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Efficient Brownian dynamics simulation of particles near walls. I. Reflecting and absorbing walls
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In this paper a method of numerically handling boundary conditions within Brownian dynamics simulations
is discussed. The usual naive treatment of identifying reflection or absorption processes by checking for
boundary crossings yieldsO(ADt) discretization errors. The method we propose here yieldsO(Dt) errors,
similar to the case of Brownian dynamics without wall interaction. The main idea is to ensure that the zeroth
~in the case of absorption!, first, and second moments of the particle’s displacement steps are correct up to
order Dt. To fulfill this requirement near a wall, one has to include nontrivial corrections, because the sto-
chastic contribution does not average out when the distance to the wall is of the order of the step length. We
demonstrate here that the method substantially reduces the discretization error for the simple cases of an
absorbing and a reflecting wall. Our method comprises an improvement over earlier methods proposed by
Lamm and Schulten@J. Chem. Phys.78, 2713~1983!# and Öttinger @J. Chem. Phys.91, 6455~1937!#. Their
methods heavily depend on full, explicit, analytical expressions for solutions of the diffusion equation near a
wall, which they use to make a correction after a stochastic step has been made. Our method only involves the,
usually much simpler, lowest moments~up to the second! of the probability density distributions for the
displacement of the particle in one time step. This means the method only uses the initial particle position to
determine a valid step, and there is no need for corrections afterwards. Because much less information is
needed~three moments instead of full probability densities!, in many cases information can be stored simply
in interpolation functions and there is no need to evaluate complicated analytical expressions at every time
step. This makes the method more efficient and easy to generalize to other situations than the relatively simple
case of a flat wall. Moreover, because analytic expressions are not needed, other methods to determine the
needed moments can be used. This makes our method much more flexible.
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I. INTRODUCTION

If a mesoscopic particle is submerged in a heat bath
very large number of much smaller particles~usually of a
molecular size!, which undergo frequent, numerous col
sions with the larger particle, the former exhibits a qu
irregular type of motion, called Brownian motion. The m
tion of relatively large molecules, e.g., polymers and p
teins, is usually assumed to fall in the same category.

Brownian motion can be modeled by random stocha
fluctuating contributions to the displacement vector of a p
ticle, thus discarding the detailed physics of the collisions
neighboring particles. In many systems the net effect of s
collisions is a local thermal equilibration in momentu
space. If this is the case, and if one is not interested in
details of the equilibration process itself, idealized Brown
motion is a useful description. Especially from the point
view of numerical simulation, there are large benefits in
ing a Brownian description instead of a more detailed one
the detailed description the time scales of collisions are v
small, i.e., molecular time scales, requiring very small n
merical time steps. This makes it virtually impossible
simulate processes up to a macroscopic time scale regim
using methods such as molecular dynamics. In more coa

*Electronic address: fpeters@science.uva.nl
1063-651X/2002/66~5!/056701~7!/$20.00 66 0567
a

-

ic
r-
f
h

e
n
f
-
n
ry
-

by
e-

grained methods such as Brownian dynamics, these v
small time scales are discarded and the gap between sim
tion time steps and macroscopic times can be bridged.

Generally, one describes Brownian motion in two equiv
lent, but essentially different ways. One of these descripti
uses stochastic differential equations~SDEs!, also called
Langevin equations. The SDE for the motion of a Browni
particle contains two contributions. The first contributio
contains the deterministic, nonstochastic change in the p
tion of a particle during a time step. The second one, wh
results from the frequent, brief impacts of the small particl
is modeled by a stochastic process with correlation ti
zero, in agreement with the large time scale of the desc
tion itself. The numerical method of solving SDEs is call
Brownian dynamics. The method consists of the simulat
of a large number of independent realizations of the de
ministic and stochastic processes acting on the particle. M
roscopic quantities, e.g., the behavior of a large collection
Brownian particles, are then obtained by performing an
semble average over these realizations.

The other description focuses on the time evolution of
spatial distribution function of the particles. Such an evo
tion equation is generally called a ‘‘Fokker-Planck’’ o
‘‘advection-diffusion’’ equation. Besides the fact that th
SDE gives a more intuitive description of the motion of t
particle, in many cases the numerical method used to s
this equation is much cheaper in terms of computational
©2002 The American Physical Society01-1



e

h
r
liz
of
st

he

e
a

nt
a

de

t

e
n

th
a
e
t

ri-
ss

d

f

be
he
rst-
nd

s
-
g
is-
ion
ns
the
it
er,

tion
hat
re
ns
to

fol-
t a

nt
ap-
ges,
the

-
ase
ti-

due

tep,
all
rect
s

ec-

the
l is
his

ace-
all,
an
net
f

s of

ror
na-
tra

E. A. J. F. PETERS AND TH. M. A. O. M. BARENBRUG PHYSICAL REVIEW E66, 056701 ~2002!
sources than that for solving the corresponding Fokk
Planck equation. In this paper we~therefore! focus on the
former.

The one-dimensional SDE for the positionX of the
Brownian particle, having a constant diffusivityD, has the
form

dX5A~X!dt1A2DdW. ~1!

The first term at the right-hand side of Eq.~1! is the deter-
ministic part. The second term is the stochastic part. T
stochastic processW in this term is the so-called ‘‘Wiene
process.’’ This process is a Gaussian process with rea
tions ~or paths! that are not differentiable in time. Because
the nondifferentiability of the Wiener process, the stocha
differential equation as given by Eq.~1! is meaningless in a
strict formal sense. It is shorthand for a Riemann sum~in the
limit of Dt→0). An increment in the Riemann sum has t
form

DX5A~X!Dt1A2DDW. ~2!

This expression encompasses the simplest first-order~Euler
forward! time discretization of Eq.~1!. Because of the natur
of the Wiener process one has to agree upon where to ev
ate the~stochastic! integrand within a time interval~for the
case with a constant diffusion coefficient this is not releva!.
We will use the Ito interpretation, which means the evalu
tion of the integrand at the start of every time interval.

The increments of the Wiener process are mutually in
pendent and have expectation value zero,

^DW&50. ~3!

Due to this property the expectation value of an incremen
given by

lim
Dt→0

^DX&
Dt

5^A~X!&. ~4!

ThereforeA(X) can be interpreted as a drift velocity. Th
square of an increment of the Wiener process is proportio
to time

^~DW!2&5Dt. ~5!

For the increment ofX this gives

lim
Dt→0

^~DX2^DX&!2&
Dt

52D, ~6!

i.e., the variance of the displacements is proportional to
time step. We conclude that, if we would construct the p
ticle’s displacement probability distribution after one tim
step, the first moment of that distribution would be equal
ADt and the second moment would be 2DDt.

Vice versa, it is well known, that in the first-order nume
cal approximation Eq.~2!, one does not need to use a Gau
ian distributed Wiener increment. In fact any~nonpathologi-
cal! distributionDU, which has the correct first and secon
05670
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moments~i.e., 0 andDt), will do. This is a consequence o
a generalized central limit theorem.~If a higher-order dis-
cretization is desired, also higher-order moments need to
considered.! The simple observation that apparently only t
zeroth, first, and second moments are relevant for a fi
order discretization is the main postulate of this paper, a
forms the basis for our simulation method.

In many ‘‘naive’’ Brownian dynamics implementation
this ‘‘requirement of correct moments’’ is fulfilled fortu
itously. However, in some situations the wildly fluctuatin
character of the Brownian motion can give rise to large d
cretization errors. An important example of such a situat
is interaction with a wall. When considering the positio
before and after a stochastic displacement of a particle in
vicinity of a wall, one might conclude that the wall is not h
and consequently there was no wall interaction. Howev
the Brownian path between the starting and the final posi
is not a straight line, but a random walk. This means t
wall interaction is quite likely to have occurred somewhe
within the time step, although the starting and final positio
are on the same side of the wall. If this fact is not taken in
account, large discretization errors are the result. In the
lowing we explain the source of this error and presen
fairly general method to resolve this problem.

II. DISCRETIZATION NEAR A WALL

The first-order discretization given by Eq.~2!, is a valid
discretization, with an accuracy ofO(Dt), only as long as
the step sizeDX is much smaller than all physical releva
length scales in the system. However, when a particle
proaches a wall, another relevant length scale emer
namely, the distance to that wall. For small distances to
wall, Eq. ~2! is not a valid discretization of Eq.~1!, and the
use of Eq.~2! will give large discretization errors. The sim
plest approach to tackle this problem would be to decre
the time step when approaching the wall, until the discre
zation error would have become small enough. Clearly,
to the slowly decreasing error, this method is inefficient.

Generally, one would prefer to use a constant time s
and not be restricted by the relatively rare event of w
interaction. This means that one could also attempt to cor
the discretization, Eq.~2!, for the presence of the wall. Thi
can be done in a straightforward manner.

For the discretization of an SDE in free space, the exp
tation value of the displacement isO(Dt). TheO(ADt) con-
tribution of the stochastic part averages out because of
isotropy of the Wiener process. Of course, when a wal
present, displacements beyond the wall are not allowed. T
means that, close to the wall, where the average displ
ment is relatively large compared to the distance to the w
theO(ADt) stochastic contributions to the displacement c
no longer be isotropically distributed, and must lead to a
contribution to the motion, directed away from the wall. O
course, the scaling of this extra contribution is the same a
its constituent steps,O(ADt). Omission of this contribution
in the discretization of the SDE will therefore lead to an er
of the same order; the error indeed obtained using the ‘‘
ive’’ method. First we propose a way to determine this ex
1-2
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contribution near the wall. At the same time this enables
to address the nature of the simulation error in more de
Then we apply our method to two cases: a fully absorbi
and a fully reflecting wall.

For any chosen time step, the possible displacement
the Brownian particle associated with this time step are
scribed by some spatial distribution function. To approxim
this displacement probability distribution by a stochastic d
ferential equation, we postulate that the discretization sho
be such that the zeroth, first, and second moments of
displacement probability distribution are predicted correc
This conjecture can be proved by monitoring the change
expectation values of functions of the dynamical variables
the change of the expectation value of any function is p
dicted correctly within a certain order ofDt, then the algo-
rithm is said to be accurate~in the weak sense! with this
same order. For the sake of simplicity we will consider t
case of constant zeroth moment in the proof.

Then change of the expectation value off (X) after a time
stepDt can be approximated by a Taylor series,

D^ f ~X!&5^ f 8~X0!DX&1
1

2
^ f 9~X0!@DX#2&1^O~@DX#3!&.

~7!

Within the average one can compute the conditional exp
tation values of the moments ofDX for fixedX0 for everyX0
first ~denoted bŷ •••&X0

), and perform the average overX0

later,

D^ f ~X!&5Šf 8~X0!^DX&X0
‹1

1

2
Šf 9~X0!^@DX#2&X0

‹

1O~^@DX#3&X0
!. ~8!

Because stochastic differential equations give rise to a M
kov process, these conditional probabilities can be expre
as functions ofX0 only. Within our algorithm the lower-orde
moments of the conditional displacements are simulated
rectly. This means that, ifX0 is sampled correctly, the firs
two terms on the right-hand side are exact. Therefore
leading order of the error will bêO(@DX#3)&X0

. Near the

wall this will give an O(@Dt#3/2) discretization error. One
might think that the global discretization error will b
O(@Dt#1/2), because there are a number ofO(1/Dt) dis-
placements with anO(@Dt#3/2) contribution to the error. This
is not true. The reason is that in the bulk the odd-pow
contributions of the displacements will give zero contrib
tions to the expectation value, and the leading error will
given by the fourth power ofDX ~second power inDt).
Furthermore, for decreasing time stepsDt, the width of the
wall region also decreases and thus its contribution to
global error will decrease. Combining these results gives
the global discretization error will beO(Dt). This will be the
case for any functionf (X), and therefore the algorithm i
O(Dt) accurate in the weak sense.

In the remainder of this paper we will focus on the case
simple diffusion, without deterministic forces. Inclusion of
deterministic term, without correction for wall effects, w
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give anO(Dt) global error and, therefore, does neither i
fluence the order of the method nor the essentials of
approach. In the discussion section we will return to t
point. For simple diffusion Eq.~1! can thus be simplified to

dX5A2DdW. ~9!

We will further assume here that the wall is located atx
50 and that, at the start of the time step under considerat
the particle is located atx0, which we take to be on the
positivex axis.

In order to find the proper discretization, we first solve t
Fokker-Planck equation, equivalent to Eq.~9! near the wall,
including the chosen boundary conditions. This gives
spatial distribution function of the displacement of the p
ticle in one time step. Then we determine the zeroth, fi
and second moments of that spatial distribution function. U
ing these moments, one can write theO(Dt) discretization
for the corresponding stochastic differential equation, us
the results of Eqs.~4! and ~6!.

The well-known solution for simple diffusion in free
space, starting atx0, over a time intervalDt, is given by a
Gaussian that broadens over time,

pfree~Dt,x0 ,x!5
1

2ApDDt
expF2

~x2x0!2

4DDt G . ~10!

This solution can be easily adapted to find the solutions fo
diffusing particle near a wall, for both wall types, absorbi
and reflecting.

To model the influence of the wall on the stochastic m
tion we propose a survival probability per time step~of
course, only relevant for the absorbing wall, otherwise t
probability equals 1!

f 0S X

ADDt
D , ~11!

and, if the particle is not annihilated, a stochastic move of
form

DX5 f 1S X

ADDt
DADDt1 f 2S X

ADDt
DADDU. ~12!

The functionsf 0 , f 1, and f 2 can be easily related to th
zeroth, first, and second moments of the displacement
particle in one time step,

f 0S x0

ADDt
D 5^x0&,

f 1S x0

ADDt
D 5

1

ADDt
F ^x&

^x0&
2x0G , ~13!

f 2S x0

ADDt
D 5

1

ADDt
A^x2&

^x0&
2F ^x&

^x0&
G 2

.

1-3
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Here^xn& denote the moments of the appropriate probabi
densityp(Dt,x0 ,x) for a particle that starts at positionx0,
and is located at a positionx a timeDt later. If there exists a
probability for the particle to be absorbed, the zeroth m
ment, i.e., the survival probability,^x0&, will be smaller than
one. To compute the mean displacement and the deviatio
the displacement, for particles that survive the time step
needs to use the normalized probability distributi
p(Dt,x0 ,x)/^x0&. This explains thêx0& in the denominators
of Eq. ~13!. The expressionf 1 denotes the mean displac
ment, normalized in a suitable way withADDt, andf 2 is the
normalized square root of the variance of the possible
placements.

The functions f 0 , f 1, and f 2 can be determined usin
known analytical expressions, but other means of determ
ing the correct~approximate! values for the moments of th
displacements are just as good. This can be a nume
evaluation of integrals, but also a Brownian dynamics sim
lation focused on the region near the wall. In many cases
results of such approaches can be expressed in terms o
terpolation functions, which can then be used for a la
scale simulation. Moreover, the method is not restricted
pure diffusion as treated here, and different boundary co
tions and effects such as curvature can be incorporated
the following we apply this recipe to the cases of the abso
ing and reflecting flat wall. In a forthcoming paper we tre
the spherical boundary.

A. The absorbing wall

For the absorbing wall the analytical solution for th
probability density for the final positionx, reached after a
time stepDt having started fromx0, can be written as the
superposition,

pabsorb~Dt,x0 ,x!5pfree~Dt,x0 ,x!2pfree~Dt,x0 ,2x!.
~14!

This solution obeys the correct diffusion equation, the init
condition, and the boundary conditionpabsorb(Dt,x0,0)50.
The zeroth, first, and second moments of this distribution

^x0&5erf S x0

A4DDt
D ,

^x1&5x0 , ~15!

^x2&5~x0
212DDt ! erfS x0

A4DDt
D

1A4DDt

p
x0expS 2

x0
2

4DDt D .
05670
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Using these moments, the explicit expressions forf 0 , f 1,
and f 2 for the case of an absorbing wall are found to be

f 0~x!5erf~x/2!,

f 1~x!5x
12erf~x/2!

erf~x/2!
, ~16!

f 2~x!5A21x
2

Ap

exp~2x2/4!

erf~x/2!
1x2

erf2~x/2!21

erf2~x/2!
.

The functionsf 0 , f 1, and f 2 are plotted in Fig. 1. Equation
~12! shows@combined with Eq.~16!# that the influence of the
wall becomes important for distances of a fewADDt units
from the wall. The wall interaction gives rise to a determi
istic contribution of orderADDt and also the stochastic term
is affected.

FIG. 1. The survival probabilityf 0, the dimensionless mea
displacementf 1, and the dimensionless root-mean-square displa
ment f 2 versus the dimensionless initial distance from the wall
the absorbing boundary condition.

FIG. 2. The relative error in the stationary value of the numb
of particles in a one-dimensional box with two absorbing walls a
a continuous source in the middle. The circles denote a naive im
mentation; the squares denote our implementation, both using
formly distributed random processes. The results indicated by
triangles are those generated by directly sampling from a distr
tion consisting of two equivalent~delta! peaks, having the correc
first and second moments. Clearly, our method improves the o
of the discretization error fromO(ADt) to O(Dt).
1-4
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EFFICIENT BROWNIAN DYNAMICS . . . . I. . . . PHYSICAL REVIEW E 66, 056701 ~2002!
The problem we use to test our proposed method is tha
a one-dimensional box with two absorbing walls. The p
ticles in the box diffuse freely. In the center of the box
continuous source of particles is placed. In Fig. 2 we h
plotted the relative error in the mean number of partic
present in the box for the stationary case. This system
simulated both by using a naive implementation of t
boundary condition and by means of our method. In the
ive approach the final position of a particle after a time s
is monitored. If this position is at the forbidden side of t
wall, the particle is considered to be absorbed during t
time step.

In our approach, at the beginning of each time step
determines which particles are absorbed by comparing a
dom number between 0 and 1 with the survival probability
the particle survives this operation, a displacement that ob
Eq. ~12! is made. This can be done in different ways. One
to use uniformly distributed numbers forDU, and directly
applying Eq.~12!. Another way is by sampling the displace
ments from a distribution consisting of two possible po
tions, that are sampled with equal probability, and wh
gives the correct first and second moments. From Fig. 2
clear that our method is superior. The discretization erro
the naive implementation isO(ADt), while for the improved
method we obtained anO(Dt) error.

B. The reflecting wall

The case of a diffusing particle in the neighborhood o
reflecting wall is more simple, but also more subtle in so
aspects, than the absorbing case. There is no absorptio
the zeroth moment is equal to 1 and does not change.
analytical solution for the probability density for the fin
positionx, reached after a time stepDt having started from
positionx0, is given by

preflect~Dt,x0 ,x!5pfree~Dt,x0 ,x!1pfree~Dt,x0 ,2x!,
~17!

wherepfree is the probability distribution for a free particle
given by Eq.~10!. As in the case of the absorbing wall this
a superposition of solutions of the diffusion equation for t
correct initial condition. It remains normalized and obeys
boundary condition that the probability flux is zero at t
wall, i.e., ]p/]x50 for x50. Using the first and secon
moments of this distribution one can computef 1 and f 2,
similar to the case of the absorbing wall,

f 1~x!5
2

Ap
exp~2x2/4!2x„12erf~x/2!…,

f 2~x!5A21x22Fx erf~x/2!1
2

Ap
exp~2x2/4!G 2

.

~18!

The results are plotted in Fig. 3.
These wall functions can be used to generate stocha

steps using Eq.~12!. There is, however, a subtlety that has
be taken into account. When sampling the possible displa
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ments using the analytic solution, given by Eq.~17!, one will
never cross the wall. This is not necessarily true for an
proximation that only samples the lowest-order mome
correctly. When, in this case, one ends up at the forbid
side of the wall, it is not clear how to proceed. One can
just simply perform a reflection since a reflection also infl
ences the moments of a step. It is therefore best to us
distribution that does not cross the wall. It is important
note that for the reflecting boundary condition the tw
peaked distribution obeys this restriction, but the unifo
distribution does not. For the uniform distribution the restr
tion that the wall is not crossed can be expressed by
inequalityA(3 f 2(x), f 1(x)1x, for all x. This inequality is

FIG. 3. The dimensionless mean displacementf 1 and the root-
mean-square displacementf 2 versus the dimensionless initial dis
tance from the wall for the reflecting boundary condition. As
particles disappear,f 0 is equal to 1 everywhere and therefore n
plotted.

FIG. 4. The relative error in the stationary value of the numb
of particles in a one-dimensional box with one reflecting wall, a
one absorbing wall and a continuous source in the middle.
squares denote the error when using our method for both the refl
ing wall and the absorbing wall. At every time step displaceme
are sampled from a distribution consisting of two equivalent~delta!
peaks, their combination having the correct first and second
ments. The resulting discretization error isO(Dt). Both the circles
and the triangles indicate simulations using a naive approach fo
reflecting wall. The circles indicate the results for the case wh
particles are reflected after crossing the reflecting wall~i.e., X
ª2X) for a wall located atx50. The triangles indicate the result
when the particle is repositionedon the wall after crossing it~i.e.,
Xª0).
1-5
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obeyed for the wall functions of the absorbing wall, but n
for the reflecting wall. So uniformly distributed stochas
displacements cannot be used in this case.

For generating the result in Fig. 4 we therefore used
distribution of two possible positions~sampled with equa
probability!, having the correct first and second moments,
explained before. The setup of the numerical experime
consists again of two walls with a continuous source of p
ticles in the middle, but now one wall is reflecting and t
other one absorbing. The absorbing wall is treated in
same manner as before. Figure 4 shows that the discre
tion error isO(Dt).

In Fig. 4 we also plotted the error in a simulation usi
the naive approach of simple reflection when the wall
crossed~no wall functions are used!. One might be surprised
that this simulation also has anO(Dt) error and not an
O(ADt) error. This demonstrates that the demand to sam
correct first and second moments is stronger than stri
necessary.~It is, however, a sufficient demand.!

This does not mean that in the case of reflecting bou
aries any naive approach will give anO(Dt) error. As dem-
onstrated in Fig. 4 the naive approach of repositioning
particleon the wall after it has ended up on the ‘‘wrong’’ sid
of the wall after a time step, gives rise to anO(ADt) error.
Of course, forDt approaching zero, the behavior of bo
cases converges, but the convergence behavior is diffe
From a physical point of view there is not much reason
prefer one naive approach above the other. In Brownian
tion inertia plays no role and, therefore, there is no differe
between elastic collisions with the wall and nonelastic co
sions. The reason that naive reflection gives more accu
results than reposition the particle at the wall position upo
wall crossing, is that the first procedure preserves the s
metry that is also found in the analytic solution, which
indeed constructed by simple reflection of the solution wi
out wall interaction.

For problems without such a symmetry any naive a
proach gives large, e.g.,O(ADt) errors. In that case the sa
est procedure is therefore to use distributions with corr
moments. This always gives rapid convergence. In fact,
systems like many-particle systems that interact in a h
way, our approach might still be preferred, even if the na
approach works. This is because using the naive appro
one has to check for violations of boundary conditions.
our approach one only has to detect whether particles
sufficiently close to each other to interact, and then use
appropriate wall functions. This check is much easier to p
form.

III. DISCUSSION AND CONCLUSIONS

We are aware of two other methods to avoid the la
O(ADt) discretization error. Both methods have been p
posed by Lamm and Schulten@1#. The first method only
works for absorbing boundary conditions. O¨ ttinger @2,3# uses
a similar method in a problem that is connected to repta
theory. This approach was recently used by Barenbruget al.
@4# to efficiently simulate the diffusion limited chemical re
action between spherical particles. We will now describe
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briefly and make a comparison with the method we ha
introduced here.

The approach is aimed at samplingpabsorb(Dt,x0 ,x) cor-
rectly. The approach consists of two steps. Starting from
position x0, a step is made with known statistic
p(Dt,x0 ,x). After this movepabsorb(Dt,x0 ,x)/p(Dt,x0 ,x) is
taken to be the survival probability. An uniformly distribute
random number between 0 and 1 is drawn, if it is larger th
pabsorb/p the particle is assumed to be absorbed during
time step. In this waypabsorbis sampled correctly.

The method only works ifpabsorb/p is less than 1 every-
where~otherwise particles have to be created instead of
nihilated!. Therefore the approach can only be used eff
tively for the absorbing-boundary case. For the absorb
boundary this condition is guaranteed to be fulfilled if o
uses the probability density for the displacement in fr
space forp. For pure diffusion this means the use of a Gau
ian distribution of displacements. When one uses a unifo
distribution, the tail of the correct distribution cannot be r
constructed and the scheme will degenerate into anO(Dt)
accurate scheme.

In the case of more complex geometries the method ne
the determination of pabsorb(Dt,x0 ,x), assuming that
p(Dt,x0 ,x) is known and simple. For example, in the rel
tively simple case of the interacting spheres this is a funct
of two relative distances~starting and final! and the angle
between them. This is too complicated to put into an int
polation function. In Ref.@4# we were therefore forced to
compute the probability density at every time step, for
particle pairs in each other’s vicinity, by evaluating a ser
expression forpabsorb(Dt,x0 ,x), for all specific sets ofx0
andx.

The second method Lamm and Schulten@1# introduced
consists, again, of directly sampling the probability dens
near a boundarypbound(Dt,x0 ,x). Similarly to the first ap-
proach, much more information is needed than for the
proach we introduced in this paper. They consider flat wa
only, with several boundary conditions and several com
cations such as drift factors and nonconstant diffusiv
Their treatment depends heavily on the fact that an anal
expression ofpbound(Dt,x0 ,x) ~or a good analytical approxi
mation! is available. This expression has to be integrated
inverted to be used to sample the statistics correctly. Th
operations are computationally very expensive if there is
~simple! analytic expression available. This is different fro
the pure absorbing case where in principlepbound(Dt,x0 ,x)
can be computed on the spot, such as done in Ref.@4#. For
the flat wall the inversion involves the inverse of the comp
mentary error function. An approximation has to be used
this.

The obvious benefit of the Lamm and Schulten a
proaches is that, for flat walls, they are~almost! exact. This
benefit quickly disappears when the situation becomes m
complex. For example, Northrupet al. @5# ~see also Ref.@6#!
consider the interaction of two spherical particles. Since th
used analytical expressions for the absorbing flat wall, c
vature effects gave an extra orderDt error @not O(ADt)],
which forced them to decrease the time step in the vicinity
the sphere. This can be avoided by using a series expres
1-6
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for the solution of the diffusion equation around an abso
ing sphere@4#, but obviously this is a computationally mor
expensive method.

In our approach we would only need the zeroth, first, a
second moments ofpabsorb(Dt,x0 ,x) for every x0. These
moments are a function of the relative distance of the sph
only and can be easily stored in an interpolation table. E
if ~semi! analytic expressions are not available one co
perform simulations with smallDt of the wall region only to
tabulate the moments of the distributions. These tabula
moments could be used~in the form of wall functionsf 0 , f 1,
and f 2) in a more complex simulation using~much! larger
time steps. This illustrates the fact that the method is
pected to be much more flexible, and applicable to m
diverse problems, than all earlier proposed fixes for err
due to wall interaction.

In this paper we have only discussed simple diffusive m
tion and not the deterministic contribution. The determinis
part ADt can be simply added to the displacement. This
proximate treatment will give an orderDt discretization er-
ror. Because this error only occurs near the wall, it will co
tribute onlyO(Dt) to the global error, and does not chan
the overall order of the method. There may, however,
reasons to include a correction term. A reason could be thA
is so large thatADt is of similar magnitude asADDU. Then
the inaccuracy in the discretization of this term would dom
nate the error due to wall interaction. Another reason co
be that the error is systematic, thus accumulates and beco
s
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significant. This might, for instance, be the case for react
particles with attractive interactions. Within the propos
method it should be feasible to construct a correction te
~particularly because it is expected to be linear inA). The
same arguments apply for theO(Dt) errors due to curvature
effects.

To conclude, we summarize our main findings. T
simple basic idea we use is that to accurately perform a
chastic simulation, the moments of the probability distrib
tion of the displacement of the particle have to be sample
a specified order of accuracy. To obtain anO(Dt) accurate
discretization it is sufficient if the zeroth, first, and seco
moments of the displacement are sampled correctly. The
posed way to account for wall interaction reduces the d
cretization error fromO(ADt) to O(Dt), if our method is
compared to naive treatments of this interaction. The met
is not only able to treat absorbing boundary conditions,
also reflecting ones. Further we expect our method to also
applicable to a whole range of ‘‘intermediate’’ boundary co
ditions, including sticky walls@7#. For systems with more
degrees of freedom our method is expected to be much m
efficient than all presently existing strategies.
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