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We study the dynamics of a two-dimensional driven inelastic gas, by means of direct simulation Monte
Carlo techniques, i.e., under the assumption of molecular chaos. Under the effect of a uniform stochastic
driving in the form of a white noise plus a friction term, the gas is kept in a nonequilibrium steady state
characterized by fractal density correlations and non-Gaussian distributions of velocities; the mean-squared
velocity, that is the so-calledranular temperaturgis lower than the bath temperature. We observe that a
modified form of the Kubo relation, which relates the autocorrelation and the linear response for the dynamics
of a systemat equilibrium still holds for the off equilibrium, though stationary, dynamics of the systems under
investigation. Interestingly, the only needed modification to the equilibrium Kubo relation is the replacement of
the equilibrium temperature with an effective temperature, which results equal to the global granular tempera-
ture. We present two independent numerical experiments, where two different observables are(sjutiied:
staggered density current, whose response to an impulsive shear is proportional to its autocorrelation in the
unperturbed system an(d) the response of a tracer to a small constant force, switched on atjimehich
is proportional to the mean-square displacement in the unperturbed system. Both measures confirm the validity
of Kubo’s formula, provided that the granular temperature is used as the proportionality factor between
response and autocorrelation, at least for not too large inelasticities.
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I. INTRODUCTION ing the response properties of an external thermometer
coupled to a granular ga41]. This corresponds to study the
In the past few years, granular materigl$ have become fluctuation-dissipation properties of the systg¢h2]. For a
a fast growing field of research. In this framework, a strongsystem slightly perturbed from its stationary equilibrium
interest has arisen in the subject of the so-called granuletate, linear response theory allows to relate the response to
gases, systems of grains at a very low density so that thée correlation functions through the fluctuation-dissipation
collisions can be considered always binary and instantaneotiglations[13].
[2]. The collisions among the grains are dissipative, and the In the simplest case, given a perturbing fietd a
amount of energy lost in each collision is parametrized byfluctuation-dissipation relation relates the response of an ob-
the so-called restitution coefficientsee below for a precise SservableB at the timet, after an impulsive perturbation at
definition). Since the energy of the system is not conserved{ime 0O, to the correlation of the observaldeand the fieldA,
therefore, an external forcing is usually applied to obtain aconjugatedio @, measured in the unperturbed system,
dynamic stationary state. For these kind of systems, the anal-

ogy with perfect gases allows to introduceggnular tem- aB(t) 14
perature[3] defined as the mean-square fluctuation of the da T5<B(t)A(O)>’ @
velocity, that isTg=(|v—(Vv)|?) even though the velocity
distribution could not be Gaussian. whereT is the equilibrium temperature of the system.
In the case of zero external forcifg] (i.e., the so-called Recently, Green-Kubo expressions for a homogeneous

free cooling, granular temperature decreases in time andooling granular gas have been obtaiféd—-16 and nu-
goes asymptotically to zero when all the particles finallymerical simulations have confirmed their validity7]: cool-
stop. When an energy input feeds the system, instead, thiag granulars lack an equilibrium state, therefore the homo-
granular temperature may reach a stationary value and segeneous cooling statéwhich is characterized by scaling
eral models for the stochastic driving have been proposegropertiesis used as a reference state to be perturbed, but in
employing a constarf6—9] or a randon{ 10] restitution co-  this case the Green-Kubo relations must be changed in order
efficient. to keep into account new terms arising from the time depen-
In numerical simulations or in experimentBg is often  dence of the reference state and the nonconservative charac-
measured taking the avera@e on the whole system. How- ter of collisions (see Ref.[15]). However, in the case of
ever, strong fluctuations in the local granular temperature casteady state granular gases, a rigorous derivation of Green-
be observed7]. Even considering only the global granular Kubo relations has not yet been performed to our knowledge.
temperature, i.e., for small spatial inhomogeneities, it is not In this paper, we perform numerical investigations in or-
clear to which extenfTg can be considered the “tempera- der to check the validity of standard Kubo formu(ds,18
ture” of the system. to steady state inelastic gases. We perform, in particular, two
There are of course several possible paths to face thidifferent sets of numerical experiments on heated granular
problem. One interesting point of view is that of investigat- gases. We choose two different conjugated pairs of variables
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constituted by the autocorrelation of a given variable and the In the interval between two subsequent collisions, the mo-
corresponding response to a perturbation applied to the gason of each particlé is governed by the following Langevin
Kubo's formula, i.e., the proportionality between responseequation[7]:
and the autocorrelation in the unperturbed system, is verified
to hold using the granular temperature as the correct propor-
tionality factor, at least for not too strong inelasticities ( Ev(t)—— M+ [2To t
>0.5). For stronger inelasticitigsmaller values of ), Ku- dt " g T8 (),
bo’s formula can be verified with a different effective tem-
perature. It should be noted how the adopted simulation
schemdi.e., direct simulation Monte Carl(DSMC)] repre-
sents the numerical implementation of the Boltzmann equa- ﬁxi(t):"i(t)' (3b)
tion (given, for example, in Ref.7]), which assumes mo-
lecular chaos hypothesis and therefore, neglects short-range
correlations. For this reason, for very strong inelasticities, thevhere the functiony(t) is a stochastic process with average
Boltzmann equatiofand the DSMC schemeannot be con-  (#;(t))=0 and correlationg 7{*(t) nf(t’))z O(t—1")5ij6up
sidered realistic and one should use molecular dynamicéa and 8 being component indicgsi.e., a standard white
simulations. noise. This means that each particle feels a hot fluid with a
These results differ from the analogous results obtainetemperaturel, and a viscosity characterized by a timg.
for dense granular assemblies, where “slow” degrees of free- The question about the most proper way of modeling a
dom thermalize at an effective temperature, which is farstochastic driving is still open. Many authors for instance use
higher than the external imposed temperafdi®20. How-  Eq. (3) without viscosity[5]. This is equivalent to the limit
ever the gaslike state of granular matter has nothing to degz—c« andT,— with keepingD =T,/ rg constant. In this
with these systems, as their stationary state is governed bylinit, long- and short-range correlations in the velocity and
rapid decay of the fluctuations and the granular temperaturdensity fields have been observig]. We have measured
turns out to be the right choice in the description of linearcorrelations in the velocity field in the model with viscosity,
response to slight perturbations. concluding that they are highly reduced by the viscous term
The outline of the paper is as follows. In Sec. ll, we that breaks Galilean invarianéthe framev=0 is preferred
define the model as well as its simulation scheme and give g1]. Our choice of the stochastic driving with viscosity has
brief review of known results about the peculiar features ofthe following advantagega) it guarantees that in the elastic
its nonequilibrium stationary state. Section Il reviews Ku-|imit (r=1), the system after a transient time of the order of
bo's formula and its extension to non-Hamiltonian perturba-r; | still reaches a stationary state, characterized by a uni-
tions. In Sec. IV, we describe numerical experiments using gorm density and a Gaussian distribution of velocities with
sinusoidal shear and measuring as a response to the densiémperaturd, ; (b) it is a heat bath with a well defined finite
current. In Sec. V, we perform a diffusion vs mobility experi- temperaturer,, that can be compared with the granular tem-
ment upon a traceli.e., perturbing a single partioleFinally,  peratureT and the effective temperatufie.;; measured by
Sec. VI is devoted to the conclusions. means of fluctuation-dissipation relatiofsee ahead
In spite of the drastic reduction of velocity correlations,
this model exhibits several interesting features, which are
parametrized by the restitution coefficientand the ratio,
We simulate a gas dfl identical particles of unitary mass 7¢/7g, between the mean free tintthe average interval of
in a two-dimensional box of side= /N (in order to have a time between two subsequent collisions of the same particle
fixed number densitid/L2 when changindN) with periodic ~ and the viscosity time. Whers> 7c andr <1, the system is
boundary conditions. The particle collisions are inelastic: thén a nonequilibrium stationary state with a granular tempera-
total momentum is conserved, while the component of théure To<T,. This state is characterizdd] by fractal den-
relative velocity parallel to the direction joining the center of sity clustering and non-Gaussian distributions of velocities
the particles is reduced to a fractioriwith 0<r<1) of its  (see Fig. 1 with a dependence upanandr¢/7g. This situ-
initial value, lowering in this way the kinetic energy of the ation persists when direct simulation Monte Caf@SMC)
pair: [22] is used to perform more rapid and larger simulations of
the system. The DSMC simulation scheme consists of a dis-
crete time integration of the motion of the particles. At each

(3a)

Il. THE MODEL

1+r ~ A . . .
Vi=vi— ——[(v1—V,)-n]n, (2a) time step of lengthAt, the following operations are per-
2 formed:
(1)Free streaming Equation(3) is integrated for a time
147 o step At disregarding possible interactions among the par-
Vy=Vyo+ T((vl—vz) -n)n, (2b)  ticles.

(2)Collisions Every particle has a probabilitp= At/ 7,

of undergoing a collision. Its collision mate is chosen among
wherev; andv, are the velocities of the colliding particles the particles in a circle of fixed radiug with a probability
after the collision. proportional to its relative velocity. The unitary vector
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10°€ T . T . , 2 The phase space distribution is assumed to be canonical
: o r=0.5 E (i.e., at equilibrium in the infinite past: f(p,q,—)
10'F ., | O =0.7 |3 =feq(P,d). An approximate solution of Eq4) to the first
F %, |-~ Gaussian| : order in the perturbationl,,; is given by
10°F 1
< 108 f(p,q,t)=feq(p,q)+f7 dt’
N o :
i: , \ ] Xexi(t—t") L](Hex(t'), feq(P.a))+ - - -.
10°F Y VB T
¥/ W, | "
1 Oéé'oooﬂ ; Y E!EP =
Foy ! Vo] With this approximation, the deviation, due to the pertur-
107 5 ' 0 ' I bation (6), of the expectation of a physical quantBycan be
v/v0 written as the following convolution:

FIG. 1. Rescaledin order to have unitary variangdistribution . . . t
of the horizontal component of the velocity of the ¢&@,) versus S6B(t)=(B);—(B)_..= f dt’ Pga(t—t")a(t’), (8
vy, With N=500, L?=N, heat bath withT,=1, 7,=10, 7,=1, -
and different restitution coefficients. The Gaussian is plotted as a
reference for the eye. where ( .. .); denotes averages taken over the ensemble
given by f(p,q,t); ®ga(t—t'), called response functign
particles, is chosen randomly instead and the collision is per= 5(t), and reads
formed using rulg2).

lll. SHORT REVIEW ABOUT KUBO'S FORMULA (DBA(t):J f dpdafuy(p,a)(AA(p,q),AB(p,,ay)

In this section, we review the Kubo’s formula, which
must hold in the case of equilibrium dynamics. First, we
show the case of an Hamiltonian dynamics, and then for
non-Hamiltonian equilibrium dynamics of a system sub-whereAA=A—(A) (and identically forAB), while (p;,q)
jected to &impulsive shear force. The first case is presentedis the image of the initial phase poinp,q) determined by
just for completeness and to set the notations, the formulage total Hamiltoniar(including the perturbation
presented in the second case will be numerically checked for Kubo has shown that the response function can be written
an elastic system and extended to the inelastic case in the a simpler form[13,18,
following sections.

=((AA,AB(D))), ©)

dAA . dAB
A. Kubo's formula for Hamiltonian systems Dpa(t)=8 T(O)AB(t) =—p AA(O)T(I) ,
For an Hamiltonian system, the temporal evolution of the (10
phase space distributiof(p,q,t) is ruled by the Liouville
equation, where g is the inverse of the temperature.
d .
Ef(p,q,t) =LA+ Lexd(H) T (p,a,1), (4) B. Fluctuation-dissipation for non-Hamiltonian equilibrium

systems(the case of shear forcg

where £ and L, are the Liouville operators relative to the  Let us consider a gas of particles and define a nonconser-

unperturbed Hamiltonian and to its perturbation, respecvative perturbatioriforce) acting on particleé placed atr;(t)
tively. They are defined by means of classical Poissomt timet as

bracket,
F(ri,t)= &b,
iLf=(H,T) E(ﬁH i a)f (5)
| = = RN R
(H, aq dp dp dq with the properties VX &+#0, V-&=0, (11
The perturbation is assumed to be given by coupling 3ypere y, is the particle-dependent part of the force ampli-
force a(t) with an observable of the systefy i.e., tude. Forsmall enough perturbatiomnd for any variable
A (“observable” O(r) such thatO)_,.=0, Eqg.(8) with the
Hexi= —A(pP,q) a(t). (6) Kubo formula(10) reads[23,24]
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t .
=g ar [’ olt’<0<r,t)2i AT

><5(r’—ri(t’))> E(r' ), (129

~ t ~ .
<0<k)>t=ﬁj_molt'<0<k,t>2i yi(t")

Xexp[ik'ri(t’)}> JEk,t), (12b

—o0

where the Fourier transfor® — G is defined as
n 1 .
G(k)=vf dre ™ "G(r). (13

A force satisfying the propertigdl) is for instance given
by

0
r,t)= — , 14
&ar.t) (E exp(lkxx)a(t)) (4
whose spatial Fourier transform reads
0

3 dk=k)a()

wherek= (k,,0) (having choserk, compatible with the pe-
riodic boundary conditions, i.ek,=2n,7/L,, with n, inte-
ger andL, the linear horizontal dimension of the box where
the particles move Note thatE must have the dimensions
of a momentum, i.e., of a velocitftaking unitary masses
With this choice, Eq(12b) becomes

(O(k))= <O(kt>2 y1yi(0)explik- r<0>}>
X 8(k—K). (16)
If we now define the staggergdcurrent as
J§t<r,t>=2i yiyi (1) 8(r—ri(1)), (179
Ik, = 2 yyi(Dexd —ik-r(H],  (17b

then, using this current as observaklethe relation(16) is
written as

PHYSICAL REVIEW E66, 061305 (2002

<3§‘<k,t)>t=f/—f<; y¥i(exp —ik-ri(1) 7y;(0)

xexqik_xxj(O)}> S(k—k)

—

= BE(I(k,DI(—k,0)_.8(k—k). (18

Areal linear combination of forces of the kind in E44)

is

0 )
= cogk,x) (1))
(19

1
&r.t)y= E(fi(r,t)Jrf—E(f,t)):(

With this choice of the perturbation, the relati@B) be-
comes

f—

(0= DI (-k0)

X(S(k—K)+ 8(k+K)). (20)

This is a fluctuation-dissipation(FD) relation, which ex-

presses the fact that the response ofklmmponent of the
transverse current to the perturbing field in E&9) is pro-
portional to the autocorrelation of the same transverse cur-
rent measured in the systemithout perturbation

It is useful to remark that for this particular choice of the
observables, the right-hand side of the corresponding
Fluctuation-dissipation relation, which must be the derivative
of the correlation functiorfsee Eq.(1)], takes the simple
form of an autocorrelation functiof23,24.

The real part of the response caIcuIatedTa(per unit of
perturbing field is directly computable and reads

vV .. —
Re{g<J§‘<k,t>>J=g<E 7Yi(Hcogky x<t>]>
"
From Eg.(20) one obtains the relation,

1 : -
E< 2. yiyi(t)cos{kxxi(t)]>

t

:§< ; 7Y (Dy;(0)cog k() —xj(O)]}>

(22)

IV. FLUCTUATION-DISSIPATION MEASURE I:
SHEAR VS CURRENT

The first set of measures we have performed has been
aimed to verify relation(22) for a system as described in the
previous paragraph. In order to do this, we have used the
following recipe proposed in Ref23].
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(1) Initialize the systenu with random positiongr’(0)}

and random velocitieér’(0)}.
(2) Let it evolve with the unperturbed dynamics until time

tw, which must be chosen larger than the largest character

istic time of the systeme.g., 7. or 7,). The unperturbed
dynamics consists of the time-discretizefi) integration of
the Langevin equatiofB),

At 2T At
VI(t+At):VI(t)_T_bVI(t)+ o R(t) (23)

plus inelastic collisions with parameter(restitution coeffi-

ciend. The collisional step is separated from the Langevin
step and is implemented by means of a local Monte Carlo

PHYSICAL REVIEW E66, 061305 (2002

0.5 '

— nk=4
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procedure, i.e., random choice of pairs to collide inside a FIG. 2. Left: time dependent response to the impulsive shear

region of diameterg; the collision probability is propor-
tional to a fixed collision frequency 4/ and to the relative
velocity of the particlesr, is chosen to be compatible with
an homogeneous gaslike dynamics, iresrg/\(v?)_..

(3) At time t,,, a copy of the systen is created(and
namedP) and the vectorgy;(t,)} and{x;(t,)} are memo-

rized in order to be used in the computation of the autocor

relation.

(4) The systemU is let to evolve with the unperturbed
dynamics. The syster® is made to evolve with the addi-
tional forcing described in Eqg11) and (19 for only the
time step[t,,,t,+At], i.e., the equation for the update of
velocities in this particular step being

Ve (ty+ At =V (t,)— E\/iP(tW)Jr \/ 2TbAtR(tw)
Th Th
+ ')’i( )

with k,=2mn,/L,. The quantitiesy; are chosen to take the
random valuet 1 with equal probabilitwe have checked
as different choices produce the same resuliote again
that the perturbation intensity has exactly the dimensions
of velocity.

(5) The dynamics of the systeni$ andP are, thereafter,
followed in the unperturbed style, i.e., by using E2P). The
functions to be measured are

0

E cogk,x(t,)] 24

R(7)= % 20 7y (bt mcogkf (Lt 7], (258

1 . : —
C(m= 2 W (tw+ DY (tw)coslo D (bt 7)
=X (tw) 1}, (25h)

where 7=t—t,,. It is expected thaR(0)=1/2 and C(0)
=(v?), while R(¢)=C(%)—0.

perturbation defined in Eq¢ll) and (19): R(t—t,) vst—t, for
three simulations with elastic systems, one without thermal bath and
two with thermal bath, and with different choices of the wave num-
ber n, of the perturbation. Right: time correlation function
C(t—t,) vst—t, for the same systems. In the simulatians1,
N=500, 7.=1, and for the two cases with the heat bat1 and
7,=10. The applied force has=0.01, r,,=100. The averages
have been obtained over 10 000 realizations.

is much longer than the typical correlation timand the
averages over those realizationsRft—t,,) and C(t—t,,)
are computedsee Fig. 2

For the aim of checking the whole numerical machinery,
we first consider the=1 elastic case. In all the cases inves-
tigated, we have checked the linearity of the response by
changing the perturbation amplitude in the range
€[0.005,0.0%. Within the specific framework chosen for
the observables, the Kubo formula to be verified is given by

(RU-t)= 5 (ct-t,). 26)

We have performed the following experimerisee Fig.

3): (1) Gas with elastic interactions and absence of thermal
bath; (2) Gas with elastic interactionsith the thermal bath.

From Fig. 2 it can already be appreciated that response
and autocorrelations in the elastic gas decay on a time of the
order of 7. (however this decay is not exponential, as can be
observed in the inset of the figyreThe parametric plot of
the two curves in Fig. 3 shows the perfect agreement with
Eq. (26) using 8= 1/T,. In this case, of coursd,,=Tg.

We have repeated the same measures on the gas with
restitution coefficientr <1, i.e., gas with inelastic interac-
tions with the batHin this case, the bath is essential, to avoid
cooling), see Fig. 4.

We obtain again a very good agreement with [E2f)
using B=1/T. This is the main finding in this set of nu-
merical experiments: even if the gas is out of equilibrium,
being driven by a thermal bath at temperatlifg its unper-
turbed autocorrelation is still proportional to the linear re-
sponse, and its effective temperature measured by means of

(6) The above steps are repeated for many different reaffluctuation-dissipation theory is exactly the granular tem-
izations(or even in the same realization, provided its lengthperatureT .
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0.5 T T T T

o No Heat Bath, nk=8

o Heat Bath, nk=4

+ Heat Bath, nk=8

0.1 . 1 . 1 L I | 1 | I
’ 0.4 0.6 0.8 1
C(t—tw)

FIG. 3. Parametric plot dR(t—t,,) vs C(t—t,,) for the numeri-
cal experiment of type (impulsive shear perturbatipmvith r=1,

with or without heating bath, and for different choices of the wave
numbern, of the perturbation. The initial temperature for the case

without heat bath is chosen to be 1 whilg=1 andr,= 10 for the
two cases with the heat batd=500, 7.=1, £=0.01,n,=8, with
average over 10 000 realizations usig- 100.

It must also be noted that relatioi26) is verified for
many values of the wave numbayg, i.e., the system does
not show a scale dependent effective temperature.

At very large inelasticities, we expect a lack of validity of
Eq. (26). This point deserves a deeper investigation.

V. FLUCTUATION-DISSIPATION MEASURE II:
DIFFUSION

Another independent confirmation of the validity of the

modified linear response theory for a granular gas come¥

PHYSICAL REVIEW E56, 061305 (2002

100 ————————— ———T—T—T7— 300
| Diffusion 1 | Response #4250
80 5
7 m
NA B 7 y _20()?
—~ 60 -~ s ] A;
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e 7 /P | Y
T 4or N =
Y =1 | / -1100 \>7
=l |
-l ==0.01| 50
r=0.5|| |
| | I | I
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FIG. 5. Simulations of systems coupled to a thermal bath with
elastic or inelastic collisionsN=500, 7.=1, T,=0.1, 7,=10,
E=0.01, 7,=100. The results are obtained by averaging over
10 000 realizations. Left: mean squared displacen®mit,,) vs t
—t,,. Right: integrated respongdt,t,,) to a constant force applied
to the particle numbered as 0 s t,, .

time behavior of the mean-squared displacemB(t,t,,)
=(|r(t)—r(ty)|?)~2D(t—t,). In this case, the Einstein re-
lation is expected to holdD=(|V|®)7¢or, Where 7¢or,
=pfdm(v(t,+ 7)v(ty)): this relation however, often ad-
dressed as a sort of FD relation, is always verified and just
represents a check of the correctness of the simulation. In-
stead, some surprise could arise from mobility measure-
ments: a small static drag for¢switched on at time,,) of

intensity 2 (in the direction of the unitary vector of the x
axis) is applied to a given particléracer, e.g., particle with
index 0 and positiomg). The tracer reaches, as a result of the
iscous force generated by the gas surrounding it, a limit

from the study of the diffusion properties, i.e., of the largeconstant velocity such thag(t,t,)=(|(ro(t) = ro(tw))-X|)

— T1=T,

--- T =045=T, =07

.e. T_=0.38=T,
eff

r=0.7, n=8

r=0.7, nk=16

G (1=0.5)

A 0P oD

1 . 1
03 04

01— i
C(-t,)

FIG. 4. Parametric plot dR(t—t,,) vs C(t—t,,) for the numeri-
cal experiment of type (impulsive shear perturbatipmvith r<1,
with heating bath, and for different choices of the wave nunmer
of the perturbationT,=1, 7,=10, N=500, 7.=1, £=0.01, n,
=8, with averages over 10 000 realizations, udipg 100.

~Eut, where u is the mobility, which is expected to be
related to the diffusion coefficient through the Einstein rela-
tion w=D/(v2)=2D/T (if the force is applied on the direc-
tion x in the two-dimensional system

Figure 5 shows the mean-squared displacententhe
unperturbed systemand thex displacement of the tracer
(when it is accelerateddivided by the intensity of the per-
turbing force versus time: it can be appreciated how both
these quantities grow linearly with time, defining the diffu-
sion coefficient and the mobility.

In our experiments, we have checked the linearity of the
relation  between(|Xo(t) = Xo(tw) )=(|[ro(t) = ro(tw)]-X|)
and (|r(t)—r(t,)|?). In particular, if Kubo’s formula was
valid, one should have

<|Xo(t):Xo(tw)|> :B<|ri(t)

—
f—

_ri(tw)|2>

. @7

with 8= 1/T if the system is in thermodynamic equilibrium
at temperaturd.

In all the simulations, we have checked the linearity of the
response by changing the perturbation amplitude in the range
E €[0.005,0.05.
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is equal to the inverse of th granular temperaiatdeast for
not so small restitution coefficientswhich hence plays the
role of the equilibrium temperature in the elastic case. It is
important to remark how these results are recovered by two
completely independent measurement schemes.

Several remarks are in order. First of all, though a granu-

T =0.1=T Iar_ gas is. a nont.rivial out—of—equi!ibrigm sy_st.em, from lthe
T eff b point of view of its thermodynamics it exhibits properties,
= Tog=0.055=T; (o5, which seem much simpler than the corresponding properties
-- T 470.049=T 5 observed in a compacting granular medium. In this case, in
o r=1,2=0.01 fact, apparently no slow modes are present or at least their
. __| o =08,8=0.005 presence does not give rise to the existence of several effec-
20 40 L2 r=0.7, £=0.005 tive temperatures depending on the time scales investigated

<Ie(t)-r(t, )™> [12]. On the other hand, the proportionality factor, we have

found, between response and autocorrelation cannot be con-
sidered as a temperature from the point of view of equilib-
rium thermodynamics since it does not rely on any known

FIG. 6. Parametric plot of(t,t,,) vs B(t,t,,) for the numerical
experiment of type l(constant force applied on one particleith

r=1, r=0.8, andr=0.7, with heating bath, and for different statistical ensgmble. L
choices of the intensitiE of the perturbation, usingy=0.1, 7, Another point to stress concerns the validity of the zeroth

=10, N=500, r,=1, t,=100. The results are obtained by aver- Principle of thermodynamics. The question that immediately
aging over 10 000 realizations. arises could be summarized as follows: if the granular tem-
perature represents the correct temperature from the point of

Figure 6 reports the parametric plot of the response to th¥iew of the fluctuation-dissipation theorem, should we ex-
force versus the mean-squared displacement in the unpdfect that it rules the thermalization properties of two differ-
turbed system, showing how relati¢27) is very well satis- ~€nt granular gases put in contact? As already mentioned, the
fied at different inelasticities. Also in this case one could@nsSwer to this question is far from being trivial as witnessed
expect a breakdown of FD relation at large inelasticities dudy all recent results obtained on mixtur@5—39, where a
to cluster formatiorii.e., spatial lack of homogenejtywhich ~ lack of equipartition is observed. However, these results
is present even in the case of DSMC solutions of Boltzmanrtvalidity of fluctuation-dissipation relations and lack ofequi-
equation(see for example Ref7]). This hypothesis should partition) can coexist simply because heated granula.r gases
deserve a deeper investigation. have not only a thermal source but also a thermal $itig-

It should be noted that the coincidence of the results obSiPative collisiony and therefore, any zero principle should
tained with the two methods of Secs. IV and V is not obviousPe Stated in terms of a balance equation among energy fluxes

in a nonequilibrium context and it should not always be ex-instead of a strict equivalence between temperature of sys-
pected. tems in contact.

We again remark that there are also other common ways
of driving a granular gas in a stationary state, e.g., stochastic
driving without viscosity[8], stochastic restitution coeffi-

In conclusion, in this paper, we have investigated the vacient modeld10], multiplicative noise model9], and so on.
lidity of Kubo’s relations in driven granular gases in two In some of these models, a more pronounced departure from
dimensions. We have compared, in particular, two sets ofiomogeneity(for example, correlations in the velocity field
measures. On one hand, we have measured the proportiong8]) and therefore, a breakdown of fluctuation-dissipation re-
ity factor between the response of the staggered density culations should be investigated.
rent to an impulsive shear forcing and its autocorrelation
function in the unperturbc_ed system. On the othgr hand, we ACKNOWLEDGMENTS
have monitored the velocity of a tracer by checking the pro-
portionality between its response to a small constant force, The authors are grateful to S. Roux for a preliminary and
switched on at time,,, and its mean-squared displacementenlightening discussion and to A. Barrat and E. Trizac for
in the unperturbed stationary state. many interesting discussions as well as a critical reading of

In both cases, a proportionality is observed, in analogythe manuscript. This work has been partially supported by
with the linear response theory for equilibrium dynamics.the European Network-Fractals under Contract No.
Furthermore, the proportionality factor in the Kubo formulasFMRXCT980183.

VI. CONCLUSIONS

[1] H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod. Phys.  in Complex Systemsdited by A. Mehta and T.C. Halsey
68, 1259 (1996; in Proceedings of the Conference on Chal- (World Scientific, Singapore, 20040l 4.
lenges in Granular Physics, ICTP, Trieste, 20@i Advances [2] Granular Gasesedited by T. Pechel and S. LudingSpringer,

061305-7



PUGLISI, BALDASSARRI, AND LORETO

Berlin, 2001.

[3] S. OgawaProceedings of the US-Japan Symposium on Con-

PHYSICAL REVIEW E56, 061305 (2002

[16] I. Goldhirsch and T.P.C. van Noije, Phys. Rev.6&, 3241
(2000.

tinuum Mechanics and Statistical Approaches to the Mechant17] J. Lutsko, J.W. Dufty, and J.J. Brey, e-print cond-mat/0201369.
ics of Granular Media edited by S.C. Cowin and M. Satake [18] R. Kubo, J. Phys. Soc. Jp#2, 570 (1957.

(Gakujutsu Bunken, Fukyu-kai, 19Y&. 208.

[4] I. Goldhirsch and G. Zanetti, Phys. Rev. Létf), 1619(1993.

[5] D.R.M. Williams and F.C. MacKintosh, Phys. Rev.33, R9
(1996.

[6] T.P.C. van Noije and M.H. Ernst, Granular Mattér 57
(1998.

[7] A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, A. Petri, and
A. Vulpiani, Phys. Rev. Lett81, 3848(1998; A. Puglisi, V.
Loreto, U. Marini Bettolo Marconi, and A. Vulpiani, Phys.
Rev. E59, 5582(1999.

[8] T.P.C. van Noije, M.H. Ernst, E. Trizac, and |. Pagonabarraga

Phys. Rev. E59, 4326 (1999; |. Pagonabarraga, E. Trizac,
T.P.C. van Noije, and M.H. Ernsihid. 65, 011303(2002.

[9] R. Cafiero, S. Luding, and H.J. Herrmann, Phys. Rev. [8dit.
6014 (2000.

[10] Alain Barrat, Emmanuel Trizac, and Jean-N&aichs, Eur.
Phys. J. B5, 161(2001).

[11] R. Exartier and L. Peliti, Eur. Phys. J. B, 119(2000.

[12] L.F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. RevbE
3898(1997).

[13] R. Kubo, M. Toda, and N. Hashitsum8tatistical Physics Il
(Springer-Verlag, Berlin, 1991

[14] J.W. Dufty and V. GarzpJ. Stat. Phys105, 723(2001).

[19] A. Barrat, J. Kurchan, V. Loreto, and M. Sellitto, Phys. Rev.
Lett. 85, 5034 (2000.

[20] H.A. Makse and J. Kurchan, Natufeondon 415, 614(2002.

[21] Unpublished preliminar results, see A. Puglisi, Ph.D. thesis,
“La Sapienza” University, Rome, 2001, available on http://
axtnt3.phys.uniromal.it/~puglisi/thesis/

[22] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation
of Gas Flows(Clarendon, Oxford, 1994

[23] G. Ciccotti, G. Jacucci, and I.R. McDonald, J. Stat. Piis.1
(1979.

[24] J.L. Jackson and P. Mazur, Physi¢amsterdam 30, 2295
(1964.

[25] V. GarZoand J. Dufty, Phys. Rev. BO, 5706(1999.

[26] L. Huilin, L. Wenti, B. Rushan, Y. Lidan, and D. Gidaspow,
Physica A284, 265(1999.

[27] W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, and J.P.
Gollub, Chao<9, 682(1999.

[28] K. Feitosa and N. Menon, e-print cond-mat/0111391.

[29] R.D. Wildman and D.J. Parker, Phys. Rev. L&8 064301
(2002.

[30] J.M. Montanero and V. Garz&ranular Matte#t, 17 (2002.

[31] R. Clelland and C.M. Hrenya, Phys. Rev6k, 031301(2002.

[32] J.M. Montanero and V. Garze-print cond-mat/0201175.

[33] U. Marini, Bettolo Marconi, and A. Puglisi, e-print
cond-mat/0112336; e-print cond-mat/0202267.

[15] J.W. Dufty and J.J. Brey, e-print cond-mat/0201361; J.W.[34] A. Barrat and E. Trizac, e-print cond-mat/0202297.

Dufty, J.J. Brey, and J. Lutsko, e-print cond-mat/0201367.

[35] Ph.A. Martin and J. Piasecki, Europhys. Let6, 613 (1999.

061305-8



