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Bifurcation diversity of dynamic thermocapillary liquid layers
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We study, from the theoretical point of view, instabilities appearing in a liquid layer, where a dynamic flow
is imposed through a nonzero temperature gradient at the bottom. Experimentally many interesting dynamical
behaviors have been discovered in this system. In this Brief Report we prove that the basic solution can display
great richness of bifurcations which are controlled by heat related parameters. Different kinds of spatially
extended and localized structures appear, which are both stationary or oscillatory. These last ones can present
amazing patterns such as squares or spirals. Also competing solutions at codimension-two bifurcation points
have been found: stationary radial rolls with different wave numbers, radial rolls with hydrothermal waves, and
hydrothermal waves with different wave numbers. Remarkably our results recover many features of numerous
reported experiments, predict new instabilities, and by giving a deeper insight into how physical parameters
contribute to bifurcations, open a gateway to control those instabilities.
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Instabilities and pattern formation in buoyant- two concentric cylinders of rada anda+ & (r coordinate.
thermocapillary flows have been extensively studied in thelhe bottom plate is rigid and the top is open to the atmo-
last years. Classically, heat is applied uniformly from belowsphere. The inner cylinder has a temperatlyg, whereas
[1] where the conductive solution becomes unstable for temthe outer one is af ,,, and the environmental temperature
perature gradients beyond a certain threshold. A more gens Ty. In the equations governing the system u,, andu,
eral setup considers thermoconvective instabilities when are the components of the velocity fiaeld® is the tempera-
basic dynamic flow is imposed through nonzero temperaturéure, p is the pressure, is the radio vector, antlis the time.
gradienty 2—4]. Recently a lot of attention has been paid to The system evolves according to momentum and mass bal-
the case where temperature gradients are cong2as10. ance equations and to the energy conservation principle,
This process, frequently referred to as lateral heating conveevhich in dimensionless form arsee Ref[16])
tion, displays many interesting instabilitifs,6,11—13. This
problem has been treated from different points of view: ex- V.u=0, (1)
perimental [5—8,11] and theoretical both with semiexact
[2,9] and numerical solutiongl0,14,19. In experiments re-
ported in[5-8] several parameters are involved: Prandtl, 30 +u-VO=V7?0, 2
Rayleigh, Marangoni numbers, and depth of the fluid layer,
whose changing values lead to different transitions. A param-
eter also present in those experiments, perhaps not suffi- atu+(u~V)u=Pr(—Vp+V2u+
ciently enhanced since it is difficult to tune, is the heat ex-
change with the atmosphere, quantified by the Biot number.

In semiexact theoretical work®,9], heat exchange condi- where the operators and fields are expressed in cylindrical
tions with the atmosphere are fitted in order to find explicitcoordinates and the Oberbeck-Bousinesq approximation has
solutions within the parallel flow approach. In numerical been used. Here, is the unit vector in the direction, p is
studieq 14,15 beyond this approach, insulated boundaries athe density,« is the thermal expansion coefficient apglis

the top and at the bottom are considered, iBs0. In  the mean density. The following dimensionless numbers
[10,16 results are obtained where the importance of heahave been introduced: the Prandtl numbes Pfx and the
related parameters to develop the instabilities is adressed. Rayleigh number RagaATd® kv, which represents the
this Brief Report we exploit this idea to prove that a great

bifurcation diversity can be achieved by manipulating heat

related parameters, in particular the Biot number. Our bifur-

cations explain many experimental results describg8-8]

and anticipate new instabilities. a+d

The physical setup is shown in Fig. 1. A horizontal fluid d
layer of depthd (z coordinate is in a container limited by
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FIG. 2. Marginal stability diagrams which shodT. vs the wave numbem for a decreasing sequence of Biot numbers A,
=6 °C. Filled black circles indicate a complex eigenvalue while nonfilled circles correspond to a real eigef@atetionary bifurcation
at B=0.9, m.=15, andAT.=6.70°C. (b) Codimension-two bifurcation of stationary modes with wave numbegrs 15 andm.=19 at
AT.=6.99°C andB=0.83. (c) Stationary bifurcation aB=0.8, m;=20, andAT.=7.14°C.

buoyant effect. In these definitionsis the kinematic viscos- this happens and on the shape of growing instabilities. We
ity of the liquid, « is the thermal diffusivityg is the gravity  study the stability by perturbing the basic solutions with
constant, andkT=Tmax.—_To. fields depending om, ¢, andz coordinates in a fully three-
The boundary conditionfbc) are(on z=1), dimensional(3D) analysis, following the numerical scheme
au, y /0 us; MO 90 of Refs.[16,17]. Due to the periodical boundary conditions

U,=— — —+BO®=0 (4) inthe azimuthal coordinate the perturbations of any physical
9z a9z T d¢p oz function X can be factorized, and along is expanded by
onz =0, Fourier modes,
e ralaT i X(r,¢,z,t)=X(r,z)em M, @)
Ur=tg=l =0, B= s 8 AT 7 ®  Wwheremis the wave number. The eigenvalueharacterizes
. the instability, when its real part is negative the basic state is
onr=a*, r=a*+¢*, stable but if it is positive the basic solution is unstable. In

U =u,=u,=0, 3,0=0. (6) this case the ima_Lginary part f_Af_cgn be zero and _then t_he
bifurcation is stationary while if it is nonzero the bifurcation
Here B is the Biot number which quantifies the heat ex-is oscillatory.
change with the atmospher@*=a/d, §*=4/d, AT, The bifurcations obtained wheAT is increased can be
=Tmax— Tmin» @and M=yATd/(kvpy) is the Marangoni very diverse, depending on the values of the heat related
number which includes the surface tension coefficienthe  quantitiesAT,, andB. We notice that in this Brief Report all
only control parameter mentioned in Refg,5-9,11,14,1p  the parameter values that in the experimental R&$—-§
is AT;,, however as discussed [ih0,16 we find a new one, are considered to influence the type of transition are kept
AT, also related to temperature. We prove in this Brief Re-constant. In particular we fix both the size of the container
port that both these physical quantities together with the Bioaind the depth of the fluid layer, i.e., the aspect rati@*s
number are able to control a great variety of bifurcations,=10, and the Prandtl number (). These asumptions
some of them appearing in the experiments reported ire quite standard and accurately represent any fluid with a
[5-8,11. Prandtl number above 10 in a large cell where size and ge-
Basic state and linear stability analysi¥he horizontal —ometry effects are minimized.

temperature gradient at the bottom settles in a stationary con- To explore the bifurcations we first s&f,,=6 °C. Under
vective motion, which is computated as in Rf6]. Increas-  this condition Fig. 2 shows the marginal stability cufeeiti-
ing the control parametek T makes the basic flow unstable cal values ofAT versus the wave numben) for different
and different bifurcations arise. The linear stability analysisBiot numbers. A codimension-two bifurcation is proved to be
supplies information on the critical values AfT at which  atAT.=6.99°C andB=0.83, where two stationary modes

FIG. 3. Unstable modes of the temperature fields at different physical condit@rStationary mode witim,;=19 atAT,=6°C, AT
=7 °C andB=0.83. (b) Travelling wave withm,=19 atAT,=6 °C, AT=15.04°C andB=0.25. (c) Square patterns at same conditions of
(b) obtained by overlapping of left and right travelling wavés$). Spiral-like travelling wave wittm,=13 atAT,=1°C, AT=7.69°C and
B=0.33.
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1518 : : : FIG. 4. Marginal stability diagrams which
AT hne S R o o ] show AT, vs the wave numbem at different
T LN L 2% N AU S R S physical conditions. Filled black circles indicate
: 5 : BA2p A S\ SR complex eigenvalue while nonfilled circles corre-
) S SRR AN spond to a real eigenvaluéa) A codimension
15.050 ... 7. RN NS . .40\ - %N two bifurcation of stationary and oscillatory
' : : RN Ny modes at AT,=6°C, B=0.25 and
: : 6381 NN AT.=15.04°C. (b) Competition of one station-
1500, 2;0 = 2i4 2 1 1:3 115 = 19 ary and two oscillatory modes &T,=5°C, B

0 m =0.85, andAT,=6.36°C.
of wave numbersn.=15 andm.=19 become unstablsee  For instance aAT,=1 °C andB=0.33 stationary and oscil-
Fig. 2(b)]. Slightly increasing the Biot numbeB(0.9) fa-  |atory modes compete aAT,=7.69°C. This oscillatory
vors the modem.=15, which grows alT.=6.70°C[see  mode, whose wave number ia,=13, has the spiral-like
Fig. 2(@], while if decreased B=0.8) it is the modem;  appearance depicted in Figld3 This result, which is novel
=19 that grows at T,=7.14 °C[see Fig. Z)]. Figure 38 in this kind of problem, suggests that in the origin of spiral
shows the spatial structure in they plane of the moden,  patterns in convection heat transport plays an important role.
=19 atAT=7°C andB=0.83. It is localized near the hot The existence and dynamics of spiral patterns in non-
side, which is a feature that coincides with those reported ilBBoussinesq Rayleigh-Bard convection has been a matter
experiment$18] and also in previous theoretical worKd]. discussed if20,21], but in our context its existence is pre-
For AT,,=6 °C in quite different Biot values§=0.25) a  dicted for the first time.
different codimension two point exists AfT.=15.04°C, as In conclusion we can say that a great diversity of transi-
Fig. 4@ shows. In this case an oscillatoryng=19) and a tions have been found in a thermoconvective problem with
stationary moder.=23) become unstable. If the Biot num- an imposed constant temperature gradient at the bottom. Sta-
ber increasesR=0.3) the stationary mode is favored, while tionary or oscillatory instabilities have been previously re-
if decreased B=0.25) it is the oscillatory mode that grows ported in experiments, and several features have been recov-
at AT,=17.94°C. Figure &) shows the oscillatory struc- ered in our results, as their appearance near the cold side or
ture at the codimension two point, which is localized near thehe multicellular states. Other results such as the existence of
cold side. The appearance of structures near the cold side $&veral codimension two points with competition between
also reported in experimen{6,8], and now is achieved in a different modes or spiral-like structures are predicted. These
3D theoretical study. At the critical point the oscillatory bifurcations are controlled by heat related parametarB,(
mode appears with its complex conjugate, and both solutiond T, andB). This fact could provide a theoretical justifica-
are overlapped to get a real solution. Complex amplitudes dfion of the control mechanism described[iB].
these modes lead to the square pattern or multicellular state
shown in Fig. 8c). The stability of this solution is suggested
by the fact that it has been experimentally obserf&d1].
Second we explore bifurcations faxT,=5 °C. Figure
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responding to one stationary and two oscillatory modes, ,
whose wave numbers am,=19, m;=13, andm.=17, re-
spectively. We have not proved that these structures have th 111
same threshold, as it has been done for the codimension tw 4L
points explained above. However, these modes have a ver
close critical value and beyond it could be expected compe- 99f
tition between them. Therefore we have shown that a grea gl
variety of bifurcations can be obtained: stationary, oscilla-
tory, stationary-stationary, oscillatory-stationary, etc. They
are obtained for an\AT,, and are controlled by the Biot 06k
number B, whose values can be tuned to achieve one or
another kind of bifurcation or codimension two points. This
fact could provide a justification of the experimental control g4}
of hydrothermal waves reported [ih9], where to supress the
hydrothermal waves they use a laser beam that is modifyinc
the heat exchange at the surface. Figure 5 shows for eac g¢»

0.51

0.3F

ATy, the Biot numbers at which codimension-two bifurca- ! AT,
tions occur. It can be seen that the dependence is not mo-
notonous and has a maximum aff,=4 °C. These codi- FIG. 5. Biot number at which a codimension-two bifurcation

mension two points can be any of the types described aboveoint appears for differenk T, values.
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