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Generalization of the Wang-Landau method for off-lattice simulations
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We present a rigorous derivation for off-lattice implementations of the so-called “random-walk” algorithm
recently introduced by Wang and Landahys. Rev. Lett86, 2050(2001)]. Originally developed for discrete
systems, the algorithm samples configurations according to their inverse density of states using Monte Carlo
moves; the estimate for the density of states is refined at each simulation step and is ultimately used to calculate
thermodynamic properties. We present an implementation for atomic systems based on a rigorous separation of
kinetic and configurational contributions to the density of states. By constructing a “uniform” ensemble for
configurational degrees of freedom—in which all potential energies, volumes, and numbers of particles are
equally probable—we establish a framework for the correct implementation of simulation acceptance criteria
and calculation of thermodynamic averages in the continuum case. To demonstrate the generality of our
approach, we perform sample calculations for the Lennard-Jones fluid using two implementation variants and
in both cases find good agreement with established literature values for the vapor-liquid coexistence locus.
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I. INTRODUCTION tions. Second, the method appears to be affected less by the
sampling problems of conventional MC simulations because
Computer simulations have become an important an@énergies are sampled with equal probability; this contrasts
well-established method for evaluating structural, dynamicwith conventional MC simulations for which high-energy
and equilibrium properties of substances. In particularparriers are infrequently crossed.
Monte Carlo (MC) methods in the canonicalconstant As noted in[5], the Wang-Landau method is most similar
N,V,T), isothermal-isobari¢constantN,P,T), and grand- to the multicanonical techniques introduced by Berg and
canonical ensemblegonstantu,V,T) are commonly used Neuhaug6,7]. (For a more thorough review of multicanoni-
to obtain thermodynamic properties for given microscopiccal methods and their application to fluid phase transitions,
interactions[1,2]. Though the conceptual basis for conven-see[8].) Briefly, in a multicanonical simulation, one intro-
tional MC simulations is straightforward, sampling con- duces an artificial sampling scheme that enhances the sam-
straints can emerge under certain circumstances. Exampleting of important states which are otherwise infrequently
of such conditions include low-temperature and high-densityisited when the typical Boltzmann criterion is used. This is
systems for which ergodic sampling is difficult to achieve inparticularly useful, for example, during a subcritical grand
a reasonable number of simulation steps. As a consequenasgnonical simulation when traversing the liquid-gas transi-
numerous modifications of conventional MC methods haveion. The sampling rule is constructed so that all macroscopic
been proposed to enhance exploration of the phase space oftates are equally probable, i.e., it samples according to an
system. Among these are annealing, parallel-tempering, andverse density of states. Initially the density-of-states func-
multicanonical algorithmgfor an overview of these meth- tion is unknown. It is generated iteratively over the course of
ods, sed?2]). several runs by maintaining histograms of states visited and
Recently, Wang and Landau proposed an elegant methagbdating between runs; frequently visited states are given
for direct calculation of the density of states in computerhigher values of the density of states. At the end of the itera-
simulations[3,4]. The density of states, that is to say thetive procedure, a longer “production” simulation is per-
degeneracy of energy levels available to the system, is diformed. True thermodynamic averages can then be generated
rectly related to entropy and can be used to calculate alby first unweighting the production results using the calcu-
thermodynamic properties at any conditions of intef&3. lated density of states and then reweighting them with the
In the Wang-Landa(@wL) method, the probability of observ- Boltzmann rule.
ing a particular atomic configuration is inversely propor- The Wang-Landau method also samples macroscopic
tional to the density of states corresponding to the giverstates with equal probability. Its distinguishing feature is the
energy. This sampling scheme ultimately results in a uniformdynamic update of its acceptance rule; that is, the density-of-
distribution of macroscopic observables. Though the densitgtates estimate is modified at every simulation step rather
of states is not knowr priori, it is successively approxi- than between runs. This violates microscopic detailed bal-
mated by modification at each simulation step so as to ensuince; state probabilities fluctuate during the simulation. The
the uniform distribution. The method is advantageous forresolution of this violation is the following: over the course
two reasons. First, a single, long simulation can provide inof the (long) simulation, the magnitude of the density-of-
formation to calculate properties over a range of state condistates modification is decreased until changes are just within
the precision of the computer. At this point, the detailed bal-
ance isessentiallysatisfied. Contrary to the multicanonical
*Corresponding author; email address: pdebene@princeton.eduapproach, the calculated density of states is not used to un-
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weigh simulation results. Rather, it is used directly via its €
statistical mechanical connection to entropy as given by Q(N,V,E)sz SE—-H(pPN,g3V)dp*Nd N,

Boltzmann’s equation,
2.1

S=kInQ(N,V,E), (1.1 whereN is the number of particled/ is the volumeE is the
total energyh is Planck’s constang is the Dirac delta func-
where k is Boltzmann’s constant anf is the density of tion, pan_dq are congugate momenta anq positions, Hn.d
states. the Haml_Itonlan of th_e syster_n. The physical mterpretatlo_n of
the density of states is th& gives the number of states with

In their original papers, Wang and Landau effectively ap- : ; :
plied their method to discrete systems. For such cases, the&ergyE accessyble th particles in volumev. Th.e factore
a constant with units energy that characterizes the small

complete set of energy levels can be enumerated and tHe . : X SO
density of states is stored, in exact form, as an array in th&Nergy interval into which the complete energy range is di-

computer. The use of the WL method in off-lattice systemsv'qed; Its precise value, however, does not affect the calcu-
ation of thermodynamic quantities. The factorial term and

however, is emerging as an important simulation tool. It ha lanck's constant are guantum-mechanical in nature. the
already been used successfully to describe properties of the q ’

Lennard-Jones fluifi5]. Continuum systems require several tﬁrenr;trt:rcﬁ)or':l[ﬂgr}?rrrﬁrir:]heolsng(;skt)ln%#:ﬂ:]bélelt%a?:}fartrliﬂgs Ii.ni?]
nontrivial extensions of the original method. For such sys- P y yP P

. : e definition of a volume element in phase space. It should
tems, one must approximate the true density of states by t§e noted that in order to make E(@.1) well-defined, we

discretized version and choose, via trial-and-error or calcu- laces with 5 which is a “delta” functi f I

lation, a finite range of energy over which to determine thema;yf.re.tp aC'dt;]NA 9 » WHICN IS a “aelta” Tunction of sma

density of states. Furthermore, kinetic degrees of freedorrP,u inite wiatr (9] . . .
Because) is known explicitly for an ideal-gas, it is de-

which are not explored during the simulation, must be taken . ; . _
into account in the processing of results. sirable to factor out the ideal gas density of states. Since the

The rigorous connection between the WL approach in Of.f_H.amiItonian is a function of the ki.m.etic and potential ener-
gies, the total system can be envisioned as separate kinetic

been addressed. Specifically, the statistical-mechanical baﬁ?d configurational subsystems that exchange energy. Ac-

for developing acceptance criteria and for the treatment ofOrdingly, Eq.(2.1) becomes
kinetic degrees of freedom has not been systematically dis-
cussed in the literature to date. Here we clarify the theoreti-Q(N,V’E): 3; f SE—K(p3N)—U(q¥N))dp3Nd N

cal basis for the Wang-Landau method for continuum sys- h="N!

tems and discuss the logistics of its implementation. We

show that kinetic and configurational contributions to the € f f SE—t—K(p3)dpN
density of states can be formally separated into the ideal gas TEINNT (E—-t=K(p™))dp

and “excess” density-of-states functionQ,;; and .,. By
casting the simulation in a “uniform” ensemblee., one in
which all macroscopic observables are equally probakble
derive the appropriate acceptance criteria and data analysis
methods for simulations that prol,,. Finally, we show whereK is the kinetic energyJ is the potential energy; is
that either of two types of simulation moves, involving par-a normalization constant, and the outer integral is between
ticle number or volume fluctuations, may be used to exploréhe minimum energy the system can adopt d&dn Eqg.
the density dependence 6., for single-component sys- (2.2), ) is obtained by integrating over all possible distribu-
tems. We believe the WL approach to be a powerful simulations of energy between the kinetic and configurational sub-
tion algorithm, and so the aim of our derivation is to providesystems. This equation is rearranged to obtain the desired
a starting point for future applications and extensions of theseparation of ideal gas and configurational components,
off-lattice version of the method.

This paper is structured as follows. In Sec. I, we gener- 1 eVN N N
alize the continuum WL method to the uniform ensemble and (N.V.E)=¢ f h3NNI f S(E—-t=K(p™))dp
present the appropriate acceptance criteria and averaging '
procedures for simulations. In Sec. Ill, we discuss several €
important numerical issues that arise in simulation of con- X[—Nf St—U(g*V)dg®N
tinuum systems, and in Sec. IV we compare results for the v
Lennard-Jones fluid using two variants of the method.

X

f 5(t—U(q3N))dq3N]dt, (2.2

dt

:6—1f Qig(N,V.E-1)Qe(N,V,)dt, (2.3

Il. DERIVATION OF THE METHOD . . . .
where ()4 is the ideal-gas density of states afid, is the

We begin with the classical microcanonical partition func-excess contribution due to configurational degrees of free-
tion for a single-component system of structureless particlesjom. Note that(), is not the configurational density of
which may be written as states, which is given instead by

056703-2
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€

g5"N!

Qeond N V.E) = f SE-U(E)dE, (2.4

whereqq is a constant with units of length. The relationship
between() coniig and Qe is

N!

Qe)&N1VvE)~V_,.\chonfig(N-VvE)- (25)

where the trivial dependence @ has been omitted. In the
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In the uniform ensemble, configurations characterized by
specific values oN,V,U will number according td o,
but will each have a probability inversely proportional to
Qconiig» resulting in a uniform distribution of energies, vol-
umes, and numbers of particléwsithin the confines of the
variable bounds This is an extremely important property; it
provides a feedback mechanism for calculating the density of
states. Based on deviations from a uniform distribution, we
can systematically adjust an initial estimate g,y (Or
Q.,) until we have converged on the true function to within
the error of our adjustments. The task is to design a simula-

Landau-Wang simulation methodology, sampling is per+jon sampling scheme according to Eg.7).

formed according to the inverse density of configurational

states,{)qniig- However, one maycalculate either (), or

In conventional single-component Monte Carlo simula-
tions performed on spherically symmetric particles, three

Qconig @s long as the acceptance criteria and reweightingypes of moves are common: single-particle displacements,

scheme are appropriately construciseée Sec. Il In our
simulations, we choose to tabulafk,, rather than()q.fg,

volume scaling moves, and particle additions and deletions.
The acceptance criteria for these moves are derived by im-

mainly because excess properties have an intuitive physic@losing a microscopic detailed balance that ensures equality

basis.

of probability fluxes between pairs of statf2]. For two

Once one has calculated the excess contribution to thétatesA andB, the acceptance criterion is formulated to yield
density of states, thermodynamic properties of interest are

found by adding the ideal-gas contribution. The ideal-gas

density of states is given by

€ N
Qig(NyV,E)th

(N!

wherem is the mass of the particles aeds the base of the
natural logarithm[10]. (Several approximations have been
made here, including the use éN—1~3N and the as-
sumption thate is of negligible order. For a detailed deriva-
tion, the reader is referred {d1].)

J S(E—K(p*N))dpN

N
, (2.6

3/2
47mE)| " Ve?

3h?

N5/2

Pacd A—B)

mZ{P(B)a(BHA)}

X{P(A)a(A—B)} 1, (2.9

whereP,..is the acceptance probability,is the equilibrium

probability, anda is the Markov-chain transition probability.
For single-particle moves, one selects a particle and

makes a random displacement by an amound,,, to

+ Smax IN €ach component of its position. Using EQ.9),

the detailed balance for this type of move is

The WL method can be generalized to a uniform en-

semble for configurational degrees of freedom. In this en

semble, the probability of observing a specific configuration

IS

B doNdv

P N1V1 3N ’
( q ) CQconfig(NaV,U(an))

(2.7

whereg®N represents the positions of the particles. The nor
malization constan€ is given by

fvmax J
Vimin Emin(N,V) <U<EpadN,V)

3N

Nmax

C

N=Npjn

dgNtdv, (2.9

X
Qconfig(N ,V, U(qu))

PadA—B) | (dg™dV)g 1 (dg’)a
Pacd B—A) Qconfig(l\lvvaUB) N (25max)3
- (dg®™dV), 1 (dg’)g

-1
QeonidN,V,Up) N (25max>3]

=Qconfig(NyV,UA) _ O (N, V,Up)
Qconfig(N'V,UB) QeX(N,V,UB)'

(2.10

where the simplification in the second line arises from the
fact that the differential elementdV and the phase-space
volume elementsig®N are equivalent in states andB. The
third line results from the fact that the number of particles
and volume remains constant. In this move, the transition
probabilities are symmetric, and thus cancel each other for
constantd,,,,. It is not uncommon, however, to encounter a
varying d,a in conventional Monte Carlo simulations,
wherebyd,ax is dynamically changed to achieve a specified

where the system potential energy, volume, and number aicceptance rate. In this latter case, the detailed balance is not
particles each varies between set bounds and the innermaggorously satisfied. However, the distribution of sampled
multidimensional integral is over the system volume. Thestates in a conventional simulation is sharply peaked such
existence of these limits implies that state probabilities arghat fluctuations away from the mean are small. The result is
uniform within and zero outside of the specified range ofthat fluctuations inS,,,5x are also small, and,,,, is effectively

N,V,U.

constant. In the uniform ensemble, however, all states have
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equal probability and fluctuations from average values are

large. It is imperative, therefore, to explicitly maintain con-
stantd,y after finding a good initial value.

For volume scaling moves, one increments the volume by

an amount- A . t0 + A2 @nd scales the entire simulation

box and particle positions accordingly. Contrary to the pre-

vious move, the phase-space volume elemdq®' are not

equivalent in states of different volume. The correct ap-

proach uses reduced coordinatesN=\V"Ndg*N which are
equivalent across volumes. The acceptance criterion is
(WNds*NdV)g  (dV),

1Qconfig£NaVB rUB) 2Amax]

X[ (VNds3Nd V) 5 (dV)B}l
Qconfig(N-VAvUA) 2Amax

_ QeonigN.Va,Up) Vi _ QeNVa,Up)

Qconfig(N!VB!UB) VX Qe)&N!VBlUB) '

(2.11

F’acc(A_> B) _
Pacd B—A)

where, in the second line, the differential elemeahts and
the reduced phase-space volume elemdstd are equiva-
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PacdA—B) [ (dg®™"3dV)g 1
Pacd B—A) | Qeonig N+1V,Ug) N+1
(dg®NdV),  (do)g

-1
“ |
Qconfig(NyvaUA) \
_ Qconfig(NvVaUA) \

 Qeonig N+1V,Ug) N+1

QN Up)
C Qe(N+1V,Up)’

(2.13

where stateB has one more particle than stateFor a par-
(dg*™°dV)g

ticle deletion,
[Qconfig(N_laVaUB) ]

[ (dg®™dV)a 1
X
QedN,V,Up)

Pacd A—B) _ (qu)A

Pacc(B_’A)

\%
Qconfig(NaVvUA) N

]l
_ Qconfig(N-VleA) E:
Qconfig(N_]-aVaUB)V Qe (N=1V,Up)’

(2.19

lent in both states and cancel. In this case, the transformation

from an acceptance criterion involvir@consig to ¢, Offers
simplification. Often, one would like to calculate thermody-
namic properties over several orders of magnitude in vol

ume, e.g., when investigating liquid-gas phase transitions. . . X .
9 gating Jquic-gas p |performed using the traditional Metropolis algorithm,

Then, it becomes much more efficient to make volume sca

where stateB has one less particle than staie For both
moves, the change frofd .,gto ¢, results in criteria iden-
tical to those in Eqs(2.10 and (2.11).

For the acceptance criteria just described, sampling can be

ing moves in the logarithm of the volume. The acceptance

Pacd A—B) _
PacdB—A)

criterion for this type of move is
:(VN+1ds3NdInV)B (dInV)A]
Qconfig(Ny“"VB,UB) 2|nAmax
X[ (VN*1ds*Nd In V) 5 (dInV)B}l
Qconfig(N-mVA,UA) 2 InAmax
_Qconfig{NyanA,UA) Vng

_Qconfig(N- InVg,Ug) V§+1

_ QeX(NvanA!UA) VB
0N, InVg,Ug) Vu'

(2.12

where we have switched to calculatifigas a function of the
logarithm of volume rather than the volume itséhis does
not affect the behavior df for a given volume It should be

QedlA)
Qe(B)

(2.19

|

with the exception of Eq.2.12), for which there appear extra
volume terms(The labelsA andB have been used to abbre-
viate the valuesN,V,U which characterize each configura-
tion.) Moves for whichB is out of the range of the ensemble
are rejected. Initially, the density of states is given the value
1 everywhere; then, after each move during the simulation,
its value at the current state is scaled. If s@atis the ending
configuration after a move, being eith&ror B, the modifi-
cation reads

Pacd A— B)=min( 1

[Qexd(C) Inew= F[Qex(C)]oias (2.19
wheref is a number greater than 1, termed the modification
factor. The dynamic modification of the density of states in
this way, coupled with the uniform ensemble, dries, to

noted that in both types of volume moves, the maximumits true value to within a multiplicative constant. It is impor-

volume changé\ ,,,, should remain constant during the pro-

tant to recognize that the modification factor mediates the

duction phase of the simulation, for the same reason merresolution of the calculated density of stated. i large, the

tioned for &ay-

detailed balance is not satisfied afd, will have large error

In particle addition or deletion moves, one inserts a parfluctuations; wherf is very small, it will take an inordinate
ticle at a random location or deletes a randomly chosen paamount of simulation time to calculate,,. The solution is
ticle, respectively. For the particle addition case, the detailedo devise a schedule for the modification factor. Initidlhg

balance yields

large, but in discrete steps at periods during the simulation, it
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is decreased until it approaches(Ihe details of this proce- over volume, potential energy, and kinetic energy, the latter

dure are described in the following implementation section. of which is analytic using Eq.2.6) for the ideal-gas density
For simulation purposes, it is important to recognize sev-of states:

eral properties of the density of states in the thermodynamic

limit. First, one only needs the intensive entropy for calcu-

lating thermodynamic  properties, that is,S/N - _

=f(E/N,V/IN). Therefore, a simulation should make a(P,T)—f f f a(V,U)P(V.K,U)dUdKdv

changes in energy density and particle density, of which the

latter can be accomplished either by volume scaling moves :J J a(V,U)[C(N,P,T)Qq(V,U)
or particle additions and deletions. Second, nearly all calcu-
lations of interest rely on derivatives of the entropy; there- x g~ (U+PVIKT+NIN(VIVo) | gy d v

fore, entropy can be calculated to within an additive con-
stant, i.e. ()¢, is known to a multiplicative constant.

Once(), has been generated, any thermodynamic prop- :f f a(V,U)P(v,U)dudV, (219
erty of interest can be calculated. In principle, both E43)
and Boltzmann’s equation could be used to determine theherea is either volume or potential energy. In the second
total density of states and, subsequently, thermodynamiline, we have substituted the ideal-gas density of states and
properties from its various derivatives. In practice, it is moreintegrated over kinetic energy. The const@{iN,P,T) con-
convenient to average in an ensemble natural to the fluctuatains the result of this integration as well as the inverse par-
ing quantities in the simulation. This approach is especiallytition function. In practiceC is calculated as the constant
important for properties that are sensitive to system sizéieeded to normalize the probabilities given by the exponen-
since it preserves the effects of the simulation fluctuations. Ifial. Note thatV, is an arbitrary reference volume to preserve
volume scaling moves and particle displacements are used imits. Its presence is aesthetic as its effects are eliminated by
the calculation of(),,, the isobaric-isothermal ensemble is the normalization.
natural for calculations. Given a pressure and temperature, A similar construction is made if the original simulation
the probability of a state in this ensemble is entails fluctuations in particle number and energy. Here, the
appropriate ensemble is the grand-canonical ensemble; the
probability of a state given a temperature and chemical po-
tential is

1
P(V, K,U) = mﬂig(V,K)Qex(V,U)

Xe—(K+U+PV)/kT, (217)

P(N,K,U) = W
whereA is the isothermal-isobaric partition functigwhich =Y
effectively normalizes the probabilitigsk is Boltzmann’s x @~ (K+U=uN)/KT (2.19
constant, and the dependenceMim () has been suppressed
(the number of particles is fixed in both our simulation andwhere £ is the grand-canonical partition function and the
the ensemble To determine the mean configurational energyvolume dependence & has been suppressed. The average
U and volumeV in this ensemble, one integrates E@.17)  potential energy and particle number are given by

‘Q’ig(NvK)QexN!U)

E(,,L,T):EN) JJa(N,U)P(N,K,U)dUdK

:E fa(N,U) E*lQe)&N,U)e*(U*/LN)/kT*(S/Z)N In N+,u0(V)N/kT(f K(3/2)NeK/deK)}dU
N L

r KT (3/2N+1

:E fa(N,U) E—lQeX(N,U)e—(U—,u'N)/kT—(S/Z)NInN du
N

2

3
e(—N+1

:E f a(N,U)[E—lﬂeX(N’U)e—(U—p,'N)/kT—N In N+ (3/2)N |n(kT/E0)]dU
N

=% fa(N,U)P(N,U)dU, (2.20
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wherea is either the number of particles or potential energy.modifications of the type Ifs,=In Q.+ In f, wheref is our

In the second line, we substitute the ideal-gas density ofnodification factor. Accordingly, the acceptance criterion in
states and let the volume-dependent teuy contain all  Eq. (2.15 becomes

terms in the exponential which are linearh This simply

serves to shift the zero of the chemical potential, reflected in _

subsequent lines with the notatipri. In the third and fourth Pacd A—B)=min(1,exgIn Qel(A) —InQey(B)]).

lines, we integrate over the kinetic energy, in which we use 3.1
Stirling’s formula and make the approximatiofN+ 1

~3N. The constank, is again introduced to conserve units;  The WL method was originally implemented for discrete
its effect is absorbed ip’. As in the previous case& is  systemq3,4]. In this case, the density of states is a discrete
calculated in the process of normalizing the probabilityfunction that can be tabulated as an array in the computer.
P(N,U). For continuum systems, as noted ), it is first necessary to

Of particular interest in simulation work is the prediction discretize the density-of-states function in energy and, if vol-
of phase transitions. Under state conditions favoring a twoyme scaling moves are being performed, volume as well.
phase system, the joint probabiliti€(V,U) and P(N,U)  The degree of discretization that is necessary to obtain accu-
will appear bimodal; phase equilibrium occurs when therate results is not straightforward; if the grid is treated as a
probability volume under the two peaks is equal. In practice|inear approximation, for example, enough bins must be used
often one identifies some intermedia¥g,y or Nyg Which  to capture the curvature of the entropy surface being inves-
separates the two peaks, sets the field parameter constajated.
(pressure or chemical potentiaand adjusts the temperature |t js useful to perform energy and volume interpolation on
until the probability volumes are equal. This only works well the grid used for the density of states. Without interpolation,
at subcritical conditions where the probability of observinga system may be able to stay within a specific grid level for
the intermediate density is extremely low. Near the criticallarge numbers of simulation steps. With it, the level corre-
point, finite-size scaling methods are more uséfdt dis-  sponding to such a “stagnant” series of configurations will
cussed here; s¢&2] for examplg. The condition of equality effectively develop a sharp peak at its center as a result of the
of probability volumes in the isothermal-isobaric and grand-modification factor; this motivates the system leaving that

canonical cases becomes, respectively, level. We use bilinear interpolation for our simulations. We

should note that interpolation should be used only when all

f f P(V,U)dUdV= f f P(V,U)dUdV, neighboring grid points are well-defined, that is, when all are

V<Vig V>Vig in an energy-accessible range.

(2.21 In order to determine the accessible energy range at each

density, it is necessary to first carry out a small set of simu-

_ lations. We perform a short Monte Carlo NVT simulation for

N<2Nmid f P(N’U)dU_N;\}mid f P(N,U)du, each discretized density at the lowest temperature we are

(2.22 interested in studying. In doing so, we make note of the

lower-bound potential energy sampled during these simula-

where the dependence Bfon temperature and pressure or tions and form a border in density space of energies below

chemical potential is implicit. Once conditions for phasewhich we do not attempt to calculate the density of states
equilibrium are determined, Eq$2.18 and (2.20 can be (j.e., we reject moves outside of the bordewithout this

used to determine properties of a specific phase by restrictingtep, we find that the simulation can get trapped for large

the integrals to the phase’s density range. For example, in thgumbers of simulation steps in states of very low degeneracy.

isothermal-isobaric case, During the subsequent “production” phase of the simula-
tion, the schedule of changes in the modification factor af-
QZZJ J a(V,U)P(V,U)dudV, fects the quality of the calculated density of states. In the

V<Vig original method, Wang and Landau use a histogram of states

as a signal for these changes. They staat a large value
= _ (Inf=1), and run the simulation until a flat histogram is
a _vaw _J a(V,u)P(v,u)dudv,  (2.23 achieved, i.e., until they observe a uniform distribution of
" states. Then they decrease the modification factor according

where the superscript numerals indicate the phase. to the rule Inf,e,= 3 In f,q and repeat the procedure uritis
near 1 (Inf=10"8). As the authors discussed, this approach
1. IMPLEMENTATION OF THE METHOD is only mildly satisfactory since there is still arbitrariness in

developing a criterion for the “flatness” of the histogram.
Attention must be paid to several issues when implementwe choose instead to require that each discrete state be vis-
ing the WL method in a simulation. The most obvious prob-ited a minimum number of times before changing the modi-
lem is the calculation of),, which can span many orders of fication factor(e.g., 20 times Though this may also seem
magnitude and quickly pose overflow and/or underflow pre-arbitrary, it does guarantee that each value in the density of
cision problems for the computer. Following Wang and Lan-states will have a chance to adjust to the resolution of the
dau[3], we tabulate If),, rather thanQ,, itself and make current modification factor.
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In the original Wang-Landau work, it was noted that onewe have outlined is extensible to all types of simulation
needs to perform several independent simulations for regionmoves. We conduct simulations of particles interacting
of large entropy gradien{8]. That is, the total energy range through the cut and long-range corrected Lennard-Jones po-
is divided and the density of states is calculated for eacliential with a cutoff radius of 2&. Particle displacement
section. Then, the density of states for the whole range isnoves are used with two cases of density changes: volume
obtained from those of the sections by matching values irscaling moves in the logarithm of the volume and particle
overlapping energy region®ne adjusts the multiplicative addition and deletion moves. For the volume scaling case,
constants to which each density of states is knowfrsuch a  we use a system of 128 particles and allow the box width to
procedure is not implemented, the number of simulationvary between 5.04 and 21.&, corresponding to reduced
steps necessary for complete coverage of the total energiensities between 1.0 and 0.013. The density-of-states func-
range can become extremely large. This is analogous to lontipn is discretized into 500 energy and 200 volume bins, with
“ergodicity times” or “tunneling times” in multicanonical an energy range of 806¢ to 64e. For the particle addition
methodg 7,13. and deletion case, we use a box of widttr &nd allow the

We use the same approach in our implementation by creaumber of particles to fluctuate between 2 and 111, corre-
ating subsections of the master energy and density rangsponding to densities between 0.016 and 0.89. The energy
studied and running a separate simulation for each. Since thange of the density of states is divided into 1000 bins and
error in our calculated If,, functions is essentially the spans—700e to 20e.
same at every point and proportional to the modification fac- In both cases, we start our simulations withf#l and
tors we used, we shift each (i, to minimize the total vari- require that each discretized point in the density of states be
ance in regions of overlap between the subsections. The totalsited 20 times before the modification factor is updated.
error is defined as The update is performed according tof}g,= 3 In f,q. We

" stop the simulation when <10 °. Approximately 120
) hours on an AMD Athlon 1.4 GHz workstation are required
] j=i2+1 Ek: [In Qi(k) +Ci—In Q;(k) = C;]*, for the complete simulation; however, nearly 100 of those
(3.2) hours correspond to <10 2, for which the density of
states is already reasonably converged. For comparison, the
whereN is the number of subsections,is an index for all ~Same potential code was used to generate two-dimensional
overlapping discretized points in & of the two subsections histograms of energy and particle number in grand-canonical
i andj, and the constant are the values by which we shift. MC simulations. Data from seven state points near coexist-
In this equation, we consider only overlap between pairs ofNce were obtained by long production runs totaling 25 hours
subsections. In minimizing,. with respect to the constants ©f computer time. The resulting histograms are of high
C, we obtainN equations. On€ value must be specified to €nough quality to determine the entropy in the region of
obtain a solution; we solve the remainiég—1 equations Phase coexistence using histogram reweighting techniques
using a matrix inversion algorithm. Once we know the shift-(Se€[12] for details of such a procedure
ing values, the final density of states is then pieced together
from each shifted subsection; values at areas of overlap ar-
averaged.

There is one caveat associated with using energy and der 5y -
sity subsections in the uniform ensemble: each subsectiol
must have a sufficient range of energy to allow room for
sampling all relevant configurations. That is, there must be
an adequate number of paths for the system to move betweeS
densities; otherwise, it is very difficult to obtain good con-
vergence of the calculated density of states. This amounts t
setting the maximum potential energy of each subsection to ¢
sufficiently large value. In the majority of our simulations,
we find that creating subsections that differ only in density
range(i.e., have the same range of potential engiigythe
most effective approach. Though the undivided energy range
can contain significant entropy gradients, creating energy
subsections can actually result in longer runs because th
system’s ergodicity is restricted.

N

€ot™

382
255

127 7

IV. CASE STUDY: THE LENNARD-JONES FLUID
FIG. 1. Gibbs surface for Lennard-Jones excess entropy as cal-
It was shown in[5] that the phase behavior of the culated from particle displacement and addition and deletion
Lennard-Jones fluid is well reproduced by the WL algorithmmoves. Variables for the Lennard-Jones system are expressed in
with particle displacement and addition and deletion movesunits of k for entropy, e for energy, o for volume, ande/k for
Here we generalize those results to show that the formalisnemperature.
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FIG. 2. Gibbs surface for Lennard-Jones excess entropy as cal-
culated from particle displacement and volume scaling moves. The FIG. 3. Vapor-liquid equilibria for the Lennard-Jones fluid.
irregular low-energy boundary is the result of variations in calcu-Squares and triangles correspond to results from the volume scaling
lating the border for the lowest accessible energies at each densitynd particle addition/deletion variants of the off-lattice Wang-

Landau method, respectively. Crosses are from a histogram re-

The Gibbs surfaces for the excess entropy calculated ideighting study using grand-canonical MC data at seven state
the two cases are shown in Figs. 1 and 2. It is apparent frorpoints. The solid line is from Lotfiet al. [14].
Fig. 1 that the accessible range of energy in the particle
addition and deletion case is extremely sensitive to the num- The vapor-liquid equilibrium data as calculated from the
ber of particles. At very low particle numbers, the number oftwo simulation variants are shown in Fig. 3 and compared to
discretized points in the density of states which have an aditerature values. Both results are truncated just below the
cessible energy is small. Furthermore, at these small particleritical point, where finite-size effects become significant.
numbers there is a sharp peak in the excess entropy at @uditionally, results from the particle addition and deletion
intermediate energy, requiring a greater number of interpolacase must be truncated aroufer 1.0 reduced temperature.
tion bins to be reproduced accuratéan explanation of this Below this temperature, the calculations are strongly influ-
peak is below. This necessitates a high degree of discretizaenced by the fact that we have limited the minimum number
tion in the particle addition and deletion case, which canof particles to two. For the reported data in each case, we
unfavorably increase the duration of the simulation. In con-obtain good agreement with literature values.
trast, the accessible range of energy does not vary drastically As a further verification of the method, we also compare
with density in the volume scaling moves case. The ability ofcalculated and analytical values for the excess entropy of the
particles in a larger volume to condense into a droplet resultsvo-particle Lennard-Jones system in a box of widit. 5
in a low-energy “tail” which extends the energy range of The analytical values are found by placing one of the par-
low-density configurations. Thus, we find the volume scalingticles at the center of the simulation box, and findidg(E),
approach to be advantageous in the calculation of excedke total volume in which the second particle can be placed
entropy. such that the energy is less thBenThe result is

A 1 1 —1/2 1 —1/2
R N 1/2 = - 1/2 *
. 3 HZ 2(1+E) 2+2(1+E) } ] E<E
'(E)= 4.1
(B) , 4m(1 11E1/271/2EO “.
BEIE A

whereH is half of the box width andE* is the interaction sphere and cubeThe excess entropy, given to within an
energy when the particles are separatedHbyor legibility,  additive constant, is the logarithm of the derivative(Df(E)

we have omitted in this presentation the regph<E<0  with respect to E. In Fig. 4, we show this calculation along-
which entails the calculation of the intersection volume for aside the results of the WL simulation algorithm. The agree-
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! T T This ensemble permits calculation of the excess density of
10 F ] states, a function that measures the degeneracy of energy
levels due to configurational degrees of freedom. Thermody-
namic properties are found from the connection between the
s . density of states and entropy; in practice, they are deter-
mined by averaging in an ensemble appropriate to the type of

O? Monte Carlo moves used in a particular application. For
c 6F . simulation purposes, we have derived acceptance criteria for
n particle displacement, volume scaling, and particle addition
x and deletion moves, though the uniform ensemble can be
v o4 . applied to any Monte Carlo simulation move. For single-

component systems, either volume scaling or particle addi-
tion and deletion moves can be used to explore the density

2r ] dependence of the excess density of states. In the case of the
M Lennard-Jones fluid, we find the former has advantages at
. . ) low density.
0 Though the Wang-Landau algorithm is conceptually el-
-1 0 1 2 3 egant, it does not offer a significant time-saving advantage
U over comparable methods for the calculation of liquid-gas

) equilibria (e.g., multicanonical or histogram reweighting

FIG. 4. Calculated and analytical excess entropy for Wotachniques Its primary benefit is that it makes no reference
Lennard-Jones patrticles in a box of side length Points are simu- to temperature; its sampling scheme has the unphysical ad-
lation results and the line is from the analytical calculation. vantage that hi,gh energy barriers are sampled with the same

ment is quite good. We should note that the odd shape of thiE:Obabmty as low-energy configurations. This makes the WL

) : ethod particularly attractive for low-temperature studies,
curve is the result of the small system size. The peak aroun P y P

nd has the potential to provide new and reliable data about
the equilibrium behavior of supercooled liquids, glasses, and
polymers for which simulation time scales have previously

. X fE>0. th ¢ q ‘been prohibitive. Studies have begun to demonstrate its po-
INCreases in energy 1 » (NE excess entropy Uecreases,,yia ysefulness in such applications, including protein
here the second particle must be placed in a volume that lf%lding [15] and polymer filmg 16]

essentially a shrinking shell around the first. It is interesting
to note that this region corresponds to a state of negative ACKNOWLEDGMENT
configurational temperature in the two-particle system.
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