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Efficient Brownian dynamics simulation of particles near walls. |I. Reflecting and absorbing walls
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In this paper a method of numerically handling boundary conditions within Brownian dynamics simulations
is discussed. The usual naive treatment of identifying reflection or absorption processes by checking for
boundary crossings yield®(/At) discretization errors. The method we propose here yi€l¢ist) errors,
similar to the case of Brownian dynamics without wall interaction. The main idea is to ensure that the zeroth
(in the case of absorptignfirst, and second moments of the particle’'s displacement steps are correct up to
order At. To fulfill this requirement near a wall, one has to include nontrivial corrections, because the sto-
chastic contribution does not average out when the distance to the wall is of the order of the step length. We
demonstrate here that the method substantially reduces the discretization error for the simple cases of an
absorbing and a reflecting wall. Our method comprises an improvement over earlier methods proposed by
Lamm and Schultef. Chem. Physr8, 2713(1983] and Qtinger[J. Chem. Phys91, 6455(1937]. Their
methods heavily depend on full, explicit, analytical expressions for solutions of the diffusion equation near a
wall, which they use to make a correction after a stochastic step has been made. Our method only involves the,
usually much simpler, lowest momenfsp to the secondof the probability density distributions for the
displacement of the particle in one time step. This means the method only uses the initial particle position to
determine a valid step, and there is no need for corrections afterwards. Because much less information is
neededthree moments instead of full probability densitiga many cases information can be stored simply
in interpolation functions and there is no need to evaluate complicated analytical expressions at every time
step. This makes the method more efficient and easy to generalize to other situations than the relatively simple
case of a flat wall. Moreover, because analytic expressions are not needed, other methods to determine the
needed moments can be used. This makes our method much more flexible.
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[. INTRODUCTION grained methods such as Brownian dynamics, these very
small time scales are discarded and the gap between simula-
If a mesoscopic particle is submerged in a heat bath of éion time steps and macroscopic times can be bridged.
very large number of much smaller particlassually of a Generally, one describes Brownian motion in two equiva-
molecular sizg which undergo frequent, numerous colli- lent, but essentially different ways. One of these descriptions
sions with the larger particle, the former exhibits a quiteuses stochastic differential equatio(SDE9, also called
irregular type of motion, called Brownian motion. The mo- Langevin equations. The SDE for the motion of a Brownian
tion of relatively large molecules, e.g., polymers and pro-particle contains two contributions. The first contribution
teins, is usually assumed to fall in the same category. contains the deterministic, nonstochastic change in the posi-
Brownian motion can be modeled by random stochastidion of a particle during a time step. The second one, which
fluctuating contributions to the displacement vector of a parresults from the frequent, brief impacts of the small particles,
ticle, thus discarding the detailed physics of the collisions ofis modeled by a stochastic process with correlation time
neighboring particles. In many systems the net effect of suclero, in agreement with the large time scale of the descrip-
collisions is a local thermal equilibration in momentum tion itself. The numerical method of solving SDEs is called
space. If this is the case, and if one is not interested in th8rownian dynamics. The method consists of the simulation
details of the equilibration process itself, idealized Brownianof a large number of independent realizations of the deter-
motion is a useful description. Especially from the point of ministic and stochastic processes acting on the particle. Mac-
view of numerical simulation, there are large benefits in ustoscopic quantities, e.g., the behavior of a large collection of
ing a Brownian description instead of a more detailed one. IrBrownian particles, are then obtained by performing an en-
the detailed description the time scales of collisions are vergemble average over these realizations.
small, i.e., molecular time scales, requiring very small nu- The other description focuses on the time evolution of the
merical time steps. This makes it virtually impossible tospatial distribution function of the particles. Such an evolu-
simulate processes up to a macroscopic time scale regime lpn equation is generally called a “Fokker-Planck” or
using methods such as molecular dynamics. In more coarséadvection-diffusion” equation. Besides the fact that the
SDE gives a more intuitive description of the motion of the
particle, in many cases the numerical method used to solve
*Electronic address: fpeters@science.uva.nl this equation is much cheaper in terms of computational re-
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sources than that for solving the corresponding Fokkermoments(i.e., 0 andAt), will do. This is a consequence of
Planck equation. In this paper wéhereforg focus on the a generalized central limit theorerfif a higher-order dis-
former. cretization is desired, also higher-order moments need to be
The one-dimensional SDE for the positiod of the  considered.The simple observation that apparently only the
Brownian particle, having a constant diffusiviy, has the  zeroth, first, and second moments are relevant for a first-

form order discretization is the main postulate of this paper, and
forms the basis for our simulation method.
dX=A(X)dt+ y2DdW. (1) In many “naive” Brownian dynamics implementations

) ) ] ) this “requirement of correct moments” is fulfilled fortu-
The first term at the right-hand side of EQ) is the deter- iosly. However, in some situations the wildly fluctuating

ministic part. The second term is the StOChaSt'C“ part. Theparacter of the Brownian motion can give rise to large dis-
stochastic proces#/ in this term is the so-called “Wiener cretization errors. An important example of such a situation
process.” This process is a Gaussian process with realizgs jnteraction with a wall. When considering the positions
tions (or paths that are not differentiable in time. Because of pefore and after a stochastic displacement of a particle in the
the nondifferentiability of the Wiener process, the stochasth,icinity of a wall, one might conclude that the wall is not hit
differential equation as given by E(l) is meaningless in @ anq consequently there was no wall interaction. However,
strict formal sense. Itis shorthand for a Riemann gimthe (16 Brownian path between the starting and the final position
limit of At—0). An increment in the Riemann sum has thejs not a straight line, but a random walk. This means that
form wall interaction is quite likely to have occurred somewhere
within the time step, although the starting and final positions
AX=A(X)At+ @AW‘ 2) are on the same side of the wall. If this fact is not taken into
account, large discretization errors are the result. In the fol-
lowing we explain the source of this error and present a
fpirly general method to resolve this problem.

This expression encompasses the simplest first-diieler
forward) time discretization of Eq(1). Because of the nature
of the Wiener process one has to agree upon where to eval
ate the(stochastig integrand within a time intervaffor the
case with a constant diffusion coefficient this is not relexant Il. DISCRETIZATION NEAR A WALL

We will use the Ito interpretation, which means the evalua- ] ) o ] ) )
tion of the integrand at the start of every time interval. The first-order discretization given by E), is a valid

The increments of the Wiener process are mutually indediScretization, with an accuracy @(At), only as long as
pendent and have expectation value zero, the step sizeAX is much smaller than all physical relevant

length scales in the system. However, when a particle ap-
(AW)=0. (3  proaches a wall, another relevant length scale emerges,
namely, the distance to that wall. For small distances to the
Due to this property the expectation value of an increment isvall, Eq. (2) is not a valid discretization of Eq1), and the

given by use of Eq.(2) will give large discretization errors. The sim-
plest approach to tackle this problem would be to decrease
lim Mz(A(X)) @) the time step when approaching the wall, until the discreti-
Ao At ' zation error would have become small enough. Clearly, due

to the slowly decreasing error, this method is inefficient.

ThereforeA(X) can be interpreted as a drift velocity. The — Generally, one would prefer to use a constant time step,
square of an increment of the Wiener process is proportiona@nd not be restricted by the relatively rare event of wall

to time interaction. This means that one could also attempt to correct
the discretization, Eq2), for the presence of the wall. This
((AW)?)=At. (50 can be done in a straightforward manner.
For the discretization of an SDE in free space, the expec-
For the increment oK this gives tation value of the displacement@(At). TheO(+/At) con-

) tribution of the stochastic part averages out because of the

lim ((AX—(AX)) >=2D 6) isotropy of the Wiener process. Of course, when a wall is
Atm0 At ' present, displacements beyond the wall are not allowed. This

means that, close to the wall, where the average displace-
i.e., the variance of the displacements is proportional to thénent is relatively large compared to the distance to the wall,
time step. We conclude that, if we would construct the parthe O(y/At) stochastic contributions to the displacement can
ticle’s displacement probability distribution after one time no longer be isotropically distributed, and must lead to a net
step, the first moment of that distribution would be equal tocontribution to the motion, directed away from the wall. Of
AAt and the second moment would b® &t. course, the scaling of this extra contribution is the same as of

Vice versa, it is well known, that in the first-order numeri- its constituent step€)(\/At). Omission of this contribution

cal approximation Eq(2), one does not need to use a Gauss-in the discretization of the SDE will therefore lead to an error
ian distributed Wiener increment. In fact atyonpathologi- of the same order; the error indeed obtained using the “na-
cal) distributionAU, which has the correct first and second ive” method. First we propose a way to determine this extra
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contribution near the wall. At the same time this enables ugive anO(At) global error and, therefore, does neither in-
to address the nature of the simulation error in more detailfluence the order of the method nor the essentials of the
Then we apply our method to two cases: a fully absorbingapproach. In the discussion section we will return to this

and a fully reflecting wall. point. For simple diffusion Eq(1) can thus be simplified to
For any chosen time step, the possible displacements of
the Brownian particle associated with this time step are de- dX=+2DdW. (9)

scribed by some spatial distribution function. To approximate

this displacement probability distribution by a stochastic dif-We will further assume here that the wall is locatedxat
ferential equation, we postulate that the discretization should 0 and that, at the start of the time step under consideration,
be such that the zeroth, first, and second moments of thiie particle is located at,, which we take to be on the
displacement probability distribution are predicted correctly.positive x axis.

This conjecture can be proved by monitoring the change of In order to find the proper discretization, we first solve the
expectation values of functions of the dynamical variables. IfFokker-Planck equation, equivalent to Ef) near the wall,
the change of the expectation value of any function is preincluding the chosen boundary conditions. This gives the
dicted correctly within a certain order dft, then the algo- spatial distribution function of the displacement of the par-
rithm is said to be accuratén the weak sengewith this  ticle in one time step. Then we determine the zeroth, first,
same order. For the sake of simplicity we will consider theand second moments of that spatial distribution function. Us-

case of constant zeroth moment in the proof. ing these moments, one can write tB¢At) discretization
Then change of the expectation valuef 0X) after atime  for the corresponding stochastic differential equation, using
stepAt can be approximated by a Taylor series, the results of Eqsi4) and (6).

The weII_—known solution_ for_ simple dif_fusi_on in free

SO0 =1 (K080 S XLAXT)+OUSXT):  Toeson o adons o OV @
(7

Within the average one can compute the conditional expec- Prred At,Xg,X) = —*GXF{ - M .

tation values of the moments AfX for fixed X, for everyX, 2ymDAt 4DAt

first (denoted by - - '>Xo)' and perform the average ov¥p

(10

This solution can be easily adapted to find the solutions for a
later, diffusing particle near a wall, for both wall types, absorbing
1 and reflecting.
A(F(X))=(F" (Xo)(AX)x )+ §<f"(xo)<[AX]2>xo> ~ To model the influence of the wall on the stochastic mo-
tion we propose a survival probability per time stépf
course, only relevant for the absorbing wall, otherwise this

3
+O(([AXT)x,)- ®  probability equals 1
Because stochastic differential equations give rise to a Mar- X
kov process, these conditional probabilities can be expressed fol ——, (11)
as functions o, only. Within our algorithm the lower-order VDAt

moments of the conditional displacements are simulated cor-
rectly. This means that, K, is sampled correctly, the first and, if the particle is not annihilated, a stochastic move of the
two terms on the right-hand side are exact. Therefore théorm
leading order of the error will béO([AX]3)>XO. Near the

wall this will give an O([At]®?) discretization error. One AX=f DAL+ f X DA 12
might think that the global discretization error will be '\ /DAt tt VDAt Vbau. a2

O([At]Y?), because there are a number @f1/At) dis-

placements with a®([ At]*?) contribution to the error. This The functionsfy, f1, and f, can be easily related to the

is not true. The reason is that in the bulk the odd-powerzeroth, first, and second moments of the displacement of a
contributions of the displacements will give zero contribu-particle in one time step,

tions to the expectation value, and the leading error will be

given by the fourth power oAX (second power inAt). Xo 0
Furthermore, for decreasing time steps the width of the fo DAL =(x7),
wall region also decreases and thus its contribution to the
global error will decrease. Combining these results gives that
the global discretization error will b®(At). This will be the f Xo | 1 ﬂ x (13
case for any functiorf(X), and therefore the algorithm is ! JDAt /DAt (x°) ol
O(At) accurate in the weak sense.
In the remainder of this paper we will focus on the case of 1 P
simple diffusion, without deterministic forces. Inclusion of a f, X |__2 @_ ﬂ
deterministic term, without correction for wall effects, will VDAt DAt ¥ (x% [(x%
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Here(x") denote the moments of the appropriate probability 18

density p(At,xq,X) for a particle that starts at positiom,, L6

and is located at a positiona time At later. If there exists a 14 £®
probability for the particle to be absorbed, the zeroth mo- % 1.2

ment, i.e., the survival probabilityx®), will be smaller than 2 1

one. To compute the mean displacement and the deviation of E 08 o

the displacement, for particles that survive the time step one 3@ 06

needs to use the normalized probability distribution = 04

P(At,Xg,x)/{x%). This explains théx®) in the denominators 02 D

of Eq. (13). The expressiorf; denotes the mean displace- 0 . . . . . : :
ment, normalized in a suitable way witfDAt, andf, is the 0 05 1 15 2 25 3 35 4
normalized square root of the variance of the possible dis- *

placements. FIG. 1. The survival probabilityf,, the dimensionless mean
The functionsfy, f;, andf, can be determined using displacement,, and the dimensionless root-mean-square displace-
known analytical expressions, but other means of determinmentf, versus the dimensionless initial distance from the wall for
ing the correctapproximate values for the moments of the the absorbing boundary condition.
displacements are just as good. This can be a numerical
evaluation of integrals, but also a Brownian dynamics simulsing these moments, the explicit expressions figr f,,
lation focused on the region near the wall. In many cases thandf, for the case of an absorbing wall are found to be
results of such approaches can be expressed in terms of in-
terpolation functions, which can then be used for a large
scale simulation. Moreover, the method is not restricted to
e . : 1—erf(x/2)
pure diffusion as treated here, and different boundary condi- fi(X) =X ——r,
tions and effects such as curvature can be incorporated. In erf(x/2)
the following we apply this recipe to the cases of the absorb-
ing and reflecting flat wall. In a forthcoming paper we treat £.0%) \/2+ 2 exp —x?/4) 2erfz(x/2)—1
»(X) =

the spherical boundary. X\/_; erf(x/2) X erf?(x/2)

fo(x)=erf(x/2),

(16)

_ The functionsfy, f,, andf, are plotted in Fig. 1. Equation
A. The absorbing wall (12) shows[combined with Eq(16)] that the influence of the
For the absorbing wall the analytical solution for the wall becomes important for distances of a fel@At units
probability density for the final positiow, reached after a from the wall. The wall interaction gives rise to a determin-
time stepAt having started fronx,, can be written as the istic contribution of order/DAt and also the stochastic term

superposition, is affected.
Pabsorts At,X0,X) = Prree At,X0,X) — Prred At,Xg, = X). 10°
(14 _
i 107!
This solution obeys the correct diffusion equation, the initial Z{E 102
condition, and the boundary conditigiyyso{ At,Xq,0)=0. =
The zeroth, first, and second moments of this distribution are g 3
E 107 f 1
2
E 10ttt
X 2
(x% =erf ° |,
V4DAt 107
time step, Az
<Xl>:Xo, (15 FIG. 2. The relative error in the stationary value of the number

of particles in a one-dimensional box with two absorbing walls and
a continuous source in the middle. The circles denote a naive imple-

Xo mentation; the squares denote our implementation, both using uni-
(x2>=(x§—l— 2DAt) erf formly distributed random processes. The results indicated by the
V4D At triangles are those generated by directly sampling from a distribu-
tion consisting of two equivaler(delta peaks, having the correct
[4D At X3 : -
+ Xoexpy — —> first and second moments. Clearly, our method improves the order
0 4DAt)” of the discretization error fror®(y/At) to O(At).
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The problem we use to test our proposed method is that of
a one-dimensional box with two absorbing walls. The par-
ticles in the box diffuse freely. In the center of the box a
continuous source of particles is placed. In Fig. 2 we have
plotted the relative error in the mean number of particles
present in the box for the stationary case. This system was
simulated both by using a naive implementation of the
boundary condition and by means of our method. In the na-
ive approach the final position of a particle after a time step
is monitored. If this position is at the forbidden side of the
wall, the particle is considered to be absorbed during that ] ]
time step. ¥

In our approach, at the beginning of each time step one
determines which particles are absorbed by comparing a ran- FIG. 3. The dimensionless mean displacemignand the root-
dom number between 0 and 1 with the survival probability. [fm&an-square displacemefyt versus_the dlmenS|onIess_|_n|t|aI dis-
the particle survives this operation, a displacement that obey@nce from the wall for the reflecting boundary condition. As no
Eq. (12) is made. This can be done in different ways. One igarticles disappeaf, is equal to 1 everywhere and therefore not
to use uniformly distributed numbers farU, and directly plotted.
applying Eq.(12). Another way is by sampling the displace-
ments from a distribution consisting of two possible posi- > .
tions, that are sampled with equal probability, and whichn€Vver cross the wall. This is not necessarily true for an ap-
gives the correct first and second moments. From Fig. 2 it jroximation that .only. samples the lowest-order moments
clear that our method is superior. The discretization error ofO'T€Ctly. When, in this case, one ends up at the forbidden

the naive implementation ©(/At), while for the improved .S'de c.)f the wall, it is not clegr hqw to proceeq. One cannot
method we obtained ad(At) error. just simply perform a reflection since a reflection also influ-

ences the moments of a step. It is therefore best to use a
distribution that does not cross the wall. It is important to
note that for the reflecting boundary condition the two-

The case of a diffusing particle in the neighborhood of apeaked distribution obeys this restriction, but the uniform
reflecting wall is more simple, but also more subtle in somedistribution does not. For the uniform distribution the restric-
aspects, than the absorbing case. There is no absorption, §on that the wall is not crossed can be expressed by the
the zeroth moment is equal to 1 and does not change. Thaequality J(Bf5(x)<f1(x)+x, for all x. This inequality is
analytical solution for the probability density for the final

T, fo(0)

ments using the analytic solution, given by E&j7), one will

B. The reflecting wall

positionx, reached after a time stejt having started from o |
positionX,, is given by g odd A2
preﬂec(At!XO!X):pfree(At!X01x)+pfl’ee(AIIXO!_X)i Z.a 107
17 5 0.38A¢
< sl
where pyec iS the probability distribution for a free particle, g 10
given by Eq.(10). As in the case of the absorbing wall this is g
a superposition of solutions of the diffusion equation for the 2 10t
correct initial condition. It remains normalized and obeys the e
boundary condition that the probability flux is zero at the 1075 .
wall, i.e., dp/dx=0 for x=0. Using the first and second 10+ 107 1072 107!
moments of this distribution one can comptte and f,, time step, At

similar to the case of the absorbing wall, ) ) )
FIG. 4. The relative error in the stationary value of the number

of particles in a one-dimensional box with one reflecting wall, and

f(x)= —exp(—x2/4)—x(1—erf(x/2)), one absorbing wall and a continuous source in the middle. The

\/; squares denote the error when using our method for both the reflect-

ing wall and the absorbing wall. At every time step displacements

2 2 are sampled from a distribution consisting of two equivaleieita

fo(x)= \/2+x2— x erf(x/2)+ —exp —x%/4) | . peaks, their combination having the correct first and second mo-
\/; ments. The resulting discretization error@¢At). Both the circles

(18 and the triangles indicate simulations using a naive approach for the

reflecting wall. The circles indicate the results for the case where

The results are plotted in Fig. 3. particles are reflected after crossing the reflecting wiadl., X

These wall functions can be used to generate stochastie — x) for a wall located ak=0. The triangles indicate the results

steps using Eq.12). There is, however, a subtlety that has to when the particle is repositionesh the wall after crossing iti.e.,

be taken into account. When sampling the possible displacex:=0).
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obeyed for the wall functions of the absorbing wall, but notbriefly and make a comparison with the method we have
for the reflecting wall. So uniformly distributed stochastic introduced here.
displacements cannot be used in this case. The approach is aimed at samplipgyso{ At,Xq,X) cor-

For generating the result in Fig. 4 we therefore used theectly. The approach consists of two steps. Starting from a
distribution of two possible positionésampled with equal position x,, a step is made with known statistics
probability), having the correct first and second moments, ap(At,xy,x). After this moveppeofl At,Xo,X)/p(At,Xg,X) is
explained before. The setup of the numerical experimentgaken to be the survival probability. An uniformly distributed
consists again of two walls with a continuous source of parrandom number between 0 and 1 is drawn, if it is larger than
ticles in the middle, but now one wall is reflecting and thep_,.../p the particle is assumed to be absorbed during this
other one absorbing. The absorbing wall is treated in theime step. In this way ,psorbiS Sampled correctly.
same manner as before. Figure 4 shows that the discretiza- The method only works ip,psorf/ P iS l€Ss than 1 every-
tion error isO(At). where (otherwise particles have to be created instead of an-

In Fig. 4 we also plotted the error in a simulation using nihilated. Therefore the approach can only be used effec-
the naive approach of simple reflection when the wall istively for the absorbing-boundary case. For the absorbing
crossedno wall functions are usedOne might be surprised boundary this condition is guaranteed to be fulfilled if one
that this simulation also has a@(At) error and not an uses the probability density for the displacement in free
O(/At) error. This demonstrates that the demand to samplepace fop. For pure diffusion this means the use of a Gauss-
correct first and second moments is stronger than strictlyan distribution of displacements. When one uses a uniform
necessary(lt is, however, a sufficient demand. distribution, the tail of the correct distribution cannot be re-

This does not mean that in the case of reflecting boundeonstructed and the scheme will degenerate int@ant)
aries any naive approach will give &(At) error. As dem- accurate scheme.
onstrated in Fig. 4 the naive approach of repositioning a In the case of more complex geometries the method needs
particleonthe wall after it has ended up on the “wrong” side the determination of papsofl At,Xg,X), assuming that
of the wall after a time step, gives rise to @f\/At) error.  p(At,xg,X) is known and simple. For example, in the rela-
Of course, forAt approaching zero, the behavior of both tively simple case of the interacting spheres this is a function
cases converges, but the convergence behavior is differerdf two relative distancesgstarting and fingl and the angle
From a physical point of view there is not much reason tobetween them. This is too complicated to put into an inter-
prefer one naive approach above the other. In Brownian mopolation function. In Ref[4] we were therefore forced to
tion inertia plays no role and, therefore, there is no differenceompute the probability density at every time step, for all
between elastic collisions with the wall and nonelastic colli-particle pairs in each other’s vicinity, by evaluating a series
sions. The reason that naive reflection gives more accuragxpression fop,psorl At,Xg,X), for all specific sets ok,
results than reposition the particle at the wall position upon @andx.
wall crossing, is that the first procedure preserves the sym- The second method Lamm and Schulfén introduced
metry that is also found in the analytic solution, which is consists, again, of directly sampling the probability density
indeed constructed by simple reflection of the solution with-near a boundarppound At,Xg,X). Similarly to the first ap-
out wall interaction. proach, much more information is needed than for the ap-

For problems without such a symmetry any naive ap-proach we introduced in this paper. They consider flat walls
proach gives large, e.gQ(\/At) errors. In that case the saf- only, with several boundary conditions and several compli-
est procedure is therefore to use distributions with correctations such as drift factors and nonconstant diffusivity.
moments. This always gives rapid convergence. In fact, folheir treatment depends heavily on the fact that an analytic
systems like many-particle systems that interact in a haréxpression 0py,und At,Xg,X) (Or a good analytical approxi-
way, our approach might still be preferred, even if the naivemation is available. This expression has to be integrated and
approach works. This is because using the naive approadhverted to be used to sample the statistics correctly. These
one has to check for violations of boundary conditions. Inoperations are computationally very expensive if there is no
our approach one only has to detect whether particles argsimple analytic expression available. This is different from
sufficiently close to each other to interact, and then use théhe pure absorbing case where in principlg.d At,Xg,X)
appropriate wall functions. This check is much easier to perean be computed on the spot, such as done in [R¢fFor
form. the flat wall the inversion involves the inverse of the comple-
mentary error function. An approximation has to be used for
this.

The obvious benefit of the Lamm and Schulten ap-

We are aware of two other methods to avoid the largeproaches is that, for flat walls, they a@mos) exact. This
O(\/H) discretization error. Both methods have been pro-benefit quickly disappears when the situation becomes more
posed by Lamm and Schultdd]. The first method only complex. For example, Northrugt al.[5] (see also Ref6])
works for absorbing boundary conditionsttidger[2,3] uses  consider the interaction of two spherical particles. Since they
a similar method in a problem that is connected to reptationised analytical expressions for the absorbing flat wall, cur-
theory. This approach was recently used by Barenletum.  vature effects gave an extra ordé&t error [not O(\/E)],

[4] to efficiently simulate the diffusion limited chemical re- which forced them to decrease the time step in the vicinity of
action between spherical particles. We will now describe itthe sphere. This can be avoided by using a series expression

Ill. DISCUSSION AND CONCLUSIONS
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for the solution of the diffusion equation around an absorb-significant. This might, for instance, be the case for reactive
ing spherg4], but obviously this is a computationally more particles with attractive interactions. Within the proposed
expensive method. method it should be feasible to construct a correction term
In our approach we would only need the zeroth, first, andparticularly because it is expected to be linearAn The
second moments OPapsorfAt,Xo,X) for every Xo. These  same arguments apply for ti®(At) errors due to curvature
moments are a function of the relative distance of the spheresfects.
only and can be easily stored in an interpolation table. Even 14 conclude, we summarize our main findings. The
if (sem) analytic expressions are not available one couldsimple basic idea we use is that to accurately perform a sto-
perform simulations with smallt of the wall region only to chastic simulation, the moments of the probability distribu-
tabulate the moments_of the distributions. T_hese tabulategon of the displacement of the particle have to be sampled to
moments could be usdth the form of wall functionsfo, f1, 3 specified order of accuracy. To obtain @gAt) accurate
andf) in a more complex simulation usingnuch larger  gjiscretization it is sufficient if the zeroth, first, and second
time steps. This illustrates thg fact that the_method is eXmoments of the displacement are sampled correctly. The pro-
pected to be much more flexible, and applicable to morgyosed way to account for wall interaction reduces the dis-
diverse problems, than all earlier proposed fixes for errorg atization error fromO(y/At) to O(At), if our method is
due to wall interaction. _ _ o compared to naive treatments of this interaction. The method
_In this paper we have only discussed simple diffusive MO4s ot only able to treat absorbing boundary conditions, but
tion and not the deterministic contribution. The deterministicyg, reflecting ones. Further we expect our method to also be
partAAt can be simply added to the displacement. This apyppjicable to a whole range of “intermediate” boundary con-
proximate treatment will give an ordext discretization er- jtions, including sticky wall{7]. For systems with more
ror. Because this error only occurs near the wall, it will con-gegrees of freedom our method is expected to be much more

tribute only O(At) to the global error, and does not changeegficient than all presently existing strategies.
the overall order of the method. There may, however, be

reasons to include a correction term. A reason could befthat
is so large thaAt is of similar magnitude agDAU. Then
the inaccuracy in the discretization of this term would domi-
nate the error due to wall interaction. Another reason could The research of Dr. Peters has been supported by the
be that the error is systematic, thus accumulates and becomBeyal Netherlands Academy of Arts and Sciences.
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