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Dynamics of an elongated magnetic droplet in a rotating field

A. Cēbers*
Institute of Physics, University of Latvia, Salaspils-1, LV-2169, Latvia

~Received 26 February 2002; published 13 December 2002!

A model is proposed for the dynamics of an elongated droplet under the action of a low frequency rotating
magnetic field. This model determines a set of critical frequencies at which the transitions to more complex
bent shapes take place. These transitions occur through propagation of jumps of the droplet’s axial tangent
angle described by a nonlinear singularly perturbed partial differential equation with the intrinsic viscosity of
the droplet playing the regularizing role.
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I. INTRODUCTION

The behavior of liquid magnetic droplets under a rotat
magnetic field exhibits several fascinating features. One
them, regarding the reentrant transition oblate-prolate-ob
in which the droplet changes its shape upon the increas
magnetic field from oblate to prolate and then back to obla
has been analyzed in a number of studies@1–4#. At the same
time the very rich dynamics of the magnetic droplet in t
intermediate range of magnetic field strength@5,6# still re-
mains unexplored. The synchronous mode of magnetic d
let dynamics is typified by a ‘‘forklike’’ light diffraction pat-
tern @5#. The formation of such diffraction patterns
attributed to elongated slightly bent droplets~‘‘magnetic
worms’’! synchronously rotating with the magnetic fiel
Formation of such shapes has also been observed by nu
cal simulation of the dynamics of two-dimensional~2D!
magnetic fluid droplets under the action of a rotating m
netic field @7#. At higher rotation frequencies transitions o
cur to more complex, typically S and 8, shapes@5,6#. Tran-
sitions between those shapes are not yet understood. In o
to elucidate these phenomena, a proposed model is base
the magnetic droplet dynamics as determined by the m
netic torques and capillary and viscous forces. Different
gimes of droplet dynamics are found depending on the
quency of the rotating field. At small frequencies bent sha
with less thanp/4 angle between the tangent and the fie
direction occur. At a critical frequency the S shape appe
which transforms to the 8 shape as the second critical
quency is reached. Transitions to a different family of sha
occur through formation of jumps of the tangent and th
propagation. For a certain range of tangent angles the m
is reduced to a backward parabolic equation, which is inh
ently unstable and requires regularization. The latter is p
vided by taking into account the torque stresses due to
intrinsic viscosity of the droplet. The derivation of the equ
tion for droplet dynamics is carried out in terms of the sle
der body approach, similar to the Kirchhoff model of rods
the theory of elasticity@8#. Models of this type have bee
used for description of complex dynamics of various fi
mentary biological objects@9,10#.
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II. THE MODEL

The equations for an elongated magnetic droplet under
action of capillary, magnetic, and viscous forces are deri
in the framework of slender body theory. This approximati
has been successfully applied to the bending of a visc
fluid jet under the action of gravity@11# and the electrospin-
ning of a jet in an axial electric field@12#. According to this
approach the cross section of the droplet is assumed to
circular and constant. Thus tangential forces, which can l
to a change of the droplet length, are neglected@12#. To
justify this approach, we point out that the viscosity of t
surrounding fluid, which controls the droplet’s shape chan
and that of the droplet fluid, controlling the rate of its leng
variation, differ considerably. For example, the viscosity
the concentrated phase of the magnetic liquid used in
experiments@5,6# that we refer to is more than two orders
magnitude higher than the viscosity of the surrounding l
uid. The shape of the droplet is described by the position
its centerline. Let its tangent betW, the normalnW , and the
binormal @ tW3nW #. The relevant forces and torques are t
following: the normal forceFn acting on the cross section o
the droplet, arising due to the action of the magnetic torq
Kn , the surface tension force per unit length of the drop
the torque of the viscous stressesMb , arising upon the bend
ing of the droplet; and the external torque due to the app
rotating field equal toT0 per unit of the droplet’s length
Magnetic interactions between the distant parts of the dro
are neglected. Only the motion in the plane of the field ro
tion is considered. The latter assumption is in accord with
experimental observations@1,2,4–6#.

For the tangent and the normal vectors, Frenet equat
are valid,d tW/dl5(1/R)nW , dnW /dl52(1/R) tW, whereR is the
radius of curvature of the centerline andl its arc length. The
balance of forces in the direction normal to the centerl
gives

2dvn1
dFn

dl
1Kn50, ~1!

where the coefficientd in the friction force2dvn exerted by
the surrounding fluid may be expressed, neglecting the
drodynamic interactions, as@13,14#
©2002 The American Physical Society02-1
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d5
4ph

ln~L/a!1c
.

Here 2L is the length of the droplet,a the radius of its cross
section,c a constant of the order of unity, andh the viscosity
of the surrounding fluid. Since the droplet is in rotation
equilibrium at every instant, the torque balance yields

dMb

dl
1Fn1T050. ~2!

The torqueMb due to the intrinsic viscosity of the droplet
calculated by referring to an analogy between the elastic
viscous phenomena@11# as

Mb5
3p

4
a4h i

]

]t S 1

RD . ~3!

Here h i is the intrinsic viscosity of a droplet. The extern
torqueT0 acting per unit length of the droplet is given by th
expressionT05@MW 3H0

W #bpa2. The magnetization and th
external field vectors are noncollinear because the dema
tizing field coefficients along the axis of the locally cylindr
cal droplet and in the direction perpendicular to it are diff
ent. According to our model, the demagnetizing fie
coefficient Nuu for the magnetic field component along th
centerline of the droplet is assumed to be equal to z
whereas the one in the perpendicular directionN'52p. The
magnetization components then are as follows:

Mt5xH0t , Mn5
xH0n

112px
.

As a result, the magnetic torque is

T05
4px2H0nH0tpa2

m11
. ~4!

Some comments concerning the last relation are appropr
The magnetic torque on a volume element with ellipsoi
shape is generally determined by two contributions:
torque due to the local magnetic field@MW 3HW #V and the
torque due to the surface magnetic forces 2p(MW nW )2nW . It is
possible to show by a direct calculation that the sum of th
torques is equal to@MW 3H0

W #V @15#. Usually the volume
magnetic torque@MW 3HW #V can be neglected due to the sm
magnetic relaxation time. Whenever this is not the ca
more complex phenomena with internal circulation in t
droplet take place@15#. These phenomena are disregarded
the present model.

Another complication connected with the calculation
the magnetic torque on the droplet may be caused by
nonlinearity of the magnetization dependence on the inte
magnetic field. In this case, it is possible to calculate
magnetic torque numerically from the expression for
magnetic energy of an ellipsoidal droplet with the main a
at the angleu with respect to the external field@16#:
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E5VS 2cos2u
H0

2

2

M

Hi1NuuM
2sin2u

H0
2

2

M

Hi1N'M

1
1

2
MHi2E

0

Hi
MdHi D . ~5!

Here the internal magnetic field strengthHi in the droplet is
to be found from the solution of the equation

cos2u
H0

2

~Hi1NuuM !2
1sin2u

H0
2

~Hi1N'M !2
51. ~6!

For the magnetic liquid the Langevin lawM
5MSL(H/H* ) may be used for the magnetization whe
H* is expressed through the magnetic moment of the col
dal particlem via the relationH* 5kBT/m and MS is the
saturation magnetization of the liquid. Since the magne
field strength employed in the experiments with the dropl
of the concentrated phase of a magnetic colloid is rather
@1,2,5,6#, the aforementioned nonlinearity of the magnetiz
tion field dependence is not taken into account in the pres
model. For a linear magnetization law, the last two terms
the relation~5! cancel, which yields for the magnetic torqu
K052]E/]u the expression

K05V
H0

2

2
sin 2uS 2

x

11N'x
1

x

11Nuux
D . ~7!

For a cylinder with demagnetizing field coefficientsNuu50
andN'52p for the torque per unit length the latter relatio
yields the expression~4!.

Introducing the angleu between the local tangent to th
centerline of the droplet and the abcissa axis@ tW5]rW/] l
5(cosu,sinu)# and using the commutator

d

dt

]

] l
2

]

] l

d

dt
52S ]v t

] l
2

1

R
vnD ]

] l
,

where the velocity of the points on the curve isvW 5vnnW

1v t tW, we derive the following expression for the time d
rivative of the tangent angle:

du

dt
5

]vn

] l
1v t

1

R
. ~8!

Since the total length of the droplet is assumed constant,
tangential velocity is zero. The normal forceKn due to the
surface tension is deduced from the variation of the surf
energy at constant volume of a droplet element of lengthdl.
The conservation of volume implies

da

ddl
52

a

2dl
.

Thus, the variation of surface energy for a displacementdrW is

dE5gpaE ddl52gpaE 1

R
~drWnW !dl.
2-2
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As a result, the normal forceKn due to the surface tensio
reads

Kn5
pga

R
. ~9!

The relations~1!–~4! and ~8!, ~9! yield, taking into account
that ]u/] l 51/R, the following equation for the tangen
angle:

]u

]t
5

pga

d

]2u

] l 2
2

1

d

]2T0

] l 2
2

3pa4

4

h i

d

]5u

] l 4]t
.

For a rotating fieldH05(cosvt,sinvt) the relation~4! yields

T05
4px2H0

2cos~vt2u!sin~vt2u!pa2

m11
,

and, introducing the phase lagb5vt2u between the loca
tangent direction and the magnetic field, the equation for
angleb assumes the form

v5
]b

]t
2

]2

] l 2 S pga

d
b1

2p2x2H0
2a2

d~m11!
sin 2b D

1
3pa4

4

h i

d

]5b

]4l ]t
. ~10!

In order to present Eq.~10! in dimensionless form, we
choose the characteristic timet5dL2/M ~the time of orien-
tation of a droplet of length 2L under the action of the torqu
M ). In the present case this gives

t5
~m11!dL2

2p2x2H0
2a2

.

As a result, Eq.~10! in the dimensionless form reads

vt5
]b

]t
2

]2

] l 2 S 1

Bm
b1sin 2b D1e

]5b

] l 4]t
. ~11!

Here

e5
3p

4 S a

L D 4 h i

d

is a small parameter depending on the ratio of the cross
tion radius to the length of the droplet 2L. Thus, for droplets
of the concentrated phase of a magnetic colloid withh i /h
53.102 @5# and the axis ratioa/L51/40, e is about 1024.
Bm is the magnetic Bond number given by the ratio of t
magnetic and capillary forces,

Bm5
2px2H0

2a

~m11!g
.

Equation ~11! must be supplemented by boundary con
tions. For a free magnetic droplet in the rotating field, tho
06140
e

c-

-
e

are the conditions for the absence of normal forces
torques at the tips of a wormFn(61)50; Mb(61)50.
This, according to Eqs.~2! and ~3!, gives

]2b

] l ]t U
l 561

50, ~12!

sin 2b2e
]3b

] l 2]t
U

l 561

50. ~13!

III. THE SHAPES OF THE DROPLETS IN A ROTATING
FIELD: DISCUSSION OF THE EXPERIMENTAL

RESULTS

Equation~11! with the boundary conditions~12!, ~13! de-
termines the dynamics of the magnetic droplet under the
tion of a rotating field. Equation~11! without the last term
can be written in the form

vt5
]b

]t
2

]2

] l 2
F~b!. ~14!

Without this last term of Eq.~11! the problem is ill posed.
Indeed, the functionF(b)5(1/Bm)b1sin 2b is not mono-
tonic for magnetic Bond number values larger than1

2 ~Fig.
1!. This corresponds to the backward diffusion equation@17#.
Numerical solution of the reduced equation~14! shows in-
stabilities. The last term of Eq.~11!, which describes the
action of the viscous torques due to the intrinsic viscosity
the worm, plays a regularizing role. For steady state, Eq.~14!
with boundary conditionsbu l 56150 possesses a simple s
lution

F~b!5
1

2
vt~12 l 2!. ~15!

The tangent angleb dependence on the arc length variabll
of the curve is discontinuous for field rotation frequenc
larger than the critical value. In fact there is a set of critic
frequencies determined by the equations

~vt!cn
52F~bn!,

FIG. 1. Effective torque in dependence on tangent angle.
51.5.
2-3
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A. CĒBERS PHYSICAL REVIEW E 66, 061402 ~2002!
where n51,2, . . . andbn @F8(bn)50# correspond to the
local maxima of the functionF(b). The dependence of th
critical frequency (vt)c1 on the magnetic Bond number
determined by the relation

~vt!c152H 1

BmFp2 2
1

2
arccosS 1

2 BmD G
1sinS arccos

1

2 BmD G . ~16!

(vt)c1 diminishes with increase of the magnetic Bond nu
ber, reaching the limiting value (vt)c152 at large magnetic
Bond numbers. At the critical value of the rotating field fr
quency a jump of the tangent angle appears near the drop
center and propagates until a new steady shape of the dr
is established. The transition to a new shape obtained b
numerical solution of Eq.~11! with boundary conditions
~12!, ~13! is shown in Fig. 2. The numerical solution is o
tained by an implicit scheme with the spatial derivatives
proximated by central differences. The nonlinear equati
for the values of the tangent angle at each time step
solved by Newton iterations. To approximate the bound
conditions~12!, ~13!, the Taylor expansion of the functio
b( l ) near the end points is used up to the third order ter
yielding the following expressions for the first and seco
order derivatives at the left end point:

b8~0!5
1

2h
@4b~1!2b~2!23b~0!#,

b9~0!5
1

h2
@b~2!1b~0!22b~1!#.

Here h is the mesh size. Similar relations are valid at t
right end point.

The values of the physical parameters for the proc
shown in Fig. 2 are as follows: Bm51.5, vt55, and e
51027. The number of mesh points is 300. The initial co
dition b50 is used. The value of the critical frequency
the transition to the S shape for the given magnetic Bo

FIG. 2. Development of S-like shape at shock wave propa
tion. Bm51.5; vt55.0; e51027. Dimensionless time starting
from center 0.28, 0.42, 0.56, 0.84, 1.12, 1.39, 1.68, 2.08, 2.78.
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number is about 3.16. Ultimately the stationary droplet co
figuration~15! is established@see Fig. 3 for a comparison o
the theoretical steady state solution~15! with that found nu-
merically by establishment from the initial stateb50]. It
should be remarked that for a different initial condition a
other steady state configuration may develop. It is charac
ized by positions of the jumps closer to the ends of the dr
let, which correspond to the local minima of the functio
F(b). Experimentally such configurations could be realiz
by decreasing the field rotation frequency from a higher i
tial value. Such experiments are not currently available. T
shapes of a droplet under the action of a rotating field may
classified by the number of jumps. The actual shape o
droplet corresponding to the solutions found for the tang
angle may be found by numerical integration of the eq
tions

dx

dl
5cosb

and

dy

dl
52sinb.

The shapes found for several values of the field rotation
quency are shown in Fig. 4. This figure illustrates how t
shapes of the droplets observed in experiments@5,6# may be
classified according to the number of jumps of the tang
angle. Thus, the transition from the bent shape to the S sh
(1→2 in Fig. 4! is characterized by two jumps of the tange
angle; the transition to the 8 shape (3→4 in Fig. 4! taking
place at higher rotation frequencies is characterized by f
jumps of the tangent angle.

Currently, there are no quantitative experimental data c
cerning the critical frequencies of the rotating magnetic fi
at which the transition occurs to the S- or more comp
8-like shapes. Nevertheless, some comparison is possibl
ing the available experimental data@5# for the dynamics of
elongated magnetic droplets of the concentrated magn
phase under the action of a low frequency rotating magn
field. The droplets of the concentrated phase@5# have high

- FIG. 3. Tangent angle of S-like shape. Numerical data, cros
theoretical solution determined by Eq.~15! and b1, dotted line.
Bm51.5, vt55.0, ande51027.
2-4
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magnetic permeability with values up to about 86 and s
face tension 1.131023 erg/cm2. The magnetic Bond numbe
Bm5 1

2 (m21)2/(m11)(a/L)1/3H0
2R0/4ps for such drop-

lets in a magnetic field withH0
2R0/4ps52.5 @5# is equal to

30. Here the radius of the central part of the elongated dr
let has been estimated from the radius of the dropletR0
according to the relationR05a(L/a)1/3. For such rather high
values of the magnetic Bond number the critical frequency
the transition to the S shape is equal to its limiting value a
thus may be estimated from the relation

vc5
2

t
5

4p2x2H0
2a2

dL2~m11!
, ~17!

which for the above parameter values gives the critical
quency 25.5 Hz. This value is exactly in the range of f
quencies of the rotating field (v/2p,10 Hz) where the tran-
sition to S-like shapes is observed@5#. It should be remarked
however, that in contrast to those considered in the pre
model, the droplets observed in@5# do not possess a stead
state S shape rotating synchronously with the field. Rat
after the transition to the S shape they break up into th
droplets. This is in accord with the S shape of the ‘‘mothe
droplet and may be explained by the repulsion of its dist
parts due to long-range magnetic interactions not taken
account in the present model. These effects will be taken
account by a more complex model, currently under devel
ment, which in addition to the long-range magnetic inter
tions will also consider the variation of the magnetic thre
radius due to nonhomogeneity of the magnetic forces. Ra
convincing support for the present model of the elonga
droplet dynamics in a rotating magnetic field is also given

FIG. 4. Transition to S and 8 shapes. Bm51.5,e51023, vt
52.0 ~1!, 3.5 ~2!, 6.0 ~3!, and 8.0~4!.
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the experimental data of@18#, which show that the stationar
length of the chain of magnetic particles scales with f
quency asv21/2. This corresponds to what is expected fro
relation ~17! according to which jumps of the tangent a
formed ~they are actually observed in@18#! for chains with
length larger than critical, and lead to its breakup. Thus,
observation of scaling is just what follows from relation~17!
~apart from the weak logarithmic dependence of the frict
coefficientd on the droplet’s length!.

The jump dynamics is similar to that of a shock wav
Jump propagation provides the mechanism by which
transition to a new steady state synchronously rotating w
the applied field is achieved. Formation of these jumps a
bears a resemblance to the backward motions arising,
example, in a system of two magnetic holes@19# when the
critical lag between the direction of the external field and
axis of the doublet is reached. Whenever the lag in the c
tral region of the droplet reaches a critical value jumps of
tangent angle are formed.

IV. CONCLUSION

A simple model of the elongated magnetic liquid drop
rotating synchronously with an applied magnetic field h
been proposed. This model allows us to identify the set
critical frequencies at which the droplet’s shape transitio
take place. The determined values of the critical frequenc
coincide reasonably well with the available experimen
data. For a numerical simulation of the transition to mo
complex droplet shapes occurring by propagation of a ju
of the tangent angle, a regularization of the correspond
partial differential equation is necessary. This is achieved
taking into account the small effect of the intrinsic viscos
of the droplet. Further extension of this work will conce
the study of possible nonsteady-state regimes in the sys
It will also be interesting to take into account the extensio
dynamics of the droplet due to the long-range magnetic
teractions and the intrinsic stresses due to internal rotat
in the magnetic fluid@20#.
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