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Propagation of linear waves in relativistic anisotropic magnetohydrodynamics

W. B. Gebretsadkan and G. L. Kalra
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
(Received 19 April 2002; published 7 November 2002

Gedalin[Phys. Rev. E47, 4354(1993] derived a dispersion relation for linear waves in relativistigso-
tropic MagnetohydrodynamicéMHD). This dispersion relation is used to point out the regions where the
relativistic anisotropicMHD leads to new results that cannot be obtained using usual collisional relativistic
MHD. This is highlighted by plotting a Fresnal ray surface. Conditions for the onset of firehose and mirror
instabilities are also indicated. Such a study can be applied to astrophysical features such as pulsar winds,
propagation of cosmic rays, etc.
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Gedalin[1] derived RAM (relativistic anisotropic magne- 5 2p, +B?/4x
tohydrodynamick equations that simulate rarefied plasma VF_l/CZ[p(C2+8)+pl+52/477]' ©)
embedded in a strong magnetic field. These equations

complement the set of usual relativistic Magnetohydrody-

namics (MHD) equations that are valid for the collision- ) 3py
dominated plasma. Gedalj2] used these equations to ana- Vg= U p(P+e)+p]’
lyze the properties of linear waves. The purpose of this Brief :
Report is to discuss further implications of the dispersion

relation derived by Gedalifi2]; hereafter this paper is re- 5 p.
ferred to as GRAM. It is convenient to write this dispersion V= 1/’ p(c®+e)+p,]’ e=PpLlptpil2p.
relation as follows:
wz—kﬁvﬁ,ﬁ 0, (1) The above dispersion relation and the definitions are the
same as those used in GRAM except thats been retained
[w?— (KEVEA+K2VE)] to facilitate reducing them to the nonrelativistic limits (
V2 —). Note that all these relations utilize CGChew, Gold-
2 12227 1k2k2v2 v2] g SRAY berger, and Low3]) expression for specific internal energy
X[ —kjV]—kikiVy VT(l o2 ) 0, used by GRAM.
@) The phase speed of the modes, in dimensionless param-
eters, can be written as
where
1+ -8
p. —py+B%Am 2 _ T
2 _ C2.= cog 0, (4
VRA= /e p(cPre) 1 p, + BUAm]’ AR 1+ VAIcA(1+2S] +5712)
|
o2 (1+28)sir? 6+ (1+S? —S?)cog 6 357 cog 0
= +
SR.FR 1+Va/c?(1+2S7 +S7/2) 1+ Va/cX(SE +3S7/2)
U (1+28)sir? 6+ (1+S? —S%)cos 6 3S2cog ¢ 2
4+
B 1+Va/c?(1+2S] +S7/2) 1+Va/c3(S?+3S7/2)
4S! sir? 9 cog 6 2 .
+
[1+VA/c3(S?+3S1/2)][1+VA/c3(1+2S° +S/2)]| ®

whereV = (B%/4mp)*? denotes the classical Alfmespeed, (—) modes in units of Alfva speed/,. Other symbols have
S=P,/pV4 and S°=P, /pV4 are the analogs of sound the same meaning as in GRAM.

speeds along and across the magnetic field. The dimension- It is well known that in the usual collision-dominated
less quantatie€ g, Crr, andCgg in the above equations MHD, Alfven wave is the intermediate wave and the phase
denote the phase speeds of the Atfyéast(+), and slow speeds follow the following order:
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1.5 T T Y 1 T the slow mode at the origin, which indicates that neither the
Alfvén nor the slow mode has a phase speed perpendicular to
the magnetic field. The condition for the two subclasses of

U double or triple points is found from the phase speed8 at
=0, 7/2 and is

0.5

Car 1_51%"'55 vz 9
Vao  \1+V3cX(SP2+257+1)) ©
0
CSR,FR: 33\2 vz
_o0.5k A 1+Va/c?(3S2+S%))
1-S2+ <2 1/2
-1r 22 32‘ — , (10
1+Va/co(Sj/2+2S7 +1)
- 1_5;5 _; _0:5 0 015 1' 1.5 where the larger value in the brackets of Etp) is the fast

speed and the smaller is the slow speed.
FIG. 1. Fresnel ray surfaces from a point source of the fast, The pseudo-MHD can further be divided into two sub-

slow, and Alfven modes for the paramete8=0.4,S?=0.1, and  classes. The condition for the two subclasses is
azvf\/c?:o (broken line curvesand 0.2(continuous curves Z
andY denote components of dimensionless group velocity.

P grotp veloely 1+ 82— 42+ V2/c2 (1+ 52 — S2)(S +352/2)

Csr=Car=Crr

(6)

The characteristic feature of RAM is that the anisotropic

pressure permits a new ordering of the phase speeds, Whe\svei]
Alfvén and fast wave, the< sign is the condition for the

7
" double point of the Alfva and slow wave, and the equal sign

This indicates that the Alfue speed can shift from the indicates the triple point.
intermediate speed to the lowest speed. Although RAM For propagation along the direction of the magnetic field,
model describes an entirely different physical situationtwo of the three modes propagate with the phase spagd
where collisions, due to rarefied nature of plasma, are infrewhich basically represents the classical transverse Alfve
quent, in contradistinction with the normal MHD that is col- wave modified by the relativistic and anisotropic effects. It is
lision dominated, one expects results somewhat similar to thknown that the inertia corresponding to the energy density of
isotropic pressure MHD when ordering given in E@)  the magnetic field reduces the Alivespeed in the model
above is satisfied. Such a regime is designated as pseudghere the pressure is isotropic. In the case of anisotropic
MHD. The regime given by orderiny) is a distinct feature pressure one can also easily see that the relativistic' Alfve
of RAM, which does not have any analog in the collisional speedVg,, is reduced. In contrast to the isotropic case, the
MHD; it may lead to radically different resul{$or example, presence of anisotropy may not only reduce the phase speed
see Fig. 1 This regime is designated as reverse-MHD. to zero, but may render it complex leading to an instability.

The curve which separates the relativistic wave modes$n the nonrelativistic casp4,5], this instability is known as
into pseudo- and reverse-MHD classes is given by the firehose instability; it arises whepg>p, +B%/4mx. The
criterion for firehose instability remains unaltered in the rela-
tivistic framework.

The third mode propagates with the phase spégdThis
is basically an acoustic mode that cannot trigger instability in
the medium.

There is another interesting case that needs to be com-

. mented upon. In the nonrelativistic framework, one finds that
where the> sign holds for the pseudo-MHD modes, theé  mirror instability appearg4] in the limiting case whenw
sign indicates the reverse-MHD modes, and the equality Sign., 0, k,—0, but w/k,#0.

gives the curve that separates the two classes. The singular The criterion for instability is
points corresponding t@= /2 or 0 at which the phase
speed of two or three modes is the same are called, respec-
tively, a double or a triple point. There may also be a double
point of degeneracy, for example, between the Aifiand

—35%(1+287 +§%12)] = O, (11)

ere the> sign is the condition for the double point of the
Car<Csr=Crr.

{(1+2S%)(1+S2 —4S) + Sl +VA/c[(1+2S%)
X[(1+S?—S)(S2 +357/2) —357(1+2S7 +S2/2) ]

+5!(1+282 + S¥/2) J}sir cog =0, ®

2
1L
PI<%(p, +BZ8m) "
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The analysis of the relativistic dispersion relation in the ) +C t+Ry
above limit shows that the criterion for the onset of mirror (Z) _ ( cosf —sin ‘9) JC
instability remains the same. y/ \sing cosé +—1t |’

Another aspect that needs to be studied is the speed of a0

propagation of a signal. This is given by the group velocityWhere Ro, t, and 6, respectively, denote the radius of the

defined asVy=dw/dk=[d(Ck)/dk]=(KC+ 0[dC,/d0])  source, the time after excitation of the wave mode, and the
for each mode. Her€, (phase spegdepresents any one of 5ngje between the normal to the wave frénand the mag-
the three wave modes. netic field. The= sign refer to wave fronts diverging away
Consider a spherical source which in the limit of zeroang converging toward the source, respectively. The actual
radius is a point source. The direction of the magnetic field isyave front surface is found by rotating the curve aboutzhe
chosen to be the direction of tteaxis. The intersection of gxis.
the wave front with a plane is given in terms of the curve = The parametric equations for the relativistic wave fronts
described by %,y) (normalized to Alfve speedl are

z Ry o 0Cn +cosesinzet BPR (P 4 O]+ cosd sir? 6 AR (D4 P
V, v, coso*cos V—At—m[ SIR— (St S‘)Q]+ZCHRQC’/VA{[ SiR+(ST+95)Q]

X[(1+2S2—S° cog 60— S’ cog 0)Q—3S’ co IR]+2S/RQ(2 cog 9—1)}t, (12

sind co< 6t sinf co< @

l=&sin0+sin6&t+—[(82+S$)Q—3$2R]+—{[3$2R+(SZ+32)Q]
Va Va7V T 2C,RQIV, LT M =2C,RQC IV, | LT

X[(1+2S? —S? cog §—S? cog 0)Q—3S7 cog HR]+2S;RQ(2 cog 6—1)}t, (13
where

R=[1+Va/c?(1+2S7+S%/2)], Q=[1+VA/cX(SI+3S2)],

C'={[(1+2S?—S? cog 9— S cog 9)Q—3S? cog 9R]*+4S!RQcog gsir? )2

Note that each mode of phase propagat@n (slow, fasj to nonrelatvisitc curves c(—>oo,a=V§/c2=O) which are
gives rise to the corresponding mode of group velocity. Theshown by broken lines. The fast wave has the maximum
equation for the relativistic Alfue wave front is given by group velocity while the slow mode is cusp shaggngu-

lar shapey both the cusps pointing away from the origin.

Vv, 1+ -2\ 2V, The pointing of cusps away from the origin is a charac'geristic
A = ) . —2=0. (14)  feature of the reverse RAM, which does not exist in the
Va R Va isotropic pressure MHI)7] wherein both the cusps of the

slow mode always point towards the origin. The Alfve

In order to highlight this feature which is characteristic of mode reduces to two points on the magnetic field axis. The
RAM, we plot in Fig. 1 group velocity6] in the (z,y) plane  relativistic effec a=V4/c?=0.2 (curves shown by continu-
for a point source R,=0) att=1 for S$=0.4=4S? using  ous lines] reduces the group velocity of all the three modes
parametric equationd2)—(14). Fort=1, zandy axes of the compared to its nonrelativistic counterpafis—«, a=0
figure are components @¢flimensionlessgroup velocity ra-  (curves shown by broken lings In both, the relativistic as
tionalized toV,. These values lie in the reverse-MHD re- well as the nonrelativistic cases, two modsfow and Al-
gime. The curves are cross section of the wave front througfven) have the same velocitidouble point along the mag-
magnetic field axisZ, which is the axis of symmetry. The netic field, which is the lowest velocity. The slow and fast
wave fronts are the surfaces of revolution about this axismodes have almost the same velocity along the direction of
Note that the wave front in the regiaf<<O are the mirror magnetic field; this is the highest velocity. The propagation
images(in they axis) of those in the regioZ>0. For clarity, of the two or all the three modes with the same velocity
relativistic curves are shown by continuous lines in contrastiepends upon the anisotropy of the pressure tensor.
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In conclusion, it may be stated that for any physical situ-simulated by the present equations while the background
ation where the magnetic field is strong such thaT>1, plasma can be described by nonrelativistic equations. Such a
wL>1 (w,=eB/M is the ion-cyclotron frequency, andL  problem is being addressed currently.
are typical temporal and spatial scales of plasma mptibe
present analysis can be applied. GRAM has applied such an One of the authoréG.L.K.) is grateful to the University
analysis to pulsar wind. Another astrophysical situationGrants Commissiofiindia) for sponsoring a major research
where this analysis can be extended is the propogation gfroject “Waves and Instabilities in Relativistic and Non-
cosmic rays through the background plasma in space. Sinaelativistic Magnetohydrodynamics,” under whose auspices
the cosmic rays move with relativistic speeds, these can bihis work has been completed.
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