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Bifurcation diversity of dynamic thermocapillary liquid layers
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We study, from the theoretical point of view, instabilities appearing in a liquid layer, where a dynamic flow
is imposed through a nonzero temperature gradient at the bottom. Experimentally many interesting dynamical
behaviors have been discovered in this system. In this Brief Report we prove that the basic solution can display
great richness of bifurcations which are controlled by heat related parameters. Different kinds of spatially
extended and localized structures appear, which are both stationary or oscillatory. These last ones can present
amazing patterns such as squares or spirals. Also competing solutions at codimension-two bifurcation points
have been found: stationary radial rolls with different wave numbers, radial rolls with hydrothermal waves, and
hydrothermal waves with different wave numbers. Remarkably our results recover many features of numerous
reported experiments, predict new instabilities, and by giving a deeper insight into how physical parameters
contribute to bifurcations, open a gateway to control those instabilities.
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Instabilities and pattern formation in buoyan
thermocapillary flows have been extensively studied in
last years. Classically, heat is applied uniformly from bel
@1# where the conductive solution becomes unstable for t
perature gradients beyond a certain threshold. A more g
eral setup considers thermoconvective instabilities whe
basic dynamic flow is imposed through nonzero tempera
gradients@2–4#. Recently a lot of attention has been paid
the case where temperature gradients are constant@2,5–10#.
This process, frequently referred to as lateral heating con
tion, displays many interesting instabilities@5,6,11–13#. This
problem has been treated from different points of view:
perimental @5–8,11# and theoretical both with semiexa
@2,9# and numerical solutions@10,14,15#. In experiments re-
ported in @5–8# several parameters are involved: Prand
Rayleigh, Marangoni numbers, and depth of the fluid lay
whose changing values lead to different transitions. A para
eter also present in those experiments, perhaps not s
ciently enhanced since it is difficult to tune, is the heat e
change with the atmosphere, quantified by the Biot num
In semiexact theoretical works@2,9#, heat exchange condi
tions with the atmosphere are fitted in order to find expl
solutions within the parallel flow approach. In numeric
studies@14,15# beyond this approach, insulated boundaries
the top and at the bottom are considered, i.e.,B50. In
@10,16# results are obtained where the importance of h
related parameters to develop the instabilities is adresse
this Brief Report we exploit this idea to prove that a gre
bifurcation diversity can be achieved by manipulating h
related parameters, in particular the Biot number. Our bif
cations explain many experimental results described in@5–8#
and anticipate new instabilities.

The physical setup is shown in Fig. 1. A horizontal flu
layer of depthd (z coordinate! is in a container limited by
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two concentric cylinders of radiia anda1d (r coordinate!.
The bottom plate is rigid and the top is open to the atm
sphere. The inner cylinder has a temperatureTmax whereas
the outer one is atTmin , and the environmental temperatu
is T0. In the equations governing the systemur , uf , anduz
are the components of the velocity fieldu, Q is the tempera-
ture,p is the pressure,r is the radio vector, andt is the time.
The system evolves according to momentum and mass
ance equations and to the energy conservation princi
which in dimensionless form are~see Ref.@16#!

“•u50, ~1!

] tQ1u•“Q5¹2Q, ~2!

] tu1~u•“ !u5PrS 2¹p1¹2u1
Rar

ar0DT
ezD , ~3!

where the operators and fields are expressed in cylindr
coordinates and the Oberbeck-Bousinesq approximation
been used. Hereez is the unit vector in thez direction,r is
the density,a is the thermal expansion coefficient andr0 is
the mean density. The following dimensionless numb
have been introduced: the Prandtl number Pr5n/k and the
Rayleigh number Ra5gaDTd3/kn, which represents the

FIG. 1. Problem setup (a50.01 m,d50.02 m).
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FIG. 2. Marginal stability diagrams which showDTc vs the wave numberm for a decreasing sequence of Biot numbers andDTh

56 °C. Filled black circles indicate a complex eigenvalue while nonfilled circles correspond to a real eigenvalue.~a! Stationary bifurcation
at B50.9, mc515, andDTc56.70 °C. ~b! Codimension-two bifurcation of stationary modes with wave numbersmc515 andmc519 at
DTc56.99 °C andB50.83. ~c! Stationary bifurcation atB50.8, mc520, andDTc57.14 °C.
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buoyant effect. In these definitionsn is the kinematic viscos-
ity of the liquid, k is the thermal diffusivity,g is the gravity
constant, andDT5Tmax2T0.

The boundary conditions~bc! are ~on z51),

uz5
]ur

]z
1M

]Q

]r
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]f
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]Q

]z
1BQ50 ~4!

on z 50,

ur5uf5uz50, Q5S 2
r

d*
1

a

d D DTh

DT
11, ~5!

on r 5a* , r 5a* 1d* ,

ur5uf5uz50, ] rQ50. ~6!

Here B is the Biot number which quantifies the heat e
change with the atmosphere,a* 5a/d, d* 5d/d, DTh
5Tmax2Tmin , and M5gDTd/(knr0) is the Marangoni
number which includes the surface tension coefficientg. The
only control parameter mentioned in Refs.@2,5–9,11,14,15#
is DTh , however as discussed in@10,16# we find a new one,
DT, also related to temperature. We prove in this Brief R
port that both these physical quantities together with the B
number are able to control a great variety of bifurcatio
some of them appearing in the experiments reported
@5–8,11#.

Basic state and linear stability analysis. The horizontal
temperature gradient at the bottom settles in a stationary
vective motion, which is computated as in Ref.@16#. Increas-
ing the control parameterDT makes the basic flow unstab
and different bifurcations arise. The linear stability analy
supplies information on the critical values ofDT at which
05730
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this happens and on the shape of growing instabilities.
study the stability by perturbing the basic solutions w
fields depending onr, f, andz coordinates in a fully three-
dimensional~3D! analysis, following the numerical schem
of Refs. @16,17#. Due to the periodical boundary condition
in the azimuthal coordinate the perturbations of any phys
function X can be factorized, and alongf is expanded by
Fourier modes,

X~r ,f,z,t !5X~r ,z!eim f1lt, ~7!

wherem is the wave number. The eigenvaluel characterizes
the instability, when its real part is negative the basic stat
stable but if it is positive the basic solution is unstable.
this case the imaginary part ofl can be zero and then th
bifurcation is stationary while if it is nonzero the bifurcatio
is oscillatory.

The bifurcations obtained whenDT is increased can be
very diverse, depending on the values of the heat rela
quantitiesDTh andB. We notice that in this Brief Report al
the parameter values that in the experimental Refs.@2,6–8#
are considered to influence the type of transition are k
constant. In particular we fix both the size of the contain
and the depth of the fluid layer, i.e., the aspect ratio isd*
510, and the Prandtl number (Pr5`). These asumptions
are quite standard and accurately represent any fluid wi
Prandtl number above 10 in a large cell where size and
ometry effects are minimized.

To explore the bifurcations we first setDTh56 °C. Under
this condition Fig. 2 shows the marginal stability curve~criti-
cal values ofDT versus the wave numberm) for different
Biot numbers. A codimension-two bifurcation is proved to
at DTc56.99 °C andB50.83, where two stationary mode
of

FIG. 3. Unstable modes of the temperature fields at different physical conditions.~a! Stationary mode withmc519 atDTh56°C, DT

57 oC andB50.83. ~b! Travelling wave withmc519 atDTh56 oC, DT515.04oC andB50.25. ~c! Square patterns at same conditions
~b! obtained by overlapping of left and right travelling waves.~d! Spiral-like travelling wave withmc513 atDTh51 o C, DT57.69oC and
B50.33.
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FIG. 4. Marginal stability diagrams which
show DTc vs the wave numberm at different
physical conditions. Filled black circles indicat
complex eigenvalue while nonfilled circles corre
spond to a real eigenvalue.~a! A codimension
two bifurcation of stationary and oscillator
modes at DTh56 oC, B50.25 and
DTc515.04oC. ~b! Competition of one station-
ary and two oscillatory modes atDTh55 oC, B
50.85, andDTc56.36oC.
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of wave numbersmc515 andmc519 become unstable@see
Fig. 2~b!#. Slightly increasing the Biot number (B50.9) fa-
vors the modemc515, which grows atDTc56.70 °C @see
Fig. 2~a!#, while if decreased (B50.8) it is the modemc
519 that grows atDTc57.14 °C@see Fig. 2~c!#. Figure 3~a!
shows the spatial structure in thex-y plane of the modemc
519 atDT57 °C andB50.83. It is localized near the ho
side, which is a feature that coincides with those reporte
experiments@18# and also in previous theoretical works@10#.

For DTh56 °C in quite different Biot values (B50.25) a
different codimension two point exists atDTc515.04 °C, as
Fig. 4~a! shows. In this case an oscillatory (mc519) and a
stationary mode (mc523) become unstable. If the Biot num
ber increases (B50.3) the stationary mode is favored, whi
if decreased (B50.25) it is the oscillatory mode that grow
at DTh517.94 °C. Figure 3~b! shows the oscillatory struc
ture at the codimension two point, which is localized near
cold side. The appearance of structures near the cold sid
also reported in experiments@6,8#, and now is achieved in a
3D theoretical study. At the critical point the oscillato
mode appears with its complex conjugate, and both solut
are overlapped to get a real solution. Complex amplitude
these modes lead to the square pattern or multicellular s
shown in Fig. 3~c!. The stability of this solution is suggeste
by the fact that it has been experimentally observed@6,11#.

Second we explore bifurcations forDTh55 °C. Figure
4~b! shows the marginal stability curve obtained atB
50.85. AtDTc;6.36 °C there are three relative minima co
responding to one stationary and two oscillatory mod
whose wave numbers aremc519, mc513, andmc517, re-
spectively. We have not proved that these structures have
same threshold, as it has been done for the codimension
points explained above. However, these modes have a
close critical value and beyond it could be expected com
tition between them. Therefore we have shown that a g
variety of bifurcations can be obtained: stationary, osci
tory, stationary-stationary, oscillatory-stationary, etc. Th
are obtained for anyDTh and are controlled by the Bio
number B, whose values can be tuned to achieve one
another kind of bifurcation or codimension two points. Th
fact could provide a justification of the experimental cont
of hydrothermal waves reported in@19#, where to supress th
hydrothermal waves they use a laser beam that is modify
the heat exchange at the surface. Figure 5 shows for e
DTh the Biot numbers at which codimension-two bifurc
tions occur. It can be seen that the dependence is not
notonous and has a maximum atDTh54 °C. These codi-
mension two points can be any of the types described ab
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For instance atDTh51 °C andB50.33 stationary and oscil
latory modes compete atDTc57.69 °C. This oscillatory
mode, whose wave number ismc513, has the spiral-like
appearance depicted in Fig. 3~d!. This result, which is novel
in this kind of problem, suggests that in the origin of spir
patterns in convection heat transport plays an important r
The existence and dynamics of spiral patterns in n
Boussinesq Rayleigh-Be´nard convection has been a matt
discussed in@20,21#, but in our context its existence is pre
dicted for the first time.

In conclusion we can say that a great diversity of tran
tions have been found in a thermoconvective problem w
an imposed constant temperature gradient at the bottom.
tionary or oscillatory instabilities have been previously r
ported in experiments, and several features have been re
ered in our results, as their appearance near the cold sid
the multicellular states. Other results such as the existenc
several codimension two points with competition betwe
different modes or spiral-like structures are predicted. Th
bifurcations are controlled by heat related parameters (DTh ,
DT, andB). This fact could provide a theoretical justifica
tion of the control mechanism described in@19#.
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FIG. 5. Biot number at which a codimension-two bifurcatio
point appears for differentDTh values.
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