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Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time
random walk models
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The epidemic-type aftershock sequence~ETAS! model is a simple stochastic process modeling seismicity,
based on the two best-established empirical laws, the Omori law~power-law decay;1/t11u of seismicity after
an earthquake! and Gutenberg-Richter law~power-law distribution of earthquake energies!. In order to describe
also the space distribution of seismicity, we use in addition a power-law distribution;1/r 11m of distances
between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to
model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping
between the ETAS model and a class of CTRW~continuous time random walk! models, based on the identi-
fication of their corresponding master equations. This mapping allows us to use the wealth of results previously
obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we
provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock.
Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a
function of the time from the mainshock and of the joint probability distribution of the times and locations of
the aftershocks. The different regimes are fully characterized by the two exponentsu andm. Our predictions
are checked by careful numerical simulations. We stress the distinction between the ‘‘bare’’ Omori law de-
scribing the seismic rate activated directly by a mainshock and the ‘‘renormalized’’ Omori law taking into
account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In
particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the
observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare
Omori law, also at the origin of seismic diffusion in the ETAS model. We present predictions and insights
provided by the ETAS to CTRW mapping which suggest different ways for studying seismic catalogs. Finally,
we discuss the present evidence for our predicted subdiffusion of seismicity triggered by a main shock,
stressing the caveats and limitations of previous empirical works.
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I. INTRODUCTION

The spatiotemporal complexity of earthquakes is often
voked as an illustration of the phenomenon of critical se
organization with scale-invariant properties@1–5#. This con-
cept points to the importance of developing a syst
approach in which large scale properties can emerge from
repeating interactions occurring at smaller scales. Such id
are implemented in models proposing links between
physics of earthquakes and concepts of statistical phys
such as critical points, self-organized criticality, spinodal d
composition, critical depinning, etc., in order to explain t
most solidly established facts in the phenomenology
earthquakes, of which we cite the three most important.

~i! Law 1. The Gutenberg-Richer law@6# states that the
cumulative distribution of earthquake magnitudesm sampled
over broad regions and large time intervals is proportiona
102bm, with ab valueb'1. Translating into energiesE with
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the correspondencem5(2/3)log10E1const leads to a powe
law ;1/EB with B'2/3.

~ii ! Law 2. Omori’s law for aftershocks@7# states that the
rate of earthquakes triggered by a mainshock decays
time according to an inverse power 1/tp of time with an
exponentp'1.

~iii ! Law 3. The earthquakes are clustered in space al
hierarchical fault structures@8# and their spatial distribution
over long times can be approximately described by a fra
dimension close to 2.2~in three dimensions! @9#.

There are many other empirical ‘‘laws’’ but these thr
characterize the very fundamentals of seismicity in si
time, and space.

We should immediately point out that these three la
come with significant caveats.

~1! There have been ongoing controversies on the univ
sality of the exponentB or b value of the Gutenberg-Richte
law @10,11#.

~2! The exponentp of Omori’s law exhibits a large vari-
ability from one aftershock sequence to another aftersh
sequence and is found typically in the range from 0.3 to
We note, however, that not all these values, especially
extreme ones, automatically reflect a bona-fide power-
©2002 The American Physical Society04-1
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decay and one should exert caution in attributing too m
confidence to them.

~3! The view that geological faults and earthquake hyp
centers are fractal objects is now recognized to be a n
description of a much more complex reality in which a hie
archy of scales occur with possibly different organizations
different scales@8#.

In addition, a major difficulty for making progress i
modeling and predicting earthquakes is that these three
other laws may be ‘‘explained’’ by a large variety of mode
with many different mechanisms. For instance, with resp
to the first two laws, we observe the following.

~a! There are many mechanisms that create a power
distribution of earthquake sizes~see, for instance, the list o
mechanisms described in chapter 14 of Ref.@12#!.

~b! Omori’s law is essentially a slowly decaying ‘‘propa
gator’’ describing a long time memory of past events impa
ing on the future seismic activity. Such slow power-law tim
decay of the Omori propagator may result from several
not necessarily exclusive mechanisms~see @13# and refer-
ences therein!: pore-pressure changes due to pore-fluid flo
coupled with stress variations, slow redistribution of stre
by aseismic creep, rate-and-state dependent friction wi
faults, coupling between the viscoelastic lower crust and
brittle upper crust, stress-assisted microcrack corros
@14,15#, slow tectonic driving of a hierarchical geomet
with avalanche relaxation dynamics@16#, etc.

The zeroth-order description of earthquakes is to cons
a single isolated homogeneous fault on which earthqua
are recurrent to accommodate the long-term slow tecto
loading. But faults are not isolated and the most conspicu
observation is that earthquakes interact and influence e
other on complex fault structures. Understanding these in
actions is essential for understanding earthquakes and
self-organization. However, the full impact of interactio
between earthquakes is still far from being well understo
The simplest and clearest observation of earthquake inte
tion is provided by aftershocks whose phenomenology
captured by Omori’s law~Law 2!. Indeed, aftershocks are th
most obvious and striking signature of the clustering of
seismicity in time and space, and are observed after all la
shallow earthquakes. Most aftershocks are triggered a
hours or days after the mainshock. However, due to the v
slow power-law decay of the rate of aftershocks, known
the Omori law@7#, aftershocks can be triggered up to a hu
dred years after the mainshock@17#. Aftershocks often occur
near the rupture zone of the mainshock with a variety
focal mechanisms suggesting that they are actually on s
rate structures@18,19#. They are also sometimes triggered
very large distances from the mainshock@20–24#. As an ex-
ample, Hill et al. @20# observed aftershocks of the Lande
earthquake as far as 1250 km from the epicenter. Similarl
the temporal distribution of aftershocks, a power-law dis
bution seems to describe well the distribution of distan
between pairs of events@22#. Since a power law decay
slowly, it describes a slow decay of the probability of obse
ing aftershocks at large distances to the mainshock.

Thus, Omori’s law can be considered as the simplest
best-established description of earthquake interactions
06110
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certain kind. The question we investigate is whether it can
used fruitfully to explain a larger variety of earthquake inte
actions beyond the class of observations that were use
establish it. In a series of papers@25–27#, we find that
Omori’s law for aftershocks plus the constrain that aft
shocks are distributed according to the Gutenberg-Ric
power law for earthquake size distributionindependentlyof
the magnitude of their progenitor is enough to derive ma
of the other empirical ‘‘laws,’’ as well the variability of thep
exponent. Here, we test the potential of this approach to
count for and to quantify observations on aftershock dif
sion.

Aftershock diffusion refers to the phenomenon of expa
sion or migration of aftershock zone with time@28–36#. Im-
mediately after the mainshock occurrence, most aftersho
are located close to the rupture plane of the mainshock, t
aftershocks seem to migrate away from the mainshock
velocities ranging from 1 km/h to 1 km/year@36,37#. Note
that this expansion is not universally observed, but is m
important in some areas than in others@31#.

The diffusion of aftershocks is usually interpreted as
diffusion of the stress induced by the mainshock, either b
viscous relaxation process@37#, or due to fluid transfer in the
crust @38,39,35#. Another interpretation of the expansion o
aftershocks is given by Dieterich@40#, who reproduces the
Omori law decay of aftershocks and the expansion of
aftershock zone with time, using a rate and state friction l
and assuming that the rate of aftershocks is proportiona
the stress rate. In his model, the expansion of aftershock z
arises from the nonuniform stress induced by the mainsho
Another alternative explanation is that the diffusion of afte
shocks is mainly due to the occurrence of large aftersho
and to the localization of secondary aftershock close to
largest aftershocks, as observed by Ouchi@34#. The apparent
diffusion of the seismicity may thus result from a casca
process; the mainshock triggers aftershocks that in turn t
ger their own aftershocks, and thus lead to an expansio
the aftershock zone.

In the present paper, we investigate the epidemic-time
tershock sequence~ETAS! model, and show that the cascad
of secondary aftershocks can indeed explain the reported
fusion of aftershocks. The ETAS model was introduced
Kagan and Knopoff@41# ~in a slightly different form than
used here! and Ogata@42# to describe the temporal and sp
tial clustering of seismicity. This model provides a tool f
understanding the clustering of the seismic activity, witho
arbitrary distinction between aftershocks, foreshocks,
mainshocks. In this model, all earthquakes are assumed t
simultaneously mainshocks, aftershocks, and possibly f
shocks. Each earthquake generates aftershocks that d
with time according to Omori’s law, which will in turn gen
erate their own aftershocks. The seismicity rate at any gi
time and location is given by the superposition of aftersho
sequences of all events impacting that region at that t
according to space-time ‘‘propagators.’’ The additional ing
dient in the version of the ETAS model that we study is th
the number of aftershocks per earthquake increases expo
tially }10am with the magnitudem of the mainshock~i.e., as
a power law}E2a/3 of the energy released by the mai
4-2
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DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
shock!, in agreement with the observations@43,44#. Since the
energy of an earthquake is a power law of its rupture leng
this law expresses the very reasonable idea that the num
of events related to a given earthquake is proportional t
power of its volume of influence. The value of the expone
a controls the nature of the seismic activity, that is, the re
tive role of small compared to large earthquakes. Few stu
have measureda in seismicity data@43,45,46#. This param-
etera is often found close tob @43# or fixed arbitrarily equal
to b @41,47#. In the case wherea is close to the Gutenberg
Richterb value, this law also reproduces@47# the self-similar
empirical Bath’ s law@48#, which states that the averag
differencemM2mA in magnitude between a mainshock a
its largest aftershock is approximately 1.2 units, regardles
the mainshock magnitude:mA5mM21.2. If a,b, small
earthquakes, taken together, trigger more aftershocks
larger earthquakes. In contrast, large earthquakes dom
earthquake triggering ifa>b. This casea>b has been stud
ied analytically in the framework of the ETAS model by Re
@27# and has been shown to eventually lead to a finite ti
singularity of the seismicity rate. This explosive regime ca
not, however, describe a stationary seismic activity.

A natural way to tame this singular behavior is to intr
duce an upper cutoff for the magnitude distribution at la
magnitudes, mirroring the cutoffm0 used for the low-
magnitude range. The physical argument for introducing
cutoff is based on the finiteness of the maximum earthqu
that the earth is capable of carrying. The specific way
introducing such a cutoff~abrupt or smooth with a transitio
to a power law with larger exponent or to an exponen
taper! is not very important qualitatively because all the
laws will regularize the singular behavior and make the
erage branching ratio defined below finite. Such regular
tion with a maximum upper magnitude then allowsa>b.
The special casea5b required for Bath’s law to hold ex
actly cannot therefore be excluded.

However, based on a recent reanalysis of seismic cata
using the powerful collapse technique, one of us@46# has
presented strong evidence thata is strictly smaller thanb. In
this paper, we will therefore consider only the casea,b and
takea50.5 specifically in our numerical simulations. In th
regimea,b, Bath’s law cannot be reproduced because
average difference in size between a mainshock and its l
est aftershock increases with the mainshock magnitude.
a,b, it is easy to show that Bath’s law is replaced bymA
5(a/b)mM2const, wheremM and mA are the magnitudes
of the mainshock and of the largest aftershock. Tests of
prediction will be reported in a future publication but w
expect that distinguishing this modified Bath’s law fro
Bath’s law will be a difficult task due to the limited range
the studied magnitudes as well as the dependence of the
tribution of mM2mA on the magnitude thresholds chosen
the mainshocks and for the aftershocks@49#.

We assume that the distribution of all earthquakes foll
the Gutenberg-Richter distribution and take this distribut
of aftershock sizes to be independent of the magnitude of
mainshock. Therefore, an earthquake can trigger a la
earthquake, albeit with a small probability. This model c
thus describea priori both aftershock and foreshock s
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quences. The ETAS model has been calibrated to real s
micity catalogs to retrieve its parameters@42,50–54,45,47#
and to give short-term probabilistic forecast of seismic ac
ity by extrapolating past seismicity into the future via the u
of its space-time propagator@41,55,56#.

The ETAS model is a branching model that exhibits d
ferent regimes@26# depending upon the value of the branc
ing ratio n, defined by the average number of primary aft
shocks per earthquake. The critical casen51 corresponds to
exactly one primary aftershock per earthquake, when ave
ing over all mainshock magnitudes larger than a thresh
m0. Let us stress thatn is an average quantity that does n
reflect adequately the large variability of the number of
tershocks per main shock, as a function of its magnitu
Indeed, the number of aftershocks per mainshock increa
exponentially fast as a function of the mainshock magnitu
so that large mainshocks will have significantly more thann
aftershocks. Fora50.5, a magnitude-7 earthquake giv
typically ten times more direct aftershocks than
magnitude-5, and 100 times more direct aftershocks tha
magnitude-3 earthquake. The increase in triggered seis
activity with the magnitude of the mainshock is obvious
stronger for a larger value ofa. Note that these number
refer to aftershocks of the first generation; the total num
of triggered events is larger by the factor 1/(12n);10 ~for
n'0.9 which is typical!, due to the cascades of seconda
aftershocks. Notwithstanding this large variability, the av
age numbern of primary aftershocks per earthquake contro
the global regime. Forn exactly equal to 1, seismicity is a
the border between death and growth. In the subcritical
gime n,1, since each earthquake triggers on average
that one aftershock, starting from a large event, the seism
ity will decrease with time and finally die out. The supercri
cal regimen.1 corresponds to more that one primary afte
shock per earthquake on average. Starting from a la
earthquake, after a transient regime, the average seism
will finally increase exponentially with time@26#, but there is
still a finite probability for aftershock sequences to die ou

The numerical simulations reported below have been p
formed witha50.5. It is probable that a good fit to seism
data is obtained by using a value ofa'0.8 larger that the
value 0.5, as reviewed and documented recently by one o
@46#. We have checked that results similar to those presen
below hold true qualitatively for larger values 0.5,a,1.
Such larger values ofa lead, however, to stronger fluctua
tions that are more difficult to handle numerically becau
the variance of the numberr(m) of direct triggered after-
shocks defined below in Eq.~3! becomes undefined fora
.0.5. A full understanding of this regime requires a spec
treatment that will be reported elsewhere.

Sornette and Sornette@25# studied analytically a particula
case of this model, without magnitude and spatial dep
dence, and they considered only the subcritical regimen
,1. Starting with one event at timet50 and considering
that each earthquake generates an aftershock sequence
‘‘local’’ Omori exponentp511u, whereu.0, they studied
the decay law of the ‘‘global’’ aftershock sequence, co
posed of all secondary aftershock sequences, i.e., by ta
into account that the primary aftershocks can create sec
4-3
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A. HELMSTETTER AND D. SORNETTE PHYSICAL REVIEW E66, 061104 ~2002!
ary aftershocks which themselves may trigger tertiary af
shocks and so on. They found that the global aftershock
decays according to an Omori law with an expone
p512u,1, up to a characteristic time@25,26#

t* 5cS nG~12u!

u12nu D 1/u

, ~1!

and then recovers the local Omori exponentp511u for
time larger thant* . Helmstetter and Sornette@26# extended
their analysis to the general ETAS model with magnitu
dependence, and considered both the subcritical and the
percritical regime, but still restricted the analysis to the te
poral distribution of the seismicity, without spatial depe
dence. In the subcritical regime, they recovered the cross
found by Sornette and Sornette@25#. In addition, Helmstetter
and Sornette@26# give the explicit mathematical formula fo
the gradual transition between the Omori law with exp
nent p512u for t!t* to the Omori law with exponen
p511u for t@t* . This smooth transition can be observ
in Fig. 2 on the line calculated fort* 5109 days with n
,1. t* can thus be viewed as the time where the appa
exponentp of the Omori law is approximately in between th
two asymptotic values 12u and 11u. A more rigorous
mathematical definition@26# is that t* is the characteristic
time scale such thatbt* is the dimensionless variable of th
Laplace transform~with variableb) of the seismicity rate.

In the supercritical regime, Helmstetter and Sornette@26#
found a novel transition between a power-law decay w
exponentp512u at early times, similar to the subcritica
regime, to an exponential increase of the seismicity at la
times. The regime wherea.b or equivalently 2a/3.B has
been found to lead to a new kind of critical stochastic fini
time-singularity@27#, relying on the interplay between long
memory and extreme fluctuations. Recall that the numbe
aftershocks per earthquake increases as a power law}E2a/3

of the energy released by the mainshock whereas the num
of earthquakes of energyE decreases as the Gutenber
Richter law }1/E11B. Intuitively, when 2a/3.B, the in-
crease in the rate of creation of aftershocks with the ma
shock energy more than compensates the decrease o
probability to get a large mainshock when the mainsho
energy increases. This theory based solely on the ET
model has been found to account for the main observat
~power-law acceleration and discrete scale invariant st
ture! of critical rupture of heterogeneous materials, of t
largest sequence of starquakes ever attributed to a neu
star as well as of some earthquake sequences@27#.

In the sequel, we extend the analytical study of the te
poral ETAS model@25–27# to the spatio-temporal domain
To model the spatial distribution of aftershocks, we assu
that the distance between a mainshock and each of its d
aftershock is drawn from a given distribution, independen
of the magnitude of the mainshock and of the delay betw
the mainshock and its aftershocks. For illustration, but w
out loss of generality, for the mapping to the continuous ti
random walk~CTRW! model discussed later, we shall take
power-law distribution of distances between earthquakes.
take the simplest and most parsimonious hypothesis
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space, time, and magnitude are decoupled in the earthq
propagator. Our first result is to establish a corresponde
between the ETAS model and the CTRW model, first int
duced by Montroll and Weiss@57# and used to model man
physical processes. We then build on this analogy to de
the joint probability distribution of the times and locations
aftershocks. We show analytically that, for sufficiently sh
times t,t* , the average distance between a mainshock
its aftershock increases subdiffusively asR;tH, where the
exponentH depends on the local Omori exponent 11u and
on the distribution of the distances between an earthqu
and its aftershocks. We also demonstrate that the local Om
law is not universal, but varies as a function of the distan
from the mainshock. Due to the diffusion of aftershocks w
time, the decay of aftershock is faster close to the mainsh
than at large distances. These nontrivial space-time coupl
occur notwithstanding the decoupling between space, ti
and magnitude in the ‘‘bare’’ propagator, and are due to
existence of cascades of aftershocks.

A recent work of Krishnamurthyet al. @58# substantiates
the general modeling strategy used here of representing
space-time dynamics of earthquakes by an effective stoc
tic process~the ETAS model! entirely defined by two expo-
nents@corresponding to ourm andH(u,m) defined below#,
where m is the exponent of the power-law distribution o
jumps between successive active sites andH is the ~sub-!
diffusion exponent. Indeed, Krishnamurthyet al. @58# show
that the Bak and Sneppen model and the Sneppen mod
extremal dynamics~corresponding to a certain class of se
organized critical behavior@12#! can be completely charac
terized by a suitable stochastic process called ‘‘linear fr
tional stable motion.’’ Beyond recovering the scalin
exponents of this model, the stochastic process strategy
dicts the conditional probabilities of successive activations
different sites and thus offers important insights. We n
that this approach with the linear fractional stable motion
extremely close in spirit as well as in form to our approa
mapping the ETAS model to the CTRW model. The ETA
model can thus be taken to represent an effective stoch
process of the complex self-organization of seismicity.

II. THE ETAS MODEL

A. Definitions and specific parametrization of the ETAS model

We assume that a given event~the ‘‘mother’’! of magni-
tude mi occurring at timet i and positionrW i gives birth to
other events~‘‘daughters’’! of any possible magnitude cho
sen with some independent Gutenberg-Richter distributio
a later time betweent andt1dt and at pointrW6dW r to within
drW at the rate

fmi
~ t2t i ,rW2rW i !5r~mi !C~ t2t i !F~rW2rW i !. ~2!

We will refer to fmi
(t2t i ,rW2rW i) both as the seismic rat

induced by a single mother or as the ‘‘bare propagator.’’ It
the product of three independent contributions.

~1! r(mi) gives the number of daughters born from
mother with magnitudemi . This term will, in general, be
4-4



a
ke

e
tio
e
gn

-

a

th
c

p
t-
an

nt
p
fi

el
p

th
s

is
d
w
in
ac
I
r

-

med
atu-
e

f its

ch a

of

e the

t
cks
s

all

ing

-

-

Eq.
ast
ed

DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
chosen to account for the fact that large earthquakes h
many more triggered events than have small earthqua
Specifically, we take

r~mi !5K10a(mi2m0), ~3!

which, as we said earlier, is justified by the power-law d
pendence of the volume of stress perturbation as a func
of the earthquake size.a quantifies how fast the averag
number of daughters per mother increases with the ma
tude of the mother.

~2! C(t2t i) is a normalized waiting time distribution giv
ing the rate of daughters born at timet2t i after the mother.
The normalization condition reads*0

1`dtC(t)51.
C(t2t i)dt can thus be interpreted as the probability for
daughter to be born betweent andt1dt from the mother that
was born at timet i . C(t2t i) embodies Omori’s law: it is
the ‘‘bare’’ or ‘‘direct’’ Omori law,

C~ t !5
ucu

~ t1c!11u
H~ t !, ~4!

whereu.0 andH(t) is the Heaviside function.
~3! F(rW2rW i) is a normalized spatial ‘‘jump’’ distribution

from the mother to each of her daughters, quantifying
probability for a daughter to be triggered at a distan
urW2rW i u from the mother. Specifically, we take

F~rW !5
m

dS urWu
d

11D 11m , ~5!

which has the form of an~isotropic! elastic Green function
dependence describing the stress transfer in an elastic u
crust. The exponentm is left adjustable to account for he
erogeneity and the possible complex modes of stress tr
fers. The normalization condition reads*drWF(rW)51, where
the integral is carried out over the whole space.

The physical justification for this decoupled model~2! in
which fmi

(t2t i ,rW2rW i) is the product of three independe
distributions is that elastic waves propagate at kilometers
second and thus almost instantaneously reset the stress
after a large main shock. In other words, there is a w
defined separation of time scales between the time of pro
gation of seismic waves~seconds to minutes! which control
the convergence to a new mechanical equilibrium after
main shock and the time scales involved in aftershock
quences~hours, days, months, or many years!. The spatial
dependence in Eq.~2! reflects the stress redistribution. Th
new stress field then relaxes slowly and more or less in
pendently from point to point leading to the local Omori la
C(t2t i). Notwithstanding this argument, the decoupling
Eq. ~2! between the local responses in magnitudes, sp
and time is mostly performed because of its simplicity.
constitutes an approximation that should be checked and
laxed in future studies.
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We assume a distributionP(m) of earthquake sizes ex
pressed in magnitudesm which follows the Gutenberg-
Richter distribution

P~m!5bln~10!102b(m2m0), ~6!

with a b value usually close to 1.m0 is a lower bound
magnitude below which no daughter is triggered.

B. The branching ratio n

A key parameter of the ETAS is the average numbern of
daughter earthquakes created per mother event, sum
over all possible magnitudes. As we shall see, it is also n
ral to call it the ‘‘branching ratio.’’ To see this, consider th
integral of the seismic ratefmi

(t2t i ,rW2rW i) induced by one

earthquake over all times aftert i , over all spatial positions
and over all magnitudesmi>m0, which must give, by defi-
nition, the average numbern of direct ~or primary! daughter
earthquakes created per mother event independently o
magnitude. Fora,b, and using Eqs.~2!, ~3!, and ~6!, it is
exactly given by

n[E drWE
t i

1`

dtE
m0

1`

dmi P~mi !fmi
~ t2t i ,rW2rW i !

5E
m0

1`

dmi P~mi !r~mi !5
Kb

b2a
, ~7!

since the two integrals over time and space contribute ea
factor 1 by the normalization ofC andF. This result~7! is
identical to that found in absence of spatial dependence
fmi

(t2t i) with respect torW2rW i due to the factorization of

the rater, time C, and spaceF dependences@26#. The
branching ratio has also been evaluated in the case wher
magnitude distribution follows a gamma distribution@54#.

We stress again thatn is anaveragequantity that does no
reflect the large fluctuations in the number of aftersho
from event to event. Indeed, large events with magnitudeM
produce, in general, many more aftershocks than sm
events with magnitudem,M , simply becauser(M )
@r(m) if M.m @see the exponential dependence~3! of
r(m) on the magnitudem].

C. Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically us
the algorithm described in Refs.@59,52#. Starting with a large
event of magnitudeM at time t50, events are then simu
lated sequentially. At any given timet, we calculate the con-
ditional seismic ratel(t) defined by

l~ t !5(
t i<t

K10a(mi2m0)
ucu

~ t2t i1c!11u
, ~8!

whereK5n(b2a)/b, andt i andmi are the times and mag
nitudes of all preceding events that occurred at timet i<t.
Note that we use the bare propagator because the sum in
~8! is performed exhaustively on the complete catalog of p
events. The time of the following event is then determin
4-5



on
h

os
ob

h

tr
t
er
b

g

bu
th
n
u

t
a
lc
na

th
v-
da

d
e to

to
del.

h
l
ic

al

the

-

ent
he
ter-
own

r

e
t

e

t re-

at
d the
an

ith

in

llo

he
ck

la

d
ica
s
c
st
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according to the nonstationary Poisson process of conditi
intensityl(t), and its magnitude is chosen according to t
Gutenberg-Richter distribution with parameterb. To deter-
mine the position in space of this new event, we first cho
its mother randomly among all preceding events with a pr
ability proportional to their rate of aftershocksfmi

(t2t i)
evaluated at the time of the new event. Once the mother
been chosen, we generate the distancer between the new
earthquake and its mother according to the power-law dis
butionF(rW) given by Eq.~5!. The location of the new even
is determined by assuming an isotropic distribution of aft
shocks. By this rule, it is clear that new events tend to
close, in general, to the last large earthquakes, leadin
space clustering.

Note that this two-steps procedure is equivalent to
more convenient for a numerical implementation than
one-step method, consisting of calculating at each point o
fine space-covering grid the seismic rate, equal to the s
over all preceding mothers weighted by the bare spaceF(rW)
and timeC(t) propagators given by Eqs.~5! and ~4!; after
normalizing, these rates then provide to each grid poin
probability for the event to occur on that point. The equiv
lence between our two-step procedure and the direct ca
lation of the seismic rates is based on the law of conditio
probabilities:@probability of next event~A!#5@probability of
next event conditioned on its mother~eventB!3@probability
of choosing the mother#, i.e., P(A,B)5P(AuB)P(B).

Figure 1 shows the result of a numerical simulation of
ETAS model which exhibits a diffusion of the seismic acti
ity. We simulate a sequence of aftershocks and secon

FIG. 1. Maps of seismicity generated by the ETAS model w
parameters b51, u50.2, m51, d51 km, a50.5, c50.001
day, and a branching ration51. The mainshock occurs at the orig
of space with magnitudeM57. The minimum magnitude is fixed
at m050. The distances between mainshock and aftershocks fo
a power law with parameterm51 and the local~or bare! Omori’s
law is }1/t11u. According to the theory developed in the text, t
average distance between the first mainshock and the aftersho
thus expected to grow asR;tH with H50.2 @Eq. ~58!#. The two
plots are for different time periods of the same numerical simu
tion, such that the same number of earthquakesN53000 is ob-
tained for each graph.~a! Time between 0 and 0.3 days;~b! time
between 30 and 70 yr. Real aftershock sequences are indee
served to last decades up to a century. Large black dots ind
large aftershocks around which other secondary aftershocks clu
The mainshock is shown by a black star. At early times, aftersho
are localized close to the mainshock, and then diffuse and clu
around the largest aftershocks.
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aftershocks starting from a mainshock of magnitudeM57,
with the following parameters:u50.2, b51, a50.5, n
51, and m51. At early times, aftershocks are localize
close to the mainshock, and then diffuse and cluster clos
the largest aftershocks. This~sub-!diffusion is extremely
slow, as we shall quantify in the sequel. Our purpose is
provide a theory for this process based on the ETAS mo
This theory will be tested by numerical simulations.

The different regimes are illustrated in Fig. 2, whic
shows the seismicity rateN(t) for the temporal ETAS mode
studied in Refs.@25,26# obtained by summing the seism
activity over all space for the three casesn,1 ~subcritical!,
n51 ~critical!, andn.1 ~supercritical!. The subcritical re-
gime is characterized by the existence of the time scalet*
given by Eq.~1!. There is no difference between the critic
casen51 and the subcritical case fort,t* ~see Fig. 2!.
Indeed, the difference between the subcritical regime and
critical regime can be observed only fort.t* . A simple way

FIG. 2. Seismicity rateN(t) for the temporal ETAS model cal
culated foru50.3 andc50.001 day. The local lawf(t)}1/t11u,
which gives the probability distribution of times between an ev
and its~first-generation! aftershocks is shown as a dashed line. T
global lawN(t), which includes all secondary and successive af
shocks generated by all the aftershocks of the first event, is sh
as a solid line for the three regimes,n,1, n51, andn.1. In the
critical regimen51, the seismicity rate follows a renormalized o
dressed Omori law}1/tp for t.c with an exponentp512u,
smaller than the exponent of the local law 11u. In the subcritical
regime (n,1), there is a crossover from an Omori law 1/t12u for
t,t* to 1/t11u for t.t* . In the supercritical regime (n.1), there
is a crossover from an Omori law 1/t12u for t,t* to an exponential
increaseN(t);exp(t/t* ) for t.t* . We have chosen on purpos
values ofn50.9997,1 andn51.0003.1 very close to 1 such tha
the crossover timet* 5109 days given by Eq.~1! is very large. In
real data, such larget* would be undistinguishable from an infinit
value corresponding to the critical regimen51. This representation
is chosen for pedagogical purpose to make clear the differen
gimes occurring at times smaller and larger thant* . In reality, we
can expectn to be significantly smaller or larger than 1, such th
t* becomes maybe of the order of months, years, or decades an
observed Omori law will thus lie in the crossover regime, given
apparent Omori exponent anywhere from 12u to 11u.

w

s is

-

ob-
te

ter.
ks
er
4-6



ys

pi-
ua
th

g.
e

th

le
o

A
la
hi
en
on
on

.
c

c
c
y

dent
d
ep-

ver

the
ging
all

AS
the

his
sly

or-
this,
dels

ate

ly

e
as-

e

ain

rs
t
lgo

DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
to see this is to realize that the critical regimen51 gives
t* 51`, meaning that, in the critical regime, one is alwa
in the situationt,t* .

It is interesting to note that the spatial distribution of e
centers shown in the right panel of Fig. 1 has the vis
appearance of a fractal set of points. This is confirmed by
calculation of the correlation dimension of this set ofN
53000 points generated in the time interval@30, 70# yrs,
which is found approximately equal toD251.560.05 over
more than two decades in spatial scales, as shown in Fi
If we use instead all 30 000 events of the simulation p
formed up to timet570 yr, we findD251.8560.05 while
the correlation dimension of the geometrical set made of
epicenters of the 10 000 last events~time interval@7, 70# yr!
is D51.760.05, also over more than two decades in sca
These values are similar to those reported for tw
dimensional maps of active fault systems@60–62,8#, and are
in good agreement withD2 values in the range@1.65,1.95#
measured for aftershocks epicenters@63#. The fractal cluster-
ing of the earthquake epicenters, according to the ET
model, occurs because of a self-similar process taking p
on many different scales. However, the description of t
multiscale process solely in terms of a single fractal dim
sion fails to fully embody the complex spatial superpositi
of local ‘‘singularities’’ associated with each aftershock
the one hand and finite-size effects~stemming from the finite
lifetime of each aftershock sequence! on the other hand
Each event indeed creates its cloud of direct aftersho
which can be characterized by its singular exponent 12m for
m<1 and 0 for m.1, defined by the scaling
}*0

Rrdr /r 11m}R12m of the ‘‘mass’’ of the cloud with its
radiusR. Finite-size effects and randomness have been do
mented to generate realistic but sometimes spurious fra
signatures@64–67#. This problem requires a special stud
which is left for another work.

FIG. 3. Plot of the correlation function of the 3 000 epicente
generated in the time interval@30, 70# yrs and shown in the righ
panel of Fig. 1, calculated following Grassberger-Procaccia’s a
rithm, as a function of scaler, in double-logarithmic scales.
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D. Relationship with the space-independent ETAS model

The spatial ETAS model reduces to the space-indepen
ETAS model solved in Ref.@26# by integrating the dresse
propagator obtained below over all space. In the Fourier r
resentation@see expression~26!# this corresponds to putting
the wave numberk to zero. Indeed, fork50, the Fourier
transform amounts to performing a simple integration o
all space. SinceF̂(kW50W )51, expression~26! derived below
reduces to the form studied at length in Ref.@26#. Therefore,
all results reported previously hold also for the version of
space-dependent ETAS model studied here, when avera
over the whole space. This is an important property that
the solutions discussed below must obey.

III. MAPPING OF THE ETAS MODEL ON THE CTRW
MODEL

In order to study the space-time properties of the ET
model, it is very useful to use a correspondence between
ETAS model and the CTRW that we establish here. In t
way, we can adapt and use the wealth of results previou
derived for the CTRW. But first, let us demonstrate the c
respondence between the ETAS and CTRW models. For
our strategy is to derive the master equations for both mo
and show that they are identical.

A. The master equation of the ETAS model

The ETAS model can be rephrased by defining the r
fmi→m(t2t i ,rW2rW i) at which a given event~the ‘‘mother’’!

of magnitudemi>m0 occurring at timet i and positionrW i
gives birth to other events~‘‘daughters’’! of specified mag-
nitudem at a later time betweent andt1dt and at pointrW to
within an infinitesimal volumeudrWu. Note that the only dif-
ference with respect to the previous definition~2! is that we
now specify also the magnitudem of the daughter.
fmi→m(t2t i ,rW2rW i) is given by

fmi→m~ t2t i ,rW2rW i !5r~mi→m!C~ t2t i !F~rW2rW i !, ~9!

where C(t2t i) and F(rW2rW i) are the same as previous
while

r~mi→m!5P~m!r~mi !. ~10!

With the parametrizations~3! and ~6!, this reads

r~mi→m!5nln~10!~b2a!10a(mi2m0)102b(m2m0).
~11!

Let us consider the case where there is an origin of timt
50 at which we start recording the rate of earthquakes,
suming that a large earthquake has just occurred att50 and
somehow reset the clock. In the following calculation, w
will forget about the effect of events at times prior tot50
and count all aftershocks that are created only by this m
shock.

-

4-7
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A. HELMSTETTER AND D. SORNETTE PHYSICAL REVIEW E66, 061104 ~2002!
Let us call Nm(t,rW)dtdmdrW the number of earthquake
occurring betweent and t1dt of magnitude betweenm and
m1dm inside a box of volumeudrWu centered at pointrW.
Nm(t,rW) is the solution of a self-consistency equation th
formalizes mathematically the following process: an ear
quake may trigger aftershocks; these aftershocks may tri
their own aftershocks, and so on. The rate of seismicity
given timet and positionrW is the result of this cascade pro
cess. The self-consistency equation that sums up this cas
reads

Nm~ t,rW !5S~ t,rW,m!1E dW r 8E
m0

`

dm8

3E
0

t

dtfm8→m~ t2t,rW2rW8!Nm8~t,rW8!. ~12!

The rateNm(t,rW) at time t and positionrW is the sum over all
induced rates from all earthquakes of all possible magnitu
that occurred at all previous times and locations propaga
to the present timet and to the positionrW of observation by
the corresponding bare propagator. The induced rate
events per earthquake that occurred at an earlier timet and
positionrW8 is equal tofm8→m(t2t,rW2rW8). The source term
S(t,rW) is the main shock plus the background seismicity
any. In absence of background seismicity, a main earthqu
that occurs at the origin of timet50 at positionrW50W with
magnitudeM gives

S~ t,rW,m!5d~ t !d~m2M !d~rW !, ~13!

where d is the Dirac distribution. Other arbitrary sourc
functions can be chosen.

The source term corresponding to a single mainshoc
indeed thed function ~13! rather than the direct Omori law
created by this mainshock in direct lineage. To see this,
tice that the direct Omori law is recovered from Eq.~12! by
replacingNm8(t,rW8) in the integral byS(t,rW,m) given by Eq.
~13!. This shows that the difference between the renorm
ized and the direct Omori laws comes from taking into a
count the secondary, tertiary, etc., cascades of aftershoc

As we have seen, a key assumption of the ETAS mode
that the daughters born from a given mother have their m
nitude drawn independently of the magnitude of the mot
and of the process that give them birth, with a probabi
given by the Gutenberg-Richter distribution~6!. The conse-
quences of relaxing this hypothesis will be reported el
where. Keeping this assumption, it can be shown@68# that,
for a<b/2, an ensemble of realizations will obey

Nm~ t,rW !5P~m!N~ t,rW ! for t.0, ~14!

which makes explicit the separation of the magnitude fr
the time and space variables.N(t,rW) is the number of events
at positionrW at timet of any possible magnitude. Expressio
~14! means that the Gutenberg-Richter distribution is p
served at all times. That Eq.~14! holds for the ETAS mode
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stems from the fact that the waiting timeC(t) distribution
~4! and jump sizeF(rW) distribution ~5! are independent o
the magnitudes and that fluctuations in the seismicity rate
not too wild fora<b/2. Note that, in a more complex mode
in which time, space, and magnitudes are interdepend
expression~14! would become a mean-field approximatio
in which the fluctuations of the rates induced by the fluctu
tions of the realized magnitudes of the daughters facto
from the process.

Putting Eq.~14! in Eq. ~12!, for t.0 when the source
termS(t,rW,m) is identically zero, one can simplify byP(m)
and obtain

N~ t,rW !5E drW8E
0

t

dtf~ t2t,rW2rW8!N~t,rW8!, t.0,

~15!

where

f~ t2t,rW2rW8!5E
m0

`

dm8P~m8!fm8~ t2t,rW2rW8!.

~16!

Equation ~15! is nothing but the expectation~or statistical
average, i.e., average over an ensemble of realizations! of
expression~8!, with the definition N(t,rW)[E@l(t)F(rW)#.
Therefore, the master equation obtained here gives us
the first moment of the space-time dynamics of seismicity
is not difficult to derive the equations for the variance a
covariance of the seismic rate as well as higher moment

The value of the source term att50 that should be incor-
porated in Eq.~15! requires more care. Indeed, a naive tre
ment would give a source termd(t)d(m2M )d(rW)/P(M )
obtained by simply dividing byP(m), expressed atm5M
due to the Dirac distributiond(m2M ). However, this
source term still depends onm via the Dirac distribution
d(m2M ) and is thus unsuitable as a source term of Eq.~15!
which is independent ofm. In order to circumvent this diffi-
culty, one has to get rid of the Dirac distributio
d(m2M ). The corresponding procedure has been descri
in details in Ref.@26# and consists in applying the integra
operator*m0

` dmf̂(b,rW) to Eq. ~12!, where f̂(b,rW) is the

Laplace transform with respect to the time variable
f(t,rW). In this way, the Dirac distributiond(m2M ) is regu-
larized. Identifying with the results of Ref.@26#, we obtain
that N(t,rW) is the solution of Eq.~15! with a source term

SM~ t,rW !5d~r !d~ t !r~M !/n, ~17!

wherer(M ) is defined in Eq.~3! andn is given by Eq.~7!.
Thus, the complete master equation for the numberN(t,rW) of
events at positionrW at time t of any possible magnitude i
solution of

N~ t,rW !5SM~ t,rW !1E drW8E
0

t

dtf~ t2t,rW2rW8!N~t,rW8!,

t.0, ~18!
4-8



-
os

s
f
al

uc
eo
E

r
m
n
t

e

e
th

e
d
te

ty

e
.

se
ve

Re

a
es

ve

bi

,
th

.
in

rre

ost
vel
ro-

kes
nce
ro-
ccu-
pirit,
ysi-
of
des

s in
ow
use
as

r-

e

at

the

he
t
s,

ent

DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
N(t,rW) is the ‘‘dressed’’ or ‘‘renormalized’’ propagator, ob
tained by summing the bare Omori propagator over all p
sible aftershock cascades.N(t,rW) can also be called the
renormalized Omori law@25#.

The essential assumption used to derive Eq.~12! is that
the fluctuations of the earthquake magnitudes in a given
quence can be considered to be decoupled from those o
seismic rate. This approximation can be shown to be v
for a<b/2 @68#, for which the random variabler(mi) has a
finite variance. In this case, any coupling between the fl
tuations of the earthquake energies and the instantan
seismic rate provides only subdominant corrections to
~12!. For a.b/2, the variance ofr(mi) is mathematically
infinite or undefined asr(mi) is distributed according to a
power law with exponentb/a,2. In this case, the maste
equation~12! is not completely correct as an additional ter
must be included to account for the effect of the depende
between the fluctuations of earthquake magnitudes and
instantaneous seismic rate. Our results are presented b
for a50.5, which belongs to the first regimea<b/2. For
a.b/2, Ref.@68# has shown that the renormalization of th
bare propagator into the dressed propagator is weaker
for a<b/2, all the more so asa→b. Preliminary numerical
simulations fora.b/2 shows that our results presented b
low hold qualitatively but with a reduction of the observe
spatial diffusion exponent compared to the value predic
from the master equation approach developed here. This
gime a.b/2 is probably relevant to the real seismici
@43,45,46#, even if a precise estimation ofa is very difficult.

B. A master equation of the CTRW model

We now demonstrate that the self-consistent mean fi
equation~18! is identical to the master equation of a CTRW
Random walks underlie many physical processes and are
ten the basis of first-order description of natural proces
The CTRW model, which is a generalization of the nai
model of a random walker that jumps by61 spatial step on
a discrete lattice at each time step, was introduced by
@57# and investigated by many other workers@69–73#. The
CTRW considers a continuous distribution of spatial steps
well as time steps~which can be seen either as waiting tim
between steps or as durations of the steps!. The CTRW
model is thus based on the idea that the length of a gi
jump, as well as the waiting timet i5t i2t i 21 elapsing be-
tween two successive jumps are drawn from a joint proba
ity density function~PDF! f(rW,t), which is usually referred
to as the jump PDF. From a mathematical point of view
CTRW is a process subordinated to random walks under
operational time defined by the process$t i%.

From f(rW,t), the jump length PDFF(rW)5*0
1`dtf(rW,t)

and the waiting time PDFC(t)5*drWf(rW,t) can be deduced
Thus,F(rW)drW produces the probability for a jump length
the interval (rW,rW1drW) andC(t)dt the probability for a wait-
ing time in the interval (t,t1dt). When the jump length and
waiting time are independent random variables, this co
sponds to the decoupled formf(rW,t)5C(t)F(rW). If both
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are coupled, a jump of a certain length involves a time c
or, vice versa in a given time span the walker can only tra
a maximum distance. With these definitions, a CTRW p
cess can be described through a master equation~see Refs.
@73–75# for a review and references therein! which turns out
to be given by an equation that is identical to Eq.~18!.

This connection between the ETAS model of earthqua
and a model of random walks provides an important adva
for the understanding of spatiotemporal earthquake p
cesses, as it allows one to borrow the deep knowledge a
mulated in past decades on random walks. In the same s
polymer physics acquired its status as a fundamental ph
cal problem from its previous status of an applied field
research in chemistry when Flory, Edwards, de Gennes,
Cloizeaux, and others showed how to formulate problem
polymer physics in the language of random walks and h
to extract novel results. In the sequel of this paper, we
this analogy to provide a wealth of predictions as well
important questions for earthquake aftershocks.

In the context of the CTRW, we have the following co
respondence.

~a! N(t,rW) is the PDF for the random walker to just arriv
at positionrW at time t.

~b! The source termSM(t,rW) given by Eq.~17! denotes
the initial condition of the random walk, here chosen to be
the origin of space at timet50. The constantr(M )/n adds
the possibility via the parameterM to have more than one
initial walker at the origin.

~c! In the CTRW context, the master equation~18! states
that the PDFN(t,rW) of just having arrived at positionrW at
time t comes from all possible paths in numberN(t,rW8) hav-
ing crossed a positionrW8 at an earlier timet, weighted by a
transfer or propagator functionf(t2t,rW2rW8) describing all
the possible steps of the random walker from (t,rW8) to (t,rW).

It is important to stress thatN(t,rW) defined above is dif-
ferent from the standard quantityW(t,rW) usually studied in
random walk problems, defined as the probability to find
random walk at positionrW at timet. The relationship between
N(t,rW) andW(t,rW) is

W~ t,rW !5E
0

t

dt8F12E
0

t2t8
dt9C~ t9!GN~ t8,rW !. ~19!

The term 12*0
t2t8dt9C(t9) in bracket is the probability for

the walker not to jump in the time interval@ t8,t# and the
integral in the right-hand side of Eq.~19! means that the
probabilityW(t,rW) for the random walker to be at positionrW
at time t is the sum over all possible scenarios in which t
walker just arrives atrW at an earlier timet8 and then does no
jump until time t. In the context of earthquake aftershock
W(t,rW) is the probability that an event atrW has occurred at a
time t8<t and that the whole system has remained quiesc
from t8 to t.

In the Fourier-Laplace domain~see below!, expression
~19! reads
4-9
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TABLE I. Correspondence between the ETAS~epidemic-type aftershock sequence! and CTRW
~continuous-time random walk! models. ‘‘PDF’’ stands for probability density function.

ETAS CTRW

C(t) PDF for a ‘‘daughter’’ to be born at timet
from the mother that was born at time 0

PDF of waiting times

F(rW) PDF for a daughter to be triggered
at a distancerW from its mother

PDF of jump sizes

m Earthquake magnitude Tag associated with each jump

r(m) Number of daughters
per mother of magnitudem

Local branching ratio

n Average number of daughters created per mother
summed over all possible magnitudes

Control parameter of the random
walk survival ~branching ratio!

n,1 Subcritical aftershock regime Subcritical ‘‘birth and death’’

n51 Critical aftershock regime The standard CTRW

n.1 Supercritical exponentially
growing regime

Explosive regime of the
‘‘birth and death’’ CTRW

N(t,rW) Number of events of any possible

magnitude atrW at time t

PDF of just having

arrived atrW at time t

W(t,rW) PDF that an event atrW has occurred at a timet8<t PDF of being atrW at time t
and that no event occurred anywhere fromt8 to t
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Ŵ~b,kW !5
12Ĉ~b!

b
N̂~b,kW !. ~20!

In general, the CTRW model models transport phenomen
any heterogeneous media. It has, for instance, been used
cessfully for describing the behavior of chemical species
they migrate through porous media@76,77#. In insight, it is
rather natural that it can be applied to the ‘‘transport
stress’’ through the heterogeneous crust and thus to the
scription of the anomalous diffusion of seismic activity.

Table I synthesizes the correspondence between the E
and CTRW models and then draws its consequences.

C. Experimental verifications of the crossover between the two
power-law Omori decays in photoconductivity in

amorphous semiconductors and in fractal stream chemistry
using the correspondence between the ETAS and

CTRW models

The crossover from an Omori law 1/t12u for t,t* to
1/t11u for t.t* found in Refs.@25,26# with t* given by Eq.
~1! has actually a counterpart in the CTRW. This behav
was first studied by Scher and Montroll@70# in a CTRW with
absorbing boundary condition to model photoconductivity
amorphous semiconductors As2Se3 and an organic com
pound findingu'0.5 andu50.8, respectively. In a semicon
ductor experiment, electric holes are injected near a pos
electrode and then transported to a negative electrode w
they are absorbed. The transient current follows exactly
transition 1/t12u for t,t* to 1/t11u for t.t* found for
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Omori’s law for earthquake aftershocks in the ETAS mod
In the semiconductor context, the finiteness oft* results
from the existence of a force applied to the holes while in
ETAS model it results from a finite distance 12n to the
critical point n51 in the subcritical regime. When the forc
goes to zero orn→1, t* →1`.

A similar transition has been recently proposed to mo
long-term time series measurements of chloride, a nat
passive tracer, in rainfall and runoff in catchments@79#. The
quantity analogous to the dressed Omori propagator is
effective travel time distributionh(t) which governs the glo-
bal lag time between injection of the tracer through rainf
and outflow to the stream.h(t) has been shown to have
power-law formh(t);1/t12m with m between20.3 and 0.2
for different time series@80#. This variability may be due to
the transition between an exponent 12u at short times to
11u at long times@79#, whereu is the exponent of the bar
distribution of individual transition times.

D. General and formal solution of the spatial ETAS model

Let us solve Eq.~18! for the numberN(t,rW) of events at
position rW at time t of any possible magnitude. Recall th
N(t,rW) can also be interpreted as the dressed Omori pro
gator. Extending Ref.@26# to the spatial domain and also i
analogy with the standard approach to solve the CTRW,
Laplace-in-time Fourier-in-space transformN̂(b,kW ) of
N(t,rW) is given by
4-10
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N̂~b,kW !5
ŜM~b,kW !

12nĈ~b!F̂~kW !
, ~21!

where ŜM(b,kW ) is the Laplace-Fourier transform of th
sourceSM(t,rW) given by Eq.~17! and Ĉ(b)@F̂(kW )# is the
Laplace~Fourier! transforms ofC(t) @F(rW)#. For a main-
shock of magnitudeM occurring at timet50 and position
rW50, the source term is thusŜM(b,kW )5r(M )/n. The only
difference between expression~21! and the Laplace-Fourie
transform of the PDF of the CTRW of just having arrived
rW at time t occurs when the branching ration is different
from 1. In general, solutions of CTRW models are expres
for n51 and for the variableW(t,rW) which is simply related
to N(t,rW) according to Eq.~19!. Using Eqs.~19! and ~21!
leads to

Ŵ~b,kW !5
12Ĉ~b!

b

ŜM~b,kW !

12nĈ~b!F̂~kW !
. ~22!

In the following, we exploit Eq.~22! to obtain analytical
solutions of the spatial ETAS model in different regimes, th
provide specific predictions on the conditions necessary
observing aftershock diffusion. In addition, we provide sp
cific predictions on the exponentH of the diffusion law
R;tH that are tested by numerical simulations.

IV. CRITICAL REGIME nÄ1

A. Classification of the different regimes

Numerous works on the CTRW have investigated ma
possible forms forC(t) and F(rW) and have provided the
asymptotic long time and large scale dependence ofW(t,rW)
~see Refs.@73–75,77# and references therein!. Here, we re-
strict our discussion to the cases where bothC(t) andF(rW)
have power-law tails as given by Eqs.~4! and~5!. The long-
time and large scale behavior of the ETAS and CTRW
controlled by the behavior of the Laplace-Fourier transfor
for small b and smallukW u.

Two cases must be distinguished depending on the e
nentm controlling the weight of the tail ofF(rW).

For m.2, the variancê (rW)2&5s2 of the jump size dis-
tribution exists. To leading order ink5ukW u, F̂(kW ) can be
expanded as

F̂~kW !512s2k21O~ko! with o.2. ~23!

For m<2, the variancê (rW)2& is infinite. This regime of
‘‘long jumps’’ leads to so-called Le´vy flights. In this case, to
leading order ink5ukW u, F̂(kW ) can be expanded as

F̂~kW !512smkm1O~ko!,

where 0,m<2 with o.m, ~24!

wheres is a characteristic distance defined by
06110
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s5H d@G~12m!#1/m, 0,m,1

dp

mG~m21!sin~pm/2!
, 1,m,2.

~25!

For a distributionC(t) of waiting times of the form of a
local Omori law~4! with exponentu,1, Ĉ(b) can be ex-
panded for smallb as

Ĉ~b!512~bc8!u1O~bv! with v>1, ~26!

where c8 is proportional toc up to a numerical constan
c85c„G(12u)…1/u in the caseu,1.

Putting the leading terms of the expansions ofF̂(kW ) for
small ukW u and ofĈ(b) for small b in Eq. ~21! gives

N̂~b,kW !5
ŜM~b,kW !

12n1n~bc8!u1nsmkm
. ~27!

The correspondingŴ(b,kW ) is obtained from Eq.~22! by

Ŵ~b,kW !5ŜM~b,kW !
~b!u21c8u

12n1n~bc8!u1nsmkm
. ~28!

The critical regimen51 gets rid of the constant term 12n
in the denominator of Eqs.~27! and ~28!. This case is ana-
lyzed in details below.

The regimen5” 1 introduces a characteristic timet* given
by Eq. ~1!. In the subcritical regime, Eq.~27! can be rewrit-
ten as

N̂~b,kW !5
ŜM~b,kW !

12n

1

11~bt* !u1~kr* !m
, ~29!

wherer * is defined by

r * 5sS n

12nD 1/m

. ~30!

For t,t* andr ,r * , the dressed propagator is given by t
same expression as for the critical case and all our res
below hold. For large timest.t* and large distances
r .r * , we can factorize Eq.~29! as a product of a function
of time and a function of space,

N̂~b,kW !.
ŜM~b,kW !

12n

1

11~bt* !u

1

~11~kr* !m
. ~31!

Thus, there is no diffusion in the subcritical regime f
t.t* and r .r * . We shall not analyze further this trivia
regime n,1 and t.t* and will only analyze the case
t,t* . If there is the need, the crossover can be calcula
explicitly using Eq.~27!.

In order to get the leading behavior ofN(t,rW) from that of
W(t,rW), we see from Eqs.~21! and ~22! that N̂(b,kW )
5$b/@12Ĉ(b)#%Ŵ(b,kW )'b12uc82uŴ(b,kW ). The inverse
Laplace transform of 1/bu is 1/@G(u)t12u#. Using the fact
4-11



g
rm
f

of

s-

lid
ns
p

ich

u-
ac

ion
ex

der

e

en-

-

e

A. HELMSTETTER AND D. SORNETTE PHYSICAL REVIEW E66, 061104 ~2002!
that the Laplace transform ofd f /dt is b times the Laplace
transform off (t) minus f (0), we getN(t,rW) as the deriva-
tive of a convolution

N~ t,rW !5
c82u

G~u!

d

dtE0

t

dt8
W~ t8,rW !

~ t2t8!12u
5c80

2uDt
12uW~ t,rW !.

~32!

In Eq. ~32!, we have dropped the Dirac function comin
from the inverse Laplace transform of the constant te
f (0), which provides a contribution only at the origin o
time t50. Note that the operator @1/G(u)#

3(d/dt)*0
t dt8@W(t8,rW)/(t2t8)12u# is nothing but the so-

called fractional Riemann-Liouville derivative operator
order 12u applied to the functionW(t,rW) of time t and is
usually denoted0Dt

12uW(t,rW).

B. The standard diffusion caseuÌ1 and µÌ2

The standard diffusion process is recovered foru>1 ~for
which the average waiting time is finite! and form>2 ~for
which the variance of the jump length is finite!. In this case,
N̂(b,kW )5ŜM(b,kW )/(bc81s2k2). For an impulsive source
leading toŜM(b,kW )5const, this is the Laplace-Fourier tran
form of the standard diffusion propagator

N~ t,rW !}
1

~Dt !d/2
exp@2~rW !2/Dt# where D5s2/c8,

~33!

whered is here the space dimension. This solution is va
for urWu/ADt not too large. For larger values, large deviatio
lead to corrections with the power-law tail of the input jum
distribution F(rW);1/urWu11m defined in Eq.~5!, along the
lines presented, for instance, in Ref.@12# ~Sec. 3.5!. This
regime is not relevant to the aftershock problem for wh
usually 0,u,1.

C. Long waiting times „uË1… and finite variance
of the jump sizes„µÌ2…

Putting the leading terms of the expansions ofF̂(kW ) ~23!

and ofĈ(b) ~26! in Eq. ~21! gives

N̂~b,kW !5
1

~bc8!u1~sk!2
. ~34!

The expression~34! can be inverted with respect to the Fo
rier transform, and then inverted with respect to the Lapl
transform using Fox functions@75,81#. The solution for
W(t,rW) in one dimension is given, for instance, in Ref.@75#
in terms of an infinite sum

W~ t,rW !5
1

2D

1

tu/2 (
k50

`
~21!kz2k

k!G@12u~k11!/2#
, ~35!

where
06110
e

z5
Dtu/2

urWu
~36!

andD5s/c8u/2.
Expression~35! and many others below involve theG

function of negative arguments. We recall that the funct
G(u) can be analytically continued to the whole compl
plane, except for the simple polesu50,21,22,23, . . . .
Thus,G(u) is defined everywhere but at these poles. In or
to get the expression of theG function for negative argu-
ments, one can use two formulas:G(12u)3G(u)
5p/sin(pu) andG(11u)5uG(u). Both these formulas are
valid for all points with the possible exception of th
arguments at poles 0,21,22, . . . . For instance,G(2u)
5G(12u)/(2u)52@p/u sin(pu)#/G(u), for 0,u,1.

Expression~35! can be rewritten as a Fox function@82#,

W~ t,z!5
1

2D

1

tu/2
H1,1

1,0F1

z U~12u/2,u/2!

~0,1!
G , ~37!

whose asymptotic dependence for largez, obtained from a
standard theorem of the Fox function@Eq. ~1.6.3! of Ref.
@82##,

W~ t,z!;
1

Dtu/2

1

z(12u)/(22u)

3expF2S 12
u

2D S u

2D u/(22u)

z2/(22u)G ~38!

is in agreement with the result of Roman and Alemany@83#
and Barkaiet al. @81# for a space dimensiondf51, including
the dependence in the power law prefactor to the expon
tial. The exponential dependence W(t,r );exp
@2const(r /Dtu/2)2/(22u)# in Eq. ~38! holds in arbitrary di-
mensionsdf , the only modification occurring in the prefac
tor whose power ofz change with the space dimensiondf as
@83,81#

Wdf
~ t,z!;

1

Dtu/2

1

zdf (12u)/(22u)

3expF2S 12
u

2D S u

2D u/(22u)

z2/(22u)D . ~39!

The expression ofN(t,rW) can be obtained fromW(t,rW) using
the fractional Riemann-Liouville derivation~32! of order
@12u#. Inserting expression~35! in Eq. ~32! and using the
expression of the fractional Riemann-Liouville derivativ
operator 0Dt

a applied to an arbitrary powertm, i.e., 0Dt
atm

5@G(11m)/G(11m2a)#tm2a, we obtain

N~ t,rW !5
c82u

2Dt12(u/2) (
k50

`
~21!kzk

k!G@~12k!u/2#
. ~40!

Expression~40! can be used to evaluateN(t,rW) for small z,
but the numerical evaluation of Eq.~40! is impossible for
4-12
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DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
largez. In order to obtain the asymptotic behavior ofN(t,rW),
expression~40! can be rewritten as a Fox function@82#,

N~ t,rW !5
c82u

2Dt12(u/2)
H1,1

1,0F1

z U~u/2,u/2!

~0,1!
G . ~41!

Employing again the standard theorem of the Fox funct
@Eq. ~1.6.3! of Ref. @82#!, the asymptotic behavior ofN(t,r )
for large distancesr such thatr .Dtu/2 is given by

N~ t,r !;
c82u

Dt12(u/2) S urWu

Dtu/2D (12u)/(22u)

3expF2S 12
u

2D S u

2D u/(22u)S urWu

Dtu/2D 2/(22u)G .

~42!

The exponential dependence N(t,r );exp
@2const(r /Dtu/2)2/22u# in Eq. ~42! holds in arbitrary dimen-
sions.

This expression becomes incorrect for very large d
tances because it would predict an exponential or slig
superexponential decay withr. This cannot be true as th
global law cannot decay faster than the local law~5!. The
reason for Eq.~42! to become incorrect at large distances
that the expansion ofN̂(b,kW ) for small ukW u ~large distances!
given by Eq.~34! has been truncated at the orderk2. There
is, however, a subdominant term}km that describes the
power-law tail of the local law~5! and also of the global law
asymptotically. A similar situation occurs in the applicatio
of the central limit theorem for sums ofN random variables
with power-law distributions with exponentsm.2 @12#: the
distribution of the sumS is a Gaussian in its bulk fo
uSu,AN ln N and crosses over to a power law with tail e
ponentm for larger S. In a similar way, the crossover o
N(t,r ) to the asymptotic local power law~5! can be recov-
ered by an analysis including the subleading correction}km

to the expansion~34!.
Expression~40! shows that the global rate of seismici

cannot be factorized as a product of a distribution of tim
and a distribution of distances. This space-time coupling
plies that the seismic activity diffuses with time, and that t
decay of the rate of aftershocks depends on the distance
the first mainshock. This coupling of space and time ste
from the cascade of aftershocks, from the primary af
shocks to the secondary aftershocks to the tertiary a
shocks, and so on.

Figure 4 presents the decay of the seismic activityN(r ,t)
obtained using expression~40! for small z and expression
~42! for largez, as a function of the time from the mainshoc
and as a function of the distancesr. Close to the mainshock
epicenter, expression~40! predicts that the global seismicit
rate decays with time as the renormalized Omori law

N~ t,0!;
1

t12u/2
. ~43!
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FIG. 4. Rate of seismicityN(t,r ) in the critical regimen51 for
u50.2, m.2, c851 day, ands51 km, evaluated from expres
sions~40! and~42!, plotted as a function of the time~a! for different
values of the distancer between the mainshock and its aftershoc
and ~b!,~c! as a function ofr @logarithmic scale forr in ~b! and
linear scale forr in ~c!# for different values of the time between th
mainshock and its aftershocks. The temporal decay of seism
with time is characterized by a power-law decayN(r ,t);1/t12u/2

close to the mainshock epicenter or at large times forr !Dtu/2. For
large distancesr @Dtu/2, there is a truncation of the power-law
decay at early timestu/2!r /D, because the seismicity has not y
diffused up to the distancer. Although the distribution of distance
between a mainshock and its direct aftershocksF(r ) follows a
power-law distribution with exponent 11m, the log-linear graph

~c! shows that the global rate of aftershocksN(rW,t) decreases ap
proximately exponentially as a function of the distance from
mainshock, with a characteristic distance that increases with t
This is in agreement with expression~42! that predictsN(t,r )

;exp@(urWu/Dtu/2)2/(22u)#, i.e., N(t,r );exp@C(t)urWuq# with an expo-
nentq52/(22u) close to 1 within the exponential. The same r
mark as for Fig. 2 applies: the representation of our predictions
very large times is made for pedagogical purpose to illustr
clearly the different regimes.
4-13
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The same decay is found at any fixed pointrW for times
t.(urWu/D)2/u. At all times, the same decay 1/t12u/2 is also
obtained by measuring the aftershock seismicity in a lo
box at a distance from the main shock origin increasing w
time asr;tu/2 @this is nothing but puttingz5const in Eq.
~40!#. At large distancesr .Dtu/2, the global decay law is
different from a power-law decay. Figure 4 shows that
rate of aftershocks presents a truncation at early times, w
increases as the distancer increases. At large times, the ra
of aftershocks recovers the 1/t12u/2 power-law decay~43!.
We stress that a fit of the global lawN(r ,t) over the whole
time interval by an Omori law would yield an apparent e
ponentp,12u/2 that decreases withr.

Integrating Eq. ~40! over the whole one-dimensiona
space, we recover the global Omori law,

N~ t !5E drN~ t,r !;
1

t12u
~44!

found in Refs.@25,26#. Thus, we have found an addition
source of variability of the exponentp of the Omori law: if
measured over the whole catalog, we should meas
p512u in the critical regimen51 while p512u/2 is
slightly larger when measured in certain time and spa
windows, as described above. Thus, in this regime, prun
of catalogs may lead to continuous change from the va
12u to 12u/2. In addition, as we have mentioned, th
crossover in time may lead to still smaller apparent ex
nents, thus enhancing the impression of variability of

FIG. 5. Average distance between the first mainshock and
aftershocks as a function of the time from the mainshock, for
merical simulations of the ETAS model in the critical regim
n51, generated with the parametersu50.2, d51 km, m53, and
c51023 day. The theoretical prediction for the diffusion expone
is thusH5u/250.1. We observe a crossover from a larger exp
nent at early times when the mean distance is close to the ch
teristic scaled51 km of the distribution of distances between
aftershock and its progenitor, to a subdiffusion with an expon
close to the theoretical prediction at large times. The solid line
fit of the numerical data for timest.10 days, which gives an ex
ponentH50.12 slightly larger than the predicted valueH50.1.
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exponentp. In reality, this range ofp values are seen to resu
from the complex spatiotemporal organization of the aft
shock seismicity of the ETAS model. These results sho
lead us to be cautious when analyzing real catalogs w
respect to the conditions and regimes under which the an
sis is performed.

There is another observable that characterizes how an
tershock sequence invades space as a function of time.
pression~40! indeed predicts a subdiffusion process quan
fied by

^urWu2&;t2H, ~45!

with H5u/2 since the natural variable isz given by Eq.~36!.
Indeed, expression~40! tells us that, up to a global rescalin
function of time, the rate of aftershocks is identical for
fixed value ofz. Thus, any aftershock structure diffuses a
cording to Eq.~45!.

This prediction is checked in Fig. 5 by numerical simul
tions. 1000 synthetic catalogs have been generated
m53, u50.2, andn51. The average distance between t
first mainshock and its aftershocks as a function of the ti
from the mainshock has been averaged over these 1
simulations. The theoretical diffusion exponent isH5u/2
50.1, in good agreement with the asymptotic behavior
served in the numerical simulation. In practice, in order
minimize the effect of fluctuations and optimize the speed
convergence, we estimate numerically exp@^lnurWu&# which is
also expected to scale as exp@^lnurWu&#;tu/2 due to the simple
scaling form of Eq.~41!.

This problem has also been solved exactly in Ref.@84# in
the context of the so-called fractional Fokker-Planck eq
tion, which amounts to replacing the distributionF(rW) of
jumps ~5! by a Gaussian function. This fractional Fokke
Planck equation allows one to introduce the possibility
bias or drift in the CTRW and therefore in the aftersho
sequence.

D. Exponential waiting time distribution and long jump size
Lévy distribution „µË2…

This case with an exponential distribution

C~ t !5le2lt ~46!

of waiting times with a Le´vy distributionF(rW)5Lm(urWu) of
jump sizes with tail exponentm,2 has been investigated b
Buddeet al. @85#. One finds

^urWu2&1/2;t1/m, ~47!

corresponding to a superdiffusion regime with Hurst exp
nentH51/m.1/2. The full distribution functionW(t,rW) cor-
responding to the critical regimen51 is known forlt@1,

W~ t,rW !}
1

~lt !1/m
LmS urWu

~lt !1/mD . ~48!
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DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
The correspondingN(t,rW) is obtained from Eq.~20!. The
Laplace transform of the exponential distribution~46! is
Ĉ(b)5l/(b1l). We thus get

N̂~b,kW !5~b1l!Ŵ~b,kW !, ~49!

and thus

N~ t,rW !5
]W~ t,rW !

]t
1lW~ t,rW !. ~50!

Expression~50! together with Eq.~48! predicts a diffusion
law r;tH with H51/m which is in good agreement with ou
simulations. At large timesurWu!(lt)1/m, N(t,rW)'lW(t,rW)
;1/t1/m, giving an apparent local Omori exponentu51
21/m. This offers a different mechanism for generati
Omori’s law for aftershocks from purely exponential loc
relaxation but with a heavy distribution of jump sizes. Th
power-law decay should be observed only at a fixed dista
r or over a limited domain from the mainshock in the regim
of large times.

Integrating over the whole space,*drWW(t,rW)51, which
gives N(t)5d(t)1l equal to a constant seismic rate. Th
results from an initial mainshock att50 leading to the cas
cade of aftershocks adjusting delicately to this constant
for the critical valuen51 of the branching parameter. In th
subcritical regimen,1, the Omori law integrated ove
space gives insteadN(t)}exp@2(12n)lt#, showing that the
characteristic decay time 1/(12n)l of the dressed Omor
propagator N(t) becomes much larger~much longer
memory! that the decay time 1/l of the bare Omori propa
gator.

For m.2, we recover the standard diffusion correspon
ing to u.1 andm.2 discussed in Sec. IV B.

E. Long waiting times „uË1… and long jump sizes
„Lévy flight regime for µÏ2…

Putting the leading terms of the expansions ofF̂(kW ) and
of Ĉ(b) in Eq. ~21! gives

N̂~b,kW !5ŜM~b,kW !
1

~bc8!u1~sk!m
. ~51!

The correspondingŴ(b,kW ) is given by

Ŵ~b,kW !5ŜM~b,kW !
~b!u21c8u

~bc8!u1~sk!m
. ~52!

Equation~52! has been studied extensively in the context
the CTRW model as a long wavelengthukW u→0 and long time
b→0 approximation to investigate the long time behavior
the CTRW. Kotulski@86# has developed a rigorous approac
based on limit theorems, to classify the asymptotic behav
of different type of CTRWs and justifies the approximati
~52! for the long time behavior. Barkai@87# has studied the
quality of the long wavelengthukW u→0 and long timeb→0
06110
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approximation~52! by solving the exact CTRW problem fo
the case when the waiting time distributionC(t) is a one-
sided stable Le´vy law of indexu with the same tail as Eq.~4!

and the distributionF(rW) of jumps is a symmetric stable
Lévy of indexm with the same tail as Eq.~5!. Their Laplace
and Fourier transforms that appear in the denominator of
~22! are, respectively,Ĉ(b)5exp@2bu# and F̂(kW )5exp

@2ukWum/2#. Note that the long wavelengthukW u→0 and long
time b→0 approximation gives 12exp@2(c8b)u#exp

@2uskWum#5(c8b)u1uskWum, which recovers Eq.~51!. By com-
paring the exact solution of Eq.~21! for C(t) andF(rW) of
the above Le´vy form with that of the long wavelengthukW u
→0 and long timeb→0 approximation~52!, Barkai @87#
finds that certain solutions of Eq.~52! diverge on the origin,
a behavior not found for the corresponding solutions of E
~21!. In addition, certain solutions of the full equation~21!
converge only very slowly form,1 to the solutions of the
long-time approximation~52!. These results validate our us
of the asymptotic long time behavior with respect to t
scaling laws but provide a note of caution if one needs m
precise nonasymptotic information. In this case, such inf
mation can be obtained by a suitable analysis of the
equation~21!.

Using power counting, expression~52! predicts a diffu-
sion process~45! with exponent

H5
u

m
. ~53!

This prediction is checked by numerical simulation of t
ETAS model in the critical regimen51, with u50.2, m
50.9, shown in Fig. 6. The average distance between
first mainshock and its aftershocks as a function of the ti
from the mainshock indeed increases according to Eq.~45!
with an exponentH in very good agreement with the predic
tion H5u/m50.2. As the form of the denominator in Eq
~52! is independent of the space dimension, the predict
~53! is valid in any space dimension.

The natural variable for the expansions given below
lowing to computeN(t,rW) is

z5
Dtu/m

urWu
, ~54!

whereD5s/c8u/m andc85c@G(12u)#1/u.

1. z expansion of the solution

W(t,rW) can be obtained as the following sum@Eq. ~5.10!
of Ref. @88##

W~ t,rW !5
1

purWu
(

m50

1`

~21!mzmm
G~mm11!

G~mu11!
cosFp2 ~mm11!G .

~55!

Applying Eq. ~32! to Eq. ~55! term by term in the sum, we
get
4-15
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N~ t,rW !5
c82u

Dpt12u1u/m (
m50

1`

~21!mz11mm
G~mm11!

G„~m11!u…

3cosFp2 ~mm11!G . ~56!

The asymptotics

G~mm1m11!G~mu11!

G~mu1u11!G~mm11!
;

G~mm1m11!G„~m11!u…

G„~m12!u…G~mm11!

;mm2u ~57!

show that the series~55! and~56! exist only form,u. It can
be shown that these series exist for allz in this case. This
series converges very slowly for largez but the Pade´ sum-
mation method@89# can be used to improve the convergen
of Eq. ~56! in the casem,u, and can also be used to es
mate Eq.~56! in the casem.u for which the series diverges

The space integral*drN(t,r ) over the whole one-
dimensional volumeV, with N(t,r ) given by Eq.~56!, recov-
ers the global Omori law

E
V
drN~ t,r !;

1

t12u
. ~58!

Note the nontrivial phenomenon in which the superposit
of all aftershock activities transforms the local Omori law
‘‘bare propagator’’~4! C(t);1/t11u into the global Omori
law or ‘‘dressed propagator’’ 1/t12u. This effect was pre-
dicted in Refs.@25,26# in the version of the ETAS mode
without space dependence. These results are consistent
the claim of Sec. II D, according to which all results report
previously for the version of the ETAS model without spa
dependence hold also for the version of the space-depen
ETAS model studied here, when averaging over the wh
space.

The asymptotic behavior forurWu@Dtu/m ~i.e., z!1) and
m,u is obtained by keeping only the first nonzero te
(m51) in Eq. ~56! which is convergent for allz in the case
m,u,

N~ t,rW !5

sinS pm

2 D
sc8p

G~11m!

G~2u! S c8

t D 122uS s

urWu D
11m

for urWu@Dtu/m. ~59!

At fixed large urWu and for t,urW/Dum/u, this predicts a local
Omori law with exponentp5122u.

2. 1Õz expansion of the solution

We use the theory of Fox functions@82# to obtainN(t,rW)
as an infinite series in 1/z. For this, we first rewrite expres
sion ~56! as a Fox function@82#,
06110
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N~ t,rW !5
c82u

Dmpt12u1u/m

3RS H2,2
1,2Fzeip/2U~1/m,1/m!,~1,1!

~1/m,1/m!,~u/m2u11,u/m!
G D ,

~60!

whereR(z) indicates the real part ofz.
The 1/z expansion ofN(t,rW) can be obtained using th

dual expansion of the Fox function~60! @expression~3.7.2!
of Ref. @82##

N~ t,rW !5
c2u

Dpmt12u1u/m (
m50

1`

~21!m

3Fmz12m2mm
G„12~m11!m…sin„~m11!mp/2…

G~2mu!

1
z2m

m!

p cos~mp/2!

sin@~m11!p/m#G„u2~m11!u/m…

G .
~61!

This expansion exists only form.u @conditions of p. 71
below Eq.~3.7.2! of Ref. @82##. This is easily checked by the
behavior of an asymptotics similar to Eq.~57!. Note that the
series~61! is not defined in the special casem51 due to the
presence of the ill-defined ratioG(0)/G(0) and a different
approach is required, such as the integral representatio
W(t,rW) developed in Ref.@88#. The global Omori law ob-
tained by integrating over the whole space~61! is again
N(t);1/t12u, as expected from the analysis of the ETA
model without space dependence@26#.

Keeping only the largest term of Eq.~61! for largez, we
obtain the asymptotic behavior for small distanc
r ,Dtu/m,

N~ t,r !.
G~122m!sin~pm!sin~pu!

c8sp2

G~11u!

~r /s!122m

1

~ t/c8!11u

for m,0.5,

N~ t,r !.
c82u

c8smG~u2u/m!sin~p/m!

1

~ t/c8!12u1u/m

for 0.5,m,2. ~62!

Note that forr ,Dtu/m and 0.5,m,2, the leading behavior
of N(t,r ) is independent ofr.

Equation~62! thus predicts an apparent exponent

p511u for m,0.5,

p512u1u/m for 0.5,m,2, ~63!

for small distancesr ,Dtu/m. This prediction is valid only in
the casem.u for which the series~61! is convergent. How-
ever, the same asymptotic results are also obtained by di
4-16
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ent methods in the casem,u, for instance, expression~63!
is recovered for allm,2 using the integral representation
Ref. @88#. The numerical evaluation of Eq.~56!, which con-
verges form,u, also recovers the asymptotic results~62!.
The two regimesm,0.5 and 0.5,m,2 are illustrated in
Figs. 7 and 8, respectively. The seismicity rateN(t,rW) is
evaluated from expression~56! for small z and from expres-
sion ~61! for largez.

We also performed numerical simulations of the ETA
and CTRW models and the results are in good agreem
with expressions~56! and ~61! for N(rW,t) for t@c and
r @d. For very small timest!c, or for very small distances
r !d, expressions~56! and ~61! are not valid because the
are based on a long wavelengthukW u→0 and long time
b→0 approximation. Numerical simulations of the ETA
model in the caseu50.2 andm50.9 are presented in Fig. 9
and are in good agreement with the analytical solutions~56!
and ~61! shown in Fig. 8 for the same parameters, exc
from the truncation ofN(t,r ) for times t!c and distances
r !d that are not reproduced by the analytical solution.

F. A simple nonseparable joint distribution of waiting times and
jump sizes: coupled spatial diffusion and long waiting

time distribution

Consider the choice forfmi
(t2t i ,rW2rW i) replacing Eq.

~2! by

fmi
~ t2t i ,rW2rW i !5r~mi !C~ t2t i !F~ urW2rW i u/ADt !,

~64!

wherer(mi) and C(t) are again given by Eqs.~3! and ~4!
while Eq. ~5! is changed into

FIG. 6. Average distance between the first mainshock and
aftershocks as a function of the time from the mainshock, fo
numerical simulation of the ETAS model in the critical regimen
51, with u50.2, m50.9, c851 day, andd51 km. The solid line
is a fit of the data which gives an exponentH50.25 in good agree-
ment with the predicted valueH50.22.
06110
nt

t

F~ urW2rW i u/ADt !5
1

A2Dt
exp~2urW2rW i u2/Dt !. ~65!

The spatial diffusion of seismic activity is now coupled
the waiting time distribution. Expression~65! captures the
effect that, in order for aftershocks to spread over large d
tances by the underlying physical process, they need time
fact, returning to the discussion in the Introduction on t
various proposed mechanisms for aftershocks, expres
~65! embodies a microscopic diffusion process.

In this case, Eq.~21! must be replaced by

N̂~b,kW !5
ŜM~b,kW !

12nf̂~b,kW !
, ~66!

ts
a

FIG. 7. Rate of seismicityN(t,r ) for u50.2, m50.2, c851
day, ands51 km, evaluated from expressions~56! and~62!, plot-
ted as a function of the time~a! for different values of the distance
r between the mainshock and its aftershocks, and~b! as a function
of r for different values of the time between the mainshock and
aftershocks. We stress again that the time scales shown here d
necessarily correspond to real observable time scales but are
sented to demonstrate clearly the existence of the two regimes.
dashed lines give the predicted asymptotic dependence in eac
gime.
4-17
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A. HELMSTETTER AND D. SORNETTE PHYSICAL REVIEW E66, 061104 ~2002!
wheref̂(b,kW ) is the Laplace-Fourier transform of the pro
uct C(t)F(urWu/ADt). For large times and long distances f
which the first terms in the expansion inb and k are suffi-
cient, and forn51, we obtain

f̂~b,kW !}
ŜM~b,kW !

~b1Dk2!u
. ~67!

The inverse Laplace-Fourier transform of Eq.~66! is

N~ t,rW !;
1

t12u

1

A2pDt
exp~2urWu2/Dt !. ~68!

As expected, expression~68! recovers the dressed Omo
propagator in the case of absence of space dependence@26#.
At finite r and long times, the dressed Omori law also dec

FIG. 8. Rate of seismicityN(t,r ) for u50.2, m50.9, c851
day, ands51 km, evaluated from expressions~56! and~62!, plot-
ted as a function of the time~a! for different values of the distanc
r between the mainshock and its aftershocks, and~b! as a function
of r for different values of the time between the mainshock and
aftershocks. The dashed lines give the predicted asymptotic de
dence in each regime.
06110
y

as 1/t12u. The diffusion of aftershocks is normal with th
standard diffusion exponentH51/2.

V. NEW QUESTIONS ON AFTERSHOCKS DERIVED
FROM THE CTRW ANALOGY

We list a series of comments and questions sugge
from the analogy between the ETAS model and the CTR
model. In particular, we discuss the possibility of defini

s
n-

FIG. 9. Rate of seismicityN(t,r ) obtained from numerical
simulations of the ETAS model generated with the same parame
as in Fig. 8 (u50.2, m50.9, c851 day, andd51 km). N(r ,t) is
computed by averaging over 500 numerical realizations of
ETAS model.~a! Aftershock rate as a function of the time from th

mainshock for several distancesurWu ranging from 0.01 to 104 km.
~b! Apparent Omori exponent measured for timest.10 as a func-
tion of the distance from the mainshock. The aftershock decay
~with time! is larger close to the mainshock epicenter than at la
distances from the mainshock. The asymptotic values for small
large distances are in agreement with the predictions~63! for r
!Dtu/m and ~59! for r @Dtu/m, which are shown as the horizonta
dashed lines.~c! Rate of seismicityN(t,r ) as a function of the
distance between aftershocks and mainshock for various times.
theoretical prediction for large distances is shown as the dashed
with slope2(11m).
4-18
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DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
new observables for earthquake aftershocks, which coul
worthwhile to investigate in future empirical studies of ear
quake aftershocks.

A. Recurrence of aftershock activity in the proximity
of the main shock

A quantity often investigated in studies of random wa

is the probabilityW(t,0W ) to find the random walker at its
starting point~the origin! at time t. In the earthquake frame
work, this is the seismic aftershock rate close to the m
shock.

B. First-passage times

The first-passage time of a random walk is the first arri

time of the random walk at a given pointrW. In the earthquake
context, this translates into the study of the waiting time
a given region to have its own first aftershock after the m
shock occurs. The distribution of such first passage wai
times gives the distribution of times with no nearby seism
activity. See, for instance, Ref.@84# in the case of a power
law distribution of waiting times and Gaussian distributi
of jump sizes. Margolin and Berkowitz@76# give the distri-
bution of first-passage times in the case where the jump
tribution is narrow and the waiting distribution is long taile
;1/t11u. They analyze the three different regimesu,1,
1,u,2, andu>2.

C. Occupation time of seismic activity

Weiss and Calabrese@90# have studied the total amount o
time spent by a lattice CTRW on a subset of points. In
seismic language, this amounts to studying the probab
distribution of the durations of aftershock sequences that
localized in a specific subset of the space. In other wo
how probable are aftershock sequences that are found
within a given spatial subset over a certain duration?

D. Transience and recurrence of seismic activity

Another question that has been studied in some detai
the CTRW framework is whether random walks are transi
or recurrent. A transient random walk visits any pointrW at
most a finite number of times before escaping to infinity. F
earthquakes, the transient regime corresponds to the ac
tion of at most a finite number of aftershocks in any giv
point rW. In contrast, a recurrent random walk may return
growing number of times to all or a subset of points at tim
increases. In the aftershock language, this means that t
points will have a never-ending~decaying! aftershock activ-
ity. We stress here the difference between the global Om
law giving a never-ending power-law decay of the aftersho
activity ~in the subcritical regimen,1) and its spatial de-
pendence which must exhibit important variations. In p
ticular, in the recurrent regime, an Omori law can be do
mented by counting aftershocks in those limited regions
space which are activated again and again.
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E. Probability for the cumulative number of aftershocks

Let us define a basic quantity in the CTRW formalism
namely the probabilityxm(t) to make exactlym steps up to
time t. In the earthquake context,xm(t) is the probability to
have exactlym aftershocks after the main shock. In the ca
in which the spatial transition probabilityF(rW) between dif-
ferent positions is independent of the waiting times@corre-
sponding to factorizingfmi

(t2t i ,rW2rW i) as in Eq.~2!#, the

probability densityW(t,rW) to find the walker at positionrW at
time t can be written

W~ t,rW !5 (
m50

1`

Wm~rW !xm~ t !, ~69!

whereWm(rW) is the probability to reachrW from 0W in m steps.
In the earthquake context,Wm(rW) is the probability that there
has been exactlym events in the time interval@0,t# and that
the last one occurred atrW. Equation ~69! states that the
CTRW is a random process subordinated to simple rand
walks described byWm(rW) under the operational time give
by thexm(t) distribution @91,92#.

F. Random walk models with birth and death and background
seismicity from localized sources

Benderet al. @93# have studied models of random walk
in which walkers are born in proportion to the population
one specific site~for instance, the origin! with probability
a21 ~with a.1) and die at all other sites with probabilit
12n ~with n<1). In the earthquake context, this consists
assuming that the aftershock activity is fed by a localiz
region in space, which is itself activated by the aftersho
returning to this region, furthering the overall activity. Th
may be considered to describe the seismic activity close
plate boundary, in which the plate boundary is the const
self-consistent source of a seismic activity which may spr
over a significant region away from the boundary. The e
cursion of the random walkers quantify the spread of
seismic activity away from the main fault structure. The ra
of death of the walkers correspond exactly to the dista
12n from the critical valuen51. Benderet al. @93# find a
phase diagram in the (a21,12n) parameter space in whic
a boundary separates two possible asymptotic regimes.

~1! For smalla21 and large 12n, the seismic activity at
the origin and everywhere eventually dies off.

~2! For largea21 and small 12n, the average seismic
activity at the origin approaches a positive constant at lo
times. In this regime, there is a transition asa21 is de-
creased or as 12n is increased, between a case where
global seismic activity outside the origin goes to zero an
case where it diverges at long times. On the boundary
tween these two regimes in the (a21,12n) parameter
space, the distribution of seismic activity approaches
steady state at long times. There is a critical point~for space
dimensions different from 2) at a certain value (ac21,1
2nc), for which the long-time seismic activity away from
the source is given by;(a2ac)

n wheren is a critical ex-
4-19



W
te
ne
,

th
tio
d
n

of

ft
-

n
tr

ks
it
o
l

e

is
le
d
g

fte
t

f a
an

f t
c-
s

a
l

i-
d
io
e

p-

te
po
h

nt

o-
t
lain
e-
is

l,
nce

af-
av-
y de-
ces
e-
-
iate
0%.
es,

of
The

its
e

pen-

as-
es

A. HELMSTETTER AND D. SORNETTE PHYSICAL REVIEW E66, 061104 ~2002!
ponent equal to 2 in three dimensions.
Note that the results of Ref.@93# are obtained for random

walks on a lattice. This can easily be converted into a CTR
by the fact that a CTRW is nothing by a process subordina
to discrete random walks under the operational time defi
by the process$t i% of the time of just arrival to a given site
as given by Eq.~69!.

VI. DISCUSSION

Using the analogy between the ETAS model and
CTRW model established here, we have derived the rela
between the average distance between aftershocks an
mainshock as a function of the time from the mainshock, a
the joint probability distribution of the times and locations
aftershocks.

We have assumed that each earthquake triggers a
shocks at a distancer and timet according to the bare propa
gator f(r ,t), which can be factorized asC(t)F(r ). This
means that the distributionF(r ) of the distances between a
event and its direct aftershocks is decoupled from the dis
bution C(t) of waiting time. Hence, the direct aftershoc
triggered by a single mainshock do not diffuse in space w
time. Notwithstanding this decoupling in space and time
the bare propagatorf(r ,t), we have shown that the globa
law or dressed propagatorN(t,rW) defined as the global rat
of events at timet and at positionrW, cannot be factorized into
two distributions of waiting times and space jumps. Th
joint distribution of waiting times and positions of the who
sequence of aftershocks cascading from a mainshock is
ferent from the product of the bare time and space propa
tors.

The mean distance between the mainshock and its a
shocks, including secondary aftershocks, increases with
time from the mainshock, due to the cascade process o
tershocks triggering aftershocks triggering aftershocks,
so on. In the critical casen51, this diffusion takes the form
of a power-law relationR;tH of the average distanceR
between aftershocks and the mainshock, as a function o
time t from the mainshock. If the local Omori law is chara
terized by an exponent 0,u,1, and if the space jump
follow a power lawF(r );1/(r 1d)11m, the diffusion expo-
nent is given byH5u/m in the casem,2 andH5u/2 in the
casem.2. Depending on theu andm values, we can thus
observe either subdiffusion (H,1/2) or superdiffusion
(H.1/2), as summarized in Fig. 10. In the subcritic
(n,1) and supercritical (n.1) regimes, this relation is stil
valid up to the characteristic timet* given by Eq.~1! and for
distances smaller thanr * }Dt* H given by Eq. ~30!. For
t.t* and r .r * in the subcritical regime, the global distr
butions of times and distances between the mainshock an
aftershocks are decoupled and there is therefore no diffus
In the supercritical regime, the aftershock rate increases
ponentially fort.t* and the aftershocks diffuses more ra
idly than beforet* .

In the critical regime, the cascade of secondary af
shocks introduces a variation of the apparent Omori ex
nent as a function of the distance from the mainshock. T
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asymptotic values of the Omori exponent in the differe
regimes are summarized in Table II. In the regimem,2, we
observe a transition from an Omori law decay with an exp
nent p5122u at early timestH!r /D to a larger exponen
at large times. This provides another mechanism to exp
the observed variability of the Omori exponent. In the r
gimem.2, a power-law decay of the seismicity with time
observed only at large timestH@r /D. At early times, or at
large distancesr @DtH, the seismicity rate is very smal
because the seismicity has not yet diffused up to the dista
r.

We should emphasize that our theoretical analysis of
tershock diffusion predicts the behavior of the ensemble
erage of aftershock sequences. Individual sequences ma
part from this ensemble average, especially for sequen
with few earthquakes and limited durations. For long s
quences~20 000 events say!, we have verified that the expo
nent H measured on individual sequences does not dev
from the ensemble average value by more than about 2
As already discussed, the impact of fluctuations becom
however, more effective as the parametera increases above
b/2.

FIG. 10. Classification of the different regime of the diffusion
aftershocks in space as a function of time from the main shock.
bare Omori law for aftershocks decay with time as 1/t11u. The
jump size distribution between the earthquake ‘‘mother’’ and
‘‘daughters’’ is proportional to 1/r 11m. R(t) is the average distanc
between all aftershocks triggered up to timet after the mainshock.

TABLE II. Asymptotic values of the~renormalized! Omori ex-
ponent ~of the dressed propagator! in the different regimes for
z!1 andz@1, wherez[DtH/r .

Largez Small z
(r !DtH) (r @DtH)

m,0.5 p511u p5122u
0.5<m,2 p512u1u/m p5122u
2<m p512u/2 Not defineda

aThe Omori exponent is not defined in this case because the de

dence ofN(t,rW) with respect to time given by expression~42! and
represented in Fig. 4 has a contribution from the exponential
ymptotics which is different from a power law for large distanc
r @DtH.
4-20
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DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
The diffusion of the seismicity also renormalizes the s
tial distribution of the seismicity, which is very differen
from the local distributionF(r ) of distances between a trig
gering event and its direct aftershocks. In the regimem.2,

the global seismicity rateN(t,rW) decays exponentially with
the distance from the mainshock, whereas the local distr
tion of distancesF(r ) is a power-law distribution. In the
regime m,2, the local lawF(r );r 212m is recovered at
large distances, but a slower decay for 0.5,m,2 or a con-
stant rate for m,0.5 is observed at small distance
r !DtH. These predictions on the decrease of the Omori
ponent withr have not yet been observed in earthquake c
logs, but an expansion of the aftershock zone has been
ported in many studies@28–36#. However, very few studies
have quantified the diffusion law. Noiret al. @35# show that
the earthquake Dobi sequence~central Afar, August 1989!
composed of 22M.4.6 earthquakes presented a migrati
that was in agreement with a diffusion process due to fl
transfer in the crust, characterized by a normal diffusion p
cess with exponentH50.5. Tajima and Kanamori@31,32#
studied several aftershock sequences in subduction zone
observed a much slower logarithmic diffusion, which is co
patible with a low exponentH close to 0.1. In some case
the aftershock sequence displays no expansion with time.
instance, Shaw@94# studied several aftershock sequences
California and concluded that the distribution of distanc
between the mainshock and its aftershocks is independe
time. This can be explained by the fact that the Omori ex
nent measured in Ref.@94# is very close to 1, thusu is very
small and our prediction is that the exponentH should be
very small.

In fact, the ETAS model predicts that diffusion should
observed only for aftershock sequences with a meas
Omori exponentp significantly smaller than 1, which ca
only occur according to our model when the bare Om
propagator with exponent 11u is renormalized into the
dressed propagator with global exponent 12u. We have
shown that this renormalization of the exponent only occ
at times less thant* , while for longer times in the subcritica
regime n,1 the dressed Omori propagator recovers
value of the bare exponent 11u.1 ~see Fig. 2!. Therefore,
identifying an empirical observation ofp,1 with our pre-
diction p512u indicates that the aftershock sequence fa
in the ‘‘good’’ time window t,t* in which the renormaliza-
tion operates. We have also shown that the dressed prop
tor gives a diffusion only fort,t* . We can thus conclude
that, according to the ETAS model, the observation of
empirical Omori exponent larger than 1 is indicative of t
large timet.t* behavior in the subcritical regimen,1, for
which there is no diffusion. This provides a possible exp
nation for why many sequences studied in Refs.@31,32,94#
do not show a diffusion of the aftershock epicenters. Rec
rocally, a prerequisite for observing diffusion in a given a
tershock sequence is that the empiricalp value be less than 1
in order to qualify the regimet,t* .

An alternative model has been discussed by Dieterich@40#
who showed that the spatial variability of the stress indu
by a mainshock, coupled with a rate and state friction la
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results in an expansion of the aftershock zone with time. T
expansion does not take the form of a diffusion law as
served in the ETAS model, the relation between the cha
teristic size of the aftershock zone does not grow as a po
law of the time from the mainshock@Eq. ~22! and Fig. 6 of
Ref. @40##.

Marsanet al. @95,96# and Marsan and Bean@97# studied
several catalogs at different scales, from the scale of a d
mine to the world-wide seismicity, and observed that t
average distance between two earthquakes increases
power law of the time between them, with an exponent of
close to 0.2, indicative of a subdiffusion process. They int
preted their results as a mechanism of stress diffusion,
may be due to fluid transfer with heterogeneous permeab
leading to subdiffusion. Their analysis is quite different fro
those used in other studies, because they consider all pai
events, without distinction between aftershocks and ma
shocks. This analysis can, however, lead to spurious di
sion, and in some cases this method does not detect diffu
in a synthetic data set with genuine diffusion. We have tes
their analysis on a synthetic catalog generated by super
ing a background seismicity with uniform spatial and temp
ral distribution, and ten mainshocks with Poissonian dis
bution in time and space, and with a power-law distributi
of energies. Each of these mainshocks generates onlydirect
aftershocks, without secondary cascades of aftershocks,
the number of aftershocks increases exponentially with
magnitude of the mainshock. This way, we generate a s
thetic catalog without any physical process of diffusion, a
which includes all the other well-established characteris
of real seismicity: clustering in space and time superpose
a seismicity background. Applying the analysis of Refs.@95–
97# to this synthetic data set leads to an apparent diffus
process with a well-defined exponentH50.5. However, this
apparent diffusion does not reflect a genuine diffusion
simply describes the crossover from the characteristic siz
an aftershock zone at early times to the larger average
tance between uncorrelated events at large times. In p
words, the apparent power lawR}tH is nothing but a cross-
over and is not real. Furthermore, applying this analysis t
synthetic catalog generated using the ETAS model, with
seismicity background, and with a theoretical diffusion e
ponentH50.2, the method yieldsH50.01 if we use all the
events of the catalog. If we select only events up to a ma
mum distancer max to apply the same procedure as in Re
@95–97#, we obtain larger values ofH which are more in
agreement with the theoretical exponentH50.2 but with
large fluctuations that are function ofr max. Therefore, it is
probable that the diffusion reported in Refs.@95–97# is not
real and results from a crossover between two character
scales of the spatial earthquake distribution. It may be att
uted to the analyzing methodology which mixes up uncor
lated events. We are thus reluctant to compare the resul
Marsanet al. @95–97# with the predictions obtained with th
ETAS model.

One can similarly question the results on anomalous
fusion of seismicity obtained by Sotolongo-Costaet al. @98#,
who considered 7500 microearthquakes recorded by a l
Spanish network from 1985 to 1995. They interpret the
4-21
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quence of earthquakes as a random walk process, in w
the walker jumps from an earthquake epicenter to the nex
a sequential order. The time between two successive ev
is seen as a waiting time between two jumps and the dista
between these events is taken to correspond to the jump
Since the distributions of time intervals and of distances
tween successive earthquakes are both heavy tailed~approxi-
mately power laws!, their model is a CTRW. We canno
stress enough that their CTRW model of seismicity has no
ing to do with our results on the mapping of the ETAS mod
onto a CTRW. Their procedure is ad hoc and their res
depend obviously strongly on the space domain of the an
sis since distant earthquakes that are completely unrel
can be almost simultaneous. We also stress that our map
of the ETAS model onto the CTRW model does not cor
spond to identifying an earthquake sequence as asingle re-
alization of a CTRW, as assumed arbitrarily by Sotolong
Costaet al. @98#.

Our predictions obtained here are thus difficult to test
seismicity data, due to the small number of events availa
and the restricted time periods and distance ranges, and
cause the seismicity background can strongly affect the
sults. New methods should hence be developed to investi
if there is a real physical process of diffusion in seism
activity and to compare the observations of real seismi
with the quantitative predictions of the ETAS model. Pr
liminary study of aftershock sequences in California leads
the conclusion that most aftershock sequences are chara
ized by an Omori exponentp.1, indicative of the subcriti-
cal regime witht.t* . As expected from our predictions i
this regime, we do not observe an expansion of the af
shock zone. However, a few sequences give a valuep,1
and also exhibit an increase of the average distance betw
the mainshock and its aftershocks consistent with our pre
tions. A detailed report of this analysis will be reported els
where.

VII. CONCLUSION

We have studied analytically and numerically the ETA
model, which is a simple stochastic process modeling s
micity, based on the two best-established empirical laws
earthquakes, the power-law decay of seismicity after
earthquake and a power-law distribution of earthquake e
gies. This model assumes that each earthquake can tr
aftershocks, with a rate increasing with its magnitude. In t
re
,
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model, the seismicity rate is the result of the whole casc
of direct and secondary aftershocks.

We have first established an exact correspondence
tween the ETAS model and the CTRW model. We have th
used this analogy to derive the joint probability of times a
distances of the seismicity following a large earthquake a
we have characterized the different regimes of diffusion.

We have shown that the diffusion of the seismicity shou
be observed only for timest,t* , wheret* is a characteristic
time depending on the model parameters, correspondin
an observed Omori exponent smaller than one. Most af
shock sequences have an observed Omori exponent la
than one, corresponding to the subcritical regime of
ETAS model, for which there is no diffusion. The diffusio
of the seismicity produces a decrease of the Omori expon
as a function of the distance from the mainshock, the de
of aftershocks being faster close to the mainshock than
large distances. The spatial distribution of seismicity is a
renormalized by the cascade process, so that the obse
distribution of distances between the mainshock and its
tershocks can be fundamentally different from the b
propagatorF(r ) which gives the distribution of the distance
between triggered and triggering earthquakes. We have
noted that the ETAS model generates apparent but real
fractal spatial patterns.

Assuming that the distances between triggering and t
gered events are independent of the time between them,
model generates a diffusion of the whole sequence of af
shocks with the time from the mainshock, which is induc
by the cascade of aftershocks triggering aftershocks, an
on. Our results thus provides a simple explanation of
diffusion of aftershock sequences reported by several stud
which was often interpreted as a mechanism of anoma
stress diffusion. We see that no such ‘‘anomalous stress
fusion’’ is needed and our theory provides a parsimonio
account of aftershock diffusion resulting from the minimu
physical ingredients of the ETAS model. As Einstein on
said: ‘‘A theory is more impressive the greater the simplic
of its premises, the more different the kinds of things it r
lates and the more extended its range of applicability.’’

ACKNOWLEDGMENTS

We are very grateful to B. Berkowitz, S. Gluzman, J.-
Grasso, Y. Klafter, L. Margerin, A. Saichev, and G
Zaslavsky for useful suggestions and discussions.
p.

es.,

68,
@1# D. Sornette,Spontaneous Formation of Space-Time Structu
and Criticality, Vol. 39 of NATO Advanced Study Institute
Series B: Physics, edited by T. Riste and D. Sherrington~Klu-
wer, Dordrecht, 1991!, pp. 57–106.

@2# J. B. Rundle and W. Klein, Rev. Geophys.33, 283 ~1995!.
@3# I. Main, Rev. Geophys.34, 433 ~1996!.
@4# D. Sornette, Phys. Rep.313, 238 ~1999!.
@5# D. L. Turcotte, Rep. Prog. Phys.62, 1377~1999!.
@6# B. Gutenberg and C. F. Richter, Bull. Seismol. Soc. Am.34,

185 ~1944!.
s @7# F. Omori, On the aftershocks of earthquakes, J. Coll. Sci. Im
Univ. Tokyo 7, 111 ~1894!.

@8# G. Ouillon, C. Castaing, and D. Sornette, J. Geophys. R
@Solid Earth# 101 B3, 5477~1996!.

@9# Y. Y. Kagan and L. Knopoff, Geophys. J. R. Astron. Soc.62,
303 ~1980!.

@10# V. F. Pisarenko and D. Sornette, e-print cond-mat/00111
Pure Appl. Geophys.~to be published!.

@11# Y. Y. Kagan, Pure Appl. Geophys.155, 537 ~1998!.
@12# D. Sornette,Critical Phenomena in Natural Sciences, Springer
4-22



nd
n-

ro

s

ng
th
25

ys

G

.

Le

J.

ys.

E

p://

t.

lk

.

DIFFUSON OF EARTHQUAKE AFTERSHOCK . . . PHYSICAL REVIEW E66, 061104 ~2002!
Series in Synergetics~Springer, Heidelberg, 2000!.
@13# R. A. Harris, in International Handbook of Earthquake a

Engineering Seismology, edited by W. H. K. Lee, H. Ka
amori, P. C. Jennings, and C. Kisslinger~unpublished!, Chap.
73.

@14# T. Yamashita and L. Knopoff, Geophys. J. R. Astron. Soc.91,
13 ~1987!.

@15# M. W. Lee and D. Sornette, Eur. Phys. J. B15, 193 ~2000!.
@16# Y. Huang, H. Saleur, C. G. Sammis, and D. Sornette, Eu

phys. Lett.41, 43 ~1998!.
@17# T. Utsu, Y. Ogata, and S. Matsuu´ra, J. Phys. Earth43, 1 ~1995!.
@18# M. Bath and C. F. Richter, Bull. Seismol. Soc. Am.48, 133

~1958!.
@19# G. C. Beroza and M. D. Zoback, Science259, 210 ~1993!.
@20# D. P. Hill et al., Science260, 1617~1993!.
@21# D. W. Steeples and D. D. Steeples, Bull. Seismol. Soc. Am.86,

921 ~1996!.
@22# Y. Y. Kagan and D. D. Jackson, J. Geophys. Res.,@Solid Earth#

103, 24 453~1998!.
@23# A. J. Meltzner and D. J. Wald, Bull. Seismol. Soc. Am.89,

1109 ~1999!.
@24# D. Dreger and B. Savage, Bull. Seismol. Soc. Am.89, 1094

~1999!.
@25# A. Sornette and D. Sornette, Geophys. Res. Lett.26, 1981

~1999!.
@26# A. Helmstetter and D. Sornette, e-print http://arXiv.org/ab

cond-mat/0109318, J. Geophys. Res.~to be published!.
@27# D. Sornette and A. Helmstetter, Phys. Rev. Lett.89, 158501

~2002!.
@28# K. Mogi, J. Phys. Earth16, 30 ~1968!.
@29# M. Imoto, On migration phenomena of aftershocks followi

large thrust earthquakes in subduction zones, Report of
National Research Center for Disaster Prevention, No.
1981, pp. 29–71.

@30# J. L. Chatelain, R. K. Cardwell, and B. L. Isacks, Geoph
Res. Lett.10, 385 ~1983!.

@31# F. Tajima and H. Kanamori, Phys. Earth Planet. Inter.40, 77
~1985!.

@32# F. Tajima and H. Kanamori, Geophys. Res. Lett.12, 345
~1985!.

@33# R.L. Wesson, Tectonophysics144, 214 ~1987!.
@34# T. Ouchi and T. Uekawa, Phys. Earth Planet. Inter.44, 211

~1986!.
@35# J. Noir, E. Jacques, S. Bekri, P. M. Adler, P. Tapponnier, and

C. P. King, Geophys. Res. Lett.24, 2335~1997!.
@36# E. Jacques, J. C. Ruegg, J. C. Lepine, P. Tapponnier, G. C

King, and A. Omar, Geophys. J. Int.138, 447 ~1999!.
@37# P. A. Rydelek and I. S. Sacks, Geophys. Res. Lett.28, 3079

~2001!.
@38# A. Nur and J. R. Booker, Science175, 885 ~1972!.
@39# K. W. Hudnut, L. Seeber, and J. Pacheco, Geophys. Res.

16, 199 ~1989!.
@40# J. Dieterich, J. Geophys. Res.,@Solid Earth# 99, 2601~1994!.
@41# Y. Y. Kagan and L. Knopoff, Science236, 1563~1987!.
@42# Y. Ogata, Am. Stat.83, 9 ~1988!.
@43# Y. Yamanaka and K. Shimazaki, J. Phys. Earth38, 305~1990!.
@44# G. Drakatos and J. Latoussakis, Journal of Seismology5, 137

~2001!.
06110
-

/

e
,

.

.

P.

tt.

@45# Z. Guo, and Y. Ogata, J. Geophys. Res.,@Solid Earth# 102,
2857 ~1997!.

@46# A. Helmstetter, Geophys. Res. Lett.~to be published!.
@47# K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekstro¨m,

and J. R. Rice, J. Geophys. Res.,@Solid Earth# ~to be pub-
lished!.

@48# M. Bath, Tectonophysics2, 483 ~1965!.
@49# R. Console, A. M. Lombardi, M. Murru, and D. Rhoades,

Geophys. Res.~to be published!.
@50# Y. Ogata, Tectonophysics169, 159 ~1989!.
@51# Y. Ogata, J. Geophys. Res.,@Solid Earth# 97, 19 845~1992!.
@52# Y. Ogata, Pure Appl. Geophys.155, 471 ~1999!.
@53# Y. Ogata, J. Geophys. Res.,@Solid Earth# 106, 8729~2001!.
@54# Y. Y. Kagan, Geophys. J. Int.106, 135 ~1991!.
@55# Y. Y. Kagan and D. D. Jackson, Geophys. J. Int.143, 438

~2000!.
@56# R. Console and M. Murru, J. Geophys. Res.,@Solid Earth# 166,

8699 ~2001!.
@57# E. W. Montroll and G. H. Weiss, J. Math. Phys.6, 167~1965!.
@58# S. Krishnamurthy, A. Tanguy, P. Abry, and S. Roux, Europh

Lett. 51, 1 ~2000!.
@59# Y. Ogata, Ann. Inst. Stat. Math.50, 379 ~1998!.
@60# C. H. Scholz and B. B. Mandelbrot,Fractals in Geophysics
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