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Thermodynamics and statistical mechanics of frozen systems in inherent states
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We discuss a statistical mechanics approach in the manner of Edwards to the “inherent(sigfiesd as
the stable configurations in the potential energy landscafpglassy systems and granular materials. We show
that at stationarity the inherent states are distributed according a generalized Gibbs measure obtained assuming
the validity of the principle of maximum entropy, under suitable constraints. In particular, we consider three
lattice modelga diluted spin glass, a monodisperse hard-sphere system under gravity, and a hard-sphere binary
mixture under gravityundergoing a schematic “tap dynamics,” showing via Monte Carlo calculations that the
time averages of macroscopic quantities over the tap dynamics and over such a generalized distribution
coincide. We also discuss about the general validity of this approach to nonthermal systems.
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I. INTRODUCTION studied by molecular dynamics simulations, the configura-
tional temperature numerically coincides with the equilib-
There are many complex systems where thermal fluctuadum temperaturd’, provided thafT is low enough.
tions are small enough that the temperature of the external Another way to visit the inherent structures is by letting
bath, Tpai, can be considered zero. Examples are superthe system aging in contact with an almost zero bath tem-
cooled liquids quenched at zero temperature in metaStabl@erature,Tbath. During the aging process an effective tem-
states(blocked configurations called “inherent structures,” peratureTy,, can be defined via the off-equilibrium exten-
which correspond to the local minima of the potential energysion of the fluctuation-dissipation ratig]. It happens that in

in the particles configuration spate-4]. Granular materials mean field model§9] this effective temperature coincides

[5] at rest are anqther importan'g example of the system fO%ith the above configurational temperature. The possibility
zen[6] in mechanically stable microstat@slocked configu-

" hich b | ih the al terminol to introduce an effective temperature for granular media via
rations, whic Oy analogy wi € glass terminology can e extension of the fluctuation-dissipation relation, was sug-
also be called inherent states.

; : . . . Ogested in Ref[10].
The issue we consider here, which recently raised consia® The connection between Edwards’s aporoach for aranular
erable interest, is to investigate the possibility to describe pp 9

these systems by using concepts from statistical mechanic@,ecjIa and the result; n gIa;s theory h_as been pointed out in
as Edwardg7] suggested for granular media more than 10R€fs:[10-14. In particular, in Ref[11] it was shown that,
years ago. His assumption was that, by gently shaking thfor @ class of finite-dimensional systems, in the limijfa,
system under the constraint of fixed voluMegthe distribu- — 0, Tayn COINCides in fact with the configurational tempera-
tion over the mechanically stablblocked states would be ture, predicted by the Edwards hypothesis.
uniform. This leads to the definition of a configurational en-  In Refs.[13,14 the inherent states are visited in another
tropy, S=In Q, where Q is the number of mechanically Way by using a tap dynamidge., a procedure similar to that
stable states corresponding to the fixed volufrend energy  used in the compaction of real granular matejialghere
E, and to the concept of compactivity, 1=0ln Q/éV. In a  each tap consists in raising the bath temperature to a value
similar way one can also define a configurational temperaT and, after a lapse of time,, quenching it back to zero.
ture,Tc‘OlmcE Beoni=dIn QIJE. By cyclically repeating the process the system explores the
Also in glasses, following, for example, the inherentspace of the inherent stat¢$3—20. Once the stationary
structure approachl—4], one can define a configurational state is reached one can define a temperafiyg, via the
entropy associated to the number of inherent structures coequilibrium fluctuation-dissipation relation. One can then see
responding to a fixed enerdy, and consequently the con- that, if Edwards’s assumption appli@gg coincides with the
figurational temperature. When the system is frozen at zeroonfigurational temperature. This has been verified in fact for
temperature in one of its inherent states it does not evolvdifferent finite-dimensional model§13-15. It was also
anymore. However, one can explore the inherent structureshown numerically that for low enoudh- one has thaf ;4
space essentially in two ways. One way is by quenching the=T_.,,+=T, confirming on lattice models for granular me-
system over and over from an equilibrium temperaflit®  dia the result of Ref[3]. In fact when the duration of each
zero temperaturdl1,3,4. Using this procedure, Sciortino single tap is infinite {y— ), the tap coincides with the way
et al. [3] found that in a supercooled glass forming liquid, to explore the inherent states implemented in molecular dy-
namics simulations for Lennard-Jones mixtufgs3]. How-
ever, the method used in R¢8] only allows the calculation
*Also at Department of Mathematics, Imperial College, London,of T.y,¢ When the configurational temperature is low, i.e.,
SW7 2BZ, UK. where all the different temperatures almost coincide. Many
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other studies confirming Edwards’s approach have also been F(tt,)
presented16-18,21. "

In this paper we give a comprehensive view of the results ]
obtained in Refs[13-15 by considering other models and 0.8} "
giving more details. In particular we study here three sche- ’ls
matic lattice models for glassy systems and granular media,
. ; ) . 0.6 4
i.e., a diluted spin glass, a monodisperse hard-sphere system
under gravity and a hard-sphere binary mixture under grav-
ity. In particular, in the diluted spin glass and in the mono- 0.4 s
disperse hard-sphere system under gravity, the asymptotic '
states reached by the system are found to be described only oL %
by the configurational temperature. Whereas in the hard- %
sphere binary mixture under gravity the asymptotic states are o 85‘
found to be described by two thermodynamic parameters 10 2 100 1o 10?—t,

[22], coinciding with the two configurational temperatures

that characterize the distribution among the inherent states r\~ | 1o self-scattering two-time  functiorFo(t.t,)
when the principle of maximum entropy is satisfied under the:E-ed‘.[r‘i(t);r.i(tw)]/pLS with q= /4, as a function ot—? ’(fv(;r
H H H H - 1 1 L) w
constraint that the energies of th.e two species are Indgpe?wz 10%, 2x 104, 5x10% 8x10%, 10P) in the frustrated lattice gas
dently flxgd. In Ref.[lS] a des_,crlp'uon of the segregation model for densityp=0.65, during the tap dynamics, with tap am-
observed in the binary system in terms of these two temperabmude T,=0.3J and tap durationry=1 MCS. The function

tures is also given. . Fq(t,t,) only depends ort—t,,, showing that the system has
In Secs. Il Aand Il B, the frustrated lattice gas model and,qzched stationarity.
the results of its study with the tap dynamics are, respec-

tively, presente(_:i. In Sec. Il D, the same results are obtainegl, otherwise they feel a strong repulsion. To make the con-
at_higher denS|.ty Where the sy.stem.at smal[ temperat,l“!rﬁection with a liquid, we note that the internal degree of
reaches a quaS|sta_t|onary s_tate in which one-time quant't'ef?eedom,si , may represent, for example, the internal orien-
decr?y _as_thfe IOg?”th(;n of t'mi' In Sec. I“ Cf Edwards’s hy-taion of a nonspherical particle. Two particles can be nearest
pothesis Is formulated using the principle of maximum €N neighbors only if the relative orientation is appropriate, oth-
tropy. The results qbtamed in the _monodlsperse hard-sphegg, ise they have to move apart. Since in a frustrated loop the
system under gravity are shown in Sec. lll. In Sec. IV theg,ing cannot satisfy all interactions, in this model particle
statistical mechanics approach is extended to the hard-spheggqqrations in which a frustrated loop is fully occupied
binary mixture under gravity, where two thermodynamic pa-5 e ot allowed. The frustrated loops in the model are the

. ; ; §3me as the spin glass model and correspond in the liquid to
reached by the system. Finally, in the Conclusions we draw g, loops that, due to geometrical hindrance, cannot be

picture of the statistical mechanics approach to systemﬁmy occupied by the particles. In three dimensiof8D)
found in inherent states, as emerges from our extensive i'l’26 29, the model has a maximum density,,~0.68, and a
il il ax . H

vestigation. transition atp.=0.62 where the nonlinear spin susceptibility
diverges.
Il. THE FRUSTRATED LATTICE GAS MODEL In the present paper, the 3D cubic frustrated lattice gas
A The model model with J finite is considered. The value of particle den-

] . _sity, p==;n;/L® (L is the lattice linear sizeis fixed, and a
Recently a lattice model has been introduced to describgonte Carlo tap dynamics, which allows the system to ex-
glass former$24—26 and, in the presence of gravity, granu- pjore its inherent states, is applied. During the dynamics, the
lar materialg19,27,28. The Hamiltonian of the model is system cyclically evolves for a time, (the tap duration
[30]) at a finite value of the bath temperatufig; (the tap
—H :JE (&;SS;—1)nin; +ME ni, ) amplitudeg, and afterwards it is suddenly frozen at zero tem-
(1) [ perature in one of its inherent stat@sd zero temperature the
) . ] system does not evolve anymore if the energy cannot be
where the sunk;;, is over nearest neighbor sité§,=*1  decreased by one single-particle movernetter each tap,
are Ising spinsn;=0,1 are occupation variableg, is the  \when the system is at rest, we record the quantities of inter-

particle chemical potential, ang|; are quenched and random est. The timet considered is therefore discrete and coincides
variables, equal tot1 with equal probability. This model \ith the number of taps.

reproduces the Ising spin glass in the limit-> (i.e., when
all sites are occupied);=1).

In the other limit,J—o, the model describes a frustrated
lattice gas with properties recalling those of a “frustrated” We first consider the case=0.65[31]. At this value of
liquid. In fact the first term of Hamiltonial) implies that  the density the system under the tap dynamics reaches a sta-
two nearest neighbor sites can be freely occupied only ifionary state for each value dfr (and 7,) considered. In
their spin variables satisfy the interaction, that is¢;ifS S Figs. 1 and 2[32], the self-scattering two-time function

B. The results obtained under the tap dynamics
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FIG. 2. EnergyE(t) of the inherent states as a function of the FIG. 4. The ti ¢ fl OhE? ded
tap numbert, in the frustrated lattice gas model during the tap . h - 4. 1he time _averageof energy fU(;:.U&tIO & lr_ecor ©
dynamics with tap amplitudeT,=0.3 J and tap durationr in the stationary regime as a function of the tap amplitue(in

=1 MCS. The lower curve, corresponding to a density of particlesu_nits of J, in the frustrated Iattice_ gas model for-0.65. The four_
p=0.65, exponentially saturates to its asymptotic value, Whereaglﬁerent curves correspond to different values of the tap duration,

the upper curve, corresponding o=0.75, shows a logarithmic 7o=1, 5, 10, MCS (from bottom to top. This shows again that
relaxation at long times. Tr is not a right thermodynamic parameter.

Fo(t,ty) =it iO~1iWl/pL % and the energf(t) of the  different values ofE and AE2. On the other hand, if the
inherent states, obtained fof=0.3J and7o=1 MCS, are  stationary states are indeed characterized sipglethermo-
shown. The curveg q(t.t,), for differentt,,, collapse onto a  qynamic parameteg;y, the curves corresponding to differ-

single master function, when they are plotted as functions of tap sequencese., differentTy and 7o) should collapse
t—t,, and the energye(t) reaches its time independent —_—

asymptotic value, showing that the system has reached a st@0to a single master function wheE? is parametrically

tionary state(our data are averaged up to 32 noise realizaplotted as function oE. This data collapse is in fact found

tions; L=8 andq= w/4). and shown in Fig. 5. This is a prediction that can be easily
During the tap dynamics, in the stationary state, the timechecked in real granular materiglshere one can consider

the density, which is easier to measure than the energy

_ s _ The thermodynamic parametgr, is defined apart from

lated. In Figs. 3 and & andAE? are shown as functions the an integration constang,, through the usual equilibrium

tap amplitudeT (for several values of the tap duratiorp). fluctuation-dissipation relation:

Apparently, T is not the right thermodynamic parameter,

since sequences of taps, with safeand differentr, give

average of the energ?, and its fluctuation& E? are calcu-
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FIG. 5. The time averages of energy fluctuatioA&?, when
plotted as functions of the time average of enefgycollapse onto
a single master function, for all the different values of tap amplitude
and duration, T and 7y, plotted in Fig. 3. This shows that the

FIG. 3. The time average of the enerByrecorded in the sta-
tionary regime as a function of the tap amplitubie (in units of J,

in the frustrated lattice gas model fpe=0.65. The four different . ; : 3
curves correspond to different values of the tap duratieg, system stationary states are indeed characterized $iggte ther-

=1, 5, 10, MCS (from bottom to top. This shows thaT . is not modynamic parameter, since the curves corresponding to different

a right thermodynamic parameter, since sequences of taps with difaP sequences.e., differentTy and 7o) collapse on a “universal’
ferent 7y give different values for the system observables. function, whenAE? is parametrically plotted as a function Bf
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By integrating Eq(2), Btq— Bo can be expressed as a func- 75 L ,
tion of E or (for a fixed value ofrg) of Br: Big—Bo @?
=g(Br). The constang, is determined as explained in de- g
tail in the Appendix. 50 - o
2
C. The Edwards averages 25k d@:
In Sec. Il B we have found that the fluctuations of the 3
energy in the stationary state depend only on the enErgy Ola s o O.OG’G; ,
and not on the past history. If all macroscopic quantities 100 1 T,

depend only on the enerdy, or on its conjugate thermody- o

namic parametep;,, the stationary state can be genuinely FIG. 6. The time average calculated in the stationary regime
considered a “thermodynamic state.” In this case one car®f the tap dynamics and the ensemble average over the Edwards
attempt to construct an equilibrium statistical mechanics, agistribution Eq.(3), (E) (the black empty circlgs are plotted, re-
originally suggested by Edwardg]. spectively, as functions of;y and Ty, (in units of J, in the

More precisely, one can try to find from basic genera|frustrated lattice gas model, at=0.65. The two independ.erjtly
principles what is the probability distributioR, of finding, calculated sets of points show a very good agreement, outlining the

in the stationary regime, the system in the inherent stafe success of Edwards’s approach to describe the system macroscopic
energyE, (see Ref[13]). We assume that the distribution is properties.

given by the principle of maximum entropyS= _ ) ) ) )
—3,P,InP,, under the condition that the average energy istion of Eq.(3) for each accessible configuration. Using the
fixed: E=3,P,E,. Thus, we have to maximize the follow- Standard Monte Carlo simulations, we have calculdep

ing functional: I[P, ]= —=,P,InP,— Beon(E—=,P,E,). Here  X(Bconi). Figure 6 outlines a very good agreement between
Beont is @ Lagrange multiplier determined by the constraint(E)(B.onf) @and E(B¢q) (notice that there are no adjustable
on the energy and takes the name of “inverse configurationgbarameters

temperature.” This procedure leads to the Gibbs result: Note that the maximum energy_reached by the system
—BeonfEr under the tap dynamicE,,,(70) =E(Tr—0,7p), IS less
P,:e— (3  than the maximum energy of the inherent stat&,(Tconf
Z L

—m), for every value ofry considered. Such a prediction,
. o ~which may have important practical consequeng@esg., in

whereZ =3 e Peon®r. Using standard statistical mechanics, powder, technologigsis consistent with some experimental
it is easy to show that, in the thermodynamic limit, the en-gpservations on tapped granular materig8], where the

tropy Sand Bcont are also given by system density was shown to approach asymptotically a pla-
teau value apparently higher than the minimal possible pack-
S=INQ(E), Beon= din Q (4) ing density(obtained, for instance, by just pouring grains in
’ JE the containereven for very large tap amplitudes.

Using Eq.(4), we have finally evaluated the configura-
where()(E) is the number of inherent states correspondingional entropy asS(E) — Sy= S5 Bcond E')AE’ (Where the
to energye. _ o _unknown non-negative constaB{=S(E=0) is the entropy

If the distribution in the stationary state coincides with 5t 7__—0). In Fig. 7, the configurational entrofS— S, is
Eq. (3), the time average of the energy(Bs4), recorded plotted as a function of.,,;. We have also evaluated the
during the taps sequences, must coincide with the ensembigtegral S'(E)— Sy=[§Br4(E')dE’. In Fig. 7,S'—S} is
average(E)(Bconf) Over the distribution Eq(3). In order to  plotted as a function off;4 and it is compared with the

check that we have independently calculated the avelfaje configurational entropy. The agreement is again very good.
as a function of8.,n¢, We have simulated the model EQ)

imposing that the only accessible states are the inherent o

states, as done in RéfL1]. The only difference is that in the D. Quasistationary case

present paper the Edwards averages are done in the canonical\we have also studied the frustrated lattice gas model for
ensemble, whereas in R¢fl1] these are done in the micro- ,=0.75. Differently from the previous case, for small
canonical ensemble. In particular we have constructed @nough values of the tap amplitudig , the system does not
Hamiltonian, H'({S;,ni})=H{S,ni}) +8({S,ni}), by  reach a stationary state during our observation time. In Fig.
adding a term to Eq(1), 6({S,n;}), which is zero, if the 2 the energyE(t) of the inherent states obtained fdi:
configuration is an inherent state, and infinite, otherwise. The=0.3 J andr,=1 MCS is shownE(t) now changes in time
canonical distribution for this Hamiltonian giveS a Welght and the system is not in a Stationary state; how@@') at

e Peonf’which coincides with the weight in the distribu- long times decays very slowh84]. In this regime the time
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FIG. 7. The configurational entrop$—S, (the black empty FIG. 9. The configurational entrop$—S, (the black empty

circles in the figurgas a function off oy (in units of J, compared  ¢jrcles in the figurgas a function off ., (in units of J, compared
with S'(E) —Sy=/5Ba(E')dE’ plotted as a function off g (N with S'(E)—S)=/EB,(E')dE’ plotted as a function of 4 (in

units of J, in the frustrated lattice gas model fpr=0.65. The  ypjts of J, in the frustrated lattice gas model fpr=0.75. The
unknown non-negative constagy is the entropy all ¢on=0. unknown non-negative constag is the entropy afl;on=0.

averages are computed over a time interval such that th

energy is practically constafin the case of Fig. 2, the time

average is performed over the time interval X(80°,3

X 10°+10%]. Performing the same procedure described in

the stationary case, a collapse of data is again fdsed Fig.

8). As a model more appropriate for granular media, we have
We have again evaluated the configurational entropyiso studied a system of monodisperse hard splvéth di-

S(E)—So:fEmchonf(E')dE' [where the unknown non- ametera,=1) under gravity, where the centers of mass of

negative constan8,=S(E,;,) is the entropy afl.on=0 grains are constrained to move on the sites of a cubic lattice

andE,, is the minimum value of energy obtaing8b]). In (see upper inset in Fig. L1The Hamiltonian of the system is

Fig. 9, the configurational entrof®— S, is plotted as a func-

tion, of 1E'60nf. We have qlso evalua/tgd the integ&l(E) H:Hhc({ni}Hng nz, (5)

—Si=[oBsq(E")dE’. In Fig. 9,S"— S} is plotted as a func- i

tion of T¢y and it is compared with the configurational en- ) o ) )

tropy. The agreement is again very good. vyhere the h.elght of SIFBIS z, g=1- is the gravity accelera-
We cannot exclude that the agreement here found even féion, m=1is the grains mass; is the usual occupancy

low energy may be due to the fact that the system, which i¥ariable, andt,.({n;}) is the hard-core term preventing the

fotin a stationary state, is however very close to stationarity.

. AMONODISPERSE HARD-SPHERE SYSTEM
UNDER GRAVITY

£ S o
250 F £ 09| + |Mwm 05
(JPE o204 | By
225+t J Y £03 o
o 02| 3
200 - o o 0.1 =, an
o 0.5 o — |
175 F & - 0o 1 2 3
150 £ o T
.:'lu-&-:.. - (mm
125 F 0.1
0 1 TI 3
100 f
E@@F
75 g ' FIG. 10. The density self-overlap functigp and (upper inset
10 1 Tea the system density on the bottom laygg,, plotted as functions of

. Tq (in unitsmgay), compared with the ensemble averages over the
FIG. 8. The time averagE and the ensemble average over the distribution Eq.(3) (the black empty circles plotted as a function
distribution Eq.(3), (E) (the black empty circlgs plotted, respec-  of Ty, (in Unitsmga), in the 3D monodisperse hard-sphere sys-
tively, as functions off ;q and T+ (in units of J, in the frustrated  tem under gravity. Also, for this system, there is a very good agree-
lattice gas model, gi=0.75. As well as ap=0.65, there is a very ment between the independently calculated time averages over the
good agreement between the two independently calculated sets tp dynamics and the statistical mechanics ensemble averages in the
points. manner of Edwards.
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FIG. 12. Main frame: The difference of the average heights of
small and large graindgh=h;—h,, measured at stationarity in the
binary hard-spheres mixture under gravity, is plotted as a function

in the 3D monodisperse hard-sphere system under gravity describéd tap amplitudeTy- (in units mgay). The three sets of points cor-

in the text(and schematically depicted in the upper ins@ime

respond to the shown tap durations At high Ty larger grains are

averages over the tap dynamics and Edwards’s ensemble averagegnd above the smaller, i.é4h<0, as in the Brazil nut effect

then coincide. Lower inset: The temperatl]'r@E,Bf’d1 defined by
Eq. (20 as a function of Ty (in units mgg) for
=500, 10, 5 MCS(from top to bottom. The straight line is the
function T;4=Tr.

overlapping of nearest neighbor grajtise analogy with Eq.
(1) can be appreciated by writing dov,.: it can be writ-
ten as Hpc({nj}) =JZjyninj, where the limitJ—c is
taken.

We have considered a system Mf=240 particles, and

performed a tap dynamics that allows the system to explor

(BNE). Below aTf(7p) the opposite is foundreverse Brazil nut
effect, RBNB. Inset: TheAh data of the main frame are plotted as

a function of the corresponding average enezgyhe three sets of
data do not collapse onto a single master function, showing that a
single macroscopic observable, sucheadoes not characterize the
system status.

whereH; =31z andH,=3(?z, the height of sitd is z

and the two sums are over all particles of species 1 and 2,
respectively. In the above units, the gravitational energies in
a given configuration are thus;=H, andE,=2H,.

€ “Grains are confined to a box of linear siz&éetween hard

its inherent states. We have considered three different valugs, s and periodic boundary conditions in the horizontal di-

of the tap _duration,ro=500, 10, 5 MCS. In this case, we rections.N, =120 grains of type 1 and,=40 grains of type
SHMare initially prepared in a random loose stable pack. Under

can be described by a single thermodynamic param@ter

evaluated by the integration of E(R). We have moreover

calculated the system density on the bottom layer, and

the density self-overlap functio®, and verified that, when
plotted as a function 0By, they scale on a single master

function (see Fig. 10

As described in Sec. Il C, we have calculated the Edward
averages as functions gf,,,;. As we can see in Fig. 11, we

obtain a very good agreement betwe@B)(B.on) and

E(Bsq). The same agreement is found for the other quote

observablesp, andQ (see Fig. 10

IV. AHARD-SPHERE BINARY MIXTURE
UNDER GRAVITY

the tap dynamics, the system approaches a stationary state
for each value of the tap paramet@isand ry. In Fig.12, we
plot as a function ofT (for several values ofry) the
asymptotic value of theertical segregation parameter, i.e.,
the difference of the average heights of the small and large
rains at stationarityAh(Tr,79)=h;—h,. Hereh; andh,
re the averages 6f,/N; andH, /N, over the tap dynamics
in the stationary state(An interpretation, in terms of the
approach here presented, of the size segregation phenom-
@non here found and experimentally observed in a hard-
spheres binary mixture under gravity is given in Héf)).

The results given in the main panel of Fig. 12 apparently
show thatT is not a right thermodynamic parameter, since
sequences of taps with differen give different values for
the system observables. However, if the stationary states cor-

Finally we consider a hard-sphere binary system made dfesponding to different tap dynami¢se., differentTr and

two species Xsmal) and 2(large with grain diameters,
and \2a,, under gravity on a cubic lattice of spacirg

7o) are indeed characterized by a single thermodynamic pa-
rameter, the curves of Fig. 12 should collapse onto a univer-

—1. We set the units such that the two kinds of grains havé@l master function wheAh(Tr., 7o) is parametrically plot-

massesn;=1 andm,=2, and the gravity acceleration gs

=1. The hard-core potenti&}, is such that two large near-

ted as a function of another macroscopic observable such as
the average energe(Tr,79) =(E;+E,)/N (N is the total

est neighbor particles cannot overlap. This implies that only?uUmber of particles This collapse of data is clearly not ob-
couples of small particles can be nearest neighbors on therved here, as is apparent in the inset of Fig. 12. We show,

lattice. The overall system Hamiltonian is

H=Hnc+mgH,+mygH,, (6)

instead, that two macroscopic quantities may be sufficient to
characterize uniquely the stationary state of the system.
These two quantities are, for instance, the energyd the
height difference Ah. Of course, sincee=ah;+2bh,
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030 [ @, small particles and,, for the large particles. We again as-
. sume that the microscopic distribution is given by the prin-
@ : .
‘o ciple of maximum entropys= —X,P,InP,, now under the
i h condition that the average enerdy,=2>,P,E;, and E,
g _ O =2,P,E,, are independently fixed. This can be done by
s O% introducing two Lagrange multiplier8, and 85, which are
S L determined by the constraint da; and E,, and can be,
0.22 ] respectively, considered as the “inverse configurational tem-
10 11 12 13 perature” of species 1 and 2. This procedure leads to the
hy Gibbs result,
FIG. 13. The average density of small grains on the box bottom e PrBur— Bokar
layer, p?, measured at stationarity as a function of the height of Pr:#' (7)

small particlesh,, in the binary hard-spheres mixture under grav-

ity. Data corresponding to differefr and 7, approximately scale whereZ=3, exp(— 8,E;,— B,E,) and, in the thermodynamic
on a single master function. The empty circles are the corresponql-mit, the entropySis given by

ing values obtained by ensemble average with the two temperatures

Gibbs measure proposed in the text. S=1In Q(E;,E,), )

(wherea=N;/N andb=N,/N) andAh=h,—h,, we can andg; andg;:

also chooséh; and h, to characterize the stationary state.

Namely, we show that any macroscopic quankiaveraged _dIn Q(Ey,Ey) _dIn Q(E,,Ey)
over the tap dynamics in the stationary state, is only depen- - JEq o Be= JE, '
dent onh, andh,, i.e.,A=A(hy,h,). We have checked that

this is the case for several independent observables, such Here(Q(E;,E,) is the number of inherent states correspond-
the number of contacts between large partidis, the den-  ing to energyE; andE,. The hypothesis that the ensemble
sity of small and large particles on the bottom Iayél‘r,and distribution at stationarity is given by E(/) can be tested as
p5, and others. In particular, as shown in Figs. 13 and 14, wéollows. We have to check that the time average of any quan-
find with good approximation thaN.=~N(e)=N.(ah, fity A(hi,h;), as recorded during the taps sequences in a
+bh,), pgng(hz), p?:pg(hl)_ Therefore we need both stationar_y §tate .characterized by given vallgsand h,,

h, and h, to characterize unambiguously the state of theMust coincide with the ensemble averagg(h,,h,) over
system; namely, all the observables assume the same valué distribution Eq(7). To tL“S aim, we have calculated the
in a stationary state characterized by the same valuég of €nsemble averaged.), (pz), (p1) for different values of
and h,, independently on the previous histofiye., in our A1 and B,; we have expressed parametricallic), (p5),
case independently on the particular tapping paramdters (p3) as functions of the average bf andh,, and compared
and 7). them with the corresponding quantitidk , p?, andp5 av-

We again find that the stationary state can be genuinelgraged over the tap dynamics. The two sets of data are plot-
considered as a thermodynamic state. Therefore we can agd in Figs. 13 and 14 showing a good agreeniaotice,
what is the probability distributiof®, of finding the system there are no adjustable parame}ehs order to calculate the
in the inherent state corresponding to an ener@y, for the  ensemble averages we simulate the model ®tfrom Eqg.

(6) where we impose the constraint that the only accessible
states are the inherent states, as already described in

©)

B 1, '“q:. SR Sec. II C.
C.. - z.‘,lli-; ‘Q'Q "
. oo By V. CONCLUSIONS
< .08 i 12 14 L& LB . .
L 5 In conclusion, in the context of models for glasses and
- oo "o granular materials, we have shown that the statior(ary

006 o : " quasi-s_tationar)/stqte.reached by the_ system subject to a tap

. dynamics among its inherent states is genuinely a thermody-

L W Lo namic state, which can be well described by Edwards’s as-

. sumption of a uniform measure, i.e., a probability distribu-

FIG. 14. Main frame: The average density of large grains on thdiOn obtained assuming the validity of the principle of
box bottom layerp?, obtained for differenTy andr,, scale almost Maximum entropy. In particular in the frustrated lattice gas

on a single master function when plotted as a function of the IargénOd?| and in the system of monodisperse hard-spheres ur_lder
grains height,h,. Upper inset: The average number of contactsgravity, we have found that the observables recorded during

between large grains per partiché, , obtained for differentr and  different tap sequenceslifferent amplitude and duration of
70, Scale on a single master function when plotted as a function ofap9 fall on universal master curves when plotted as a func-
the system energg. tion of a single thermodynamic parameter. These curves turn
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In (P(E,T1+T,/E B—9(8r)
o-\
90 Lt 07 My
8ot ¢ 0.6 F o
70 & K
o~ 0.5 .
60 £ -
500 - 0.4 .
40 ¢ 0.3¢F .
op  f 0.2+ .
20 & .
o 0.1¢ .
10 P
O Il Il 1 1 Il Il Il Il I 0 L .
0 5 10 1520 25 30 35 40 45 _ 1 10 g,
FIG. 15. The curves [®P(ETp)]+E/T: (apart from a FIG. 16. The curveBr—9(Br)=pBr—[Bw(Br)—Bol as a

T-dependent constanas functions of the energg in the frus-  function of Br* (in Uni_tf of J in the frustrated lattice gas model for
trated lattice gas model fgr=0.65 andT=0.275, 0.425, 0.475, p=0.65. The limit3;"—0 of Br—g(Br) gives the integration
0.525 J. constantB.

frozen in the inherent state Therefore the probability dis-

out to coincide with those predicted, within the describedyp, ion p_ of finding the system in the inherent statafter
statistical mechanics approach, by the generalized Gibbs d'ﬁ'uenching the system from an equilibrium state at tempera-
tribution of Eq.(3). On the other hand, the results obtained iny e Tp, can be written as

a system under gravity made of particles of two different
sizes show that a single thermodynamic parameter is not

. . . Z e_Err'/TF
enough to describe the macrostates, and two configurational 5
temperatures are instead necessary. In general, for a more P=—o——, (A1)
complex system one might expect more constraints to be Zg(Tr)

imposed, leading to more than two thermodynamical paran\?vhereZG(Tr) is the partition function of the system in equi-

eters[15,18,23. In practice, the criteria to determirepriori librium at temperaturdl and S, is the sum over all the
the required parameters cannot be easily accessible. HOW;otegr ! belonging to the basiBr of energyE By put-
r rr’ -

ever, more recently we have extended data regarding thﬁng E,. =E,+A, ., the distribution(Al) can be written as
hard-sphere binary mixture for very low ener§§6] and

found that only one thermodynamical parameter is necessary e (B0 (Tr)/Tr

to describe the stationary state. This seems to be a general PFW’ (A2)

feature[14]. If this is the case, a statistical mechanics ap-

proach with only one thermodynamical variable may be feawheree 9(T)/Tr=3 ,e~4n'/Tr From Eq.(A2) it follows

sible for low energy. that the probability of finding the system in any inherent
state of energyg, P(E,Tr)=2,P, (where X, is the sum
over all the inherent statesof energyE), is given by

ACKNOWLEDGMENTS Q(E)e” ElMrg—f(Tr E)/Tr

This work was partially supported by the TMR- P(E,Tp)= Zo(Tr) ' (A3)
ERBFMRXCT980183, INFM-PRAHOP), MURST-PRIN
2000, and MIUR-FIRB 2002. The allocation of computer where()(E) is the number of inherent states of eneEysnd
resources from INFM Progetto Calcolo Parallelo is also ac-

knowledged. 2 e 0r(TD)/Tr

e fr B)Tp—

Q(E)
APPENDIX: DETERMINATION OF THE INTEGRATION
CONSTANT B, From Eq.(A3),
Adapting to lattice models the procedure of Sciortino E f(Ty,E)

et al.[3], we have evaluate@;q at small values offy-, for  IN[P(E,Tp)]+ ETR S +IN[Q(E)]=In[Zg(Tr)].
To—0o°, and consequently the integration constgpt (A4)

Given an inherent stateof energyE, we define the basin
of attraction,B,, of such state as the set of states in the The probability distribution of finding the system in any in-
configurational space, which after the quenchTat0 are herent state of energl, P(E,Tr), is measured during the
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tap dynamics with amplitudey— . If f(T,E) has only a

weak dependence df then it is possible to superimpose the

curves, IfP(E,Ty)]+E/Ty, at differentT which overlap in

PHYSICAL REVIEW E 66, 061301 (2002

Z(Tp)=e'MMrzy(Tr) =2 Q(E)e ¥Tr.  (A6)
E

E by adding aT--dependent constant. This result is obtained

for Tr=<0.525, as shown in Fig. 15, and suggests that in thi

interval f (T ,E)=f(Ty). If this is the case, from E4A3) it
follows

Q(E)e_ E/Tp

P(E,Tr)= T2 (A5

where

Yhe last equality stems from the normalization condition on
P(E,Tr).

From Eq.(A5) it follows that at smallT, Br=Ty " sat-
isfies Eq.(2). Therefore at small, B¢y and Br coincide.
The constaniB, is consequently obtained as the limit, for
Tr—0, of the functionBr—g(Br) (see Fig. 1k
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