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Dynamics of an elongated magnetic droplet in a rotating field
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A model is proposed for the dynamics of an elongated droplet under the action of a low frequency rotating
magnetic field. This model determines a set of critical frequencies at which the transitions to more complex
bent shapes take place. These transitions occur through propagation of jumps of the droplet's axial tangent
angle described by a nonlinear singularly perturbed partial differential equation with the intrinsic viscosity of
the droplet playing the regularizing role.
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I. INTRODUCTION Il. THE MODEL

The equations for an elongated magnetic droplet under the
ction of capillary, magnetic, and viscous forces are derived

. - n the framework of slender body theory. This approximation
them, regarding the reentrant transition oblate-prolate-oblatg, 5 peen successfully applied to the bending of a viscous

in which the droplet changes its shape upon the increase @f,iq jet under the action of gravityl1] and the electrospin-
magnetic field from pblate to prolate and then back to oblate,,,ing of a jet in an axial electric fielflL2]. According to this

has been analyzed in a number of studies4]. At the same  gpproach the cross section of the droplet is assumed to be
time the very rich dynamics of the magnetic droplet in thecircular and constant. Thus tangential forces, which can lead
intermediate range of magnetic field streng®6] still re-  to a change of the droplet length, are negledi&d]. To
mains unexplored. The synchronous mode of magnetic drofustify this approach, we point out that the viscosity of the
let dynamics is typified by a “forklike” light diffraction pat-  surrounding fluid, which controls the droplet’'s shape change,
tern [5]. The formation of such diffraction patterns is and that of the droplet fluid, controlling the rate of its length
attributed to elongated slightly bent dropletémagnetic  variation, differ considerably. For example, the viscosity of
worms”) synchronously rotating with the magnetic field. the concentrated phase of the magnetic liquid used in the
Formation of such shapes has also been observed by numegixperimentg5,6] that we refer to is more than two orders of
cal simulation of the dynamics of two-dimension@D) magnitude higher than the viscosity of the surrounding lig-
magnetic fluid droplets under the action of a rotating mag!id- The shape of the droplet is described by the position of
netic field[7]. At higher rotation frequencies transitions oc- its centerline. Let its tangent be the normaln, and the

cur to more complex, typically S and 8, shapps]. Tran-  binormal [t xn]. The relevant forces and torques are the
sitions between those shapes are not yet understood. In ord@ilowing: the normal forcer, acting on the cross section of
to elucidate these phenomena, a proposed model is based the droplet, arising due to the action of the magnetic torque;
the magnetic droplet dynamics as determined by the madK,,, the surface tension force per unit length of the droplet;
netic torques and capillary and viscous forces. Different rethe torque of the viscous stressdg, arising upon the bend-
gimes of droplet dynamics are found depending on the freing of the droplet; and the external torque due to the applied
quency of the rotating field. At small frequencies bent shapesotating field equal toT, per unit of the droplet’s length.
with less thanm/4 angle between the tangent and the fieldMagnetic interactions between the distant parts of the droplet
direction occur. At a critical frequency the S shape appeargre neglected. Only the motion in the plane of the field rota-
which transforms to the 8 shape as the second critical fretion is considered. The latter assumption is in accord with the
quency is reached. Transitions to a different family of shape§Xperimental observatiorig,2,4-6.

occur through formation of jumps of the tangent and their For the tangent and the normal vectors, Frenet equations
propagation. For a certain range of tangent angles the modate valid,dt/dl=(1/R)n, dn/dl= —(1/R)t, whereR is the

is reduced to a backward parabolic equation, which is inherradius of curvature of the centerline ahils arc length. The
ently unstable and requires regularization. The latter is probalance of forces in the direction normal to the centerline
vided by taking into account the torque stresses due to thgives
intrinsic viscosity of the droplet. The derivation of the equa-

tion for droplet dynamics is carried out in terms of the slen-

der body approach, similar to the Kirchhoff model of rods in

the theory of elasticityf8]. Models of this type have been

used for description of complex dynamics of various fila-
mentary biological objectf9,10].

The behavior of liquid magnetic droplets under a rotating

dF,
—dv,+ WJFK”:O’ (1)

where the coefficiend in the friction force— dv,, exerted by
the surrounding fluid may be expressed, neglecting the hy-
*Electronic address: aceb@tesla.sal.lv drodynamic interactions, 443,14
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Here A is the length of the dropleg the radius of its cross 1 H
section,c a constant of the order of unity, angthe viscosity + 2 MH;— MdH; |. ®)
of the surrounding fluid. Since the droplet is in rotational
equilibrium at every instant, the torque balance yields Here the internal magnetic field strendth in the droplet is
M to be found from the solution of the equation
b
ar +F,+Ty=0. 2 H2 ' H2
(6)

o g
The torqueM,, due to the intrinsic viscosity of the droplet is (Hi+ NyM) (HitN.M)

calculated by referring to an analogy between the elastic anflor  the magnetic liquid the Langevin lawM

viscous phenomend1] as =MgL(H/H,) may be used for the magnetization where
H, is expressed through the magnetic moment of the colloi-
_ 3) dal particlem via the relationH, =kgT/m and Mg is the
saturation magnetization of the liquid. Since the magnetic
field strength employed in the experiments with the droplets
Here 7; is the intrinsic viscosity of a droplet. The external of the concentrated phase of a magnetic colloid is rather low
torqueT, acting per unit length of the droplet is given by the [1,2,5,6, the aforementioned nonlinearity of the magnetiza-
expressionT,=[M X Ho],ma2. The magnetization and the tion field dependence is not taken into account in the present
external field vectors are noncollinear because the demagngodel. For a linear magnetization law, the last two terms in
tizing field coefficients along the axis of the locally cylindri- the relation(5) cancel, which yields for the magnetic torque
cal droplet and in the direction perpendicular to it are differ-Ko=—JdE/d6 the expression
ent. According to our model, the demagnetizing field

Mb:Ta47liﬁ

37 J 1
R

2
coeffici_entNH for the mag_netic field component along the K0=Vmsin 20| — X + X _ 7)
centerline of the droplet is assumed to be equal to zero, 2 1+N x  1+Njx
whereas the one in the perpendicular direction=2. The ) ) . i - B
magnetization components then are as follows: For a cylinder with demagnetizing field coefficieritg=0

andN, =21 for the torque per unit length the latter relation
yields the expressiofd).

xH ;
M= xHot, anﬁ. Introducing the angle® between the local tangent to the
X centerline of the droplet and the abcissa aﬁ(fy arlal
As a result, the magnetic torque is =(cosé,sin@)] and using the commutator
4mx*HopHoyma? Ei_igz_ %—iv i
o= a1 4 dtal 4l dt a R " oal

pt+l

Some comments concerning the last relation are appropriat}gl.he[e the vellocny of the .pomts on the curve usvnn
The magnetic torque on a volume element with ellipsoidal*v:t, we derive the following expression for the time de-
shape is generally determined by two contributions: theivative of the tangent angle:

torque due to the local magnetic fiefdi xH]V and the 4o v, 1

torque due to the surface magnetic forces(Rin)2n. It is ai- a TUtRe ®)
possible to show by a direct calculation that the sum of these
torques is equal tdM X Ho]V [15]. Usually the volume Since the total length of the droplet is assumed constant, the
magnetic torquéM x H]V can be neglected due to the small tangential velocity is zero. The normal forég, due to the
magnetic relaxation time. Whenever this is not the casesurface tension is deduced from the variation of the surface
more complex phenomena with internal circulation in theenergy at constant volume of a droplet element of lemtjth
droplet take plac€l5]. These phenomena are disregarded inThe conservation of volume implies
the present model.

Another complication connected with the calculation of e
the magnetic torque on the droplet may be caused by the odl 2dl”
nonlinearity of the magnetization dependence on the internal _
magnetic field. In this case, it is possible to calculate theThus, the variation of surface energy for a displacendens
magnetic torque numerically from the expression for the 1
magnetic energy of an ellipsoidal droplet with the main axis _ _ FT
at the angled with respect to the external fie[d.6]: oE= ywaf odl= ywaf rlormdt.

da a
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As a result, the normal forckK, due to the surface tension
reads

Tya
an?. (9)

The relations(1)—(4) and (8), (9) yield, taking into account
that 96/0l=1/R, the following equation for the tangent
angle:

d60 mwya d’6 19T, 3ma'y 9°0

a8 g2 b 42 48 glhgt

For a rotating fieldH o= (coswt,sinwt) the relation(4) yields

417X2H(2)COS(wt— 6)sin( wt— 0) wa?
0~ pt+l '

and, introducing the phase lg@§~ wt— 6 between the local
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FIG. 1. Effective torque in dependence on tangent angle. Bm
=1.5.

are the conditions for the absence of normal forces and
torques at the tips of a worrr,(=1)=0; My(x=1)=0.
This, according to Eq92) and(3), gives

tangent direction and the magnetic field, the equation for the

angle B assumes the form

B & [mvya 2772)(2H(2)a2_ )
T g2\ e i1 SN2
377a4ﬁ B (10
4 5 Mot

In order to present Eq(10) in dimensionless form, we
choose the characteristic time= 5L%/M (the time of orien-
tation of a droplet of length 2 under the action of the torque
M). In the present case this gives

(u+1)6L2
T=—".
2772X2H§a2

As a result, Eq(10) in the dimensionless form reads

—0'8 > +sin28 |+ ﬁS'B 11
wT—E ﬁ %,8 Sin ,8 €ﬂ|4¢9t. ( )
Here
_37T a\*n
T 4\L) s

9B
Tt |=il_0, (12)
. B
sin2B8—e€ 5 =0. (13
acat| _,,

IIl. THE SHAPES OF THE DROPLETS IN AROTATING
FIELD: DISCUSSION OF THE EXPERIMENTAL
RESULTS

Equation(11) with the boundary condition&l2), (13) de-
termines the dynamics of the magnetic droplet under the ac-
tion of a rotating field. Equatioill) without the last term
can be written in the form

B &

= ———

or=Jr = 3F(B). (14)

Without this last term of Eq(11) the problem is ill posed.
Indeed, the functior-(B)=(1/Bm)B+sin 28 is not mono-
tonic for magnetic Bond number values larger tharFig.

1). This corresponds to the backward diffusion equaliof.
Numerical solution of the reduced equati¥) shows in-
stabilities. The last term of Eq11), which describes the
action of the viscous torques due to the intrinsic viscosity of
the worm, plays a regularizing role. For steady state (E4).

is a small parameter depending on the ratio of the cross segrith boundary conditiong|,_. ;=0 possesses a simple so-

tion radius to the length of the dropleL.2 Thus, for droplets
of the concentrated phase of a magnetic colloid wittin
=3.1C¢ [5] and the axis rati@/L=1/40, € is about 10*.

Bm is the magnetic Bond number given by the ratio of the

magnetic and capillary forces,

ZWXZHSa
Bm=——7+—.
(ut+1)y

Equation (11) must be supplemented by boundary condi-
tions. For a free magnetic droplet in the rotating field, those

lution

1
F(,B)zzwr(l—lz). (15)
The tangent angl@ dependence on the arc length variable
of the curve is discontinuous for field rotation frequencies
larger than the critical value. In fact there is a set of critical
frequencies determined by the equations

(07)¢, =2F(By),
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FIG. 2. Development of S-like shape at shock wave propaga- FIG. 3. Tangent angle of S-like shape. Numerical data, crosses;
tion. Bm=1.5; wr=5.0; e=10"'. Dimensionless time starting theoretical solution determined by E(L5) and §,, dotted line.
from center 0.28, 0.42, 0.56, 0.84, 1.12, 1.39, 1.68, 2.08, 2.78. Bm=1.5, w7=5.0, ande=10"".

wheren=1,2,... andg, [F'(B,)=0] correspond to the number is about 3.16. Ultimately the stationary droplet con-
local maxima of the functiorF(3). The dependence of the figuration(15) is establishedsee Fig. 3 for a comparison of
critical frequency (7)., on the magnetic Bond number is the theoretical steady state solutidb) with that found nu-

determined by the relation merically by establishment from the initial sta=0]. It
should be remarked that for a different initial condition an-
1|=m 1 1 other steady state configuration may develop. It is character-
(“’7)61:2{ Bml 2~ Earcco%m” ized by positions of the jumps closer to the ends of the drop-

let, which correspond to the local minima of the function
1 F(B). Experimentally such configurations could be realized
arcco% Bm) by decreasing the field rotation frequency from a higher ini-
tial value. Such experiments are not currently available. The
(w7)¢1 diminishes with increase of the magnetic Bond num-shapes of a droplet under the action of a rotating field may be
ber, reaching the limiting valuew(r)., =2 at large magnetic classified by the number of jumps. The actual shape of a
Bond numbers. At the critical value of the rotating field fre- droplet corresponding to the solutions found for the tangent
guency a jump of the tangent angle appears near the droplesgle may be found by numerical integration of the equa-
center and propagates until a new steady shape of the droplébns
is established. The transition to a hew shape obtained by a
numerical solution of Eq(11) with boundary conditions d—x=cos,8
(12), (13) is shown in Fig. 2. The numerical solution is ob- dl
tained by an implicit scheme with the spatial derivatives ap-
proximated by central differences. The nonlinear equation@nd
for the values of the tangent angle at each time step are d
solved by Newton iterations. To approximate the boundary y_ —sing.
conditions(12), (13), the Taylor expansion of the function dl
B(1) near the end points is used up to the third order terms ' .
yielding the following expressions for the first and second! e Shapes found for several values of the field rotation fre-
order derivatives at the left end point: quency are shown in Fig. 4. Th|§ figure !Ilustrates how the
shapes of the droplets observed in experimghs] may be
1 classified according to the number of jumps of the tangent
B'(0)= %[4,8(1)—,8(2) —3B(0)], angle. Thus, the transition from the bent shape to the S shape
(1—2 in Fig. 4 is characterized by two jumps of the tangent
1 angle; the transition to the 8 shape—{3 in Fig. 4 taking
"y — _ place at higher rotation frequencies is characterized by four
A'(0) hZ[B(ZH'B(O) 2B} jumps of the tangent angle.
Currently, there are no quantitative experimental data con-
Here h is the mesh size. Similar relations are valid at thecerning the critical frequencies of the rotating magnetic field
right end point. at which the transition occurs to the S- or more complex
The values of the physical parameters for the proces8-like shapes. Nevertheless, some comparison is possible us-
shown in Fig. 2 are as follows: Bml.5, w7=5, ande ing the available experimental d&td] for the dynamics of
=10"'. The number of mesh points is 300. The initial con- elongated magnetic droplets of the concentrated magnetic
dition 8=0 is used. The value of the critical frequency of phase under the action of a low frequency rotating magnetic
the transition to the S shape for the given magnetic Bondield. The droplets of the concentrated ph&Sghave high

+sin : (16)

061402-4



DYNAMICS OF AN ELONGATED MAGNETIC DROPLH . .. PHYSICAL REVIEW E 66, 061402 (2002

1 2 the experimental data $18], which show that the stationary
length of the chain of magnetic particles scales with fre-
quency as»~ Y2 This corresponds to what is expected from
relation (17) according to which jumps of the tangent are
formed (they are actually observed [A8]) for chains with
length larger than critical, and lead to its breakup. Thus, the

3 4 observation of scaling is just what follows from relati¢iv)
(apart from the weak logarithmic dependence of the friction
coefficients on the droplet’s length
The jump dynamics is similar to that of a shock wave.
Jump propagation provides the mechanism by which the
transition to a new steady state synchronously rotating with
FIG. 4. Transition to S and 8 shapes. Bh.5e=10"%, w7  the applied field is achieved. Formation of these jumps also
=2.0(2), 3.5(2), 6.0(3), and 8.0(4). bears a resemblance to the backward motions arising, for
example, in a system of two magnetic hold@€] when the
magnetic permeability with values up to about 86 and surcritical lag between the direction of the external field and the
face tension 1. 10™2 erg/cn?. The magnetic Bond number axis of the doublet is reached. Whenever the lag in the cen-
Bm=3(u—1)%/(u+1)(a/L)PH3Ry/4ma for such drop- tral region of the droplet reaches a critical value jumps of the
lets in a magnetic field witlH2R,/4ro=2.5[5] is equal to  tangent angle are formed.
30. Here the radius of the central part of the elongated drop-
let has been estimated from the radius of the dropgt
according to the relatioR,=a(L/a)*. For such rather high
values of the magnetic Bond number the critical frequency of A simple model of the elongated magnetic liquid droplet
the transition to the S shape is equal to its limiting value andotating synchronously with an applied magnetic field has
thus may be estimated from the relation been proposed. This model allows us to identify the set of
critical frequencies at which the droplet’s shape transitions
_2_ 4m?x°Hga’ take place. The determined values of the critical frequencies
“’C_;_M’ 17 coincide reasonably well with the available experimental
data. For a numerical simulation of the transition to more
which for the above parameter values gives the critical frecomplex droplet shapes occurring by propagation of a jump
quency 25.5 Hz. This value is exactly in the range of fre-of the tangent angle, a regularization of the corresponding
quencies of the rotating fieldu/27< 10 Hz) where the tran- partial differential equation is necessary. This is achieved by
sition to S-like shapes is observgsl. It should be remarked, taking into account the small effect of the intrinsic viscosity
however, that in contrast to those considered in the prese the droplet. Further extension of this work will concern
model, the droplets observed [ifi] do not possess a steady the study of possible nonsteady-state regimes in the system.
state S shape rotating synchronously with the field. Rathett Will also be interesting to take into account the extensional
after the transition to the S shape they break up into thredynamics of the droplet due to the long-range magnetic in-
droplets. This is in accord with the S shape of the “mother”teractions and the intrinsic stresses due to internal rotations
droplet and may be explained by the repulsion of its distantn the magnetic fluid20].
parts due to long-range magnetic interactions not taken into
account in the present model. These effects will be taken into ACKNOWLEDGMENTS
account by a more complex model, currently under develop-
ment, which in addition to the long-range magnetic interac- The author is thankful to Teodors Cirulis, Harijs Kalis,
tions will also consider the variation of the magnetic threadisaac Rubinstein, and Boris Zaltzman for discussion of the
radius due to nonhomogeneity of the magnetic forces. Ratheanathematical properties of the model and to Jean Claude
convincing support for the present model of the elongatedacri and Regine Perzynski for numerous discussions con-
droplet dynamics in a rotating magnetic field is also given bycerning the behavior of magnetic droplets in a rotating field.

IV. CONCLUSION
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