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Surface-directed phase separation with off-critical composition: Analytical and numerical results
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We study the interplay of wetting and phase separation in an unstable binary mik@Byenjth off-critical
composition, placed in contact with a surface which prefers the comp@néile consider surface potentials
V(z)~z ", wherezis the distance from the surface, and present analytical arguments and detailed numerical
results to elucidate wetting-layer kinetics for arbitrary mixture compositions. If the preferred component is the
minority phase, the wetting-layer thickness exhibits a potential-specific behavior at early times
~ 71(0*+2) pefore crossing over to the universal growth l&y~ 7>. On the other hand, if the preferred
component is the majority phase, there is a crossover from potential-specific gesvieforg to a slower
growth regime.
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I. INTRODUCTION surface(S) with a preferential attraction for one of the com-
ponents of the mixtur¢say,A). Let y5, vg, ando denote
Consider a binary mixtureAB), which is homogeneous the surface tensions betweénS, B-S, and A-B, respec-
at high temperatures and phase-separated at low tempetésely. Then, the contact angebetweerA andSis obtained
tures. If the mixture is rapidly quenched from the one-phases the solution ofr cosf=yg— v, [9]. This equation has no
region of the phase diagram to the two-phase region, isolution if yg—ya>o, which corresponds to a situation
evolves towards the phase-separated state via a nonlineahere the componera completely wets the surfadeom-
phase ordering proce§d—3]. Much research interest has pletely wet(CW) morphology. For yg— ya<o, bothA and
focused on this far-from-equilibrium evolution, and there B are in contact with the surface in a partially wW@&@W)
now exists a good understanding of phase ordering dynamiosorphology, though there is a surplus of the preferred com-
for bulk binary mixtures. Typically, the segregating systemponentA at the surface. The equilibrium transitions between
coarsens intd\-rich andB-rich domains, which are charac- PW and CW morphologies, and the effects of geometry and
terized by a growing length scalg(7)~ 7%, wherer is the composition, have been extensively studied in the literature
time after the quench. The growth exponeft 1/3 when  [10-12. _ . _
coarsening is driven by a diffusive mechanism, as in solid N this paper, we will focus on the following dynamical
mixtures. This growth law is referred to as the Lifshitz- ProPlem. Consider a homogeneous mixtt (at high tem-
Slyozov or LS law[4]. For fluid mixtures, the hydrodynamic Peraturé in contact with a surface which prefefs At time

velocity field provides additional modes of material trans—T:O’ the system is quenched deep below 'the miscibil'ity
port. Droplet diffusion and coagulation also yields a growthgap' The subsequent evolution of the system is characterized

. . : by (a) bulk phase separatiorib) kinetics of wetting at the
exponer]t ¢=1/3, and constltytes the domlngnt groyvth surface; andc) the dynamical interplay of surface wetting
mechanism when the coarsening morphology is not bicon

! . ) . and bulk phase separation.

funuous [5]. ngever,hﬁlthe pr;]ase-separatmg fluid haﬁ an - This pr%blem ispof great experimental interest, and was
interconnected morphology, there are various growth rez . . ' i
gimes with crossovers from=1/3 (diffusive) — =1 (vis- first studied by Jonegt al. [13] in the context of phase

r L . separating polymer mixtures in a “semi-infinite” geometry.
Egl;]s hydrodynamjc — $=2/3 (inertial - hydrodynamig These authors examined laterally averaged composition pro-

Apart f the d . i . talist files as a function of distance from the wetting surface. In the
part from the domain growth faws, experimentalists areé,, ,,, - e lateral-averaging procedure does not yield a sys-

also m_terested In quantitative featu_res Of the phaset- matic behavior because the phase-separation profiles have
separating morprlolog|§s—as reflected in the time-depende ndomly oriented wave vectors. However, at the surface,
structure factoS(k,7) (k being the wave vectoor its Fou-  there is a wetting layer of the preferred component, which is
rier transform, the correlation function. In the limit where fgjlowed by a depletion layer, etc. The surface morphology is
one of the components is present in a vanishingly small fractime dependent and propagates into the bulk. There have
tion, these quantities were analytica”y obtained by LifShitheen many Subsequent experiments on this probmal
and SIyOZO\[4] HOWeVer, our Understanding of the structure and some of these are reviewed by Kraum_
factor is relatively limited in the case where appreciable frac-  The first phenomenological model of surface-directed
tions of both Eomponents are present. We understand ﬂ}ﬂqase separation was proposed by Puri and Biftidr and
behavior ofS(k, 7) in the limits k—0 andk—~ [2,3], but  will be discussed in Sec. Il. It consists ¢&) the Cahn-
there is no comprehensive theory for intermediate valués of Hilliard-Cook (CHC) model for bulk phase separation
[8]. supplemented with a surface-potential term; il two
Next, let us focus on the experimentally important prob-boundary conditions on the order parameter at the surface.
lem of an immiscible binary mixtureAB) in contact with a  This and similar models have been studied analytically and
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numerically by various authofs8-23, and some of these s the average order parameter. The quantifigé ) and

works have been reviewed by Puri and Frid@4] and ,(x 1) in Eq. (1) refer to the current and chemical-potential
Binder[25]. Most of these studies have focused on mixtureyifference betweer andB respectively.

with critical composition, and there have been few studies of |, Eq. (1), V(2) denotes the surface potential. We have

the off-critical cas¢23,19. studied both short-rangddelta function or exponentigand

The experimental and numerical studies of this problem,,er-law potentials. Here, we present results for the power-
have reported a wide range of growth exponents for thg,, case

wetting-layer dynamics. In a recent pap@6], we have at-

tempted to systematize these observations in the context of V(z)=hy, z=1,
segregation driven by diffusive processes. In particular, we
have focused on the crossovers from potential-specific hy
. _ ; i =—, z>1, 2
growth to universal growth; and the role of mixture compo Z"

sition in determining growth laws and crossovers. This paper
is an expanded version of R¢R6]. It presents many impor- where we introduce a lower cutoff to avoid the power-law
tant results for a broad range of compositions, and contains singularity atz=0. This cutoff is placed at=1, rather than
pedagogical exposition of the issues discussed in our earliét some “small” value, as our numerical discretization of Eq.
paper. (1) (described beloywill use a large mesh siz&éx=1 in all

This paper is organized as follows. Section Il discussesoordinate directions. Such potentials are ubiquitous in the
our modeling of surface-directed phase separation, and preontext of surface-molecule interactions, erg= «—d, with
sents numerical details regarding our simulations. In Sec. lllgx=6 and 7 corresponding to cases with nonretarded and
we present detailed analytical and numerical results. Sectioretarded van der Waals’ interactions, respectivid9,30.
IV concludes this paper with a summary and discussion ofClearly, the short-ranged case is recovered in the lmit

our results. — 0,
The thermal fluctuations in E¢l) are modeled by Gauss-
Il. MODELING OF SURFACE-DIRECTED PHASE ian white noise with zero mean,
SEPARATION

: . . : . (&(X,1)=0, i=1-d,
Consider a binary mixtureAB) in contact with a surface
Ioca;e_d atz= 0_. This physical_system is described by the (&(X, r)§,-(>?’,r’)>=e§ij5()?—)?’)5(7— ), 3)
semi-infinite Ising model. To mimic the phase separation of a _ N
binary mixture, we associate stochastic spin-exchange kinewhere e measures the noise strength. The quartitis re-
ics with the Ising model by placing it in contact with a heat lated to system parameters [d5,24
bath. The master equation for this stochastic evolution can be 5 ( -

-2
used to obtain an evolution equation for the coarse-grained e=|—-1| &9, (4
order parametef27,28. Details of this procedure in the 3\ T
present context are provided in earlier publicatiphg,28| . . .
and we do not replicate them here. The resultant model is th\évhere T, is the bulk critical temperature] is the guench

. . temperature, andy, is the bulk correlation length. In mean-
usual CHC model for bulk phase separation, which has th R 1 : :
following form (in dimensionless unijs ﬁek_j theory,§,= v2/q(1—T/T) %, whereq is the coordi-
nation number of the lattice.

Ap(X,7) .o Finally, we must supplement E¢l) with boundary con-
s VI ditions atz=0, as follows[17,18:
N - . dd(p,z=0, . d
==VA{=Vux,7)+E&x,7} WZV(O)+9¢(P’Z:0J)+7£ . (5)
. R ) ) 1 ) z=0
=—V-[V B(X,7) = p(X,7)°+ §V2¢(X,7) P 1
0={—| p—p3*+=V?p+V(2)|+(noise; . (6)
0z 2 -0
+V(z) |+ &(X 1
@ g(X'T)]’ @) Equation(5) rapidly relaxes the surface value of the order

. - , , parameter to its equilibrium value—we will use its static
where (x,7)= ¢(p,z,7) is the order parameter, which de- \ersion here. Equatiof6) corresponds to zero current across
pends on dimensionless spacand timer. The spatial vari-  the planez=0, and enforces conservation of the order pa-
able is decomposed intal{-1) variablesp parallel to the  rameter. In general, the paramethisn, e,g, y determine the
wall (d being dimensionality and one variable (>0) per-  equilibrium phase diagram of the surfaj@#,31]. Note that
pendicular to the wall. In E(1), the order parameter locally both first- and second-order wetting transitions are described
saturates to its equilibrium values @ = +1 (correspond- by our model—we will always operate in the most interest-
ing to A, say and¢* = —1 (corresponding t@). However, ing regime, above the temperature of the wetting transition,
the evolution conserves the overall composition, i.e.where the surface is completely wetted by the preferred com-
V7 dXp(X,7)= ¢, WhereV is the system volume angl,  ponent.

061602-2



SURFACE-DIRECTED PHASE SEPARATION WITH OFF. . PHYSICAL REVIEW E 66, 061602 (2002

The model described above is appropriate for a semi-
infinite geometry. The extension to a thin-filiar othey ge- 390
ometry is straightforward—the boundary conditions in Egs.

(5) and (6) have to be implemented on all surfaces. The
thin-film geometry gives rise to many important physical
features because of the interaction of surface-directed wave™
arising from different boundarid$2].

Next, it is relevant to discuss details of our Langevin
simulation technigues. We implemented an Euler-discretizec
version of Eq.(1) with isotropic Laplacians and derivatives
on ad=2 square lattice of sizBl, XN,. The discretization
mesh sizes in space and time weékxg=1 and A7=0.03,
respectively. The rather large mesh size in space is reasor3%0
able as it is smaller than the intrinsic thickness of the inter-
face between regions of coexisting phases. Furthermore, a
other length scales in our simulatiofesg., domain size and
wetting-layer thicknegsdiverge with time.

The boundary conditions in Eq&) and(6) were imposed - .
at z=0, and flat boundary conditions were imposedzat 'o“....... LY
:sz ViZ., ........ ". .-

0 400 O 400
H(X,N,+1,7)= h(x,N,—1,7), X X

Time = 24000

N

FIG. 1. Evolution of a homogeneous binary mixtukeR) from
our model in Egs.(1), (5), and (6). The simulation details and
parameters are discussed in the text. The system sizéNwas\,
(N,=400,N,=300), and the surface which prefers (¢>0,

J,(X,N,,7)=J,(X,N,+1,7)=0, (7)

where thez component of the current is identified from Eq.
1). Periodic boundary conditions are imposed in xtairec- -
D y P marked in blackis located az= 0. The initial condition forg(x,0)

tion. onsisted of small-amplitude random fluctuations about a back
The parameter values in our simulations were chosen as P

follows. We consider a nonretarded van der Waals’ potentiaﬁJround valueg,=—0.2. For our choice of parameters, the surface
ith n—4 (in d=2 dh. =0.8. The oth t | is completely wetted byA. We show evolution pictures at four

with n=4 (in d=2) andh,=0.8. The 0 er parameter val- - yigerent times, as indicated.

ues wereg=—0.4 andy=0.4, corresponding to complete

wetting in equilibrium[24,31]. Finally, thermal noise of _ -

strength e is mimicked by uniformly distributed random Tily interested in off-critical quenches,#0), where there

numbers betweep—A,, A,]. The appropriate noise ampli- iS an asymmetry in the composition. The case of a critical
tude in our Langevin simulation is quench o,=0) has already been studied extensively

. [17,18,20,21
3e
An= \/(AX)dAT (8)

Our d=2 simulations are performed for either=0 (T
=0); or e=0.0817 A=2.858 forAx=1 and A7=0.03), ) ) o
which corresponds to a deep quench witk0.22T,, from Figure 1 shows the evolution from a homogeneous initial
Eq. (4). We have also done simulations with Gaussian-condition for ¢,=—0.2, corresponding to a mixture with

distributed noise, and the results are equivalent to those pré0% A (the preferred componenand 60%B. The system
sented here. size isN,=400,N,=300. The surface is located at0,

In the following section, we will show evolution pictures and we show evo_Iution snapshots at four different times. Let
resulting from homogeneous initial conditions, wih{x,0) ~ US focus on the final frame at=24000. The bulklargez)
consisting of small-amplitude uniformly distributed fluctua- 1S _characterized by the usual droplet morphology for off-
tions about a background valier off criticality) ¢o. We critical phase separatid83]. There is a wetting layer of the
will also present laterally averaged order-parameter profileBreferred component at the surface, which is followed by a
and study their quantitative characteristics. All statistical dat&l€PIetion layer. Figure(@) shows laterally averaged profiles

presented in this paper are obtained as an average over 288 & function of depth from the surfaag,(z,7) vs z, cor-
independent runs. responding to the snapshots in Fig{Eigure Za) is compa-

rable to the averaged profiles in the experiments of Jones
et al, cf. Fig. 1 of Ref[13].] The averaging procedure gives
b2, 7)= ¢y in the bulk, where the phase-separation pro-
Let us now present detailed analytical and numerical refiles are randomly oriented. At the surface, there is a system-
sults. All numerical results are presented for the noisy casegtic wetting profile, as discussed earlier. We will characterize
unless stated otherwise. As discussed earlier, we are prim#his profile by the zero crossings p$.(z, 7) — ¢o]—R1(7)

A. Minority component wets the surface(¢,<<0)

1. Evolution pictures and laterally averaged profiles

III. ANALYTICAL AND NUMERICAL RESULTS
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FIG. 2. (a) Plot of laterally averaged profileg,(z,7) vs z, for
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FIG. 3. Analogous to Fig. 1, but fapg= —0.6.

potential is flat in the wetting layer, i.e., the current is zero
and the system has equilibrated locally. The chemical poten-
tial increases through the depletion layer, giving a negative
currentd,, (i.e., flow of A to the wetting layer Subsequent
to the second enrichment layer, the lateral-averaging proce-
dure does not yield a systematic behavior gqf, and J,, .
Figure 3 is analogous to Fig. 1, but corresponds to the
case ¢o=—0.6. The mean-field spinodal ighs= 13
=0.577, so this composition lies slightly beyond the
spinodal—in the “nucleation and growth” region of the
phase diagram. Thermal noise nucleates many droplets of the
minority phase in the bulk(Note that the singular behavior
at the spinodal is washed out for any nonzero noise strength
[1].) These droplets coarsen, along with the wetting layer at

the evolution depicted in Fig. 1. The laterally averaged profiles argha syrface. Figure 4 shows the corresponding laterally aver-

obtained by averaging(x,z, ) along thex direction for a typical

aged profiles. In general, the scenario is similar to that shown

snapshot shown in Fig. 1. Furthermore, we average over 200 indqh Figs. 1 and 2, though the time scales of growth are slower

pendent runs. A horizontal line is drawn ég= —0.2, correspond-
ing to the average composition of the mixtu(e) Plot of laterally
averaged quantitieg(z) vs z, for the noiselessT=0) version of
the evolution depicted in Fig. 1. We present results fpr
= ¢hay» May:Jay @t 7=2400. The chemical potential(X,7) and cur-
rentJ,(X,7) are defined in the text. The and— signs refer to the
sign of ¢,(z,7) in a particular region.

for ¢o=—0.6. (An intermediate casep,=—0.4, is com-
pletely analogou$26], and hence not shown here.

Finally, we consider the evolution of an extremely off-
critical case (o= —0.8 or 10%A and 90%B) in Fig. 5. In
this case, the thermal fluctuations are not sufficient to nucle-
ate anA-rich droplet on the time scale of our simulation.

Thus, there is no phase separation in the bulk—nevertheless,
there is a rapid growth of the wetting layer at the surface.

and Ry(7) denote the first and second zeros, respectivelyFigure Ga) shows the laterally averaged profiles correspond-
and both of these grow with time.

ing to Fig. 5. Notice that thé-rich surface wetting layer is

It is also relevant to examine the dependence of the followed by a layer which is moderately depletedAnand
chemical potential u(X,7), and z current J,(X,7)= extends deep into the bulk. The behavior é&y=— 0.8 dif-
—duldz. Figure 2b) plots the laterally averaged quantities fers qualitatively from that for¢o=—0.2—-0.6, and we
balZ2,7), mafz,7), andJ(z,7) vs z In this case, we show study u,(z,7), Ja(2,7) Vs z in Fig. 6b). Again, we show
data sets at=2400 forT=0 [no thermal fluctuations in Eq. data for the case witli=0 at7=2400. The chemical poten-
(1)] to obtain a better understanding of the behavior of varitial is approximately fla{and z current zerp in the wetting
ous physical quantities. On the scale of Figb)2we only layer, as in Fig. &). Then, u,/(z,7) increases monotoni-
see the positive ) and negative {) excursions of the cally with z (resulting in a current of to the wetting layey,
order-parameter profile, which are as indicated. The chemicalnd saturates exponentially to its bulk valuezasc.
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= 7=24000
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FIG. 4. Analogous to Fig. @), but for ¢o=—0.6.

2. Growth kinetics of wetting layers

We are interested in understanding the time dependence
of various features of the wetting profiles seen in Figs) 2
and 4, where the bulk undergoes phase separdtiga.will
focus on the case of extremely off-critical quenches [ater.
We denote the thickness of the depletion layer hgs)
=Ra(7) —Ry(7).

Consider the typical evolution snapshots shown in Figs. 1
and 3. The wetting layer grows due to two contributions to
the chemical-potential gradiefor currenj: (a) the surface-
potential gradient drived to the wetting layer with a current
dV(z)/dz|Z:Rl; (b) the intrinsic chemical potentigdue to
local curvature is higher on the curved surface of bulk
A-rich droplets than on the flat wetting layer. This difference

Time = 60 Time = 240
300
N
IS
0
Time = 2400 Time = 24000

300
N

00 400 O 400

X X

FIG. 5. Analogous to Fig. 1, but fapy=—0.8.

061602-5

65(Z7)

PHYSICAL REVIEW E 66, 061602 (2002

9,=-08

[(2) T

z
by = -0.8 (T=0)
105 T T B
av
" l‘llav
== Jav
05H =
N 0.0
o
-05H 4
e
0 50 100 150 200

B dVv(z)

z

Rao(7)

h(7)=

dz

T 4o

1+ ¢g

o

g, L

Ri(7),

20 Ry(7).

FIG. 6. Analogous to Figs.(d and 2b), but for ¢p=—0.8.

is estimated as/L, whereL(7) is the bulk domain size, and
o is the surface tensiofiln our dimensionless units, we have
o=2/3.) The corresponding current contribution at the wet-
ting layer is— o/(Lh). Thus theA current in thez direction

To estimateh(7), we assume that the wetting and deple-
tion layers have an overall composition &f. This yields
the relations
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FIG. 7. Plot ofR,/R; vs 7 for ¢y=0.0,—0.2-0.4,-0.6. We
defineR,(7) as the firstz value at which¢,(z,7) crossesp,, and
R,(7) as the second value at which¢,(z,7) crossespg.

Figure 7 plotsR,/R; vs 7 for ¢y;=0.0,-0.2,-0.4,—0.6.

The horizontal lines denote the appropriate values of 2/(

+ ¢). We see that the scaling assumption of ELQ) is
reasonable.

Using the power-law form of the potential from E@),
andh(r) from Eqg. (10), Eqg. (9) yields[26]

= +
dr 2RI LR\ 1— ¢

de _ nhl g /1+ ¢0) (11)

The bulk length scale obeys the LS growth law(7)
=f(¢o)(o7)Y3, where the functiorf(¢,) is known analyti-

PHYSICAL REVIEW E66, 061602 (2002

extremely delayed, depending on the various system param-
eters and mixture composition. This explains the observation
of diverse exponents in experiments and numerical simula-
tions. Figure 8) of Ref.[26] plots IMTRy(7)] vs In7 for ¢q
=0.0,-0.2,-0.4,—0.6 and illustrates this crossover behav-
ior.

Before we proceed, it is useful to discuss the applicability
of the above arguments in the limit,— 0. In this case, the
bulk is nearly bicontinuous and has surfaces with both posi-
tive and negative curvatures. Then, it is appropriate to re-
place the second term on the RHS of E9). by its average
value, which changes sign af, goes through zero. This
would lead to a divergence of the crossover time in @8)
as ¢o— 0. However, Figure @) of Ref. [26] does not ex-
hibit this feature because the above arguments do not ac-
count for the fact that even thg,=0 evolution morphology
is characterized by-rich droplets in the region subsequent
to the depletion layef18,24. These droplets are a result of
the flow of A to the wetting layer through the depletion layer.

It is also relevant to separately discuss the cases of the
power-law potential witm=1; and the short-ranged poten-
tial V(z) =h,exp(—=2/ ), where§ is the characteristic decay
length. For the cas¥(z)~z 1, both terms on the RHS of
Eq. (11) are comparable for all times, and the resultant
growth law is the LS lawR;(7)~ 2. On the other hand,
the short-ranged potential yields a logarithmic early-time
]growth, Ry(7)~ & In(hy7/52), which rapidly crosses over to
the universal LS growth law. However, thermal fluctuations
may affect the observation of the early-time logarithmic
growth regime{30].

Next, let us consider the case of extremely off-critical
quenches ¢y<0), where there is no bulk phase
separation—see Fig. 5. In this situation, there are no droplets
in the bulk to feed the wetting layer. Thus, the intrinsic
chemical potential in the bulk is the uniform valyg= ¢3
— ¢o. The corresponding current to the wetting layer is
—umolh, where h(7) is now the typical length scale on

cally in the limit | ¢o| —1 [2,3], and studied numerically for which the order parameter exponentially saturates to its bulk
other values ofp, [33]. As R; grows with time, the first term  value—see Fig. ). We neglect lateral fluctuations and as-
on the right-hand-sidéRHS) of Eq. (11) is dominant at early  sume a simple forngwhich is justified shortlyfor ¢(z,7) as
times (for n>1) and the second term is dominant at latefollows:

times. This yields the growth regimes as

Ri(7)=[n(n+2)h, Y20+ e r |

[3 (1o
"V a=go 7" T (2

(ﬁ(Z,T):l, z<< Rl(T);
~ $o—Boe @RIN >R (7). (14

The composition constraint then yields

The crossover time scale is obtained by equating the early- h(r)~ (1= o) Ry (7). (15

time and late-time length scales dsr n>1)
Te=[n(n+2)h, 3"

X[f(¢0) 1_¢0 3(n+2)/2(n—1)

o [(n+2)/(n=1)]
3 1+4¢o

13

Bo

Thus, Eq.(11) is modified as

dRy _nhy  woBo 1 nhy  [¢ol(1+¢0)Bo
dr  RITL 1-¢oR; RI*1 Ry '

(16)

Clearly, the crossover between the potential-dependent The corresponding growth regimes in this case(feall

growth regime and the universal regimB,¢~ %) can be

)
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FIG. 8. Plot of IfRy(7)] vs In7 for ¢o=—0.8. The solid line

has a slope of 1/2, as indicated. FIG. 9. Analogous to Fig. 1, but fap,=
Ry(7)=[n(n+2)h, Y2 71+2) 7 r | ¥(z,5)=B (s)e Y&+ +B_(s)e” ¥¢-
z
=[2| pol(1+ po)Bo] 272, ™7 (17) + i—ge*z’@j dz'e? '€ v(2')
0
Thus, there is a crossover from potential-dependent growth .
(as be_:forez to a universal diffusive growth law at the cross- + éeZ/§+f dzre*Z’/§+VN(ZI)
over time SA 2
Te=[Nn(n+2)hy12"[2| | (1+ o) Bo]~"+2N. (18) _&

z
e*Z/f,J- dzrez'/g,vn(zl)
SA 0
Figure 8 plots IfR(7)] vs In7 for ¢o=—0.8 and illustrates
the asymptotically diffusive growth of the wetting layer. For , "
the short-ranged surface potential, the initial growth regime N Qey@ L dz'e”*-v"(z"), (22)
is logarithmic, as in the previous case.
We should now justify our earlier usage of the exponen+yhere
tially saturating profile in Eq(14). The order-parameter pro-
file subsequent to the wetting laygz>R;(7) in Fig. 6(b)] A=¢2—E72, £.2=(3¢2—1)= (32— 1)2—2s.
can be approximately obtained by linearizing the determin- (22)
istic (T=0) version of Eq.(1) about the background value
Bo asd(X,7) = o+ (X, 7). We neglect fluctuations parallel N EQ. (21), the coefficientsB , (s) andB_(s) are obtained
to the surface to obtain the following linear equation for by matching the solutions f@>R,(7) andz<R,(7), which

W(z,7): can only be done numerically in general. However, an
asymptotic analysiss(—0 or — =) [34] shows that, rap-
&1/{(2 7) PP(z,7) 1 d*W(z,7) d?V(z) idly saturates to a constant, where@s grows diffusively
=(3¢5—1) 2 2 oA T dF (¢_~7'?) and can be identified with the “thickness” of the
(19) depletion layeh(7).
It is convenient to Laplace transform this equation to obtain B. Majority component wets the surface( ¢,>0)
&zzp(z s 1 &4w(z s) V'(2) 1. Evolution pictures and laterally averaged profiles
_ 27 ) _ - 1 _
S(2,5)=(3¢5—1)——= 2 o s Let us next consider the case whepg>0, so that the

(200  majority component wets the surface. Figure 9 shows the
evolution of a disordered initial condition witthy=0.2. In
where (z,s)= [,dre *y(z,7), and we assume/(z,0) this case, the droplets are of the nonwetting component. A
=0. The general solution of Eq20) is [34] thin wetting layer is formed on the time scales of our simu-
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9 =0.2 0,=0.8
2 2.0
@) T T T — =60 ' I — 1=60
- 1=240 - T=240
~~~~~~~ ©=2400 o = 2400
~~~~~ =24000 ~= 7=24000
15
S g 1.0 —
& &
05 -
1 | |
0.05 10 20 30 40
z z
¢, = 0.2 (T=0) FIG. 11. Analogous to Fig.(d), but for ¢¢=0.8.
o=0.
002 T T T T sharply as one moves further into the bulk—resulting in a

competingA current to larger values of Similar consider-
ations apply for other values ap,>0, when the bulk un-
0.00 dabd SU dergoes phase separation. For the sake of brevity, we do not
show evolution pictures and laterally averaged profiles for
these cases here.
Finally, we consider an extremely off-critical case with
e $o=0.8. Figure 11 shows laterally averaged profiles for this
; case. The corresponding evolution pictures are entirely
P “black” as there is no phase separation on the time scale of
004 s T our simulation, and we do not show these here. The form of
— O the order-parameter profiles in Fig. 11 is analogous to enrich-
ment profiles seen fofr >T., i.e., when a miscible binary
~0.06 | | | L mixture (AB) is placed in contact with a surface which pre-
fers A [34]. The relevant dynamical equations are obtained
z by linearizing Eqs(1), (5)—(6) (at T=0) about¢, and ne-
FIG. 10. Analogous to Figs.(8 and 2b), but for ¢o=0.2. glecting lateral fluctuations. The bulk equation is already
given as Eq(19), and this should be supplemented with the
lations, and grows very slowly. The depletion layer thatlinearized boundary conditions,
forms adjacent to the wetting layer consists of anisotropic
droplets with a linear dimensiofparallel to the wall which AY(0,7) P
diverges asp,— 0. However, atp,=0.4 (see Fig. 2 in Ref. o~ V(0)+ggotgy(0n) +y—
[26]), the droplets forming the depletion layer are already z=
almost spherical. Figure 18 shows the laterally averaged
profiles corresponding to the evolution in Fig. 9, and con- d 2 7Y
firms the slow growth of the wetting layer. 0= 9z (3do—1)y— 2 472 —V(2)
It is relevant to ask why the wetting layer grows so slowly z=0
in the case where the majority component wets the surfac
Essentially, the bulk droplets now compete withther than
feed the wetting layer for the componenAt as the intrinsic
chemical potential foA is lower on the surface of the drops.
Thus, in Eqg. (9), only the first term on the RHS is
operational—the intrinsic chemical-potential gradient actu
ally drives A into the bulk. To clarify this, Fig. 1®) plots
PaviMav:Jay VS Z at 7=2400 forT=0. As in Fig. Zb), the
chemical potential is flat in the wetting layer as the system
has equilibrated locally. In the depletion layer, the chemical It is clear from the discussion in Sec. Il B 1 that the bulk
potential increases gradually—resulting in Ancurrent to  droplets compete with the wetting layer for componént
the wetting layer. However, the chemical potential fallsAccretion on the wetting layer is driven by the surface-

, (23
0

(24)

The general solution of Eq19) was already given in Egs.
(21) and (22). The complete solution to the boundary-value
problem is presented in Rg834], and we refer the interested
reader to that work. We have already discussed some
;asymptotic 6—0 or 7—=) properties of the solution—a
detailed analysis is presented in R¥4].

2. Growth kinetics of wetting layers
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10 T T T numerical study of surface-directed phase separation via dif-
— 02 fusive transport in binary mixtures with off-critical composi-
"""" 0.4 tion (¢o#0). The primary goal of our study is to system-
- 06 atize the diverse exponents observed for wetting-layer
sk growth in various experiments and simulations.

We considered two distinct physical situatiofe:the mi-
nority component wets the surfacé{<0); and(b) the ma-
jority component wets the surface¢>0). There are impor-
tant differences between these two cases. &0, the
— wetting layer grows due to surface-potential gradients, as
well as a gradient in the intrinsic chemical potential between
the bulk and the wetting layer. This results in a crossover
from potential-dependent growtR,(7)~ 7¥(""2) for V(z)
~z~", to universal growth. The asymptotic growth laws are
R;(7)~ 73, when the bulk undergoes phase separation; and
R,(7)~ 72, when the bulk does not phase separate.

For ¢o>0, the wetting layer grows only due to surface-
potential gradients. In this case, the gradient of the intrinsic
2 . . L ' chemical potential drives the preferred component into the
bulk. For moderate values o#, we find a potential-

- dependent growth lavR, (1) ~ 7¥("*2), which is expected to

FIG. 12. Plot ofRy(7) vs 76 for ¢y=0.2,0.4,0.6[A log-log  Slow down at later times. Fapo>0, the bulk does not un-
plot of these data sets is presented in Fig) 8f Ref.[26].] dergo phase separation. Then, the problem of surface-

directed phase separation is equivalent to the surface-
potential with the growth lawR,(7)~ 72 je. R,(7) enrichment problem fof > T, [34], and we have a complete
~ 78 for n=4 in our simulations. Figure 12 plo®,(7) vs  analytical understanding of the evolution of order-parameter
78 for $»=0.2,0.4,0.6. In each case, the wetting-layer ki-Profiles. For example, the “wetting layer” grows logarithmi-
netics is consistent with potential-driven growth. Over thecally in time, R;(7)~In 7, and various moments of the pro-
time range of our simulations, we see no slowing down dudile exhibit diffusive behavior.
to the attraction of thé component to the bulk droplets—we ~ The above discussion has focused on the case of solid
expect these effects to be manifested at later times thafixtures, where segregation occurs via diffusive transport
shown in Fig. 12. alone. There has also been great experimental interest

Finally, we briefly discuss the temporal evolution of the [35,36 in the case of fluid mixtures, where hydrodynamic
wetting profiles in the extremely off-critical case, e.g, ~ Modes can enable a rapid draining of the preferred compo-
=0.8 in Fig. 11. As discussed earlier, the evolution of pro-nent to the surface. For highly off-critical quenches, the fluid
files in this case is equivalent to the surface-enrichment propTorphology is not interconnected and diffusive transport
lem [34] and we will directly quote results from that context. drives phase separation. In that case, the above scenario ap-
The order-parameter profiles are double exponential with onBlies again. However, for smaller values ¢}, the system
length scale¢, —const, and the other length scafe ~ Morphology is bicontinuous and hydrodynamic effects play
— 72 The position of the first zero of the profifes(z,r)  @n important role in the kinetics of wetting and phase sepa-
— ¢o] grows logarithmically in timeR,(7)~In 7. Further-  ration. A recent study of this has been performed by Bastea
more, all moments of the enrichment profile exhibit diffusive et al- [37], and we refer the interested reader to that work.
behavior, viz.,

R,()
»
|
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