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Fluctuation-dissipation relations in driven granular gases
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We study the dynamics of a two-dimensional driven inelastic gas, by means of direct simulation Monte
Carlo techniques, i.e., under the assumption of molecular chaos. Under the effect of a uniform stochastic
driving in the form of a white noise plus a friction term, the gas is kept in a nonequilibrium steady state
characterized by fractal density correlations and non-Gaussian distributions of velocities; the mean-squared
velocity, that is the so-calledgranular temperature, is lower than the bath temperature. We observe that a
modified form of the Kubo relation, which relates the autocorrelation and the linear response for the dynamics
of a systemat equilibrium, still holds for the off equilibrium, though stationary, dynamics of the systems under
investigation. Interestingly, the only needed modification to the equilibrium Kubo relation is the replacement of
the equilibrium temperature with an effective temperature, which results equal to the global granular tempera-
ture. We present two independent numerical experiments, where two different observables are studied:~a! the
staggered density current, whose response to an impulsive shear is proportional to its autocorrelation in the
unperturbed system and~b! the response of a tracer to a small constant force, switched on at timetw , which
is proportional to the mean-square displacement in the unperturbed system. Both measures confirm the validity
of Kubo’s formula, provided that the granular temperature is used as the proportionality factor between
response and autocorrelation, at least for not too large inelasticities.

DOI: 10.1103/PhysRevE.66.061305 PACS number~s!: 45.70.2n, 05.40.2a, 05.70.2a
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I. INTRODUCTION

In the past few years, granular materials@1# have become
a fast growing field of research. In this framework, a stro
interest has arisen in the subject of the so-called gran
gases, systems of grains at a very low density so that
collisions can be considered always binary and instantane
@2#. The collisions among the grains are dissipative, and
amount of energy lost in each collision is parametrized
the so-called restitution coefficientr ~see below for a precise
definition!. Since the energy of the system is not conserv
therefore, an external forcing is usually applied to obtain
dynamic stationary state. For these kind of systems, the a
ogy with perfect gases allows to introduce agranular tem-
perature@3# defined as the mean-square fluctuation of
velocity, that isTG5^uv2^v&u2& even though the velocity
distribution could not be Gaussian.

In the case of zero external forcing@4# ~i.e., the so-called
free cooling!, granular temperature decreases in time a
goes asymptotically to zero when all the particles fina
stop. When an energy input feeds the system, instead,
granular temperature may reach a stationary value and
eral models for the stochastic driving have been propo
employing a constant@5–9# or a random@10# restitution co-
efficient.

In numerical simulations or in experiments,TG is often
measured taking the average^•& on the whole system. How
ever, strong fluctuations in the local granular temperature
be observed@7#. Even considering only the global granul
temperature, i.e., for small spatial inhomogeneities, it is
clear to which extentTG can be considered the ‘‘tempera
ture’’ of the system.

There are of course several possible paths to face
problem. One interesting point of view is that of investiga
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ing the response properties of an external thermom
coupled to a granular gas@11#. This corresponds to study th
fluctuation-dissipation properties of the system@12#. For a
system slightly perturbed from its stationary equilibriu
state, linear response theory allows to relate the respons
the correlation functions through the fluctuation-dissipat
relations@13#.

In the simplest case, given a perturbing fielda, a
fluctuation-dissipation relation relates the response of an
servableB at the timet, after an impulsive perturbation a
time 0, to the correlation of the observableB and the fieldA,
conjugatedto a, measured in the unperturbed system,

]^B~ t !&
]a

52
1

T

]

]t
^B~ t !A~0!&, ~1!

whereT is the equilibrium temperature of the system.
Recently, Green-Kubo expressions for a homogene

cooling granular gas have been obtained@14–16# and nu-
merical simulations have confirmed their validity@17#: cool-
ing granulars lack an equilibrium state, therefore the hom
geneous cooling state~which is characterized by scalin
properties! is used as a reference state to be perturbed, bu
this case the Green-Kubo relations must be changed in o
to keep into account new terms arising from the time dep
dence of the reference state and the nonconservative ch
ter of collisions ~see Ref.@15#!. However, in the case o
steady state granular gases, a rigorous derivation of Gr
Kubo relations has not yet been performed to our knowled

In this paper, we perform numerical investigations in o
der to check the validity of standard Kubo formulas@13,18#
to steady state inelastic gases. We perform, in particular,
different sets of numerical experiments on heated gran
gases. We choose two different conjugated pairs of varia
©2002 The American Physical Society05-1
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constituted by the autocorrelation of a given variable and
corresponding response to a perturbation applied to the
Kubo’s formula, i.e., the proportionality between respon
and the autocorrelation in the unperturbed system, is veri
to hold using the granular temperature as the correct pro
tionality factor, at least for not too strong inelasticitiesr
.0.5). For stronger inelasticities~smaller values ofr ), Ku-
bo’s formula can be verified with a different effective tem
perature. It should be noted how the adopted simula
scheme@i.e., direct simulation Monte Carlo~DSMC!# repre-
sents the numerical implementation of the Boltzmann eq
tion ~given, for example, in Ref.@7#!, which assumes mo
lecular chaos hypothesis and therefore, neglects short-r
correlations. For this reason, for very strong inelasticities,
Boltzmann equation~and the DSMC scheme! cannot be con-
sidered realistic and one should use molecular dynam
simulations.

These results differ from the analogous results obtai
for dense granular assemblies, where ‘‘slow’’ degrees of fr
dom thermalize at an effective temperature, which is
higher than the external imposed temperature@19,20#. How-
ever the gaslike state of granular matter has nothing to
with these systems, as their stationary state is governed
rapid decay of the fluctuations and the granular tempera
turns out to be the right choice in the description of line
response to slight perturbations.

The outline of the paper is as follows. In Sec. II, w
define the model as well as its simulation scheme and giv
brief review of known results about the peculiar features
its nonequilibrium stationary state. Section III reviews K
bo’s formula and its extension to non-Hamiltonian perturb
tions. In Sec. IV, we describe numerical experiments usin
sinusoidal shear and measuring as a response to the de
current. In Sec. V, we perform a diffusion vs mobility expe
ment upon a tracer~i.e., perturbing a single particle!. Finally,
Sec. VI is devoted to the conclusions.

II. THE MODEL

We simulate a gas ofN identical particles of unitary mas
in a two-dimensional box of sideL5AN ~in order to have a
fixed number densityN/L2 when changingN) with periodic
boundary conditions. The particle collisions are inelastic:
total momentum is conserved, while the component of
relative velocity parallel to the direction joining the center
the particles is reduced to a fractionr ~with 0<r<1) of its
initial value, lowering in this way the kinetic energy of th
pair:

v185v12
11r

2
@~v12v2!•n̂#n̂, ~2a!

v285v21
11r

2
~~v12v2!•n̂!n̂, ~2b!

wherev18 andv28 are the velocities of the colliding particle
after the collision.
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In the interval between two subsequent collisions, the m
tion of each particlei is governed by the following Langevin
equation@7#:

d

dt
vi~ t !52

vi~ t !

tB
1A2Tb

tB
hi~ t !, ~3a!

d

dt
xi~ t !5vi~ t !, ~3b!

where the functionhi(t) is a stochastic process with avera
^hi(t)&50 and correlationŝh i

a(t)h j
b(t8)&5d(t2t8)d i j dab

(a and b being component indices!, i.e., a standard white
noise. This means that each particle feels a hot fluid wit
temperatureTb and a viscosity characterized by a timetB .

The question about the most proper way of modeling
stochastic driving is still open. Many authors for instance u
Eq. ~3! without viscosity@5#. This is equivalent to the limit
tB→` andTb→` with keepingD5Tb /tB constant. In this
limit, long- and short-range correlations in the velocity a
density fields have been observed@8#. We have measured
correlations in the velocity field in the model with viscosit
concluding that they are highly reduced by the viscous te
that breaks Galilean invariance~the framev50 is preferred!
@21#. Our choice of the stochastic driving with viscosity h
the following advantages:~a! it guarantees that in the elast
limit ( r 51), the system after a transient time of the order
tB , still reaches a stationary state, characterized by a
form density and a Gaussian distribution of velocities w
temperatureTb ; ~b! it is a heat bath with a well defined finit
temperatureTb that can be compared with the granular te
peratureTG and the effective temperatureTe f f measured by
means of fluctuation-dissipation relations~see ahead!.

In spite of the drastic reduction of velocity correlation
this model exhibits several interesting features, which
parametrized by the restitution coefficientr and the ratio,
tC /tB , between the mean free time~the average interval o
time between two subsequent collisions of the same parti!
and the viscosity time. WhentB.tC andr ,1, the system is
in a nonequilibrium stationary state with a granular tempe
ture TG,Tb . This state is characterized@7# by fractal den-
sity clustering and non-Gaussian distributions of velocit
~see Fig. 1! with a dependence uponr andtC /tB . This situ-
ation persists when direct simulation Monte Carlo~DSMC!
@22# is used to perform more rapid and larger simulations
the system. The DSMC simulation scheme consists of a
crete time integration of the motion of the particles. At ea
time step of lengthDt, the following operations are per
formed:

~1!Free streaming: Equation~3! is integrated for a time
step Dt disregarding possible interactions among the p
ticles.

~2!Collisions: Every particle has a probabilityp5Dt/tc
of undergoing a collision. Its collision mate is chosen amo
the particles in a circle of fixed radiusr B with a probability
proportional to its relative velocity. The unitary vectorn,
5-2
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FLUCTUATION-DISSIPATION RELATIONS IN DRIVEN . . . PHYSICAL REVIEW E66, 061305 ~2002!
which should be parallel to the line joining the centers
particles, is chosen randomly instead and the collision is
formed using rule~2!.

III. SHORT REVIEW ABOUT KUBO’S FORMULA

In this section, we review the Kubo’s formula, whic
must hold in the case of equilibrium dynamics. First, w
show the case of an Hamiltonian dynamics, and then
non-Hamiltonian equilibrium dynamics of a system su
jected to a~impulsive! shear force. The first case is present
just for completeness and to set the notations, the form
presented in the second case will be numerically checked
an elastic system and extended to the inelastic case in
following sections.

A. Kubo’s formula for Hamiltonian systems

For an Hamiltonian system, the temporal evolution of t
phase space distributionf (p,q,t) is ruled by the Liouville
equation,

]

]t
f ~p,q,t !5 i @L1Lext~ t !# f ~p,q,t !, ~4!

whereL andLext are the Liouville operators relative to th
unperturbed Hamiltonian and to its perturbation, resp
tively. They are defined by means of classical Poiss
bracket,

iLf 5~H, f !5( S ]H
]q

]

]p
2

]H
]p

]

]qD f . ~5!

The perturbation is assumed to be given by couplin
force a(t) with an observable of the systemÂ, i.e.,

Hext52Â~p,q!a~ t !. ~6!

FIG. 1. Rescaled~in order to have unitary variance! distribution
of the horizontal component of the velocity of the gasP(vx) versus
vx , with N5500, L25N, heat bath withTb51, tb510, tc51,
and different restitution coefficients. The Gaussian is plotted a
reference for the eye.
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The phase space distribution is assumed to be canon
~i.e., at equilibrium! in the infinite past: f (p,q,2`)
5 f eq(p,q). An approximate solution of Eq.~4! to the first
order in the perturbationiLext is given by

f ~p,q,t !5 f eq~p,q!1E
2`

t

dt8

3exp@ i ~ t2t8!L#„Hext~ t8!, f eq~p,q!…1•••.

~7!

With this approximation, the deviation, due to the pertu
bation~6!, of the expectation of a physical quantityB̂ can be
written as the following convolution:

dB̂~ t !5^B̂& t2^B̂&2`5E
2`

t

dt8FBA~ t2t8!a~ t8!, ~8!

where ^ . . . & t denotes averages taken over the ensem
given by f (p,q,t); FBA(t2t8), called response function,
represents the responsedB̂(t) to the pulsed forcea(t)
5d(t), and reads

FBA~ t !5E E dpdq feq~p,q!„DÂ~p,q!,DB̂~pt ,qt!…

5^„DÂ,DB̂~ t !…&, ~9!

whereDA5Â2^A& ~and identically forDB̂), while (pt ,qt)
is the image of the initial phase point (p,q) determined by
the total Hamiltonian~including the perturbation!.

Kubo has shown that the response function can be wri
in a simpler form@13,18#,

FBA~ t !5bK ]DÂ

]t
~0!DB̂~ t !L 52bK DA~0!

]DB̂

]t
~ t !L ,

~10!

whereb is the inverse of the temperature.

B. Fluctuation-dissipation for non-Hamiltonian equilibrium
systems„the case of shear force…

Let us consider a gas of particles and define a noncon
vative perturbation~force! acting on particlei placed atr i(t)
at time t as

F~r i ,t !5g ij~r i ,t !,

with the properties “3jÞ0, “•j50, ~11!

whereg i is the particle-dependent part of the force amp
tude. Forsmall enough perturbationand for any variable
~‘‘observable’’! O(r ) such that̂ O&2`50, Eq. ~8! with the
Kubo formula~10! reads@23,24#

a

5-3
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^O~r !& t5bE dr 8E
2`

t

dt8K O~r ,t !(
i

g i ṙ i~ t8!

3d„r 82r i~ t8!…L
2`

•j~r 8,t8!, ~12a!

^Ô~k!& t5bE
2`

t

dt8K Ô~k,t !(
i

g i ṙ i~ t8!

3exp$ ik•r i~ t8!%L
2`

• ĵ~k,t8!, ~12b!

where the Fourier transformG→Ĝ is defined as

Ĝ~k!5
1

VE dre2 ik•rG~r !. ~13!

A force satisfying the properties~11! is for instance given
by

jk̄~r ,t !5S 0

J exp~ i k̄xx!d~ t !
D , ~14!

whose spatial Fourier transform reads

jk̄~k,t !5S 0

J

V
d~k2 k̄!d~ t !D , ~15!

wherek̄5( k̄x,0) ~having chosenkx compatible with the pe-
riodic boundary conditions, i.e.,kx52nkp/Lx , with nk inte-
ger andLx the linear horizontal dimension of the box whe
the particles move!. Note thatJ must have the dimension
of a momentum, i.e., of a velocity~taking unitary masses!.
With this choice, Eq.~12b! becomes

^Ô~k!& t5
bJ

V K Ô~k,t !(
i

g i ẏi~0!exp$ ik•r i~0!%L
2`

3d~k2 k̄!. ~16!

If we now define the staggeredy current as

Jy
st~r ,t !5(

i
g i ẏi~ t !d„r2r i~ t !…, ~17a!

Ĵy
st~k,t !5

1

V (
i

g i ẏi~ t !exp@2 ik•r i~ t !#, ~17b!

then, using this current as observableO, the relation~16! is
written as
06130
^ Ĵy
st~k,t !& t5

bJ

V2 K (
i j

g i ẏi~ t !exp~2 ik•r i~ t !!g j ẏ j~0!

3exp$ i k̄xxj~0!%L
2`

d~k2 k̄!

5bJ^Ĵy
st~k,t !Ĵy

st~2k,0!&2`d~k2 k̄!. ~18!

A real linear combination of forces of the kind in Eq.~14!
is

j~r ,t !5
1

2
~jk̄~r ,t !1j2 k̄~r ,t !!5S 0

J cos~ k̄xx!d~ t !
D .

~19!

With this choice of the perturbation, the relation~18! be-
comes

^Ĵy
st~k,t !& t5

bJ

2
^Ĵy

st~k,t !Ĵy
st~2k,0!&2`

Ã„d~k2 k̄!1d~k1 k̄!…. ~20!

This is a fluctuation-dissipation~FD! relation, which ex-
presses the fact that the response of thek̄ component of the
transverse current to the perturbing field in Eq.~19! is pro-
portional to the autocorrelation of the same transverse
rent measured in the systemwithout perturbation.

It is useful to remark that for this particular choice of th
observables, the right-hand side of the correspond
Fluctuation-dissipation relation, which must be the derivat
of the correlation function@see Eq.~1!#, takes the simple
form of an autocorrelation function@23,24#.

The real part of the response calculated atk̄ ~per unit of
perturbing field! is directly computable and reads

ReF V

J
^Ĵy

st~ k̄,t !& tG5
1

J K (
i

g i ẏi~ t !cos@ k̄xxi~ t !#L
t

.

~21!

From Eq.~20! one obtains the relation,

1

J K (
i

g i ẏi~ t !cos@ k̄xxi~ t !#L
t

5
b

2 K (
i j

g ig j ẏi~ t !ẏ j~0!cos$k̄x@xi~ t !2xj~0!#%L
2`

.

~22!

IV. FLUCTUATION-DISSIPATION MEASURE I:
SHEAR VS CURRENT

The first set of measures we have performed has b
aimed to verify relation~22! for a system as described in th
previous paragraph. In order to do this, we have used
following recipe proposed in Ref.@23#.
5-4
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~1! Initialize the systemU with random positions$r i
U(0)%

and random velocities$ ṙ i
U(0)%.

~2! Let it evolve with the unperturbed dynamics until tim
tw , which must be chosen larger than the largest charac
istic time of the system~e.g., tc or tb). The unperturbed
dynamics consists of the time-discretized (Dt) integration of
the Langevin equation~3!,

vi~ t1Dt !5vi~ t !2
Dt

tb
vi~ t !1A2TbDt

tb
R~ t ! ~23!

plus inelastic collisions with parameterr ~restitution coeffi-
cient!. The collisional step is separated from the Lange
step and is implemented by means of a local Monte Ca
procedure, i.e., random choice of pairs to collide inside
region of diameterr B ; the collision probability is propor-
tional to a fixed collision frequency 1/tc and to the relative
velocity of the particles;tc is chosen to be compatible wit
an homogeneous gaslike dynamics, i.e.,tc'r B /A^v2&2`.

~3! At time tw , a copy of the systemU is created~and
namedP) and the vectors$ ẏi(tw)% and $xi(tw)% are memo-
rized in order to be used in the computation of the autoc
relation.

~4! The systemU is let to evolve with the unperturbe
dynamics. The systemP is made to evolve with the addi
tional forcing described in Eqs.~11! and ~19! for only the
time step@ tw ,tw1Dt#, i.e., the equation for the update o
velocities in this particular step being

vi
P~ tw1Dt !5vi

P~ tw!2
Dt

tb
vi

P~ tw!1A2TbDt

tb
R~ tw!

1g iS 0

J cos@ k̄xxi
P~ tw!#

D , ~24!

with k̄x52pnk /Lx . The quantitiesg i are chosen to take th
random value61 with equal probability~we have checked
as different choices produce the same results!. Note again
that the perturbation intensityJ has exactly the dimension
of velocity.

~5! The dynamics of the systemsU andP are, thereafter,
followed in the unperturbed style, i.e., by using Eq.~23!. The
functions to be measured are

R~t!5
1

NJ (
i

g i ẏi
P~ tw1t!cos@ k̄xxi

P~ tw1t!#, ~25a!

C~t!5
1

N (
i j

g ig j ẏi
U~ tw1t!ẏ j

U~ tw!cos$k̄x@xi
U~ tw1t!

2xj
U~ tw!#%, ~25b!

where t5t2tw . It is expected thatR(0)51/2 and C(0)
5^v2&, while R(`)5C(`)→0.

~6! The above steps are repeated for many different r
izations~or even in the same realization, provided its leng
06130
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is much longer than the typical correlation time! and the
averages over those realizations ofR(t2tw) and C(t2tw)
are computed~see Fig. 2!.

For the aim of checking the whole numerical machine
we first consider ther 51 elastic case. In all the cases inve
tigated, we have checked the linearity of the response
changing the perturbation amplitude in the rangeJ
P@0.005,0.05#. Within the specific framework chosen fo
the observables, the Kubo formula to be verified is given

^R~ t2tw!&5
b

2
^C~ t2tw!&. ~26!

We have performed the following experiments~see Fig.
3!: ~1! Gas with elastic interactions and absence of therm
bath;~2! Gas with elastic interactionswith the thermal bath.

From Fig. 2 it can already be appreciated that respo
and autocorrelations in the elastic gas decay on a time of
order oftc ~however this decay is not exponential, as can
observed in the inset of the figure!. The parametric plot of
the two curves in Fig. 3 shows the perfect agreement w
Eq. ~26! usingb51/Tb . In this case, of course,Tb[TG .

We have repeated the same measures on the gas
restitution coefficientr ,1, i.e., gas with inelastic interac
tions with the bath~in this case, the bath is essential, to avo
cooling!, see Fig. 4.

We obtain again a very good agreement with Eq.~26!
using b51/TG . This is the main finding in this set of nu
merical experiments: even if the gas is out of equilibriu
being driven by a thermal bath at temperatureTb , its unper-
turbed autocorrelation is still proportional to the linear r
sponse, and its effective temperature measured by mean
fluctuation-dissipation theory is exactly the granular te
peratureTG .

FIG. 2. Left: time dependent response to the impulsive sh
perturbation defined in Eqs.~11! and ~19!: R(t2tw) vs t2tw for
three simulations with elastic systems, one without thermal bath
two with thermal bath, and with different choices of the wave nu
ber nk of the perturbation. Right: time correlation functio
C(t2tw) vs t2tw for the same systems. In the simulationsr 51,
N5500, tc51, and for the two cases with the heat bathTb51 and
tb510. The applied force hasJ50.01, tw5100. The averages
have been obtained over 10 000 realizations.
5-5
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It must also be noted that relation~26! is verified for
many values of the wave numbernk , i.e., the system doe
not show a scale dependent effective temperature.

At very large inelasticities, we expect a lack of validity
Eq. ~26!. This point deserves a deeper investigation.

V. FLUCTUATION-DISSIPATION MEASURE II:
DIFFUSION

Another independent confirmation of the validity of th
modified linear response theory for a granular gas com
from the study of the diffusion properties, i.e., of the lar

FIG. 3. Parametric plot ofR(t2tw) vs C(t2tw) for the numeri-
cal experiment of type I~impulsive shear perturbation! with r 51,
with or without heating bath, and for different choices of the wa
numbernk of the perturbation. The initial temperature for the ca
without heat bath is chosen to be 1 whileTb51 andtb510 for the
two cases with the heat bath.N5500,tc51, J50.01,nk58, with
average over 10 000 realizations usingtw5100.

FIG. 4. Parametric plot ofR(t2tw) vs C(t2tw) for the numeri-
cal experiment of type I~impulsive shear perturbation! with r ,1,
with heating bath, and for different choices of the wave numbernk

of the perturbation.Tb51, tb510, N5500, tc51, J50.01, nk

58, with averages over 10 000 realizations, usingtw5100.
06130
s

time behavior of the mean-squared displacementB(t,tw)
5^ur (t)2r (tw)u2&;2D(t2tw). In this case, the Einstein re
lation is expected to holdD5^uvu2&tcorr , where tcorr
5b*dt^v(tw1t)v(tw)&: this relation however, often ad
dressed as a sort of FD relation, is always verified and
represents a check of the correctness of the simulation.
stead, some surprise could arise from mobility measu
ments: a small static drag force~switched on at timetw) of
intensityJ ~in the direction of the unitary vectorx̂ of the x
axis! is applied to a given particle~tracer, e.g., particle with
index 0 and positionr0). The tracer reaches, as a result of t
viscous force generated by the gas surrounding it, a li
constant velocity such thatx(t,tw)[^u(r0(t)2r0(tw))• x̂u&
;Jmt, wherem is the mobility, which is expected to b
related to the diffusion coefficient through the Einstein re
tion m5D/^vx

2&52D/T ~if the force is applied on the direc
tion x in the two-dimensional system!.

Figure 5 shows the mean-squared displacement~in the
unperturbed system! and thex displacement of the trace
~when it is accelerated! divided by the intensity of the per
turbing force versus time: it can be appreciated how b
these quantities grow linearly with time, defining the diff
sion coefficient and the mobility.

In our experiments, we have checked the linearity of
relation between^ux0(t)2x0(tw)u&[^u@r0(t)2r0(tw)#• x̂u&
and ^ur (t)2r (tw)u2&. In particular, if Kubo’s formula was
valid, one should have

^ux0~ t !2x0~ tw!u&
J

5b
^ur i~ t !2r i~ tw!u2&

4
, ~27!

with b51/T if the system is in thermodynamic equilibrium
at temperatureT.

In all the simulations, we have checked the linearity of t
response by changing the perturbation amplitude in the ra
JP@0.005,0.05#.

FIG. 5. Simulations of systems coupled to a thermal bath w
elastic or inelastic collisions.N5500, tc51, Tb50.1, tb510,
J50.01, tw5100. The results are obtained by averaging ov
10 000 realizations. Left: mean squared displacementB(t,tw) vs t
2tw . Right: integrated responsex(t,tw) to a constant force applied
to the particle numbered as 0 vst2tw .
5-6
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Figure 6 reports the parametric plot of the response to
force versus the mean-squared displacement in the un
turbed system, showing how relation~27! is very well satis-
fied at different inelasticities. Also in this case one cou
expect a breakdown of FD relation at large inelasticities d
to cluster formation~i.e., spatial lack of homogeneity!, which
is present even in the case of DSMC solutions of Boltzma
equation~see for example Ref.@7#!. This hypothesis should
deserve a deeper investigation.

It should be noted that the coincidence of the results
tained with the two methods of Secs. IV and V is not obvio
in a nonequilibrium context and it should not always be e
pected.

VI. CONCLUSIONS

In conclusion, in this paper, we have investigated the
lidity of Kubo’s relations in driven granular gases in tw
dimensions. We have compared, in particular, two sets
measures. On one hand, we have measured the proporti
ity factor between the response of the staggered density
rent to an impulsive shear forcing and its autocorrelat
function in the unperturbed system. On the other hand,
have monitored the velocity of a tracer by checking the p
portionality between its response to a small constant fo
switched on at timetw , and its mean-squared displaceme
in the unperturbed stationary state.

In both cases, a proportionality is observed, in analo
with the linear response theory for equilibrium dynamic
Furthermore, the proportionality factor in the Kubo formul

FIG. 6. Parametric plot ofx(t,tw) vs B(t,tw) for the numerical
experiment of type II~constant force applied on one particle! with
r 51, r 50.8, and r 50.7, with heating bath, and for differen
choices of the intensityJ of the perturbation, usingTb50.1, tb

510, N5500, tc51, tw5100. The results are obtained by ave
aging over 10 000 realizations.
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is equal to the inverse of th granular temperature~at least for
not so small restitution coefficients!, which hence plays the
role of the equilibrium temperature in the elastic case. I
important to remark how these results are recovered by
completely independent measurement schemes.

Several remarks are in order. First of all, though a gra
lar gas is a nontrivial out-of-equilibrium system, from th
point of view of its thermodynamics it exhibits propertie
which seem much simpler than the corresponding proper
observed in a compacting granular medium. In this case
fact, apparently no slow modes are present or at least t
presence does not give rise to the existence of several e
tive temperatures depending on the time scales investig
@12#. On the other hand, the proportionality factor, we ha
found, between response and autocorrelation cannot be
sidered as a temperature from the point of view of equil
rium thermodynamics since it does not rely on any kno
statistical ensemble.

Another point to stress concerns the validity of the zer
principle of thermodynamics. The question that immediat
arises could be summarized as follows: if the granular te
perature represents the correct temperature from the poin
view of the fluctuation-dissipation theorem, should we e
pect that it rules the thermalization properties of two diffe
ent granular gases put in contact? As already mentioned
answer to this question is far from being trivial as witness
by all recent results obtained on mixtures@25–35#, where a
lack of equipartition is observed. However, these resu
~validity of fluctuation-dissipation relations and lack ofequ
partition! can coexist simply because heated granular ga
have not only a thermal source but also a thermal sink~dis-
sipative collisions! and therefore, any zero principle shou
be stated in terms of a balance equation among energy fl
instead of a strict equivalence between temperature of
tems in contact.

We again remark that there are also other common w
of driving a granular gas in a stationary state, e.g., stocha
driving without viscosity @8#, stochastic restitution coeffi
cient models@10#, multiplicative noise models@9#, and so on.
In some of these models, a more pronounced departure f
homogeneity~for example, correlations in the velocity fiel
@8#! and therefore, a breakdown of fluctuation-dissipation
lations should be investigated.
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