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Rotating unstable Langevin-type dynamics: Linear and nonlinear mean passage time distributions
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To characterize the decay process of linear rotating unstable Langevin-type dynamics in the presence of
constant external force, through the mean passage time distribution, two theoretical descriptions are proposed:
one is called the Quasideterministi@D) approach described in the limit of long times, and the other approach
is formulated for not so long times. Both theories are matrix based and formulated i andy dynamical
representationg, being the transformed space of coordinates by means of a time-dependent rotation matrix. In
the y dynamical representation the noise as well as the external force are rotational. The QD approach is
studied when the dynamics is not influenced by the external force and when it is influenced by it. In the
absence of this force, the theory is given fovariables and leads to the same results as those obtained in the
characterization of nonrotating unstable systems; a fact that is better understood in the space of cogrdinates
In the presence of the external force, the characterization is given for two variables and it is only valid for weak
amplitude forces. For large amplitudes, the dynamics is almost dominated by the deterministic rotational
evolution; then the QD approach is no longer valid and therefore the other approach is required. The theory in
this case is general and verified for systems of two and three variables. In the case of two variables we study
a laser system and use the experimental data of this system to compare with both theoretical and simulation
results. In the case of three variables, the theory foresees application in other fields, for instance, in plasma
physics. We also study the time characterization of the nonlinear rotating unstable systems and show in general
that the nonlinear correction to the linear case is a quantity evaluated in the deterministic limit. The same laser
system studied in the linear case is used as a prototype model.
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[. INTRODUCTION ences, it has been established that the QD approach is a good
approximation because it gives the precise physical picture
In a recent communicatiofil] we emphasized that sto- about the mechanism responsible for the relaxation process,
chastic differential equations have become a useful tool irthat is, it considers the fluctuations around the initial unstable
the description of a great variety of physical systems instate as the driving mechanism to initiate such a decay pro-
which the presence of fluctuations plays a fundamental rolecess. It is only at this stage that the fluctuations are impor-
During 1970s and 1980s the study of transient relaxation ofant, in such a way that after this stochastic beginning it is
unstable states or in general, of any initial condition far frommainly deterministic. In other words, the fluctuations change
the steady state, was proposed as an interesting topic in thke initial state of the system around the unstable state and
study of nonequilibrium phenomen&]. The decay of un- then the deterministic motion drives the system out from this
stable steady states has been studied in various specific castate. The QD approach is basically related with the Lagevin-
texts such as dynamics of phase transitif®id], hydrody-  type equation whose associated systematic force is derived
namical instabilities[5], spinodal descompositiof6], the  from a potential. This type of dynamics related to the QD
switch-on process in lasefg], relaxation of chemical insta- approach will be here referred to as standard formulation of
bilities [8], and dynamics of liquid crystal®]. Among the  quasideterministidSFQD approach. The NLRT method is
various methods proposed to study the decay process of uassociated with general processes of certain quantities, such
stable steady states, we find a variety of them for instanceas the moments of the relevant stochastic variables, which
the time scales methods, called the mean passage timelax from arbitrary initial conditions to the corresponding
(MPT) distribution and nonlinear relaxation timéSLRT);  stable steady states. Its connection with the QD approach
both theoretically developed in the context of Langevin-typewas studied in Ref.16].
dynamics[10] or Fokker-Planck equatiohll]. It is well In the early 1990s it was proposed by Vemuri and Roy
known that the PT distribution defines a set of random time$13] that very weak optical signals can be detected via the
t at which the system reaches a given reference value. In theansient dynamics of a laser using the laser as a superregen-
Langevin-type description, this time scale relies mainly uporerative receiver. The numericfl3] and experimenta]14]
a theory called the Quasideterminist@@D) approach devel- results were successfully sustained by the MPT distribution
oped by De Pascualet al. [10], and immediately after ex- [12] and NLRT[15] through the SFQD approach. Later Del-
tended to the study of the time characterization of thdunde etal. [17] proposed an alternative passage time
switch-on process in lasef40,12,13. In all of those refer- method, to efficiently detect large optical signals in a laser,
showing in this case the oscillatory behavior of the system.
In the following year the detection of weak optical signals in
*Email address: ines@xanum.uam.mx the same laser system was studied by the same authors, tak-

1063-651X/2002/6@)/06110115)/$20.00 66 061101-1 ©2002 The American Physical Society



J. I JIMENEZ-AQUINO AND M. ROMERO-BASTIDA PHYSICAL REVIEW E66, 061101 (2002

ing into account the phase fluctuations of the injected signalthe QD approach is valid only in the limit of weak external
[18]. However, nothing about the oscillatory behavior of theforce, in which no rotational effect can be appreciated in the
system was discussed, neither why the SFQD approacstochastic trajectories of the system. In the opposite case,
works well in the time characterization of such a system. Aghose rotational effects arise due to the dominant contribution
we have mentioned, an amount of works cited above relpf the external force, but the QD is no longer valid to char-
upon a Langevin-type equation whose associated Systemaﬁa@terize the rotating system. In this case the trajectories be-
force is derived from a potential, except those studied irh_ave practically as determini.stic. Those rotational effects are
Refs.[17,18 where the proposed Langevin-type equation jsvisualized for not so large times and th_erefc_)re another ap-
rotational. Only in Ref[17] the oscillatory behavior of the Proach must be proposed. The theory in this case is quite
laser system was characterized, but a general description §fn€ral; systems of two and three variables being just par-
rotating unstable dynamics was not properly formulated: ificular examples. In the study of the laser system we use the
was studied in terms of complex numbers. Inspired in thes&//PT and the same criteria proposed in Rgf7] for the

last works, a general time characterization of rotating un detection bandwidth of the large injected external field. On

stable Langevin-type dynamics in presence of large amp”'ghe other hand, to characterize the nonlinear rotating unstable

tude of a constant external force has recently been proposdd@ndevin-type dynamics through the MPT we propose a
in Ref. [1], in which such laser system is just a particular Strategy which takes into account that the relevant contribu-

case. The theory generalizes the procedure given in Refion in the time characterization comes from the linear con-

[19], where the study was made only in the case of twalfibution, and therefore the nonlinear contributions can be

variables. By rotating unstable systems we mean those Whicﬁvalua_ted in the deterministic limit of approximgtion, which

once leaving the initial unstable state, describe practicallyS €duivalent to neglect the effects of fluctuations already

deterministic rotational trajectories to reach the stable stead§onsidered at the initiation times. Two Appendices are in-

state or some approximation of it. Iudgd in order to justify the cglcwa'glons. We show in Ap-
Our aim in this paper is to study the decay process of th®endix A that the transformation”é is a time-dependent

rotating unstable Langevin-type dynamics in the absence af@tation matrix, wheré/V is an antisymmetric matrix; finally,

in the presence of a constant external force, using the MPY/€ Show in Appendix B how is possible to transform any

distribution in two limiting cases. One is the long time limit, 3% 3 antisymmetric matrix into a8 3 antisymmetric matrix

where the QD approach is the appropriate description. It i¥€"Y similar to the correspondlng case of two \{arlables. We

formulated in a matrix scheme and also generalizes that stufloPe that the present material may serve to stimulate corre-

ied in Ref.[20], in which the time characterization is given SPONding experiments or theoretical studies in other fields,

for those particular systems of two and three variables. Th&r instance, the dynamics of particles in a plasma.

other limiting case is for not so large times where the QD

approach is no longer valid, anq thg theoretical descyiption Il. THE MPT AND QD APPROACH FOR ROTATING

will be essentially the same as given in Réfl. Here we will UNSTABLE SYSTEMS

show, for systems of two variables, that as time goes to in-

finity the results coincide with the QD description. Both the- ~ Our primary interest is in a rotating unstable Langevin-

oretical descriptions are studied in twoandy dynamical type equation for the column vectarof n variables in the

representationsy being the transformated space of coordi- presence of a constant external force which can in general be

nates in which the Langevin dynamics introduce a differentvritten as

concept of rotating external and internéhoise forces,

through a time-dependent rotation matrix. The QD approach x=ax+Wx+n(r)x+fo+ z(t), (1)

is studied when the Langevin-type dynamics is not affected

by the external force and when it is subject to the influence . - : .

of this force. In the absence of the external force, the theo!WNeréa s real and positive, the matriW/is a real antisym-

retical description can be made for a numbemgshysical ~metric matrix which satisfies\W = —-W and W' its trans-

variables, and the results for the MPT distribution as well agosed, the scalar functiom(r) accounts for nonlinear con-

the variance coincide with those obtained with the SFQDtributions due to the fact thalEx2=xTx, r being the square

approach. This fact has a better explanation in the transef the norm of the vectof is the external force with con-

formed space of coordinates where we can understand stant elementd, and z(t) is the fluctuating force whose

why the matrix QD approach works well in the dynamical glementsg(t) satisfy the property of Gaussian white noise

characterization of rotating systems. In the presence of thgiih zero mean value and correlation function

external force, the QD approach is studied only for those

rotational systems of two variables and the correspondin

results will )t;e compared with the results of REE2)]. AF_:, a ? (&i(D&(t))=2Q; & o(t—t'), @

consequence of the external force two limiting cases irythe

space can be appreciated in the dynamical evolution of theshereQ;; is the matrix representing the noise intensity. The

system. One is the case of a weak amplitude external forcéinear systematic forc&=ax+WHx is not in general derived

which means that the amplitude is less or of the same orddrom a potential, becaus®€ Xf;=V XWx+#0 and therefore

than the noise intensity; and the other is the opposite caséhe rotating character of the dynamids is due to the prop-

i.e., the limit of large amplitude external force. We show thaterties of matrixW.
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A. The absence of external force P(h hp)
11 1

Let us first study the decay process of the dynartiigsn N
the absence of the external force, using the mean passage _ 1 —1 _ _
time distribution and QD approach. As we know, this ap- =Cex 2 i’jzzl (o s (hi={hi)) (hy=(hy)) |,
proach starts in this case with the following dynamics 10

x=ax+Wx+z(t), ®) whereC=1/(27)"*(Deto;;)¥?]. If the matrix o; is sym-

metric o= o; and positive definite then the inverse matrix

(o l)ij_:(ff )ji and its square r00t0(1/22¥=(01/'2)ji, as

well as its inverse square roat{ ¥?);;= (o~ 9;; exist[23].

) The joint probability density given by Edq10) requires

xi(t)=e*Re;(H)hy(t), (4 the variancei(=j) and covariancei¢j) of matrix o;; de-
fined as

where the factor ' has been in general substituted by a

time-dependent orthogonal rotation matrix according to Ap- aij=(hih;)=(h;){h;). (12)

pe?dix A; tf11at is &'=Re(t) which satisfies the property W heck f Eq(5) that in the | i fimit
DA Wt pa1 e can check from Eq at in the long time limi

Re ()=Re (t) and therefore e¥=Re (1), and (hi())=(h;)=0, and according to orthogonality properties

of the rotation matrix, the correlation function reduces to

<hihj>:§5ij- (12

whose solution, in the case of zero initial conditig{0)
=0, reads

t
h,'(t)=f0e*as Re(s)éx(s)ds. 5

The QD approach assumes that, in the long time limit, the
stochastic process;(t) plays the role of an effective initial only if the elements of the matriQ,,=Q. Therefore fori
condition, sinceh;() behaves like a Gaussian random vari- #] the set of random variablés are independent and then
able. This is so, because for small values of naige) we  the matrixoy; is diagonal with elements;; = 0?=Q/a. Un-

can guarantee that der these conditions the joint probability dengity) reduces
to
im e Re (1) &(t)—0 6) 1
dt j k ' _ —a?(h?+. .- +h?)
t—oo dt t—oo P(hl' e ,hn)— (2770-2)”/2 e 1 , (13)

and thereford; (=) = h; is then a Gaussian random variable. yjth 42=1/202. The marginal probability densitP(h) is
In this long time limit the proceset) becomes a quasideter- cajcylated using the Jacobian transformatibvi=J(u)du
ministic one which in terms of the norm{t) reads as beingu=(h,02, ...,0,) the new space of variables. In our
casedV=C, h"~dh and therefore the marginal probability

—yvTy—h2 Q2at
r(t)y=xx=hs e=, @ density will be

with h2=h'h=h2+- . . +h2. The random passage time re- 2a" I

. 1 , P(h)= hn—1 g eh (14
quired by the system to reach the prescribed reference value r'(n/2) '
R? will be given by

so that the generating function will be given by

_ 1 | R2 8 n
t= %a n Pk (8) e ?
G(2an)=(a’R?)~* (15)
Thus, the statistics of the passage times can be obtained I'(n/2)

through the statistics of the random variableéhrough the

transformation(8). The statistical moments of the PT distri- In the limit of small noise intensity, the MPT distribution is

bution can be obtained from the generating function defined dG(2a))
asG(2a\)=(e?®). In this case (2aty=| — —ao =In(a’R?) — (n/2), (16)
A=0
2\ =\
G(Za)\)=< — > (9)  wherey(x) is the digamma functiof24]. The variance of
h the passage time distribution defined as the average

((At)?)=(t?)—(t)? can be calculated in a similar way from
which clearly requires of the marginal probability density the generating function, the result being
P(h). This probability density must be calculated from the

general Gaussian distribution ((2aAt)®) =y’ (n/2). a7
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As we can see, both the MPT distribution and the variance r(t)y=y'y=h? e% (22)
do not contain the rotational effects inherent to the dynamics

(3), and therefore they seem not to be appropriated to deyith hZEhTh:hf+ ... +h2. The random passage time re-

scribe the rotating system. Another important point we would,, . :
. o . o X ir h m to reach the prescri reference val
like to underline is that the time characterization of dynamic quired by the system to reach the prescribed reference value

(3) without the contributionWx, can be made using the R? is also the same as for E). Therefore, the statistical

moments of this random passage time must be calculated by
SFQD approac[llO], and leads exactly to the same rgsults 4%he same method given above. Therefore, in the transformed
those given by Eqs(16) and (17). Under these circum-

} ) ; . space of coordinates the MPT distribution and the variance
stances, the two following and natural questions arise: one i

why the matrix scheme of QD approach does not properl% re given respectively by

describe, through the results6) and(17), the deterministic (2aty=In(a?R?) — y(n/2) (23)
rotation associated with the dynami¢3), and therefore,

where are those rotational effects in the theoretical descripand

tion? The second one is, why the time scél®) and the

variance(17) are the same as those obtained in the time ((2aAt)2>=¢’(n/2), (24
characterization of dynamid8) without the termWx, using _ _
the SFQD approach? which are exactly the same as that given by H3$) and

We get the answer of the two questions if we make in the(17), respectively. Once we have proved that the character-
dynamics(1) the change of variablg=e Wi, such that in ization is the same in both dynamical representations, we can

the transformed space of coordinates we get a different rd?roceed to answer the questions posed before.

tating unstable Langevin-type dynamics given by The answer to the first question is because the rotation
associated with the systematic force in th&cheme has been
y=ay+n(r)y+Re }(t)f .+ Re L(D)z(1), (18) removed and incorporated as an internal noise in ythe

scheme, due to the change of variable. Therefore, the QD
where the scalar function(r) remains the same function @pproach is better understood in the transformed space of
becausa is invariant. i.e rExTx=yTy As a result of this coordinates because it describes the dynamical characteriza-

transformation, the nonconservative part of the linear sysfElon of rotating systems not in the systematic force, but in the

tematic force of Eq(1) has been removed and the rotational'n_temal_ noise according to qug)_ In the two- a_nd th_ree- .
effects of matrixW have been associated with the presencéj'mens'Onal space of coordinates, the stocha}snc.trajec_torles
of both external and interngéhoise forces, and therefore the of the dynamics(19) represent, for small noise intensity,

external force as well as the internal noise are rotational. It igractlpally a set of stralg'ht Imes leaving ffom the origin of
clear that the set of variablgsare decoupled and the linear coordinates at random direction due to rotating character of

systematic force is evidently derived from a potential. noise. This fact will be verified below by simulation results,

It is now in thisy space of coordinates where we can Onlz fotrhthe casedof twot_variablr(]as. the following: the SFOD
understand what happens with the rotation and why the QD or the second question we have Ihe following. the Q
approach is appropriated to describe the system. First, proac;h relies upon 'the fact that the nor}rotatllng unstable
will prove that the dynamical characterization of the rotatingLf”mge;'n'éype3 dy_nr?mlcsh trns \(/)\;Jt to C?E." |dhe_nt|cal tg _that
system given above in therepresentation, will be the same given by q.(3) wit out the termWx, and In this case It is
as in they representation. Again we start with the linear V€Y Similar to that given by Eq19) except for the rotating

approximation of Eq(18) in the absence of the rotating ex- mterna] noise of this equation. The characterlzatlon_of the
ternal force so that dynamics(19) leads to the same results as that obtained in

the SFQD approach only if the noise satisfies the property of
(19) a ¢ correlated function, a fact that has been corroborated in
the correlation function given by E@12). Also such a simi-
larity between both dynamics will be verified below by simu-
lation results in the case of two variables.
Thus, for a better visualization of the problem, let us con-
yj(t)=eh;(t), (20)  sider arotating system of two variables and show its dynami-
cal behavior in thex andy space of coordinates. In Fig. 1,
where we show only one stochastic trajectory of the dynani®s
in the (xl,xz) plane, which corresponds a circular spiral leav-

vt ing from the origin of coordinates to reach the circle of ra-
— as
hj()= foe R&j(s)éx(s)ds. (1) diusR. In Fig. 2 three stochastic trajectories of the dynamics
(19) are shown in the)(l,yz) plane, which represent practi-

This process is exactly the same as that given in(Bjgand  cally straight lines emerging from the origin of coordinates
therefore it satisfies the same conditions imposed by the Qb reach the same circle of radiRsat random directions due
approach, namelyy;(«) = h; is a Gaussian random variable. to rotating noise. In Fig. 3, we show three stochastic trajec-
Also the norm of the solutiori20) satisfies the quasideter- tories of the dynamic£3) without the termWx. In this case,
ministic process the trajectories are also practically straight lines and very

y=ay+Re 1(t)z(t),

which is clearly the transformation yspace of the dynam-
ics (). Its solution for zero initial conditiory;(0)=0 is then
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FIG. 1. Dynamical evolution of one trajectory of the system FIG. 3. Linear dynamical evolution of three trajectories of the
given by Eq.(3) for two variables in the X;,x,) space for values system given by Eq(3) for two variables in the X;,x,) space
a=0.5, ©=6.0,R=1, andQ=10"3, without the termwx.

similar to those shown in Fig. 2. The trajectories emerge ((2aAt)?)=y'(1). (26)
from the origin also at random directions due to noise. In ) .
these three cases the MPT distribution and the variance, forhe answer to the second question can also be well visual-

n=2, are 0bvious|y ized in FIgS 2 and 3.
(2aty= In(azRZ) — (1) (25) B. The presence of external force
In this section we will study how the presence of the
and external force can affect the time characterization of the lin-
ear dynamics given in the preceding section. In this case we
15 ; ; now have
x=ax+Wx+fo+2(t) (27)
1t i
or in its transformed space of coordinates
05 I | y=ay+Re Y(t)f,+Re 1(t)z(t). (28
The solution of both Eq927) and(28) for zero initial con-
o0k i dition x;(0)=y;(0)=0 are then
xi(t)=e"Re;(H)h;(t), y;(t)=e"h(t), (29
-05 | .
where now
t
0 ] (0= e Ray(OIfe +aGNs (30
15 , , ‘ ‘ ‘ Again, in the long time limit, QD approach implies that
15 -1 -0.5 0 0.5 1 1.5
dhy(t)
Y, tIlm T =tI|m e qu(t)[fek+ &(1)]—0, (31

FIG. 2. Linear dynamical evolution of three trajectories of the _ ' .
system given by Eq19) for two variables in they; ,y,) space for ~and thereforén;(c) =h; is then a Gaussian random variable.
valuesa=0.5, ©=6.0, R=1.0, andQ=10"3, In this limit, both solutions of Eq(29) also satisfy that,
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r(t)=x'x=y'y=h? %, (32
with h?= hTh=hf+ ---+h2. The random passage time re-

quired by the system to reach the prescribed reference val
R? reads again
RZ)

h?

1

t= Eln (33

The statistical moments of this passage time can be calcu-

lated from the generating function given by E®). The
marginal probability density needs of the joint probability
density (10) and therefore of the properties of matrix;
defined in Eq(11). According to Eq{(30) we see in the long
time limit that

(hj)=f:e*a5 Rq(j(s)fekds. (39

It can also be shown that the correlation function of the vari
ableh; is

Q
(hihpy=Chi){hp+ 2 8y (35
only if Qu=Q. Again the matrixoj;=(Q/a)d;;, the vari-
ablesh; are independent and; is diagonal with elements
oii=0?=Qla. In this case the joint probability densit§0)
reduces to

1

P(hl' n (2,”.0.2)n/2

n
. !hn): ex;{_azz (h~+<hi>)2:|:
=1 !

(36)
with  a?=1/26°. In the space of variablesu
=(h,0l, ...,0,) the joint probability density is given by

P(h,6,, ...,6,dV=C e ™ +a-2a gy (37)

whereq?=(h)2+ - - - +(h,)? is the square modulus of the
column vectorg with elementsh;). Hence,P(h) is calcu-

PHYSICAL REVIEW E66, 061101 (2002

f

e, @
+
a%+ w?

fez a

(hy)= (39

az+ w2’

%hd therefore the coupling parameter between the external

force and rotation parameteg®=(h,)?+(h,)?, will be
given by

_ I

a’+ w?

2 (40)

with |fe|?=fZ +f2 the square modulus of vectéy. It can
be proved that the marginal probability density is given by

P(h)=2a? hly(2a2gh)e«"(*+a), (41)

wherel y(x) is the modified Bessel function of zeroth order
[24]. The moments generating function is in this case

oo

G(2aN)=(a?R?) N e F°

m=

F(mr+1)

—
0 m!)

=Gy(2an) e FPM(\+1,182), (42)
whereGy(2aN) = (a?R?) " (A +1) is the generating func-
tion in the absence of the external fordd(a,b,z) is the
Kummer confluent hypergeometric functif?4], and the pa-
rameter 82= a?q?=alfs|?/2Q(a%+ »?), which is propor-
tional to rate|f,|?/Q. Thus, the MPT distribution can be
calculated with the help of Ed41); yielding that

* 2m
<2at)=ln(a2R2)—efB22_O[fn—ldf(erl), (43
which can be reduced to
o (T
<2at)=(2at>0+ mE:1 Tmm (44)

with (2at) =In(«’R?)— (1) the MPT in the absence of the
external force which means thg8t=0. The variance has the

lated knowing the Jacobian of the transformation and intefollowing expression

grating over the rest of the variableel( co00).

From the above formalism we can get explicit results for
rotating unstable systems of two variables. In this case the

antisymmetric matriXxVV and its corresponding rotation ma-
trix Re(t) are given by

0 w coswt sinwt
W=l _ 0] ReD=| _sinwt coswt | -
(38)
The mean values
fe, @ fo, ®
(h)y=———-5—,
a‘t+w a‘tw

©

‘ 2m
((2aAt)2>=e‘52mE:0 i

——[/(m+ 1)+ yA(m+1)]

[

2
: (45)

2m

g2~ B
e BmE:oWw(m_Fl)

or using the other alternative expression of Et) in terms
of the hypergeometric function, it may be also written as

o m—1 1 (_1)mB2m
((2aap?)=y'(H+2 2, ( 2 E>—mm!
*(—1)mg2m 2
_[mz'l( m)m;B } ' (46)
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1-5 T T T T T 12 T T
1 - -
0.5 i
) 0r i
2 1 1
=05 E 1 2 3 4
In(1/Q)

-1r 1 FIG. 5. Comparison between the time sc&& and numerical
simulation for the casff.|=Q, a=3.0, w=6.0, andR=1.0. The
simulation results correspond ©=10"1, Q=102 Q=103

= L 1 ! | | — —4
1'5-1.5 -1 -05 0 05 1 15 Q=10"
X, B’
((2aa0)%)=y' (1)~ = (48)

FIG. 4. Dynamical evolution of three trajectories of the system
described by Eq(28) for the case of two variables in the(,y,)
space for valuea=3.0, w=6.0, R=1.0, and|f[=Q=10"2. These results corresponds to the case for which the decay

process is dominated by noise. In Fig. 5 we show the time
which is clearly reduced to EG26) in the absence of exter- scale described by E¢47) compared to numerical simula-
nal force. The series given in Eq#4) and(46) are conver- tion results, with excellent agreement.
gent for all 8. This allows us to analyze two limiting cases  In the opposite limitg>1, we show in Fig. 6, three sto-
for this parameter, namelg<1 and 8>1, and check in chastic trajectories with the same values 3.0, ©=6.0, R
which case the QD approach must be valid. The ¢gasel =1.0, but now|f,/=1.0 andQ=0.001. It is clear in this
corresponds to that situation for which the amplitude of thecase that both rotational effects can be appreciated in such a
external force is less or of the same order than the noisway that the trajectories emerge from the origin of coordi-
intensity whereag>1 is the opposite case, that is the am-nates § ,y,), forming “loops” to reach the circle of radius
plitude of the external force dominates over the intensity of
noise; in this case noise plays no important role and therefore 1.5 . . . . .
the dynamics will be practically deterministic.

As we mentioned in the preceding section, the QD ap-
proach is better understood in the transformed space of co 1+
ordinatesy, so that we will first look at the stochastic trajec-
tories described by dynamic&8) in the case of two
variables and in both limiting cases. FB 1, displayed in 05 -
Fig. 4, three stochastic trajectories for valudg|=Q
=0.001,a=3.0, ®=6.0, andR=1.0. In this case the tra-
jectories represent practically straight lines leaving from the>" 0
origin of coordinates in they(l,yz) plane at random direc-

tions, to reach the circle of radid& The rotation around the

origin is due to rotating noise and no rotational effects of the Badl 1
external force can be appreciated because the amplitude ¢
the external force is less or of the same order than the inter: al ]
nal noise. This behavior is very similar as that shown in Figs.
2 and 3. Therefore, for very small values gfwe can ap-
proximate the MPT and the variance as -15 L L , . .
-15 -1 05 0 05 1 15
4
(2at>:(2at>o—,82+ 'BZ (47 %
FIG. 6. Dynamical evolution of three trajectories of the system
described by Eq(28) for two variables in the \{;,y,) space for
and valuesa=3.0, »=6.0, R=1.0, |[f,|=1.0, andQ=10"3.
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important role and therefore the dynamics is dominated by e Rg(s)[fe, +£ék(s)]ds. (53

deterministic evolution.

For this case we use the identif,_,[(—1)"™"]/mm! The dynamical characterization of the system will be

=—[E1(x)+ y+Inx], whereE,(x) is the exponential func-  given in terms of the square of the norm of vectoandy,
tion and y the Euler constant such that(1)=—v [24].  \yhich satisfies

Hence, the MPT can be written as

R also at random directions. We can see that noise plays no t
hj(t)= f
i

0

—_h2 a
(2aty=(2at) —[E;(x)+ y+Inx], (49) r(t)=ht) &, (54)
Wherehz(t)EhT(t)h(t). It has been shown in Sec. Il that, in

and therefore, for larg@ we get the approximation the long time limit such that>1/2a, the procesg54) is

R%(a2+ w?) e B’ R%(a%+ w?) dominated by thg exp_o_nential term anc_J tm_(no) _plays the
(2at)=1In 5 - 5 , role of an effective initial condition which implies that the
Ie| B Ife| process(54) becomes a quasideterministic one. For these

(50) long times, we have seen that for large values of the ampli-
tude of the external force the QD approach is not an appro-
priate proposal to characterize the rotational evolution of the
system. To describe such rotational effects of the dynamics

4 (27) or (28), we must study the decay process of such sys-
((2aAt)?)~ —. (51  tems for not so long times following the proposal of Réf.

B This means that the random passage time at which the sys-
tem reaches a reference valRé can be calculated from Eq.
(54), but it is not an easy task, because the right hand side
also depends on time. However, we profit from the statistical
properties of the procesgt), which in general are given by

where IfR¥ &%+ w?)/|f.|?] is the deterministic relaxation
time. The variance vanishes as

We remark that foi3>1 the theoretical results given by
Egs.(50) and(51) do not describe the oscillatory behavior of
the system as shown in Fig. 6. In other words, the QD ap
proach is no longer valid fo>1; it is valid only if B
<1, in which the rotational effects are practically neglected. ¢
In the following section we will draw and compare the re- <hi(t)):f g as R%(S)fekds (55)
sults given by Egs(50) and (51) with the corresponding 0
results which arise from the characterization of the same la-
ser system studied in ReiL7]. The theoretical results have and
been obtained simultaneously in both thandy dynamical Q
representations. , ) —/h , X4 a-2aty o

To conclude this section we would like to comment that in (i (DR ()= ()0 + a (1=e ™) 4. (56
Refs.[12,18, the PT distribution and the SFQD approach ) ) _
were used to study the detection of weak optical signals vidvhere we have also applied the orthogonality of matrix
the transient dynamics of a laser. Equatioh®), (48), (50, Re(t) and assumed th&,,=Q.

and(51) are exactly the same as those reported in Ref}. To solve the problem, we propose that
It is important to remark that in those references the theoret- _
ical description of the SFQD approach was given in xhe hi(t)=(hi(1))+9(t) 7, (57

dynamical representation and nothing about the rotational 2y _at . . .
behavior of the laser system was mentioned, neither why th}g/hereg_ ()=(1—e ™) andz, is a Gaussmn_random vart-
SFQD approach works well in the description of such a IaseﬁbIe with zero mean value and vanay(og 7;)=(Q/a) 4 .
system. With the formulation of the QD matrix approach in he proces$57) is quite compatible with Eqs55) and (56).

the space of coordinatgs we can now understand why the If we assume that the amplitude of the external force domi-

oscillatory behavior of that laser system is almost negligible &S OVer the int.ensity of in'gernal noise, We can say that the
for weakyoptical signals y 9ig first term of the right hand side of E¢57) is the dominant

contribution, and therefore we can perform a series expan-

Ill. THE MPT FOR ROTATING UNSTABLE SYSTEMS sion up to first order in powers of;, such that

2
linear approximation, the decay process of the rotating un- =t < CRNE 7+ O0(7n;),
stable Langevin-type dynamics proposed in the preceding P

section. The proposal will be given in quite a general way. P 2 .
The linear solution of Eqs(1) and (18) assumingx;(0) wher_e|<h(tp)>! =Zi(hi(t,))" andt, is the zeroth order ap-
=y;(0)=0, can be written as proximation given by

xi() =€ Reg;(Hh;(1), yj(h=e*hj(t), (52 { -t R—z)
Kht,))2)

In this section we will study how to characterize, in the a(t,) s (hi(t)) -

(59
with Po2a
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The passage time distribution is then o gz(tp) ) ¢’(tp) -2
t)%) = +
M=t = | ( ; ) (60 W ¢(t)] 281t et)]
= = — n _—
2 L
" 2a | (ht,)] (67
and the variance defined in Sec. Il will be We observe that the oscillatory behavior of the M@%) and
the variance67) are due to the functiog(t). As time goes
Qg?(t.) (hi(t))? to infinity, the oscillatory behavior goes to zero and therefore
(A= —— > P - (61)  t,~toand((At)?)~1/8? which correspond to the determin-
a : |<h(tp)>| istic limit given by Egs.(50) and (51) as required by QD

) ) ~_ approach. Therefore, for not very long times, the time scale
Clearly, the PTD is only dominated by the deterministic (g5) and its variancé67) must be the appropriate quantities
approximation, whereas the variance contains the coopergs characterize the rotating evolution of the system. The time

tive effect of both internal noise and external force thrOUthcaletP as well as the variance can be calculated through the
the intensityQ and the mean valu(shi(tp)>, respectively. iterative procedure

A. Rotating unstable systems of two variables © (+1) 1 -
. . th/=tg, t =ty— =—In[1+ (t .
In this case the matriced/ and Ref) are the same as P00 P ° 2a [+ P )] (68)
those in Eq.(38) and thereforeV X fs=—2w k, which is a .
vector perpendicular to the rotation plane. The proposal can be applied to study the decay process of
To calculate the mean value of each comporgntt))  the same laser system as that studied in R&fl, where the
we can assume without loss of generality tHat=f, switch-on process of a laser under the influence of a large
—|f /2, and define 1" injected signal has been studied in terms of complex num-
€ ' bers. For this system, the Langevin-type equation for the

A N complex dimensionless laser fiel=E,+iE, of a single-
z(t)=2\/§)\2(1—e 2ty mode reads
o N E=(—k+if)E+ FA E+kEet£(t), (689
z (t)=m(1—e 1h), (62 1+ =1

where the asterisk stands for the complex conjugate, Witiyhere £(t) is the spontaneous emission Gaussian noise of

matrix W. In this case we get

(hi())y=2z(t)+z* () +i[z(t) -z (1)],

_ *(4) i e k is the cavity decay rate in'$, f is the detuning parameter
{ha(t)) =2()+2* (1) =i[2() =2* ()] €3 between the laser field and the injected sigfails the gain
and so parameter (s'), A the saturation parameter (3, | =|E|?
= E§+ E§ the intensity of the laser field, is the coupling
) |fe? parameter between the injection fiekd and the laser filed,
[(h(D)*=2z()z* (1) = ———-[1+ ()], (64  andg(t) is the internal noise with strengé(s ). Both k,
(a°+ w)
andE, are taken as real numbers.

Since the reference value of the laser intensityl s
=0.02;, wherelg=(F—K)/A is the steady-state value, a
linear solution will be a good approximation. The matrix

1 scheme of the linear approximation of E§9) can be for-
t=to— o7 IN[1+¢(t )], (65  mulated in terms of the real and imaginary parts of the di-
mensionless complex electric field. The resulting equation is
where quite compatible with Eq(1) in the case of two variables if
the element of the matri¥V equals the detuning parameter,
that is w=f. The real part of the external field iv’se1

=1/\2|fs|=k<E. Whereas the imaginary pafi,, =0, the
reference valué,=R?, the intensity of nois&Q= /2, and
For large amplitudes of the external force such that the pathe parametem=F —k. In this caseB?=2a(k.E¢)?%/ e(a?
rameter 82=alf.|%/2Q(a?+ »w?)>1, the variance is given +f?)>1 and therefore the MPT and its variance are the
by same as that given in Eg&5) and(67), respectively.

()" (t'))=2e8(t—t"), (70

where ¢(t) =[e 23— 2e 3lcoswt]. The passage time distri-
bution is then given by

1

R2(a’+ w?)
to=55 N ————

In
|fel?

(66)
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0.2 T T T
Xy
01} _
X3
' OF J
X
FIG. 9. Same as Fig. 7, but in three dimensions.
=01t T “loops” trajectories emerge from the origin of coordinates to
reach the circle of radiuR at random directions because of
rotating noise as given by E¢53).
.2 L L L B. Rotati I f th iabl
-0 202 o1 0 01 0.2 otating unstable systems of three variables

In the case of three variables, it is shown in Appendix B
X, that any 3< 3 antisymmetric matrixV’ can be reduced to a
3X 3 antisymmetric matriXVV very similar to that given in
the case of two variables. Therefore, given the matvix it
can be reduced to a matri%/ and its corresponding associ-

FIG. 7. Linear dynamical evolution of a single stochastic trajec-
tory of Eq.(69) to reach the circle of radiug?=0.02 in the case of

two variables. ated rotation matrix Rej according to
We use the same experimental data of R&¥] namely, 0 w O coswt  sinwt 0
— V/ o1 — V/ o1 — —1 —
k=125¢10"s%, F=1323<10"s %, A=10F s, ko=2 wel =0 0 0] ayi_| —sinet coset o
X1 s, E,=1.25x10 2, and e=0.004 s ! to compare . Ret) :
with the simulation results of the theory. In Fig. 7, we exhibit 0 0 0 0 o 1
a single stochastic trajectory of the laser system in the 71)

(xl,xz) plane, which is a circular spiral. In thgl(,yz) plane,

the corresponding stochastic trajectory describes “loops” a
shown in Fig. 8. According to Eq52), the set of spiral or

where now o’= w?+ w2+ w?. Similarly Vxfe=-2a k.
Under these circumstances the dynamical evolution of only
one stochastic trajectory of the linear soluti@®) to reach
the spherdnot shown of radiusR, in the space of variables
0.2 T T T (xl,xz,xz), is also a circular spiral but now growing along

the X, axis as seen if Fig. 9. Also, the set of the stochastic

———— - trajectories leave the origin of coordinates at random direc-
o1 L ’ N ] tions due to rotating noise. Seen along Idgeaxis, the spiral

' / AN trajectories are essentially the same as those described by the
/ \ systems of two variables. In the representation a single
stochastic trajectory of the system to reach the spfeoe
shown of radiusR is also quite similar to that of Fig. 8, but

\
\
} ] in the three-dimensional spacyzl(yz,ys), as shown in Fig.
/

10. Due to this fact, we can assume that the components
\ / fe,=0 and§;3(t)=0 and therefore the mean valdhs(t))

N S =0. Accordingly, the MPT distribution and its variance are
01 r N et T the same as those given by E(g5) and(67) respectively. In
S~ P Fig. 11, we show the excellent agreement between the theo-
retical result$65) and(67) and numerical simulations for the
systems of two and three variables, using the same values of
-0.2_02 -(;1 6 0'1 o2 the laser paramete_rs. In that figure_, _th_e o_Iashed lines corre-
) ) ' ) spond to the behavior of the deterministic time s¢&a® and
Y, variance(jitter) (51), which clearly do not describe the oscil-
latory behavior of the laser system.
FIG. 8. Linear dynamical evolution of a single stochastic trajec-  The detection bandwidth of the large injected signal can
tory in they transformed space of E¢69) to reach the same circle be evaluated from Fig. 12. Several criteria are available
as in Fig. 7. [12,17, and we choose that for which the limit of detection
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yg 7 T T T

Y3

) (us)

Y4

FIG. 10. Same as Fig. 8, but in three dimensions. 0_20 _1'0 6 1'o 20

. T ® (MHz)
on the detuning reduces the initiation time to one half of that
corresponding to the off state, i.e., the corresponding time FIG. 12. Determination of the detection bandwidth as the full

when the external signal goes to zero, which is obtained fronwidth at half maximum of this plot. The solid line is the third
Eq. (47) with 8=0. iteration of Eq.(68). The dashed line is the asymptotic value for

E.=0. It is one half of the switch-on timg, given by Eq.(47)

IV. THE MPT FOR NONLINEAR ROTATING UNSTABLE Vj]z%noEK/I:Hoz. In this case=10.7 us. The detection bandwidth is

SYSTEMS

) ) o . ) trix W have been associated with the presence of both exter-

To deal with nonlinear contributions in the time charac-pa| and internal forces and then the nonlinear systematic

terization of Eq.(1) the transformed space of coordinaies  force must be derived from a potential. In this case, we can

as given by Eq(18), is the better description. This is becausejn general define the nonlinear deterministic dynamics of an
in this space of coordinates the rotational effects of the magnstaple state in terms of the norm of the vegtosuch that

5 . T T .
. _r(rgr)
=H=5 Trgiry (72)
- where Co=rst/2a with rg, the steady-state value amy{r)
f{' >0 is a polynomial. The functiofi(r) has two roots; one is
= atr=0, which is the unstable state such thatr)|,—,>0;
the other root is at =rg;, which corresponds to the stable
steady state and thu‘é(r)|,zrst<0. Equation(72) is com-
1 L L L L patible with the deterministic part of E¢18) according to
0.02 ' ' ' ' the explicit form of the scalar function(r).
From Eq.(72), we can establish that the time scale at
0.015 which the system reaches the reference vaLueRz, from
g the initial conditionr (0) is then
s 001
.(;\ t_fRZ dr 73
\é 0.005 royf(r)”
0' . , , . According to the QD approach, this time scale is transformed
0 1 2 3 4 5 in a random passage time if we assume the hypothesis of a

® (Mhz) random initial condition, that is(0)=h?, whereh is a ran-
dom variable. To characterize the rotation including the non-
linear contribution of the systerfi8) through the MPT, we
propose the following:

FIG. 11. (a) Linear mean first time antb) variance(jitter) as a
function of the rotation parameter. The solid line corresponds to
(a) the iteration of Eq(68) and to(b) the analytical result Eq67);
open circledfilled circleg are the simulation results for the case of
two (three variables. The dashed lines d&¢ the deterministic time (t) _ 1< In
scale(50) and (b) the variancdjitter) (51). 2a

RZ

h(t)

> +C. (74)
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where the first term is the relevant contribution which comes 6 T T
from the linear characterization already studied in Sec. I,

and the second one, which takes into account the nonlinea
contributions, must be calculated in the zero fluctuation limit 5
such thah?=0. Therefore, it is evaluated in the determinis-
tic limit of approximation with the following strategy:

{#) (us)

4
c = J PP 75
w” o [T " 2ar/" (79
3
According to Eq.(72) the nonlinear contribution is then a 0.02
constant given by
0.015
C =iln +G(R?) —G(0) (76) :"’i
NL2a |1k ' a 001
2
such thatR?= kr, ko being a constant anG(r) is de- \@, 0.005
fined as =~
ij 9 —GRY)-G(0) (77) "o ‘I 2 3 ] 5
0o =1 ’ o (MHz)

S . FIG. 13. (a) Nonlinear mean first passage time dbgvariance
which is clearly a type dependent function gffr). So ac- (jitter) as a function of the rotation parameter The solid line

cording to the ar_laIySIS Qf Sec. _”I’ we can conclude that the‘corresponds t@a) the iteration of Eq(83) and to(b) the analytical
mean passage tim@4) will be given by result Eq.(67), both for R?=0.1; filled circles are the simulation
results for the case of the laser systési).

1
= —_— 2 —
(t) t+ ZaIn 1= g +G(R%) —G(0), (79 L L
<t>=tp+ 2—|n 1= }, (82
wheretp is the zeroth order approximation given as before a Ko
by where
LK 79 NI LS G ] 83
=5 W , (79 P~ 2g M K2E2 ’a nf1+¢(t)], (83

which is precisely the linear MPT given in E@¢60). We
show that the variance is also

QAt,)

(hi(t,))
(AD?)=——
a

T )t

(80)

Again, the mean passage time is only dominated by the d

terministic approximation, and the variance takes into ac

count the effects of both, the internal and external forces.
For the same laser system given in E69), we use the

nonlinear approximation

E=(F—KE+ifE—A|E|?E+kEo+&(1), (81

and the variance reads the same as(Ed). The time scale
(82) and its variance can be calculated through the similar
iterative procedure given in the preceding section.

A comparison with numerical simulation data is given in
Fig. 13. For the MPT the agreement is excellent, corroborat-
ing the way we have proposed to include the nonlinear con-
tributions. For the variance the agreement becomes a bit less
accurate for large values of the rotation parameter. This be-

havior steems from the fact that the variance is very sensitive

to the nonlinear contributions of the dynamics of the system.

V. CONCLUDING REMARKS

The matrix scheme of QD approach, although formulated
in two dynamical representationsandy, has a better de-
scription in the transformed space of coordinateghe char-

wherel ;= (F —k)/A is the corresponding steady state value.acterization of the rotating Langevin-type dynamics in the

For the reference value of the intensity we chobRse R?

=kols=0.1. In the transformed space of coordinajegt
can be shown that the functidifr)=f(l1)=2al(lg— 1)/l
and theng(r)=g(l)=0 and therefore the functioG(r) is
also zero. Thus, the mean passage ti{#® for the system
(81) reduces to

absence of external force has been studied in the
n-dimensional case and leads to the same result for the MPT
and its variance as that obtained with the SFQD approach.
This is because the dynami¢&9) is very similar to that
given in the standard formulation, except for the rotational
internal noise. However the correlation functi¢i®?) is the
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theory is valid only if the parametgg@<1 which is the re-
gion in which the dynamics is dominated by noise and no
rotational effect can be appreciated. Therefore, the dynamical
trajectories described by the system are practically straight As a particular case let us first verify that the antisymmet-
lines leaving from the origin of coordinates at random direc-ric matrix W of Eq. (71) satisfies the relation8=Re(t). For
tions to reach the circle of radiug on the planey ,y ). In this purpose we define the rotation angbe= wt and the

this case the time scal@7) and the varianceé48) are the —Mmatrices
appropriate ones in the dynamical characterization of the sys-

APPENDIX A: THE ROTATION MATRIX

tem. If B>1 the rotational effect of the external force domi- 0 -1 0 0 1

nates over that of the internal noise rendering the appearance M,= i 0 0 . A=iM,=| ~ 10 ,

of rotations in forms of “loops” in the dynamical trajectories 0 0 0 0

of the system. In this case noise plays no important role and

therefore the trajectories are practically deterministic. In this (A1)

limiting case, the time scalét4) goes as the deterministic

time scale according to E¢0), and the variance vanishes as

((At)%)~1/82. Nevertheless neither one is appropriate in

the rotational characterization of the system, thus implying _ (i6M,)2  (igM,)3

that the QD approach is inadequate to study this case. V=M= | +ipM,+ 5 Z 4+ 3 2+
For the appropriate description of the rotating system, an- : : (A2)

other approach has been required and also formulated in gen-

eral way in bothx andy dynamical representations for inter- \yhere| s the unity matrix. Collecting both the odd and even

mediate times. The rotation for systems of two and threerms and taking into account that

variables, has been characterized through the N85I and

its variance(67). These results are consistent with the QD

approach as time goes to infinity, i.e., the oscillatory behav-

ior disappears for large times and must coincide respectively M§n=5=

with Egs.(50) and(51) as expected. In the case of two vari-

ables, the theory has been applied to study the rotating de-

scription of the same laser system studied in REf], where |\ 1haresis a symmetric matrix andM2"*1=A, it can be

the detection of large optical signals in that laser has beegnqwn that Eq(A2) reduces to z

studied through the MPT distribution, in terms of complex

numbers without resorting to a matrix description nor to the eVt=| + (cos¢—1)S+sin PA, (A4)

use of a transformed space of coordinagesn the case of

three variables, the rotating systems have a very similar dytherefore

namical behavior as that of two variables, as shown in Ap-

such thatA is real and antisymmetrix and therefowt
=i¢$M,. Using the property of the exponential we have

. MIil=Mm,, (A3)

o O -

0
1
0

o O O

pendix B. Because of this fact, the time characterization and coswt  sinwt 0O
the variance for these systems are the same as(&ssand Wi —sinewt coswt O
(67) except for the rotation parameter’=w?+ w’+ w?. e = 0 0 s (AS)

The theoretical description of this work has an excellent

agreement with the simulation results. The criteria used for

the detection bandwidth of the large injected signal in theEquation (A5) is an orthogonal rotation matrix because
laser system, according to the MPT, suggests a value of aFPze(t)ReT(t)= .

proxmately ZQ MHz. FlnaIIy_we have _shown that, for the  on, the other hand, according to RE21], it is shown in
time characterization of nonlinear rotating unstable Syswm@eneral that any 8 3 antisymmetric matrixV/ determines an
(1) the transformed space of coordinate€l8) is the better %ngular velocity vector such thatW= g X = wnX . where

theoretical scheme because in it the nonlinear systematn is an unitary vector alona the rotation axis. In this case
force is derived from a potential. For intermediate times the y 9 ’

nonlinear passage times are equal to the linear approximation o j

plus a constant which accounts for the nonlinear contribu- eWt— gWt_ g(¢ nX) — | +E (¢ hx) (A6)

tions. The study of the laser system given by B{) leads =1 !

to the time scalé82) and the varianc€67), both consistent

with the simulation results as corroborated in Fig. 13. The series can be separated in odd and even powers such that
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(¢ nx)a+t matrix R composed of unitary eigenvectors of mathix’
(A7)  [22]. The eigenvalues of matrixV' are then\;=0, X\,
=iw and \g=—iw where w is such thatw’=w’+w’

Following Ref.[21] the above equation can be written as  +@2. Their corresponding eigenvectors are, respectively,

" (¢ nx)E &
Wt__
I T ST

wt (-1 )Jd,ZJ S (—1)igAtt w, —wlws—iwwz
"+Z @ Z 2 o A A8 w — 0.0 +i0w
i= =0 v,= 2], v,= 23 1, andv3:v’2*,
where S=1—nnT and A=nX are symmetric and antisym- @, “’f“"i

metric matrices, respectively. It is now clear that the last
equation reads (B2
where the asterisk stands for complex conjugate. It is then
noted that one eigenvector is real and the other two are a
complex conjugate pair.

The rotation matrixR is then

eV'=|+ (cos¢—1)S+sin pA. (A9)

In Ref.[22], it has been shown that ayxX N antisym-
metric matrixW also satisfies that property

(N=C)/2 _w1w3 wl \/w1+w2

eVt=| + j; {(cosg;—1)S;+sing;A;}, (A10) © 2 o
2, 2
e ORO) 0\t w
whereC is the number of real eigenvectors linearly indepen-  p_ 1 — 2% o 2T 2
dence with zero eigenvalu§; is symmetric andy; is anti- 0’ + w? @ @ ’
symmetric. v 02+ w? o Jwl+ @2
1 2 0 3 1 2
APPENDIX B: TRANSFORMATION OF MATRIX W'’ @ @
Given the antisymmetric matrix (B3)
where the first and second columns are the real and imagi-
0 T9 nary parts of the unitary vecto}z. So, the following trans-
W=l ® 0 “o (1) formation R'W'R leads to
o, o 0 0 w O
| o . . RwRr=w=| ~© 0 0 (B4)
the transformation of this matrix to a matri very similar 0
to that of two variables, can be achieved through a rotation
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