
PHYSICAL REVIEW E 66, 061501 ~2002!
Coiling instabilities of multilamellar tubes
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Myelin figures are densely packed stacks of coaxial cylindrical bilayers that are unstable to the formation of
coils or double helices. These myelin figures appear to have no intrinsic chirality. We show that such cylin-
drical membrane stacks can develop an instability when they acquire a spontaneous curvature or when the
equilibrium distance between membranes is decreased. This instability breaks the chiral symmetry of the stack
and may result in coiling. A unilamellar cylindrical vesicle, on the other hand, will develop an axisymmetric
instability, possibly related to the pearling instability.
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I. INTRODUCTION

Amphiphilic molecules in water self-assemble into a v
riety of structures, including micelles, bilayer vesicles, a
stacks of bilayer membranes. When a dehydrated lump
amphiphile is brought into contact with water, it will develo
a large number of tubular structures which grow to leng
many times larger than their radii@1#. These tubes, called
myelin figures, are densely packed, nested stacks of coa
cylindrical bilayers@2#. Typically, the outer radius of such
stack is on the order of tens of microns and the inner rad
can be as small as or smaller than 0.2mm @3# ~see Fig. 1!.
Myelin figures tend to be straight over lengths many tim
longer than their radii, but eventually bend or fold back
themselves@4#. Though they appear to have no intrins
chirality, they are observed to form coils or double helic
@3–5#. Coiling has also been observed in cylindrical stacks
binary mixtures@6#, and egg-yolk phosphatidylcholine@4#. In
the first system, Ca21 ions were added to myelin figure
formed from a binary mixture of cardiolipin and phospha
dylcholine. Above a critical concentration of ions, tight
packed, single helices were formed. Coiling was also
served when the system was hydrated with a solution
Ca21 ions. In the latter system, the myelin figures would
straight initially but form helices and other structures af
they had been growing for several minutes. It was presum
that the observed coiling in both systems was due to sur
adhesion. However, coiling has also been observed rece
in another system of myelin figures hydrated with a polym
solution in which it was demonstrated that surface adhes
played a negligible role in the coiling mechanism@3,5#. Coil-
ing in this system was attributed to an interaction betwe
the polymer and the membranes, which resulted in a lo
spontaneous curvature. In Ref.@5#, a model was developed i
which the polymer is allowed to diffuse freely along th
bilayer surfaces. Once the polymer concentration is abov
critical concentration, the straight myelin figure becomes
stable to one that is maximally coiled.

Unilamellar tubes in the presence of the same polymer
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the other hand, are known to exhibit apearling instability
@7#. Here, the tubes are formed first and a drop of polym
solution is added later. In the early stages of the instabi
the tubes develop a periodic oscillation along their leng
which leads, eventually, to the formation of a string
spheres. A different pearling instability has also been
served in unilamellar tubes excited with optical tweezers@8#
and has been attributed to induced surface tension@9,10#, and
unilamellar tubes with oil incorporated into the bilayer@11#.

In this paper, we calculate the bending and interact
energies for undulations of a cylindrical multilamellar stac
We then study the instabilities generated by perturbing
stack in various ways:~1! we add spontaneous curvature
all the bilayers, and~2! we decrease the interaction equilib
rium distance between the layers after the stacks have b
formed. We show that the most unstable mode~neglecting
dynamics! breaks the chiral symmetry of the cylinders a
introduces a twisting undulation, which may be related
coiling. In contrast, spontaneous curvature on a unilame
cylindrical vesicle results in periodic oscillation along th
cylinder axis, as in the pearling instability.

A similar instability in a smectic-A liquid crystal confined
within a cylindrical channel with homeotropic boundary co
ditions was studied in Ref.@12#. The boundary conditions
cause the smectic layers to arrange themselves into co
cylinders much like myelin figures. The presence of the c
fining walls changes the nature of the instability; howev
since the outer layer of a myelin figure is not fixed to be
cylinder. Also, those authors consider only peristaltic und
lations which explicitly prohibits instabilities that break ch
ral symmetry.

The remainder of the paper is organized as follows.
Sec. II we calculate the total energy of a cylindrical multil

FIG. 1. A myelin figure is a multilamellar cylindrical stack o
bilayers. Typical radii are on the order of 10mm.
©2002 The American Physical Society01-1
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mellar stack to second order in arbitrary undulations of
radius. In Sec. III we demonstrate the existence of the in
bilities. In Sec. IV, we discuss the nature of the instabiliti
Finally, we summarize in Sec. V.

II. ENERGY OF A CYLINDRICAL STACK

A. Geometry

We will assume the bilayers in the cylindrical stack to
equally spaced@20#, though the actual distribution of layer
is unknown. At length scales larger than molecular length
is appropriate to model a bilayer membrane as a tw
dimensional surface. There are two equivalent represe
tions of the membrane surfaces that we will use.

On one hand, we can introduce local coordinates on

cylinders (u,z) and a vector functionXW (u,z), which gives
the position in space of any point on the membrane. Thenth

membrane in the stack can then be described byXW (u,z)

5r n(u,z)@cos(u)x̂1sin(u)ŷ#1zẑ where r n(u,z)5r 0 is inde-
pendent ofu andz for a cylinder of radiusr 0.

We generalize this tor n(u,z)5an1hn(u,z), wherea is
the spacing between the layers, andhn(u,z) is an undulation
of the cylinder radius. Since the membranes in the stack
very close together, the undulations of the layers are seve
constrained andhn(u,z) should be slowly varying radially
Therefore, to simplify our calculations, we specialize to t
case wherehn(u,z) is independent ofn.

The induced metricgab (a,b5u,z) is defined bygab

5]aXW •]bXW , where]u5]/]u and]z5]/]z. The differential
surface area element isdA5dudzAg, where g[detgab .
The mean curvature and the Gaussian curvature are de
to be the trace and determinant, respectively, of the curva

tensor given byKabn̂5Da]bXW , whereDa is the covariant

derivative. Then H5unXW u, where n5gabDa]b is the
Laplace-Beltrami operator acting on a scalar. In two dim
sions,*dA detKab is a topological invariant.

An alternative way to represent the layers is with a fun
tion f(r ,u,z)5r 2u(r ,u,z). The nth membrane is then
given by the solution to the equationf(r ,u,z)5a0n for
some a0. It is straightforward to show thatu(r ,u,z)5(a
2a0)r /a1a0h(u,z)/a describes a cylinder with a radiu
given by r n(u,z)5an1h(u,z). In this representation, we
write the unit normal asn̂5“f/u“fu. This gives the unit
normal as a function of (r ,u,z) so we usen̂„r n(u,z),u,z… for
the unit normal on thenth membrane. Finally, we write
H̃(r ,u,z)5“•n̂ and Hn(u,z)5H̃„r n(u,z),u,z… gives the
mean curvature on thenth membrane. This representation
similar to that used for smectic liquid crystals~see, for ex-
ample, Ref.@13#!.

B. Bending energy

The theory of the bending energy of amphiphilic me
branes is well established for small curvatures@14#. The
bending energy is given by
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2E dA~H2H0!21k̄E dAK, ~1!

whereH is the mean curvature,K5detKab is the Gaussian
curvature, andH0 is the spontaneous curvature. Spontane
curvature can arise from an asymmetry between the
monolayers of the membrane. Here we will assume thatH0
50. Since*dAK is a topological invariant and we do no
allow topology change, we suppress this term.

We assume that the surface area per molecule is cons
Though myelin figures are nonequilibrium structures,
will also assume that their rate of growth, 0 –0.3mm/s @3#, is
slow enough to allow us to treat them as being in equilibriu
at any given time. These assumptions together give us
constraint that the total surface area of the layers should
main constant. To implement this constraint, we add an
fective surface tension of the forms*dA, where*dA is the
surface area of the membrane and the surface tensions is
actually a Lagrange multiplier chosen to enforce the c
straint.

This single constraint, however, is not enough to ens
that a cylindrical membrane is an extremum of the bend
energy. If we neglect the endcap energy~which is reasonable
for long cylinders!, the mean curvature for a cylinder of ra
dius r is 1/r. Thus, the bending energy of a cylinder ca
always be lowered by increasing the radius, and we can
ways do so while conserving area by decreasing the len
An additional contribution to the free energy is necessary
a cylindrical membrane to be stable.

Since the mechanism that stabilizes a myelin figure is s
poorly understood, there are a number of possible
proaches we can take to this problem. On the one ha
Sakurai and Kawamura@1# suggest that a cylindrical stac
can be stabilized by the interaction energy, which forbids
layers from increasing their separation. This still allows f
the possibility of increasing all the radii without changin
their separations, unless another mechanism fixes the
radius. A second possibility is that of osmotic pressure t
keeps the volume between the layers constant. In Ref.@15#,
the authors use osmotic pressure to stabilize a cylindr
vesicle and their results have a simple generalization to
lindrical stacks. However, this may not be correct for mye
figures since water can flow in through the base@16#, imply-
ing that, at least in principle, a myelin figure is open to t
water.

We choose to solve this problem by adding a linear t
sion ~of the form2tL), which acts to constrain the length o
the tube. Such a constraint can be found in Ref.@17#, where
changes of myelin tube length are forbidden due to the e
caps. For similar reasons, this constraint is justified for
two instabilities~as will be explained in Sec. III!. In Sec. V,
we comment on how our results change upon changing
constraint.

The effective energy of each membrane layer, without
teractions between the layers and withH050 is given by

f B5sE d2xAg1
k

2E d2xAgH22tL. ~2!
1-2



ta

io
er
al

ll

-
f a
th

es

du
y.
se
er
a

he
t

l

e
rte
o
io
in
g
m

rv
wo
u
s.

as

d

of
es
n-

ach
to
f a

s it

t
s a

ero
c-

h

are

is-

ne a
a,

ere

the
adii
the

COILING INSTABILITIES OF MULTILAMELLAR TUBES PHYSICAL REVIEW E 66, 061501 ~2002!
It will be convenient to use the Fourier series represen
tion for the functionh(u,z). Since the cylinder length is
much longer than the radius, we will neglect the contribut
of the ends of the stack to the energy and will impose p
odic boundary conditions along the cylinder axis. This
lows us to write h(u,z)5(m jbm je

imu1 iq j z, where qj
52p j /L, L is the cylinder length, and bothm and j are
integers. The reality ofh(u,z) imposes the conditionbm j*
5b2m2 j on the Fourier coefficients, where* signifies the
complex conjugate. A nonzerob00 changes the radius of a
the bilayers, including the core radius.

We calculates and t for each layer by imposing the con
ditions that the first derivative of the bending energy o
straight cylinder with respect to both radius and leng
should vanish. This gives uss5k/2r2 andt52pk/r for the
surface tension, and linear tension respectively. Th
choices cause the first-order terms inbm j to vanish.

Expanding the bending energy to second order inh(u,z)
and its derivatives, and using the calculated value fors and
t results in the expression

f B
(2)5pLk(

m j
ubm ju2H ~m221!2

r3
1rqj

41
2m2qj

2

r J ~3!

for the bending energy of each bilayer. Notice that the un
lation mode withj 50 andm51 has zero bending energ
Since the shape change associated with this mode cau
change in the mean curvature of higher than second ord
is typically associated with translation of the cylinder norm
to the long axis.

Finally, to find the total bending energy, we sum over t
membranes. Since they are very dense, we go over to
continuum limit and replace(n with * r c

R dr/a, whereR is the

radius of the stack, andr c is the radius of the core. The fina
result for the bending energy is

FB5
pLk

a (
m j

ubm ju2H ~m221!2

2r c
2

1
R2

2
qj

4

12m2qj
2 ln~R/r c!J , ~4!

where we have used the fact thatr c!R.

C. Interaction energy

The largest contribution to the interaction energy com
from nearest-neighbor membranes. Consider the sho
curve between the two membranes, which is normal to b
surfaces. If the membrane separation and size of undulat
are small, this curve is nearly straight and, for any po
(u,z), on one membrane with normal curve passing throu
it, the interaction energy gets its dominant contribution fro
the point on the other membrane that lies along the cu
Let ã be the length of the normal curve between the t
membranes,a be the separation of the layers with no und
lations, anda0 be the equilibrium separation of the layer
06150
-

n
i-
-

e

-

s a
, it
l

he

s
st

th
ns
t
h

e.

-

For simplicity, we will assume thata anda0 are constant~in
particular, they are independent ofn).

To find ã(u,z), we represent the membrane surfaces
solutions to the equationa0n5f(r ,u,z)5r 2u(r ,u,z).
Then, noting thatrCn̂/ã50 in the absence of defects an
that n̂5“f/u“fu, we can write ã(u,z)5a/u“fu'a@1
2„]u/]r 2 1

2 (¹u)2
…#

We can then expand the interaction energy in powers
(ã2a0)/a0 to second order. The first order term vanish
sincea0 is the equilibrium separation, so the interaction e
ergy density isB/2@]u/]r 2 1

2 (¹u)2#2, whereB is the bulk
modulus. This must be integrated over the surface of e
membrane in the layer. This interaction energy is similar
the familiar de Gennes elastic term for the free energy o
smectic liquid crystal@13#. However, our bulk modulusB has
units of energy per area rather than energy per volume a
does in a liquid crystal.

To properly chooses and t, we should take into accoun
the interaction energy of the membranes. Doing so give
correction to our value fors at nonzerog5(a2a0)/a0. In
fact, this givess5k/2r22Bg2(11g/2)2/2(11g)4, where
r5(11g)a0n is the radius of thenth membrane.

Using our value foru(r ,u,z), the resulting interaction
energy per layer to second order is

f I
(2)5

pLB

~11g!4 H 2g~11g/2!(
m j

ubm ju2Fm2

r
1qj

2rG J .

~5!

If there are no undulations, the interaction energy is z
even for nonzerog. This comes about because of the corre
tion to s. Without this correction, a cylindrical stack wit
aÞa0 will not be an extremum of the energy.

We finally note that ifg50, there is no contribution from
the interaction energy to second order. This is because we
not allowing the undulation of the radiush(u,z) to vary from
bilayer to bilayer so, to second order, they remain equid
tant.

III. INSTABILITIES

A. Spontaneous curvature

Adding the terms

f c52kE d2xAgHH01
k

2E d2xAgH0
2 ~6!

to the bending energy of each layer gives each membra
spontaneous curvatureH0. In order to conserve surface are
surface tensions will adjust itself to cancel the second term
exactly. Without changing the linear tension, however, th
will appear terms in the total energy that are linear in thebm j
arising from the first term of equation~6!. This corresponds
to an instability thatdecreasesthe radii of the lamellas. How-
ever, the interaction energy of the stack requires that
change in the radius of the layers be independent of the r
of the layers. Conservation of surface area implies that
1-3
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C. D. SANTANGELO AND P. PINCUS PHYSICAL REVIEW E66, 061501 ~2002!
change in length,dL, be related to the change in radius,dR,
by the expressiondL52dRL/r.

SincedR,0, we see that the length of each layer is
creased. However, the change of length is smaller for
layers with larger radii. The endcap of the inner layers w
therefore, be able to reach the endcaps of the outer la
very early in this instability. This will prevent any larg
changes of length in the cylindrical stack, justifying o
choice of linear tension as a constraint.

For the case of spontaneous curvature, fixing the lengt
the cylindrical stack can be accomplished by adjusting
linear tension to be t52pk/r22pkH0. With these
changes, terms that are first order inbm j vanish. Expanding
the resulting energy to second order in the undulations
sults in the following additional term to Eq.~3!:

f c
(2)522pL(

m j
ubm ju2H Cm2

r2
1Dqj

2J ~7!

with C50 andD5kH0. Approximating the sum over mem
branes with an integral, the total stack energy is calculate
be aF/2pL5(m jubm ju2Em j , where

Em j5
2Cm2

r c
2Dqj

2R1
kqj

4R2

4
1

k~m221!2

4r c
2

1km2qj
2 ln~R/r c!, ~8!

where we have usedr c!R.
SinceL is large,qj is well approximated as a continuou

variableq. For m50, we have

E0q52kH0q2R1
kq4R2

4
1

k

4r c
2

. ~9!

Minimizing this to find the most unstable mode givesq2

52H0 /R with an onset threshold ofH.1/2r c . Since the
bending energy of the stack is dominated by the bending
the layers with smallest radii, the onset of this mode is
termined by a length on the order of the core size. Form
51, we have

E1q52kH0q2R1
kq4R2

4
1kq2 ln~R/r c!. ~10!

Due to its role in translations, only a logarithmic correcti
to the bending energy remains for them51 mode. This re-
sults in a reduced onset threshold.

Equation ~10! is negative wheneverq2,qc
254H0 /R

24 ln(R/rc)/R
2 and H0. ln(R/rc)/R. This threshold is much

smaller than the threshold for them50 instability. Finally,
larger values ofm can be analyzed similar to them50 case,
yielding even larger thresholds for instability. Notice thatqc

2

is proportional toH02H0c , so the critical wavelength is
very long for spontaneous curvatures just aboveH0c . The
most unstable wavelength can be found by minimizingE1q .
Doing so gives the most unstable mode to beq252H0 /R
22 ln(R/rc)/R

2.
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We can do a similar analysis on a unilamellar membra
by using the energy for a single layer. The procedure ab
establishes the existence of an instability whenH0.1/r,
wherer is the cylinder radius for bothm50 andm51. In
this case, there is no distinction between the core and o
radii, and the onset of both modes is governed by the o
radius in the problem,r. The m51 instability starts with
long wavelength modes, however, while them50 instability
has an onset wavelength of 2pr and is expected to domi
nate.

This result qualitatively agrees with Ou-Yang and He
frich’s calculation of instabilities in cylindrical vesicles@15#
stabilized by osmotic pressure. One crucial difference, ho
ever, is that them51 mode never goes unstable in the
calculation. The discrepancy must be in our choice of lin
tension over osmotic pressure to stabilize the cylindri
vesicle. This discrepancy will be discussed in Sec. V.

B. Decreasing the interaction equilibrium distance

We now consider the situation when the equilibrium d
tance between the membranes is decreased. This req
special care because the mode that relaxes the equilib
distance by reducing the radii uniformly and increasing
length has been neglected by assumingh(u,z) is indepen-
dent of radius. This relaxation mode carries a linear dep
dence on the radiusr, and will need to be considered explic
itly.

There are two effects that compete against the comp
relaxation of the interaction energy through this mode. T
first is the curvature energy that resists decreasing the rad
any of the membrane layers. The second is the endcap
ergy, which resists changes in length. The stack will be
able to completely relax its interaction energy because
these effects, and the resulting separation between the la
a, will be larger than the new equilibrium distancea0. This
is mathematically equivalent to a swelled stack, which fo
flat, lamellar phase results in a Helfrich-Hurault-type ins
bility @18#.

For a cylindrical stack, this results in an additional co
tribution to Eq.~3! of

f I522pL(
m j

ubm ju2H Cm2

r
1Dqj

2rJ , ~11!

where C5D5Bg(11g/2)/2(11g)4. Summing over all
membranes in the stack gives a total energyF
52pL/a0(m jubm ju2Emqj

, where

Emqj
52Dm2 ln~R/r c!2

D

2
qj

2R21
k~m221!2

4r c
2

1
kR2

4
qj

4

1km2qj
2 ln~R/r c!. ~12!

We again study the stability of the energy for differe
choices ofm while takingqj to be continuous. Form50, we
have
1-4
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E0q52
Dq2R2

2
1

k

4r c
2

1
kR2q4

4
. ~13!

This equation gives a most unstable mode ofq25D/k and
an instability wheneverD.k/Rrc . For m51, we have

E1q52D ln~R/r c!2
Dq2R2

2
1

kR2q4

4
1kq2 ln~R/r c!,

~14!

which is negative when q2,qc
25D/k22 ln(R/rc)/R

2

1AD2/k214@ ln(R/rc)#
2/R4. Thus, the reality ofq requires

that D.Dc50, or g.0. Again, this threshold is smalle
than them50 threshold and the thresholds for instability f
m.1 are even higher than them50 case. We see then tha
asD is increased, the first mode to destabilize is the one w
m51 andq2'D/k for small g. We find the most unstable
wave number to beq5D/k22 ln(R/rc)/R

2.
The critical wavelength 2p/qc'(2plA2)/Ag where l

5AB/k is the smectic penetration length, can be quite sh
A 0.1% reduction in equilibrium distance results in a critic
wavelength of'280l. If l is on the order of the laye
spacing and there are several hundred layers in the cylin
cal stack, the critical wavelength will be on the order of
tube radius. A 1% reduction in equilibrium distance results
a critical wavelength smaller than a single tube radius.

IV. COILING OF MYELIN FIGURES

Wheneverq.0, there are two types of behavior that c
result, which we refer to as twisting~or coiling! and writh-
ing. Twisting can be represented by a model undulation
the form h(u,z)5a cos(u1qz), for example, which breaks
the chiral symmetry of the cylinders. Writhing, on the oth
hand, can be represented byh(u,z)5a cos(u)cos(qz) ~see
Fig. 2!. Fourier coefficients that give twisting form51 and
some choice ofq are b1q5a/2 and b21q50 with the re-

FIG. 2. ~a! A three-dimensional representation of a twisting u
dulation. ~b! A three-dimensional representation of a writhing u
dulation.
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maining coefficients zero or set by the reality condition
h(u,z). In the case of writhing, we haveb1q5a/4 and
b21q5a/4. The normalization factors of 2 and 4 are nece
sary so that the amplitudes of both undulations are equa
a. Now we can write the energy for both instabilities in th
form

Etwisting5Emq

a2

2
, ~15!

Ewrithing5Emq

a2

4
. ~16!

So we see that wheneverEmq,0, the most unstable case
twisting and not writhing. Since them51 mode moves the
center axis of the cylinders in the stack, we speculate
this mode may result in coiling as seen in experiments.

In both types of instabilities discussed, the first mode
become unstable is the mode withm51 andq50. We ex-
pect that, when dynamics is taken into account, thisq50
mode will grow more slowly than all other wavelength
Thus, the dominant wavelength will be at someq.0. It is
not clear, however, how dynamics will affect whether t
stack twists or writhes, and whether the behavior will lead
coiling at long times.

V. SUMMARY AND DISCUSSION

In this paper, we considered a nested stack of cylindri
interacting membranes. We studied the instabilities gener
by perturbing the stack in two ways:~1! we add spontaneou
curvature to all the bilayers, and~2! we decrease the interac
tion equilibrium distance between the layers after the sta
have been formed. In both cases, we find that the first mo
to go unstable are long wavelength modes that locally tra
late the cylinder. We find that the most unstable modes~at
the level of equilibrium thermodynamics! break chiral sym-
metry and may be related to the coiling which is observed
myelin figures.

We should stress that we have studied only two in a lar
class of chiral symmetry breaking instabilities. If we imagi
perturbing the system by adding a term to the free ene
that prefers local undulations of the layers, we are c
strained by dimensional analysis to write down

FP52pL(
m j

ubm ju2~2Cm2rn2Dqj
2rn12! ~17!

to quadratic order inbm j , m, andqj . The units ofC andD
~assumed the same! determine the value ofn. As we have
shown, a chiral symmetry breaking instability will occu
whenn521 or n522.

The dominance of them51 mode can be understood as
competition between the bending energy and an energy
prefers local undulations in the cylindrical stack. For
choices of constraints, it is universally true that local tran
lations will be the lowest energy deformations of the straig
tube. This arises from the inherent asymmetry between
two in-plane directions due to the fact that the layers
1-5
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rolled up into cylinders. This asymmetry implies that t
local undulations can become important for certain wa
numbersqj along the axis, but not important enough to ov
whelm the bending energy for undulations around the a
Due to the dominance of bending energy for undulatio
around the cylindrical axis~controlled bym), the most un-
stable mode is a local translation of the tube center. I
precisely the exponentn that sets the relative importance
the local undulations and the bending energy. This pictur
expected to remain the same for most choices of constra
and we expect, therefore, that our results are qualitativ
robust with the notable exception of keeping a constant v
ume between the layers.

As we have already mentioned, our results for a spon
neous curvature-induced instability in a cylindrical vesic
disagree with those of Ref.@15#, which uses osmotic pressur
rather than linear tension to stabilize the vesicles. This s
sitivity to our choice of constraints carries over to a cylind
cal stack, also. A cylindrical stack with fixed volume b
tween the layers, which acquires spontaneous curvatur
all of its layers, will not develop an instability atm51, as in
the case of a cylindrical vesicle. It can also be checked
there are no instabilities form.1 for positive spontaneou
curvature, either. Presumably, this occurs because the b
ing energy with a constraint of constant volume between
layers is strong enough to overwhelm the undulations co
pletely, even along the tube axis. The instability form50
remains, however. We have also checked that using osm
pressure on a cylindrical stack, whose equilibrium dista
has been decreased, still results in an instability withm51
and onsetg.0, but does change the value ofqc .

The instability resulting from decreasing the layer eq
librium distance bears some resemblance to an instab
due to deswelling a myelin figure discovered by Chenet al.
@17,19#. They consider myelin figures whose outer laye
only have been deswelled. In this case, the in-plane elast
of the layers becomes relevant. They find that deswellin
myelin figure this way results in an axisymmetric instabil
(m50).

It is important to note that allowingg or H0 to vary with
radius can change the results completely. We see this alr
if we consider adding spontaneous curvature only to the
ermost layers of the stack. In that case, the additional en
will be approximately proportional to the energy of a cyli
drical vesicle. As we have already seen, an energy of
ta
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form has a short wavelength axisymmetric instability (m
50) and a long wavelength helical instability (m51), both
at the same threshold.

In a recent experiment@3,5#, a coiling instability occurs
when a dry amphiphile is hydrated with a polymer soluti
above a critical concentration. It is supposed by the auth
that the polymer inserts itself into the bilayers, changi
their spontaneous curvature. The instability appears to s
at one end of the structure and proceeds to wind the tube
a tight helix immediately. This is consistent with coiling du
to spontaneous curvature if the polymer concentration is
constant along the length of the tube and was evolv
slowly in time @3,5#. As the concentration of polymer at th
end increases, the spontaneous curvature induced ca
crease, resulting in the onset of bending. Since the instab
due to decreasing the equilibrium distance has an onse
g50, it is more difficult to reconcile this with experiment
that seem to have a nonzero onset.

One difference between our theory and that of Tsa
et al. @5# for coiling is that our instability has a wavelengt
that depends on the spontaneous curvature. For spontan
curvature slightly above the onset threshold, this wavelen
can be large and we might expect to see loose coils, ra
than only tight coils. While coiling usually initiates at it
final pitch, loose coils have been observed in myelin figu
coiling into double helices@4#. These double helices wer
observed to tighten as the coiling progressed. It has b
suggested@5# that coiling in this system is driven by sponta
neous curvature induced by lateral phase separation.

Finally, we should note that it has been observed by sc
ning electron microscopy of frozen samples@2# that during a
bend, the layer spacing decreased in the direction of bend
Incorporating a deformation in which the core moves off
the tube central axis would require a relaxation the constr
that the deformation on each layer be the same. A theory
this is yet to be developed but would be important to a m
complete understanding of the physics of coiling in mye
figures.
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