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Detection and classification of nonlinear dynamic switching events
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A method is proposed for detecting chaotic switching events. Switching events are classified by the time of
the event and by parameter value. Classifications are based on the density of localized dynamics about a test
trajectory. This method is shown to be successful in tracking short-time parameter modulation and hypercha-
otic key shifting used in otherwise secure communications.
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The parametrization of a system abruptly changes to ar distance between attractors thereby making them unsuit-
new parametrization during a chaotic switching event. Thisable for chaotic switching detection. The methodologies also
reveals a sudden change in the system dynamics. Sucio not utilize the information about the dynamics contained
changes can be subtle, as with chaotic shift key cryptoin the vector field. This hinders comparisons between attrac-
graphic systemg1], or substantial with the possibility of tors which essentially fill the same bounded region of state
bifurcation or phase transition, as in the case of biologicappace but may differ dynamically.

[2], electronic[3], or mechanical systenjg]. The detection The approach used in this study models the localized dy-
and classification of switching events is integral to the un-namics within a collection of attractors with switching be-
derstanding of nonstationary systems and deriving applicaween attractors. The main objective behind a weighted den-
tions from those systems. For example, classifying pathosity of state model is to use all available system data to
logical cardiac rhythms relies on the detection of distinctivecapture the behavior of the localized dynamics on the attrac-
changes in electrocardiographic signig@$ and the onset of tor. In particular, the model captures the continuous variation
a mechanical malfunction can be detected from changes in@ density across the states comprising the attractor in a
machine’s dynamic performang¢d]. bounded region of state space and estimates the vector field

Awide variety of techniques have been developed to clasthat links these states together into trajectories.
sify the dynamics of a system. A small cross section of those Such a model forms the foundation for the ability to mea-
techniques includes unstable periodic orpik clustering of ~ sure similarities between the localized dynamics of two sys-
dynamical similarity measure$], chaotic synchronization tems. There are two steps in creating a weighted density
[1], fuzzy logic[7], and spectral analys8]. Classification Of state model. The first step requires the formulation of a
methods are often based on calculating a small number dgformalized density model of an attractor using either the
statistical quantities that summarize the global behavior ofull state vectors, or reconstructed state vectors, as the
the system thereby eliminating any chance of temporal resd?-dimensional points in a kernel density estimate. There are a
lution. Only a small subset of such classification technique§umber of ways to create reconstructed vectors from scalar
are suitable for the temporal localization of a switching even®r multivariate time series data. Typically, time delayed val-
and for the classification of new parametrizations. This subties of a sampled continuous scalar signaire used to form
set of techniques is successful at localizing switching event$ state vectos =[X; ,Xi_ ., - . . Xi—n-1)] where the delay
but they have not been demonstrated to track a wide range af is some positive integer number. The tih@and sample
parameters. They also lack the ability to detect switching irindexi are related by= (t—t;) As+1 whereAs is the sam-
high-dimensional systems. pling rate and, is the sampling start time. The dimension

A method is proposed which lends itself to the detectionhas to be large enough to provide a proper reconstruction, or
of a wide range of possible parametrizations and to the deunfolding, of the dynamics. General rules for dimension are
tection of slight dynamical differences. Rather than relyingn=2d,+1 [11] andn>d, [12] whered, andd, are the box
on summary statistical information, all of the available datacounting and correlation dimension, respectively.
is utilized to develop a model of an attractor’s localized dy- In the second step the vector field is estimated at each
namics. Two characteristic features of an attractor are modstate space poirg;. A simple approximation takes the line
eled with this method(1) the density of state space points in segment connecting the point in question to the next point on
a bounded region of state space a@l the vector field the trajectory translated to zexg =a.;—a . The magni-
which threads these states together into dynamical trajectq; e is calculated as the distance between the two points

ries. We refer to this model as a weighted density of state, | _|, . —5 and the direction is defined by the coordi-
model. Hivelyet al. utilized visitation frequencies of a sys- ﬂ a‘” a1 —al y
hates ofv%.

tem’s symbolic dynamics to detect dissimilarities betwee
parameterizationg9]. Multidimensional probability distribu- Given M samples of a test signay;, a trajectory
tions of delay vector sets were used by Détsal. to deter- b,M:HT(n,D is constructed with the same reconstruction pa-
mine if two time series had been generated by the sameameters,r andn, used in forming the weighted density of
system[10]. One drawback of these approaches concerns thetate model fox;. Note that it is assumed that the sampling
need for long time series segments to measure a dissimilarityates forx, andy, are the same. Weighted densities can be
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determined at each point along the trajectory by using a Weighted density of state models were developed as a
modified kernel density estimate means of detecting switching events induced by changes in a
known set of parametrizations. Let it be given that a scalar or
multivariate signal from a system is known to be operating
w;iK(uj), (1) within a bounded region of parameter space comprised of a
set of parametrizationp}. The goal is to detect transitions
between parametrizationg,—pm,, by finding which se-
quence of weighted density of state models best match the
sequence of dynamical behaviors exhibited by the test signal.
Detection and classification of a switching event relies on
Ve Vo vall Vel gatheri_ng 'evidence of \(vhich reconstrugtion space, i.e., pa-
S B I cosé (2)  rametrization, has the highest total density of similar dynam-
||Cij|| ||Cij|| ||Cij|| ||Cij|| ' ics to a test trajectory. The measurement is relative because
o ) the outcome relies on comparing the densities found for each
where the normalizatiofic;j || = max(lva|.[\vs,[) making the  \veighted density of state model. Parameter classifications
weight boundedw;;<+1. The two attributes of a vector, are made by taking the maximum likelihood of a moving
length and direction, appear in the weighting factor in Eq.average oim density values or the center of mass of density
(2). Each is an independent way of filtering out neighboringvalues. The center of mass, for a distribution of density val-
points which would otherwise contribute to the density.ues in parameter space for a pomton the trajectory,
Weighting the individual density contributions reinforces the

1 N

)= —

(b)) [N—7(n—1)]h" i=1+§r‘(n71>
where h is the kernel bandwidth parameter amog = (b
—a)(b;—&)/h?. The weightw;; is defined as the normal-
ized dot product of the vector fields

Wij

notion that each point in the test trajectory measures the local P
density of similar dynamics, and not just the presence of E fo(bj)p
nearby state space points. ISj = (4)

For this study the radially symmetric multivariate P
Epanechnikov joint probability function is used as the kernel Z fo(bj)
[13]. Because it has finite support the resulting density dis-
tribution is bounded. The kernel is defined as is used when a |arge set of parametrizatiép}s is being

o ] explored and when the distance between parametrizations is
K(u)= (2¢,) *(n+2)(1-u) ifu<l 3 small. The dynamics exhibited by nearby parametrizations

can be very similar in the structurally stable sense, i.e., at-
tractors within the set are topologically conjugfid].
wherec, is the volume of the unit sphere mspace. The time of the switching event is centered about the
A variety of techniques have been developed for selectingpoint where half of the time series data used in the moving
an “optimal” bandwidth h. Despite their different ap- average would be halfway in each parametrization. For ex-
proaches, each method shares the same trade-off of under-@nple, with a delay coordinate spanning—(1)7 sample
oversmoothing the density estimate when too small or togoints and a moving average wfdensity values, the moving
large a bandwidtth is used. This trade-off also applies to average would be centered around the paihti+[(n
weighted density of state models. For weighted density of-1)7+m]/2 wherei is the earliest time sample used in the
state models the objective is to find the localized densitydelay coordinate.
around each point in a trajectory such that, on average, there As a first demonstration of this methodology, we studied
is a nonzero density between nearby orbits. Too small #he Lorenz equation with a time-varying parametrization.
bandwidthh can leave the density contributions of nearby The Lorenz equatiofl5]
and dynamically relevant trajectories out of range. Too large

0 otherwise,

a bandwidthh will cause distant and less dynamically rel- u=-10u-v),

evant trajectories to contribute to a query of an attractor’s _

localized density. To accommodate these competing concerns v=Ccu—v—20uw,

the bandwidthh is calculated as the average Euclidean dis-

tance betweek nearest neighbors which are not neighbors W= Uy — 2.666 666 666 @, (5

on the same trajectory segment. The vaddigan empirically

derived number. The best models use a siadlue thereby was made nonstationary by a stepped gain coefficignt
minimizing the overlap with one another if two models have =[ 65+ 20 sin(47|t/2]/80)]. The unknown signaly, was
differing support in reconstruction space. However, if thetaken as the scalar signalsampled as=100 samples per
dynamics are switched at relatively short time intervals, thesecond witht € [0,80] and initial conditionq1,1,1} (see Fig.
trajectories will often reside in attractor basins rather than orl). Weighted density of state models were built for the pa-
the attractor itself. In this case, too small a bandwidtlor ~ rametrizationp={c}={25,26 .. .,9¢ using the last 12 000
number of nearest neighbokswill result in a large fraction points of u from te[0,130 from each initial condition

of zero density values. The “optimal” choice for the number {3,1k}, k=1,2,...,10. The same reconstruction param-
of neighborsk is therefore application dependent and is de-eters,7=7, n=14, andh=6.0, were used for each model.
rived heuristically. Because only local densities were measured, the “curse of
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FIG. 1. State space of Lorenz system with sinusoidally varying Txf-, 0.5F
parametec, . The state variable was used as the unknown signal «~
Yi- oL
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dimensionality” does not apply. The attractor and, at smaller

scales, trajectory bundles form a compact subspace within FIG. 3. Weighted density of state models broke a chaotic key

this high dimension. A high dimension insured that similarshift code with a unidirectionally coupled Lorenz system as the

dynamics remained close where dissimilar dynamics, i.elransmitter( The transmitted signa(b) The average density of a

false neighbors, diverged. The bandwititivas chosen heu- 200-p0|.nt(2 S recohstructed trajectory segment compared against

ristically as the mean distance of the twelfth nearest neighbdive Weighted density of state model}={4.0} and {b}={4.4;

for c=90, the largest attractor in terms of support. For com-2r€ dénoted by gray and black lines, respectivelyThe recovered

parison the mean distance for=25 was approximately 2. (black ling binary message signaj, .four.'d .W'th maximum I'ke"f
Using the same reconstruction parameters, the test signh?Od' The message sigrgl (dotted ling is included for compari-

y; was transformed into a trajectoby in this reconstruction

space. Using Eq1), weighted densities were determined for of 2 s the trajectory spent a relatively long time in the basin

each point in the reconstructed trajectory for each model res¢ e attractors it converged to after each switching event.
sulting in 66 time series of density values. A moving averag

& rrors arise because neighboring attractors can occupy each
of 50 center of mass estimatgsq. (4)], is displayed in Fig. d g by

5 Fi 5 d hat th imatoncloselv fol others basin of attraction. This was best illustrated in the
- Figure emonstrates_ t :_:1t the e_sﬂmatt_gnc osely Tol- beginning with the estimations generated after the initializa-
lows the true parametrizatior, with estimation errors

tion of the trajectory with an initial condition far from the
closely scattered abowt. These errors are caused by the guracior. As the trajectory converged to the attractor, it

trajectory taking time to converge to a new attractor aftefy,yeq through high density areas in a number of models.
each switching event. With a relatively small shifting period |, chaotic key shift code cryptography a binary message
signal s, is used to modulate a chaotic transmitter between

two nearby parametrizations. To transmit the message one of
the state variables is sent. The message signal is then de-

90 T T T T T T T

801 coded at the receiver through synchronization. Hyperchaotic
chaotic systems are generally considered more secure since
701 the geometric structure of an attractor is more complex
[8,16-18.
\gweo i To illustrate this, the authors of R€#8] demonstrated an
g unmasking technique in the frequency domain which failed
o

for the unidirectionally coupled Lorenz system. The equation
of state of the coupled Lorenz systems was given by

40 .
u;=—168u;—vy),
30 1 :
) ) ) ) ) ) ) U1:45.611_U1_2QJ1W1,
0 10 20 30 40 50 60 70 80 )
t(SeC) W1=5(0.9,ll+0.1u2)vl—bwl,
FIG. 2. Weighted density of state models were used to estimate .
the sinusoidally varying parametey using the center of mass ap- Up=—16(U~vp),
proach in Eq.4). c; andc,, are denoted by black and gray lines, )
respectively. V,=45.61,—v,—20u,W,,
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Wo=5U,0,— bwy, (6) a weighted density model for each parametrizatpgnand
pi, using Eq.(1) the density at each point along the test
where binary 0 and 1 were represented by the parametrizdi@jectory for each model was calculated. The moving aver-
tions py={bl=1{4.0} andp,={b! ={4.4}, respectively, with 29€ density is shown in Fig(l. The result of the maximum
a clock rate of 10 s. The state variahle was sent as the likelihood approximations, 1s shown in Fig. .3:)‘ Since a
transmission signal. This hyperchaotic system was chosen fgconstruction state space point can contain time series infor-

- ; o mation from both attractors, the estimation of the time of the
demonstrate the.ab'.“ty to de_tect Ch.aOt'C _swnchmg bewVee@witching event tended to be blurred but generally near the
nearby parametrizations in higher dimensional systems.

. o i tual switching time. Despite this, the hidd [
The test signay, with initial conditions{1,1,3,1,1,3 and aciua’ swiehing tme. Lespiie this, the hidden message 1S

. ; reliably intercepted.
te[0,80] was taken as the scalar time serigssampled at The detection and classification of chaotic switching

As=100 samples per second where the binary message is S&fents is an important aspect of understanding nonstationary
to an alternating sequence pf andp;’s. The last 25000 nonlinear systems. Many industrial, medical, and electronic

points of u; from te[0,260, with initial conditions applications rely on the detection of these changes in near
{3,1k,3,1k}, k=1,2,...,10, and the reconstruction param- real time. The methodology presented here is intended as a
eterst=7, n=14, andk=4 orh=0.39, were used to create tool suitable for detecting such changes.
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