretical analysis remains 04 |

valid even if the lateral displacements are large, ¥&/\, 00

(o |
~1. 02

00

0.1 0.2
X

C. Dispersion relations

The simulation and fitting procedures outlined above were 0.0 0.1 K 0.2 0.3
carried out for various values of the control parameters and
arrays of different sizes to construct the dispersion relations FIG. 6. Plots of the dimensionless growth r&teversus dimen-
Q(«k). In Fig. 6, we show a comparison of the obtained datasionless wave numbet. The main graphs show the real p&t,
with the theoretical predictions of Rg23] for two different  the insets the imaginary paf®; for (@) A=1.175 w=0.2, g
values of the temperature gradient. For both dispersion rela=0.05 and(b) A=1.175, w=0.2, g=0.1. Filled symbols and
tions, there are stationarf)( rea) and oscillatory {1 com- lines, theoretical predictions from Ref23]; circles, real modes
plex) modes. According to theory, fog=0.05 the fastest (Qi=0); squares, complex mode&{#0). Open symbols, simu-
growing mode is stationary, whereas fp=0.1 it is oscilla- lation data; triangles, real modes; diamonds, complex modes.
tory.

In all cases, the nature of the motiationary or oscilla- (5-\ oscillation and conducted a series of runs with de-
tory) agrees with the theoretical predictions. Furthermoregcreasing pulling speed, . SinceXqy,~v,"?, we increased
the oscillation frequency of the complex mode3;) is al-  the spacing\, to keep the reduced spacirg constant. The
ways in good quantitative agreement with theory. In contrastiemperature gradier® was also decreased to kegpcon-
the growth rates{},) are in good agreement only for small stant.
wave numbers; for large wave numbers, the simulated The results for the growth ra®, versusv, are shown in
growth rates are systematically much smaller than predicteffig. 7. The data fall on a straight line, and by extrapolation to
by theory, and the difference increases with the dimensiony,=0 we find(}(v,=0)=0.085. In contrast, the variation
less wave number. Therefore, in the simulationgat0.1,  of the oscillation frequency is very smaftom ;=0.291 at
the fastest growing mode is stationary, and not complex as,=0.01 to(2;=0.302 atv,=0.005). This linear variation
predicted by theory. FoA=1.47 andg=0.1, we obtain a of ), with v, indicates that the dominant corrections to the
stability spectrum that is entirely compléstata not shown  sharp-interface limit of the phase-field model scaléNd$y
both in theory and simulations. =Wu,/D. Corrections in the other involved small ratios,

Just as the JH theory, our stability analysis of a lamellaW/\y and\y/l5, seem to be subdominant, since both scale
array contains several simplifying assumptions. It is thereas 1A/u—p at constantA. An example for a correction that
fore necessary to check whether the differences betweegtales asV/l is the interface kinetics; however, inserting a
theory and simulations are due to the approximations madkinetic term in the Mullins-Sekerka analysis does not lead to
in the stability analysis, or due to the phase-field approacha linear variation of the growth rate with the kinetic coeffi-
which is a genuine representation of the original free-cient. The solute trapping effect also scalesVed, but
boundary problem only in the limdV/A— 0. Therefore, we since it is quite involved to evaluate its influence on the
focused on a single complex mode @+0.1 and«k=0.2  growth rates, we have not investigated this issue in more
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FIG. 8. Sideways velocitydy/dt, of one trijunction point for
FIG. 7. Real part of the dimensionless growth réleversus A =1.175,g=0.1, w=0.2, k=0.2, andv,,=0.007 51. Solid line:
pulling speed fo\ =1.175,g=0.1,w=0.2, andk=0.2. Symbols:  data extracted from the simulated curyg). Dotted line: predic-
simulation result. Dotted line: linear extrapolationutg=0. tion of Cahn’s hypothesis. Dashed line: best fit to Bf).

detail. We checked, however, that the variatiodofwith v, that has a single adjustable paraméeNote that the factor
is not a consequence of the surface diffusion term mtroducegp/)\0 has been included to make the param&er dimen-

by our choicen=4 in the mobility function: a simulation  gjonjess number. As shown in Fig. 8, the resulting best fit is

with n=1 and comparablé yielded similar results. much closer to the real trijunction trajectory than E29).
_ Next, we repeated the above fit for all our simulation data.
D. Test of Cahn's hypothesis The results are shown in Fig. 9. Remarkably, the correction

The simulated growth rate, extrapolatedutp=0, is still given by Eq.(30) works both for oscillatory and stationary
markedly different from the theoretical predictios, — Modes, and the fit parametBris independent of the wave-
—0.1365. We therefore checked several assumptions that al@9th- This shows that the violation of Cahn's hypothesis is
used in the linear stability analysis, in particular, Cahn’s hy-& consequence of the local front geometry, and not a coop-
pothesis that the lamellae always grow perpendicular to th&rative effect depending on the nature of the mode. The data
large-scale front. Expressed in terms of the trijunction poinfor different temperature gradienty and partition coeffi-

coordinates defined in Eq24) and Fig. 3, this assumption cientsK are statistically indistinguishable; the only param-
reads eter that has a marked influence on the fit paranigterthe

spacingA.
Up N To obtain more information about the coeffici@and its
hYn=— )\_O(gn-%—l_gn) (29 dependence on the control parameters, it is quite cumber-
some to work with series of single mode runs as shown in
for the trijunction point to the left of thath 3 lamella. From  Fig. 9. Therefore, we checked that the modified 8§) also
the simulation data, explicit values ofy? and the vertical works for lamellar arrays that are started from a random

displacementg; are available, and Eq29) can be directly

checked. '

In Fig. 8, we plot the measure&iyﬁ for one trijunction < o o o
together with the prediction of Eq29). The two do not 02 f ©
agree: Cahn’s hypothesis is clearly violated. Most noticeably, o
there is a phase shift between the measured and the predicted oo B g g B
curves. We found that the difference between the two curves
is in phase with the lateral positions of the trijunctiyﬁ. M
Howev'er, the coordma_te itself cannot appear dlrgctly in an 0.1 OA=LI75, g=0.05, K=0.5
extension of Eq(29), since the dynamics is invariant with OA=1.175, g=0.1, K=0.5
respect to a global translation along thdirection. The sim- - OA=147, ’g=0‘1', K=0.5
plest local expression that has the required translational in- AA=1.175, g=0.1, K=0.05
variance and is proportional tg? is y£ ,+y? -2y,

. ! n . ! . 0 , , ,

Therefore, we tried to fit the trijunction motion with the 05 ol oL 02

modified equation ”
FIG. 9. Fit parameteB versus perturbation wave numberfor
various sets of control parameters. The data include both oscillatory
(30 and stationary modes.

v v
OYn=— )\_Z(fgu_ &N+ )\_ZB(yﬁJrl_'—yﬁfl_ Zyﬁ)
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FIG. 11. Fit parameteB versus reduced spacing.
FIG. 10. Fit parameteB versus pulling speed,, for con-
stant A (A\o~v,"?, circles and for constantho (A~vy?,  The expressiony’,,+y? ,—2y?)/\2 on the right-hand
squares side can be interpreted as a finite-difference approximation

for the continuous second derivativg,y of a smooth func-
configuration, as will be described in more detail below. Fur-tion y(x) that interpolates between the lateral trijunction dis-
thermore, as can be guessed from the factEhdepends on  placements. Since the produgi), has the dimension of a
the spacingA but not on the partition coefficieriK or the  diffusion coefficient, this term describes a lateral diffusion of

impurity content, the new term is also present in eutectiche trijunctions. Furthermore, for(x) varying slowly on the
without impurities. Hence, we performed simulations with- scale ofA,, we have

out impurities €.,=0) of arrays consisting of 20 lamellae
pairs and obtained the parameBefrom a simultaneous fit of A(X)~No(1+dyy), (33
all the trijunction trajectories with Eq30).

We found thatB is almost independent af over at least  sych that the new contribution to the lateral trijunction speed
one decade iry: simulations atA=0.96 andg=0.1, 0.2, s proportional to the gradient of the local spacing. The mo-
0.5, and 1 yielded3=0.135, 0.136, 0.140, and 0.141, re- tjon of the trijunctions is therefore a combination of the per-
spectively. The dependence Bfon v, was checked in two pendicular lamellar growth according to Cahn’s rule and a
series of runs. The first series is the same as in Fig. 7: themall lateral drift proportional to the gradient of the local
velocity was decreased whilg and A were kept constant. spacing. Finally, by using again E¢33), one can easily
Remarkably, the values & are independent of the velocity show that the continuous version of E§2) is equivalent to
as is shown in Fig. 10. Therefor®, is independent of the 3 diffusion equation for the local spacingx), the so-called
ratios A\o/W and W/lp, and it can be concluded that the phase-diffusion equatiofi44]. The new term constitutes
correction to Cahn’s rule is not an artifact due to the finitetherefore a positive contribution to the phase-diffusion coef-
interface width of the phase-field model. In the second serieficient, which makes immediately clear why it always has a
of runs, we decreasag, while keeping\, fixed; sincexnin  stabilizing effect on the front. Putting together E§1) and
changes withv,,, this corresponds to a changeAn As can  the prefactorv\q in Eq. (32, we find that it scales as
be seen in Fig. 10, now the coefficieBtis no longer a ; \%/\,,. One can also write this result in terms of the
constant. According to E¢(30), this implies that, at fixed spjute diffusion coefficient and dimensionless quantities as
spacingh, the new contribution to the sideways velocity of p A pe (we recall that the Reet number Pe\,/Ip). We
the trijunctions is not simply proportional to the pulling coyld not find any obvious simple argument that explains
speed. Finally, Fig. 11 shows the dependencdain the  thjs scaling. The fact that the reduced spach@ppears in
reduced spacing.. All the data points for different tempera- gq. (31) indicates that the new term most likely arises from
ture gradients and pulling speeds fall on a single curve thahe interaction of the interlamellar diffusion field and the
can be reasonably well approximated by the simple form  nonplanar front geometry on the scale of the individual

lamellae.
B~0.15\. (31 Earlier theoretical studies of eutectic stabilift5,46)
have shown that there exist corrections to the purely “geo-
To make the physical meaning of the paraméenore ap-  Metric” value of the phase-diffusion coefficient derived from
parent, Eq(30) can be rewritten in a slightly different form, Cahn’s rule[44] in the limit of large thermal gradientsy(
>1), when the front is almost flat. This is important for
; VB, tyB  —2yP binary eutectics, because in the absence of an impurity-
ayP=—P(gr -9 +v\B nti Jn-i n driven morphological instability, the long-wavelength stabil-
Ao P )\S ity of the front is controlled by the zero crossing of the
(32 phase-diffusion coefficient. It was shown that the smallest
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possible eutectic spacing can become significantly smaller
than\ i, . The correction to Cahn'’s rule elucidated here also
produces a similar deviation, but with the important differ-
ence that it is quantitatively significant even for the small
thermal gradients used here (&g4<1), where the solid-
liquid interfaces are round arcs connecting trijunctions. In
this smallg regime, the study of Chen and DaVi6] pre-
dicts a negligible shift of the small spacing stability limit of
eutectic growth from\ ,;;, and no comparison can be made
with the study of Brattkuset al. [45] that is limited to the
largeg limit. We therefore conclude that these earlier studies
do not capture the correction to Cahn’s rule found here. The
consequence of this new correction for the small spacing
stability limit of eutectic growth in binary systems is ex-
plored in more detail in a recent paper that reports both
phase-field simulations and experimental resi8&.

Although Cahn’s rule is violated, the resulting deviations
of the growth angles from 90° are very small. To see this, let
us use the geometrical relatigy” = — v tandf , wheresh
is the angle between the solid-solid interface at the trijunc-
tion and thez direction. From Eq(30) we can calculate the
deviation of 6% from the value predicted by Cahn’s rule,
which is (€51~ &7)/No. In our simulations, this deviation
never exceeded 1°. Due to the finite interface width of the
phase-field model, it is very difficult to measure angles di-
rectly at the trijunction points, and such small deviations
cannot be resolved. Therefore, the procedure outlined above
that uses the whole trajectory of a trijunction point is the
only way to obtain quantitative information about the viola-
tion of Cahn’s rule directly from the simulations. It should be
emphasized, however, that while the deviation itself is small,
since the growth angléﬁ is itself small, theratio of the two
is not necessarily small. Indeed, it can be seen from Fig. 8
that the correction constitutes a sizable fraction of the growth
angle. This explains why such a small deviation can induce
quite large shifts in the stability spectrum.

The violation of Cahn’s hypothesis explains the remaining FIG. 12. (Color onlineg Snapshot pictures of a run with 40
discrepancies between our simulation results and the theorlamella pairs at eutectic composition age-0.1, A=1.175, and
To modify the theory by the inclusion of the corrective termw=0.2. From top to bottomt/7=0, 100 000, 375 000. In the lig-
in Eq. (30) seems possible, but is out of the scope of theuid, the smooth contours ahead of the front represent isoconcentra-
present paper. tion lines of the ternary impurity; the small “halos” just in front of
the growing lamellae are a visualization of the interlameléartec-
tic) diffusion field.

s [ R ey e e _p"

V. DYNAMICS OF COLONY FORMATION

To study the instabilities that lead to the formation of processor was used to optimize the yield.

colonies, we constructed large arrays as described before, Foru,,=0 (eutectic composition the initial evolution of
and perturbed the steady-state solution by a spatial displac&e lamellar array is a linear superposition of the long-
ment of the fields along thedirection. The amplitude of the wavelength modes described in the preceding section. That
displacement was a random variablexofith a white noise s, if we decompose the set of trijunction displacements into
spectrum and an amplitude comparable to one lattice spa&ourier modes, each mode grows with {neal or complex

ing. The goal was to study the initial instability of such ran- growth rate that was determined in the single mode simula-
dom arrays as well as the nonlinear dynamics of well-tions of the preceding section. In Fig. 12, we show the re-
developed colonies. The latter required long runs in bigsulting evolution for the same control parameters as in Fig.
systems. The necessary computational power was attained B¢a). The fastest growing mode is real with a wavelength of
porting our simulation code on a parallel Cray T3E com-about 12 . Indeed, this mode dominates the interface shape
puter. We used a simple domain-decomposition scheme fan the second snapshot, where the first lamella termination
parallelization, i.e., every processor calculated a part of thevents have occurred. At later times, the linear description
system. A load-balancing algorithm that adjusted the domaibecomes invalid. The further evolution is characterized by
boundaries as a function of the computational load for eaclthe growth of long protruding fingers, as can be seen in the
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FIG. 14. Run with 40 lamella pairs at eutectic composition and
g=0.2, A=1.5, andw=0.2. The dispersion relation is entirely
complex, and oscillatory patterns appear. Thin lines: solid-solid in-
terfaces. Thick solid line: final solid-liquid interface.
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“breathing mode” with wavelength about 19, whereas on
the left side, a traveling perturbation of the lamellar pattern
‘ I , | can be seen. The run was not continued after the first lamella
termination events, since the nonlinear regime is expected to
FIG. 13. Global view of the same run as in Fig. 12, without gray |ead to similar fingered patterns as in Fig. 12.
scale. Thin lines: solid-solid interfaces. Thick solid line: final solid-  p quite different scenario occurs for off-eutectic compo-
liquid interface. Thick dashed lines: trajectories of the grooves besijtions. An example is shown in Fig. 15. The linear regime is
tween fingers. There are two tip-splittin_g and one finger overgrowthsti” in good agreement with the predictions of REZ3]. In
events. N'ote the c_oncaye_ part of the_flnal front in the center of thpparticular, for sufficiently off-eutectic compositions, the
leftmost finger. a tip-splitting event will soon 1ake place. impurity-induced long-wavelength instability competes with
the 2x-oscillatory (20-O) instability that is already present
last snapshot picture. These fingers, however, do not reachim binary eutectics. For the temperature gradient and impu-
steady-state configuration up to the end of our simulationrity content chosen in our example, the long-wavelength in-
their shape continuously changes, and there are some tigtability is stationary and faster than tha-® instability.
splitting and overgrowth events. To highlight this feature, welndeed, we find that the Fourier spectrum of the trijunction
show in Fig. 13 a complete plot of the whole solidified displacements is initially dominated by the smooth long-
sample, where we have omitted the gray scale for clarity, andvavelength modes, while the\20 instability develops
where we have marked the trajectories of the “deepmuch more slowly. However, as soon as the instability be-
grooves” between neighboring fingers. This run was percomes “visible,” that is, the amplitude of the perturbation
formed on a lattice of size 160601200 and totals 1810° exceeds~0.1A,, localized fingerlike structures develop
iterations. On the Cray T3E, this run required about 3000 haround a lamella of the minority phase and rapidly grow
single processor CPU time. ahead of the front. The fine lamellae act almost as “guides”
In Fig. 14, we show a run with again 40 lamella pairs, butfor the well-developed fingers during the subsequent evolu-
now with both a larger temperature gradient and a largetion. In particular, note the long minority lamella that is like
initial spacing. Under these conditions, the instability devel-a“spine” for the rightmost finger in the third snapshate
ops more slowly, and the dispersion relation is entirely comtemind the reader that we use periodic boundary conditions
plex, such that we expect propagating or oscillatory modesn the lateral directions; hence, this is not a “wall effect”

( Indeed, on the right side of Fig. 14, there is an oscillatory
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FIG. 15. (Color online Snapshot pictures of a run with 20
lamella pairs at off-eutectic compositioru(=0.3), g=0.1, w
=0.2, and\y/W=56. From top to bottomt=85 000, 105 000,
125000, 225 00Qin units of 7).
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These structures, however, are only transient. In the final
stage, when the colonies are well developed, they have rather
flat tops and sharper “corners” than the fingers at eutectic
composition. In the flat parts at the center of the colonies,
sometimes a 2O mode develops until it generates some
new lamellae and dies out.

Structures such as the initial localized fingers are evi-
dently nonlinear. It thus appears that the linear regime of the
instability is much shorter for off-eutectic than for eutectic
compositions. It is presently unclear what precisely triggers
the formation of such fingers, and under which conditions
they can form. In view of the necessary computer time, we
did not carry out a detailed study to clarify these issues.

VI. CONCLUSIONS

We have presented a phase-field model for eutectic solidi-
fication in the presence of ternary impurities. This model has
enabled us to carry out large-scale simulations of colony for-
mation starting from arrays of up to 40 lamellae pairs.

In the linear regime, i.e., for small perturbations of the
unstable steady-state growth front, these simulations have
allowed us to critically test our previous linear stability
analysis[23]. We find a good overall agreement with our
theoretical predictions. Furthermore, a detailed treatment of
the simulation data has allowed us to check the assumptions
made in the linear stability analysis, and to precisely pinpoint
the reasons for the differences between the theory and simu-
lation results.

The most interesting conclusion is that the growth of the
lamellae is not exactly normal to the large-scale envelope of
the composite interface, a rule originally proposed by Cahn
and used in the subsequent stability studies by Datye-Langer
[6] and ourselve$23]. The motion of the trijunction points
can be roughly understood as a superposition of normal mo-
tion as stipulated by Cahn'’s rule and a slow “sliding” of the
trijunctions along the front with a sideways velocity that is
proportional to the gradient of the local lamellar spacing.
Equivalently, this motion can be understood as a diffusion of
the local lamellar spacingphase diffusioji it hence tends to
stabilize the front. In mathematical terms, it gives a new
positive contribution to the phase-diffusion coeffici¢At]
that scales a®  \j/\min, O equivalently, asDAPe. This
effect seems to be qualitatively different from the corrections
to the phase-diffusion coefficient reported previously in the-
oretical studies of binary eutectics submitted to a strong tem-
perature gradienf45,46. The resulting deviations of the
growth angles from 90° are very sméflelow1°). Hence, a
direct measurement of this effect in experiments is impos-
sible, since a precise measurement of the growth angles is
complicated by crystallographic effects, in particular, the
anisotropies of the surface tensiof$8]. However, the
growth rates of the long-wavelength modes are very sensi-
tive to a small change in this angle. This is especially impor-
tant for binary eutectics, where the impurity-driven morpho-
logical instability is absent. Indeed, it was recently found
[36] that the new contribution to the phase-diffusion coeffi-
cient leads to a large and experimentally detectable effect on
the critical wavelength for the onset of the long-wavelength
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lamella elimination instability in binary eutectics. The exploration of the enormously vast parameter space of
Regarding the dynamics of fully developed colonies, wegrowth conditions and material properties that govern the

find that after the destabilization of the planar front, the arrayformation of complex two-phase microstructures remains,

of two-phase cells undergoes a complicated and seemingljowever, a formidable numerical task.

chaotic sequence of tip-splitting and cell elimination events.

We were unable, in our simulations, to attain a steady-state ACKNOWLEDGMENTS

configuration of the large-scale pattern, that is, the envelope This research was supported by U.S. DOE Grant No. DE-

of the front. This result is consistent with the fact that mono---55_goER45471 and benefited from computer time at the
phase cellular arrays in directional solidification of dilute National Energy Research Scientific Computing Center
alloys are unstable in the absence of crystalline aniSOtrOPYNERSQ Lawrence Berkeley National Laboratory, and at

[38,37). In fact, the lack of stability of the eutectic coloniesaﬁhe Nortr'leastern University Advanced Scientific éomputa-

in the absence of anisotropy suggests that the large-sc n Center(NU-ASCC). We thank Silvee Akamatsu and
composite eutectic interface behaves qualitatively as a MONQsapriel Faivre for many stimulating discussions.

phase front even beyond the linear regime. In this analogy,
the addition of solid-liquid or solid-solid anisotropy could

potentially produce an effective anisotropy of the composite
interface that stabilizes its large-scale envelope. The quanti-
tative exploration of this analogy, however, is far beyond the
scope of the present work. Here, we show how to choose the parameters of the

Regarding the comparison between our simulations an@hase-field model in order to obtain a suitable phase dia-
the experimental observations of R¢L8], we find many gram, and we relate the phase-field model to the classic free-
similarities. In particular, we find in the simulations the 0s-boundary formulation of solidification. Our starting point is
cillatory unstable modes predicted by our stability analysisgq. (3). For the free energies of the solid and liquid phases,
Such wavy structures are also observed in the experiments, andf;,, we take
We also find that well-developed two-phase cells do not
seem to reach a steady state up to the largest times simulated. fiig(u,C, T)= u2/2+b(TINT—T)— €, (A1)

This is in agreement with the experiments, where no steady

state has been reached even on length and time scales faifsofU,C, T)=a(u?—1)?+b(TINT—T) — €C— aAT/Tg,
superior to the range of our simulatiompare our Fig. 13 (A2)

with Fig. 14 of Ref.[18]). . . .

A nugmber of experimental observations, however, remairghereAT:T.E_T.'S the undercooling with respect to the
to be understood. First, unstable modes in the experimenfdNary eutectic point, and, b, €5, ¢ , anda are constants.
are sometimes manifested as waves that are emitted by |cT-_h'S choice is motlvate_d by the following considerations.
calized perturbations, such as grain boundaries. These waved1ce there are two solid phasés, must have a double-
can propagate along the front, which remains planar, rathé_’t"e” structure inu; in contrast fjq hgs a single well. Without
than be a transient that precedes colony formation. Some dfPurities €=0), at the eutectic temperature all three
these propagating waves seem to have characteristics of sgiases must have the same free energy; TorTe (T
tary waves. No such structures have been observed in ogr 1), the liquid minimum must be belovabove the solid
simulations. Furthermore, we observe some localized twoMinima. This is conveniently achieved by the last term on
phase fingers that play a role during the instability of planathe right-hand side of EqA2) that simply shiftsfs, with
fronts at off-eutectic compositions, and that are similar to"@SPect tofjq; formally, « is equivalent to the latent heat.
structures seen in the experimeritompare, in particular, ~ 1he impurity terms have a form that is equivalent to the
our Fig. 15 with Fig. 6 of Ref[18]). However, other experi- dilute limit of a regular solution model. Indeed, the terms
mentally observed patterns, such as “multiplet fingers” andcontainingc correspond to the dilute approximations for the
two-phase dendrites are not reproduced by our simulations. §tropy of mixing and the energy cost of the impurities, re-
is possible that the existence of such patterns depends senSpectively, withe, representing the difference in bond ener-
tively on the structure of the eutectic phase diagram, in pardi€S upon replacing a solvent atom by an impurity in phase
ticular, on the asymmetry of the two solid phases and thei#- The constanb, which sets the energy scale, should for-
surface energies that have been shown to influence the st&ally be proportional to the temperature. Since we are, how-
bility of binary lamellar eutectic§7], and on crystalline an- €Ver, only interested in a narrow temperature range around
isotropy. Te, we simply use a constant, _

The present phase-field model could easily be modified to The various coefficients can be related to physical quan-
include some degree of asymmetry between phases as wélfies through the construction of a phase diagram. The con-
as both solid-liquid and solid-solid anisotropy. In addition, ditions for thermodynamic equilibrium between two distinct
the use of more general phase-field models with several oRhases ard) equal chemical potentials for the eutectic com-
der parameterg32—35, as well as the use of more efficient Ponents(ii) equal chemical potentials for the ternary impu-
phase-field formulations29] and numerical algorithms rity, and iii) equal grand potential, i.e.,

[47,48 that greatly enhance the accessible length and time
scales, could help to elucidate these questions in the future.

APPENDIX: PHASE DIAGRAM
AND SHARP-INTERFACE LIMIT
OF THE PHASE-FIELD MODEL

/Usté’fsoI/(?u|uS:/U«IE(?fqu/(?u|u|v (A3)
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= If sorl :/~L|Ef9f|iq/(75|~c, (A4) of the macroscopic mpdels of s.,olidificaf[ion by the technique
s ! of matched asymptotic expansions. This procedure has been
-~ ~_ detailed in several publications for models that are similar to
Qs=foor s~ usCs= 4 =fjg—mu—w€, (AS)  gyrs, and hence we will only outline the results. Each solid
has to reject its minority component and the ternary impurity

rivct]r?sr?rlfvsill?g (;Vn’ dVIi: julj E:.iggf égﬁ dei;?g:]l'sbgggq ggn(;%nrg:t}i_into the liquid in order to grow. Since the concentrations are
. q i 9 locally conserved quantities, mass balance at the interface
cally described as a “common tangent plane” to the free

energy surface, analogous to the well-known double-tanger'ar[:?ep I:ﬁivtirr]%t E,Ziﬁggfyy Ib gundary conditions of Stefan type at

construction for binary alloys. From EA4), we get at once

the standard partition relation for a dilute alloy, —Dau=v,(U—uy) (A14)
nY— Unll] s/

Ts=KT, (A6) ~
. N o ~Dit=0n(1-K)T. (A15)
with a partition coefficient given by
_ L Here,v, andd, are the normal velocity of the interface and
K=exd —(es—a)/b]. (A7) the derivative normal to the interface, and ug, andc, are
Next, from Eq.(A3), under the assumptiodT/Te<1 (i.e., the valyes of the concentratlons at the |IC]U!d and solid _S|des
for temperatures close to the eutectic temperatuve have of the interface, respectively. These equations are valid for

u<1 andug~=*1, and we get both solid-liquid interfaces; note that.on. tleliquid inter-
face,u—ug>0, whereas on thg-liquid interface,u;—ug
u <0. The concentrations at the interface are related to tem-
Us=gg 1 (A8)  perature, shape, and speed of the interface by a generalized

Gibbs-Thomson condition,
where the two signs correspond to the two distinct solid-
liquid equilibria. Finally, using Eqs(A5), (A6), and (A8), T=Tg+myu—M¢ —I'K—v,/py, (Al16)
we obtain

where the uppeflower) sign is for thea (B) phase, the

aAT/Te=b(1-K)T *u,. (A9) liquidus slopesn, and are given by EqsA11) and(A12),

I' is the Gibbs-Thomson coefficierit, is the local curvature
of the interfaceu, is the linear kinetic coefficient, and the
concentrations on the solid side are linked to those on the
liquid side via Eqs(A6) and(A8). Without the lasikinetic)
wherem, andf are the magnitudes of the liquidus slopesterm* Eq.(Al6) is a statement of local equilibrium at the

for the eutectic components and the impurity, respectively, Nterface, including capillary effects. The Gibbs-Thomson
coefficient " is given in physical units byI'=yTg/L,

Using the definition ofAT, this can be rewritten as

T:TEi muU|_mE| , (A].O)

dT| Te where vy is the surface tension of the solid-liquid interface,
M= 50~ o (All)  andL is the latent heat of melting. In the units of our model,
' this becomes
dT| b(1-K)T
= — :(—)E_ (A12) I'=yTela. (A17)
de, a

The surface tensiony, is obtained as in Ref.30] by first
Note that the scaled liquidus slope, can be related to the solving numerically the one-dimensional stationary versions
“true” liquidus slopemin the phase diagram with the help of of the equations of motion to obtain the interface profiles,
Eq. (1), and then computing the excess free energy per unit surface
by inserting the profiles into the free energy functional. Note
my=m(Cg—Cy)/2. (A13)  that, since the free energy density is taken dimensionless
here, surface tensions have units of length. The solid-solid

The parametea controls the ratio of the liquidus and solidus surface tension can be calculated analytically since along the

slopes in the eutectic phase diagram; for simplicity, we will . _ T
fix in the following a=1/8, which gives a concentration af interface$=1, and we obtairyss= (2/3)W, .

jump across the interface that is independent of temperature From the s_urface tensions, we can deterr_nme the contact
(parallel liquidus and solidus lingsThe parameteb, to- angle 6, that is, the angle between the horizontal and the

gether with the partition coefficier€, fixes the ratio of eu- solid—lliquid interfaces _at a trijgnction point whe_r<_e the solid-
tectic and impurity liquidus slope§1}m —b(1—K) solid interface is vertical. Using Young’s condition of me-
il u— .

When the thickness of the diffuse interfaces is muchCh"’mlcal equilibrium, we get

smaller than all other physical length scales, and in particular
the lamellar spacing, the above phase-field equations can sing= = (A18)
be related to the more conventional sharp-interface equations 274
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We have not explicitly calculated the value of the kineticand the solid sides of a moving interface. This generates
coefficientu, that appears in the last term of HA16). This  correction terms both in the Gibbs-Thomson condition
would require to compute several integrals in the coupledaind the mass balance relations, E¢al15) and (A16).
variablesu and ¢ through the solid-liquid interfacesee Ref.  However, these corrections are proportional to the interface
[28] for more details in a simpler casavhich can only be velocity, and are expected to be small for the range of solidi-
done numerically. Furthermore, we have neglected in thdication speeds used in our present simulations. Indeed, our
above analysis other nonequilibrium effects, and, in particusimulation results indicate that the nonequilibrium effects are
lar, solute trappind49] that is generally present in phase- not entirely negligible; however, they are not important
field models for alloy solidificatioh29,50. It is known that  enough to justify a detailed analysis that would be quite in-
solute trapping modifies the compositions on both the liquidvolved [29].
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