PHYSICAL REVIEW E 66, 061501 (2002
Coiling instabilities of multilamellar tubes

C. D. Santangefd* and P. Pincus??®
!Department of Physics, University of California, Santa Barbara, California 93106
2Department of Materials, University of California, Santa Barbara, California 93106
3Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106
(Received 17 June 2002; published 13 December 002

Myelin figures are densely packed stacks of coaxial cylindrical bilayers that are unstable to the formation of
coils or double helices. These myelin figures appear to have no intrinsic chirality. We show that such cylin-
drical membrane stacks can develop an instability when they acquire a spontaneous curvature or when the
equilibrium distance between membranes is decreased. This instability breaks the chiral symmetry of the stack
and may result in coiling. A unilamellar cylindrical vesicle, on the other hand, will develop an axisymmetric
instability, possibly related to the pearling instability.
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[. INTRODUCTION the other hand, are known to exhibitpearling instability
[7]. Here, the tubes are formed first and a drop of polymer
Amphiphilic molecules in water self-assemble into a va-solution is added later. In the early stages of the instability,
riety of structures, including micelles, bilayer vesicles, andthe tubes develop a periodic oscillation along their length,
stacks of bilayer membranes. When a dehydrated lump ofhich leads, eventually, to the formation of a string of
amphiphile is brought into contact with water, it will develop spheres. A different pearling instability has also been ob-
a large number of tubular structures which grow to lengthsserved in unilamellar tubes excited with optical tweeZ&is
many times larger than their radil]. These tubes, called and has been attributed to induced surface teri§idr], and
myelin figuresare densely packed, nested stacks of coaxialinilamellar tubes with oil incorporated into the bilayéd].
cylindrical bilayers[2]. Typically, the outer radius of such a  In this paper, we calculate the bending and interaction
stack is on the order of tens of microns and the inner radiug¢nergies for undulations of a cylindrical multilamellar stack.
can be as small as or smaller than @.th [3] (see Fig. L~ We then study the instabilities generated by perturbing the
Myelin figures tend to be straight over lengths many timesstack in various ways(1) we add spontaneous curvature to
longer than their radii, but eventually bend or fold back onall the bilayers, and2) we decrease the interaction equilib-
themselves[4]. Though they appear to have no intrinsic rium distance between the layers after the stacks have been
chirality, they are observed to form coils or double helicesformed. We show that the most unstable mddeglecting
[3-5]. Coiling has also been observed in cylindrical stacks ofdynamicg breaks the chiral symmetry of the cylinders and
binary mixtureg 6], and egg-yolk phosphatidylcholifig]. In  introduces a twisting undulation, which may be related to
the first system, Gd ions were added to myelin figures coiling. In contrast, spontaneous curvature on a unilamellar
formed from a binary mixture of cardiolipin and phosphati- cylindrical vesicle results in periodic oscillation along the
dylcholine. Above a critical concentration of ions, tightly cylinder axis, as in the pearling instability.
packed, single helices were formed. Coiling was also ob- A similar instability in a smecticA liquid crystal confined
served when the system was hydrated with a solution oWithin a cylindrical channel with homeotropic boundary con-
C&" ions. In the latter system, the myelin figures would beditions was studied in Ref12]. The boundary conditions
straight initially but form helices and other structures aftercause the smectic layers to arrange themselves into coaxial
they had been growing for several minutes. It was presumegylinders much like myelin figures. The presence of the con-
that the observed coiling in both systems was due to surfacéning walls changes the nature of the instability; however,
adhesion. However, coiling has also been observed recentince the outer layer of a myelin figure is not fixed to be a
in another system of myelin figures hydrated with a polymercylinder. Also, those authors consider only peristaltic undu-
solution in which it was demonstrated that surface adhesiotations which explicitly prohibits instabilities that break chi-
played a negligible role in the coiling mechani§®5]. Coil-  ral symmetry.
ing in this system was attributed to an interaction between The remainder of the paper is organized as follows. In
the polymer and the membranes, which resulted in a locabec. Il we calculate the total energy of a cylindrical multila-
spontaneous curvature. In RES], a model was developed in
which the polymer is allowed to diffuse freely along the =«
bilayer surfaces. Once the polymer concentration is above a R ¢
critical concentration, the straight myelin figure becomes un-
stable to one that is maximally coiled.
Unilamellar tubes in the presence of the same polymer, on

L

FIG. 1. A myelin figure is a multilamellar cylindrical stack of
*Electronic address: santa@mrl.ucsb.edu bilayers. Typical radii are on the order of pL0m.
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mellar stack to second order in arbitrary undulations of the K y, =
radius. In Sec. Ill we demonstrate the existence of the insta- EBZEJ dA(H—Hg)*“+ KJ dAK, 1)
bilities. In Sec. 1V, we discuss the nature of the instabilities.

Finally, we summarize in Sec. V. . . .
y whereH is the mean curvaturél =detK ,; is the Gaussian

curvature, andH, is the spontaneous curvature. Spontaneous
curvature can arise from an asymmetry between the two
Il. ENERGY OF A CYLINDRICAL STACK monolayers of the membrane. Here we will assume lthat
A. Geometry =0. Sincef/dAK is a topological invariant and we do not
allow topology change, we suppress this term.

We will assume the bilayers in the cylindrical stack to be \ye a55ume that the surface area per molecule is constant.
equally spaced20], though the actual distribution of layers Though myelin figures are nonequilibrium structures, we

is unknown. At length scales larger than molecular lengths, ifyi;| aiso assume that their rate of growth, 0—Q&v/s[3], is

is appropriate to model a bilayer membrane as a tWosjow enough to allow us to treat them as being in equilibrium

dimensional surface. There are two equivalent representgt any given time. These assumptions together give us the

tions of the membrane surfaces that we will use. constraint that the total surface area of the layers should re-
On one hand, we can introduce local coordinates on thenain constant. To implement this constraint, we add an ef-

cylinders (0,z) and a vector functior)?(e,z), which gives fective surface tension of the form/dA, where[dA is the

the position in space of any point on the membrane.fthe  surface area of the membrane and the surface tenrsign

membrane in the stack can then be described)?by,z) actually a Lagrange multiplier chosen to enforce the con-

~ . A o straint.
=In(0,2)[cos@)x+sin()y]+zzwherer,(6,2)=r is inde- This single constraint, however, is not enough to ensure
pendent off andz for a cylinder of radius o. that a cylindrical membrane is an extremum of the bending

We generalize this to,(6,z)=an+h,(6,2), whereais  energy. If we neglect the endcap enetgich is reasonable
the spacing between the layers, dnd6,z) is an undulation  for long cylinders, the mean curvature for a cylinder of ra-
of the cylinder radius. Since the membranes in the stack argius p is 1/p. Thus, the bending energy of a cylinder can
very close together, the undulations of the layers are severeblways be lowered by increasing the radius, and we can al-
constrained andh,(6,z) should be slowly varying radially. ways do so while conserving area by decreasing the length.
Therefore, to simplify our calculations, we specialize to theAn additional contribution to the free energy is necessary for
case wheré,(6,z) is independent oh. a cylindrical membrane to be stable.

The induced metriq, s (a,8=06,2) is defined byg,g Since the mechanism that stabilizes a myelin figur_e is still
=¢9a)?-¢95>?, whered,= /96 anda,= dl9z. The differential poorly understood, there are a number of possible ap-

A _ proaches we can take to this problem. On the one hand,
surface area element iA=d6dzyg, where g=detg. . S§kurai and Kawamurgl] suggest that a cylindrical stack

The mean curvature and the Gaussian curvature are defm% n be stabilized by the interaction energy, which forbids the

to be the trace and determinant, respectively, of the curvaturlgyers from increasing their separation. This still allows for

tensor given byK,zn=D ,dpX, whereD, is the covariant the possibility of increasing all the radii without changing
derivative. ThenH=|AX|, where A=g*PD,ds is the their separations, unless another mechanism fixes the core
Laplace-Beltrami operator acting on a scalar. In two dimen+adius. A second possibility is that of osmotic pressure that
sions, [dAdetK . is a topological invariant. keeps the volume between the layers constant. In [REf,

An alternative way to represent the layers is with a func-the authors use osmotic pressure to stabilize a cylindrical
tion &(r,0,2)=r—u(r,,z). The nth membrane is then yesu;le and their results ha\{e a simple generalization to cy-
given by the solution to the equatio#(r,6,z)=aon for Imdncal ;tacks. However, thl_s may not be correct for myelin
someay. It is straightforward to show than(r,6,z)=(a figures since water can flow in through the bgb8], imply-
—ag)ria+agh(6,z)/a describes a cylinder with a radius N9 that, at least in principle, a myelin figure is open to the
given by r,(6,z2)=an+h(6,z). In this representation, we Water. _ _ _
write the unit normal asi=V ¢/|V ¢|. This gives the unit We choose to solve th!s problem by addlmg a linear ten-

. R sion (of the form—tL), which acts to constrain the length of

normal as a function ofr( #,2) so we use(rn(6,2),6,2) for  the tube. Such a constraint can be found in RET], where

the unit normal on thenth membrane. Finally, we write changes of myelin tube length are forbidden due to the end-
H(r,0,2)=V-n and H,(6,2)=H(r,(0,2),0,z) gives the caps. For similar reasons, this constraint is justified for our
mean curvature on theth membrane. This representation is two instabilities(as will be explained in Sec. )l In Sec. V,
similar to that used for smectic liquid crystafsee, for ex- we comment on how our results change upon changing the
ample, Ref[13]). constraint.

The effective energy of each membrane layer, without in-
B. Bending energy teractions between the layers and witg=0 is given by

The theory of the bending energy of amphiphilic mem-

branes is well established for small curvatufd€]. The _ f 2 fJ’ 2 2
bending energy is given by fe=c | d X\/§+ 2 d X\/EH th. 2
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It will be convenient to use the Fourier series representaFor simplicity, we will assume that anda, are constantin
tion for the functionh(#,z). Since the cylinder length is particular, they are independent iof.
much |Onger than the radiUS, we will neglect the contribution To find 5(0,2), we represent the membrane surfaces as
of the ends of the stack to the energy and will impose perispjutions to the equatioragn= ¢(r,6,2z)=r—u(r,,z).

odic boundary conditions along the cylinder axis. This al'Then, noting thagﬁcﬁ/5=0 in the absence of defects and

lows us to write h(6,2)=3by;e™" 9% where g L L~ B ~
=2mj/L, L is the cylinder length, and botm and | are that n—VgLSIIngL, we can write a(6,z)=a/|V ¢|~a[1
—(aular—3(Vu)9)]

integers. The reality oh(6,z) imposes the conditiof},: . . .
=b?m7,— on the Fogrier E:oef)ficieflts whert signifies {F]Je ~ We can then expand the interaction energy in powers of
complex conjugate. A nonzeitm,, changes the radius of all (a—ag)/ag to second order. The first order term vanishes
the bilayers, including the core radius. sinceay is the equilibrium separation, so the interaction en-
We calculater andt for each layer by imposing the con- €rdy density isB/2[gu/or —3(Vu)?]?, whereB is the bulk
ditions that the first derivative of the bending energy of amodulus. This must be integrated over the surface of each
straight cylinder with respect to both radius and |engthmembrane in the layer. This interaction energy is similar to
should vanish. This gives us= «/2p? andt=2m«/p for the the familiar de Gennes elastic term for the free energy of a
surface tension, and linear tension respectively. TheséMectic liquid crystal13]. However, our bulk moduluB has

choices cause the first-order termsbig; to vanish. units of energy per area rather than energy per volume as it
Expanding the bending energy to second ordem(if,z) ~ does in a liquid crystal. _
and its derivatives, and using the calculated valuesf@nd To properly chooser andt, we should take into account
t results in the expression the interaction energy of the membranes. Doing so gives a
correction to our value foor at nonzeroy=(a—ag)/ag. In

(M?—1)2 2P fact, this giveso= k/2p®—By?(1+ y/2)?/2(1+ y)*, where

&)= LD, |bmj|2 —3+qu4+ ] (3)  p=(1+7y)agn is the radius of thexth membrane.

mj p Using our value foru(r,6,z), the resulting interaction
energy per layer to second order is

for the bending energy of each bilayer. Notice that the undu-

lation mode withj=0 andm=1 has zero bending energy. @) LB ) m? 5
Since the shape change associated with this mode causes a 'l :(1+ )4 —y(1+ 7’/2)% |bmj| 7+qu .
change in the mean curvature of higher than second order, it Y )

is typically associated with translation of the cylinder normal

to the long axis. . : . .
Finally, to find the total bending energy, we sum over the If there are no und_ulatlons, the interaction energy is zero
’ ' even for nonzerey. This comes about because of the correc-

membranes. Since they are very dense, we go over to t ; . : i .
. C y ery R go o rhon to o. Without this correction, a cylindrical stack with
continuum limit and replacg,, with [ dp/a, whereRis the .
c a#ag will not be an extremum of the energy.

result for the bending energy is the interaction energy to second order. This is because we are
not allowing the undulation of the radibg #,z) to vary from
_mlk 2 b |2 (m*-1)> R? 4 bilayer to bilayer so, to second order, they remain equidis-
Fe=—3 2 [bom| T +50 tant.
+2m2q,-2 In( R/rc)] ’ 4) IIl. INSTABILITIES
A. Spontaneous curvature

where we have used the fact that<R. Adding the terms

K
C. Interaction energy fe=— KJ d2x\gHH, + Ef d>x\gH3 (6)

The largest contribution to the interaction energy comes

from nearest-neighbor membranes. Consider the shortef§ the bending energy of each layer gives each membrane a
curve between the two membranes, which is normal to botpontaneous curvatuke,. In order to conserve surface area,
surfaces. If the membrane separation and size of undulationgjrface tensiom will adjust itself to cancel the second term
are small, this curve is nearly straight and, for any pointexactly. Without changing the linear tension, however, there
(6,2), on one membrane with normal curve passing throughyill appear terms in the total energy that are linear intihe

it, the interaction energy gets its dominant contribution ffomarising from the first term of equatio(®). This corresponds

the point on the other membrane that lies along the curveg an instability thatlecreaseshe radii of the lamellas. How-

Let a be the length of the normal curve between the twoever, the interaction energy of the stack requires that the
membranesa be the separation of the layers with no undu-change in the radius of the layers be independent of the radii
lations, anda, be the equilibrium separation of the layers. of the layers. Conservation of surface area implies that the
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change in lengthdL, be related to the change in radid®, We can do a similar analysis on a unilamellar membrane
by the expressiodL = — SRL/p. by using the energy for a single layer. The procedure above
Since SR<0, we see that the length of each layer is in-establishes the existence of an instability whegp>1/p,
creased. However, the change of length is smaller for th&herep is the cylinder radius for botm=0 andm=1. In
layers with larger radii. The endcap of the inner layers will, this case, there is no distinction between the core and outer
therefore, be able to reach the endcaps of the outer layeradii, and the onset of both modes is governed by the only
very early in this instability. This will prevent any large radius in the problemp. The m=1 instability starts with
changes of length in the cylindrical stack, justifying our long wavelength modes, however, while tie=0 instability
choice of linear tension as a constraint. has an onset wavelength ofrp and is expected to domi-
For the case of spontaneous curvature, fixing the length afiate.
the cylindrical stack can be accomplished by adjusting the This result qualitatively agrees with Ou-Yang and Hel-
linear tension to bet=2mx/p—2wkHy. With these frich’s calculation of instabilities in cylindrical vesicl¢45]
changes, terms that are first orderbp; vanish. Expanding stabilized by osmotic pressure. One crucial difference, how-
the resulting energy to second order in the undulations reever, is that them=1 mode never goes unstable in their
sults in the following additional term to E@Q): calculation. The discrepancy must be in our choice of linear
tension over osmotic pressure to stabilize the cylindrical

Ccm? vesicle. This discrepancy will be discussed in Sec. V.
)= —2WL% |bm,-|2[7+qu?} (7)

. o B. Decreasing the interaction equilibrium distance
with C=0 andD = kH,. Approximating the sum over mem-

branes with an integral, the total stack energy is calculated to W& Now consider the situation when the equilibrium dis-

beaF/27rL=Emj|bmj|2Emj, where tance between the membranes is decreased. This fe_qL_Jires
special care because the mode that relaxes the equilibrium

—Cn? quRZ k(MP—1)2 distance by reducing the radii uniform_ly and_in(_:reasing the

Eni= -Dg’R+ length has been neglected by assumiirig,z) is indepen-
mi= q; 4 2 . . . ; .
¢ arg dent of radius. This relaxation mode carries a linear depen-
5 2 dence on the radiys, and will need to be considered explic-
+xkm=q; In(R/r¢), (8)

itly.

There are two effects that compete against the complete
relaxation of the interaction energy through this mode. The
first is the curvature energy that resists decreasing the radii of
any of the membrane layers. The second is the endcap en-

where we have used.<R.
Sincel is large,q; is well approximated as a continuous
variableq. Form=0, we have

452 ergy, which resists changes in length. The stack will be un-
Eoq= — kHo?R+ +L2_ (99  able to completely relax its interaction energy because of
4 4rg these effects, and the resulting separation between the layers,

a, will be larger than the new equilibrium distanag. This
Minimizing this to find the most unstable mode giva$  is mathematically equivalent to a swelled stack, which for a
=2H,/R with an onset threshold afi>1/2r.. Since the flat, lamellar phase results in a Helfrich-Hurault-type insta-
bending energy of the stack is dominated by the bending obility [18].
the layers with smallest radii, the onset of this mode is de- For a cylindrical stack, this results in an additional con-
termined by a length on the order of the core size. For tribution to Eq.(3) of

=1, we have
2 sz 2
<Q'R2 fi==2aLY, |byl? ——+Dd’py, (12)
+k2IN(RIT).  (10) m] p

Eiq= — kHo0?R+

Due to its role in translations, only a logarithmic correctionWhere C=D=By(1+y/2)/2(1+ ?’)4- Summing over all

to the bending energy remains for the=1 mode. This re- Meémbranes in zthe stack gives a total enerdy

sults in a reduced onset threshold. =27L/8g2 1| | *Emg,, Where
Equation (10) is negative wheneveig?<q2=4H,/R

—4In(RIr)/R? and Ho>In(RIr)/R. This threshold is much

2 2 2
smaller than the threshold for the=0 instability. Finally, Emg=— Dm2In(R/r,) — quZR2+M+ iq?
larger values om can be analyzed similar to the=0 caéée, ‘ 2 4r§ 4
yielding even larger thresholds for instability. Notice tlgat 2
is proportional toHy—H,., so the critical wavelength is +Km2qi In(RIre). (12
very long for spontaneous curvatures just abblg. The
most unstable wavelength can be found by minimizig. We again study the stability of the energy for different
Doing so gives the most unstable mode todfe=2H,/R  choices ofm while takingq; to be continuous. Fan=0, we

—2 In(Rir)/R%. have
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maining coefficients zero or set by the reality condition on
h(6,2z). In the case of writhing, we have,q=a/4 and
b_14= /4. The normalization factors of 2 and 4 are neces-
sary so that the amplitudes of both undulations are equal to
a. Now we can write the energy for both instabilities in the

form
a2
Etwisting: qu_7 (19
aZ
Ewrithing:quZ- (16)

So we see that whenever, <0, the most unstable case is
twisting and not writhing. Since them=1 mode moves the
center axis of the cylinders in the stack, we speculate that
this mode may result in coiling as seen in experiments.

In both types of instabilities discussed, the first mode to
become unstable is the mode witi=1 andgq=0. We ex-
pect that, when dynamics is taken into account, thisO
mode will grow more slowly than all other wavelengths.
- - Thus, the dominant wavelength will be at sope 0. It is
g __DAR .« R4 (13 Mot clear, however, how dynamics will affect whether the

%9 2 4r? 4 - stack twists or writhes, and whether the behavior will lead to
coiling at long times.

FIG. 2. (a) A three-dimensional representation of a twisting un-
dulation. (b) A three-dimensional representation of a writhing un-
dulation.

This equation gives a most unstable modeyd# D/« and
an instability wheneveb > k/Rr;. Form=1, we have V. SUMMARY AND DISCUSSION

Dg’R? «kR%’g* 5 In this paper, we considered a nested stack of cylindrical,

5t tka7In(Riro), interacting membranes. We studied the instabilities generated
(14) by perturbing the stack in two wayét) we add spontaneous
curvature to all the bilayers, an@) we decrease the interac-

which is negative when g°<g?=D/x—2In(Rr)/R?  tion equilibrium distance between the layers after the stacks

+\D? k*+4[In(RIr)P/R*. Thus, the reality ofg requires have been formed. In both cases, we find that the first modes

that D>D.=0, or y>0. Again, this threshold is smaller to go unstable are long wavelength modes that locally trans-

than them=0 threshold and the thresholds for instability for late the cylinder. We find that the most unstable mo@s

m>1 are even higher than tme=0 case. We see then that, the level of equilibrium thermodynamicéreak chiral sym-

asD is increased, the first mode to destabilize is the one withinetry and may be related to the coiling which is observed in

m=1 andqg®~D/« for small y. We find the most unstable myelin figures.

wave number to beg=D/«x— 2 In(Rir )/R. We should stress that we have studied only two in a larger
The critical wavelength 2/q.~(2m\y2)/\/y wherex  class of chiral symmetry breaking instabilities. If we imagine

— B/« is the smectic penetration length, can be quite shortP€rturbing the system by adding a term to the free energy

A 0.1% reduction in equilibrium distance results in a critical that prefers local undulations of the layers, we are con-

wavelength of~280\. If \ is on the order of the layer Strained by dimensional analysis to write down

spacing and there are several hundred layers in the cylindri-

cal stack, the critical wavelc_angth yyill_be on the order of a FPZZWLE |bmj|2(—Cm2p”—Dq1-2p”*2) (17)

tube radius. A 1% reduction in equilibrium distance results in mj

a critical wavelength smaller than a single tube radius.

Eiq=—DIn(R/r¢)—

to quadratic order iy,;, m, andq;. The units ofC andD
(assumed the sameéetermine the value of. As we have
shown, a chiral symmetry breaking instability will occur
Wheneverg>0, there are two types of behavior that canwhenv=—1 or v=-2.
result, which we refer to as twistin@r coiling) and writh- The dominance of then=1 mode can be understood as a
ing. Twisting can be represented by a model undulation otompetition between the bending energy and an energy that
the form h(6,z)= a cos@+q2), for example, which breaks prefers local undulations in the cylindrical stack. For all
the chiral symmetry of the cylinders. Writhing, on the otherchoices of constraints, it is universally true that local trans-
hand, can be represented hy#,z)= «a cos@)cosQ2 (see lations will be the lowest energy deformations of the straight
Fig. 2). Fourier coefficients that give twisting fon=1 and tube. This arises from the inherent asymmetry between the
some choice ofy are b;q=a/2 andb_,,=0 with the re- two in-plane directions due to the fact that the layers are

IV. COILING OF MYELIN FIGURES
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rolled up into cylinders. This asymmetry implies that theform has a short wavelength axisymmetric instability (
local undulations can become important for certain wave=0) and a long wavelength helical instabilittn& 1), both
numbersy; along the axis, but not important enough to over-at the same threshold.

whelm the bending energy for undulations around the axis. In a recent experimeriB,5], a coiling instability occurs
Due to the dominance of bending energy for undulationgvhen a dry amphiphile is hydrated with a polymer solution
around the cylindrical axigcontrolled bym), the most un- @bove a critical concentration. It is supposed by the authors
stable mode is a local translation of the tube center. It ighat the polymer inserts itself into the bilayers, changing
precisely the exponent that sets the relative importance of their spontaneous curvature. The instability appears to s_tart
the local undulations and the bending energy. This picture i§t On€ end of the structure and proceeds to wind the tube into
expected to remain the same for most choices of constrain@ fight helix immediately. This is consistent with coiling due
and we expect, therefore, that our results are qualitatively® SPontaneous curvature if the polymer concentration is not

robust with the notable exception of keeping a constant volonstant along the length of the tube and was evolving
ume between the layers. slowly in time[3,5]. As the concentration of polymer at the

As we have already mentioned, our results for a spontaend increases, the spontaneous curvature induced can in-
neous curvature-induced instability in a cylindrical vesicleCréase, resulting in the onset of bending. Since the instability

disagree with those of RfL5], which uses osmotic pressure dué to decreasing the equilibrium distance has an onset at
rather than linear tension to stabilize the vesicles. This seriy=0, it is more difficult to reconcile this with experiments

sitivity to our choice of constraints carries over to a cylindri- that seem to have a nonzero onset. _
cal stack, also. A cylindrical stack with fixed volume be- ©One difference between our theory and that of Tsafrir

tween the layers, which acquires spontaneous curvature dif @l-[5] for coiling is that our instability has a wavelength
all of its layers, will not develop an instability at=1, as in that depends on the spontaneous curvature. For spontaneous

the case of a cylindrical vesicle. It can also be checked thaturvature slightly above the onset threshold, this wavelength

there are no instabilities fan>1 for positive spontaneous @0 Pe large and we might expect to see loose coils, rather

curvature, either. Presumably, this occurs because the benfdi@n only tight coils. While coiling usually initiates at its

ing energy with a constraint of constant volume between thén@l pitch, loose coils have been observed in myelin figures
layers is strong enough to overwhelm the undulations com€0iling into double heliceg4]. These double helices were
pletely, even along the tube axis. The instability for=0  OPServed to tighten as the coiling progressed. It has been
remains, however. We have also checked that using osmotRt/99estedS] that coiling in this system is driven by sponta-

pressure on a cylindrical stack, whose equilibrium distanc&€0US curvature induced by lateral phase separation.
has been decreased, still results in an instability with 1 Finally, we should note that it has been observed by scan-

and onsety>0, but does change the value qf. ning electron micros_copy of frozen _samp[é_@ tha}t during a _
The instability resulting from decreasing the layer equi-bend' the I.ayer spacing d.ecrgasedlln the direction of bending.
librium distance bears some resemblance to an instabilit}/’cOrPorating a deformation in which the core moves off of
due to deswelling a myelin figure discovered by Clegral. he tube central axis would require a relaxation the constraint
[17,19. They consider myelin figures whose outer Iayersthat the deformation on each layer be the same. A theory for

only have been deswelled. In this case, the in-plane elasticitf!!S IS Yet to be developed but would be important to a more
of the layers becomes relevant. They find that deswelling §°MPléte understanding of the physics of coiling in myelin
myelin figure this way results in an axisymmetric instability "9Ures:
(m=0).
It is important to note that allowing or H, to vary with

radius can change the results completely. We see this already We would like to thank F. C. MacKintosh and T. Luben-

if we consider adding spontaneous curvature only to the outsky for stimulating and useful discussions. This work was
ermost layers of the stack. In that case, the additional energsupported by the National Science Foundation under Grant
will be approximately proportional to the energy of a cylin- No. DMR-9972246, and by the MRL Program of the Na-
drical vesicle. As we have already seen, an energy of thional Science Foundation under Grant No. DMR00-80034.
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