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Dipolar effects on soliton dynamics on a discrete ferromagnetic chain
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The contributions of dipole-dipole interactions to the dynamics of solitons on a one-dimensional discrete
easy-plane Heisenberg ferromagnet, in which the biquadratic exchange interactions are taken into account in
addition to the Zeeman energy, the uniaxial anisotropy, and the exchange energy, are studied numerically. The
results of a numerical simulation of the dynamics of a single soliton, as well as collision between a soliton-
antisoliton pair, indicated that the energy-velocity curves for the solitons in the ferromagnetic chain present the
signature of five different branches corresponding to different types of nonlinear elementary excitations in the
chain.
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[. INTRODUCTION motors [43], and discrete easy-plane ferromagnetic chain
[44-44. In the latter context, further investigations concern-
Many problems of mathematical physics, condenseding the dipolar interaction contributions to the general prop-
matter physics, mechanics of solids or fluids, and biologicaprties of soliton’s motion, as well as its modified profile,
structures lead to the consideration of nonlinear equationgave been carried out in R¢#7] using the long wavelength
having variables that are all continuous, partially discrete, o@Pproximation. In this case, dipolar interactions contribute to
all discrete. Soliton equations belong to a special class d'pcrease the critical magnetic field, the stability of the Sine-
these nonlinear equatiofs]. Gordon soliton, and also the soliton contribution to the spe-
In addition, the discreteness makes the properties of theific heat[47].
system periodi¢2], so that due to the interplay between the =~ Assuming that the Heisenberg model for describing mag-
discreteness and nonlinearity, new types of nonlinear excita€tic phenomena is inherently discrete, with lattice spacing
tions, which are absent in continuum models, may be posPeing a fundamental physical parameter, Wysin, Bishop, and
sible in the system. This direction is rather new because untifkumar (WBK) [45] studied the dynamics of a single soliton
recently the main interest was in systems with strong cou@s well as the collisions between a soliton-antisoliton pair by
p||ng limit between spins or atoms, where a continuum ap.numerical simulations, accounting for both the magnetic
proximation is generally applied in the theoretical model,field B, and the propagation velocity of a soliton. WBK
revealing soliton solutiong3]. However, the continuum ap- showed that the solitons are multibranched. More precisely,
proximation, and thereby following exact soliton solutionsthe dynamics of a single soliton can be classified into three
are in many cases highly idealized. different branches, while that of collisions between a soliton-
From fundamental physical interest, the idea of a discret@ntisoliton pair consists of four major branches.
nature has considerably improved our understanding of the In the present paper, using the ideas and formal approach
effect of discreteness on topological solitqAs-8] and non- of WBK, we investigate the dipolar interaction contributions
topological solitong9], classical thermodynamic properties on the dynamics of solitons of a discrete ferromagnetic
[10-13, modulational instabilitie§14—16, wave-collapse chain.
phenomena[17,18, intrinsic localized vibrational states  The paper is organized as follows. In Sec. II, the model
[19-21], diffusion in discrete nonlinear dynamical systemsHamiltonian is introduced and a set of coupled nonlinear
[22], and self-induced gap solitoig3,24). differential-difference equations of spin dynamics is derived.
Discrete models are also of interest for practical applica!n Sec. lll, some numerical results on the creation of solitons
tions, such as systems of coupled optical waveguide#) @ classical easy-plane discrete ferromagnetic chain under
[14,16,25—29 models for energy transport in biophysical weak dipolar interactions starting from an initial Sine-
systems proposed by Davydda0], discrete models of Gordon(SG) soliton are presented, and their stability under
sheibe aggregatior[gl]’ electrical array$32_34]’ systems collision is verified. Section 1V is devoted to the conclusion.
that model the dynamics of DN85-38§, discrete reaction-
diffusion models to study propagation failure in myocardial Il. THE MODEL
tissue[39,40, for myelineated axon§41], discrete soliton i )
equations related to cellular autom##&], discrete quantum A. Equations of motion
The model we deal with in this section is a chain of clas-
sical spin interacting both by short-range nearest-neighbor
*Email addresses: nguenang@yahoo.com, ferromagnetic interactions and long-range dipolar interac-
jpnguen@uycdc.uninet.cm tions. It is also subject to an anisotropic field perpendicular
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to the chain direction and an in-plane applied magnetic fieldtion of this last term on the critical dynamics of the uniaxial
Hence, the following Hamiltonian describes it: ferromagnet has been elucidated using the renormalization
group method52]. In contrast with the short-range exchange
interaction, the dipolar interaction is long ranged and thus
dominates the asymptotic critical behavior of the ferromag-
net[53]. These interactions also introduce an anisotropy of
the spin fluctuations longitudinal and transverse to the wave
vector.

At sufficiently low temperatured <(AJ)Y2 while ne-
o R _ glecting quantum effects, i.eA/JS(S+1)<4x?, the spins

S-S 3(S:Ti ) (ST can be considered as classical vectors where their orienta-

XE - 2.0 tions are parametrized by the spherical coordinates as

H==X §'S.1-gueBe S+AY (S)?

. 1
—ad2 (S50 5 (gue)?

r3

T i

i’
where the sums run over the lattice sites separated by a dis- - ) )

tancea, apart along the axis, and wher&’ (— 6=x,y,2) is Si= 9 cod 6;)cog ¢;),cog b;)sin(¢;),sin(6;)], (2.2
the § component of the spin vectors on tih site. The first . . .
term in the Hamiltoniar(2.1) represents the Heisenberg ex- where — 77/25 0)‘,$ /2 is the excur<S|on angle of magnetiza-
change energy, wherd>0 is the short-range nearest- tion from (S ’5) plane, and 6 ¢; =<2 represents the azi-
neighbor exchange coupling constant. The spin may also b&uthal angle o, in the same planeis the magnitude of;
placed in an external fieldB.) directed along thec axis ~and the dynamics of these spins can be described by the
leading to the second term representing the Zeeman energyndamped Bloch equation

where the quantitieg and ug are the Landg factor and the

Bohr magneton, respectively.

The third term is the single ion uniaxial anisotropy energy 5 d_Széi YE. 2.3
due to the crystalline field. It constrains the spin to lie in a dt e '
plane perpendicular to the chain axi&. is the uniaxial
crystal-field anisotropy parameter. Then, using the following relation for the effective field:

The fourth term represents the biquadratic isotropic ex-
change interactions, which should be considered for a high- - oH
spin system, witl5=1 [48]. The parametexr measures the Fi=——. 24
strength of the biquadratic exchange, in the classical approxi- IS

mation. Adler gave a discussion of these biquadratic eXqy
comes that
change interactions through an extensive review of experi-
mental results, which establish the importance of this term in
a variety of compoundgt9]. The necessity of including such
a term goes back to Schiimger, and Anderson gave its in- 1
terpretation in terms of a superexchange mechari5oh —2AS[€,+gupBEt E(gMB)z
Kapor and Skrinjar gave another interpretation of the biqua-
dratic exchange interactions in terms of three-spin exchange S 3(Fi (S Fir)
interaction[51]. For a ferromagnetic ground state, the pa- XZ P (2.5
rametera has to satisfy, foiIS=1, 0O<a<1 and for a spin i i
with S>1, the condition is —2[S(2S-3)]<a<2(S e . . .
+1)/S? [48]. vyhereex(ez) is the unit vector along the axis (the z axis).
The last term of Hamiltoniaiil) is the dipole-dipole in- Fi represents the effective field acting on each spin, while
teraction energy between the magnetic moments of the corg X F represents the torque on the spin at the isitespec-
stituent atoms, where;,=|f;—f;/| is the distance between tively. So, replacing Eqs2.2) and (2.5 into Eq. (2.3), we
two different magnetic sitesandi’. An important implica- obtain

Fi=JS:1(1+2aS-S,1)+3S_1(1+2aS-S_))

de
T3 = JStan 0){1+2aS[Sin( ;)08 6; . 1)C08 @i 1~ ¢;) +COK 6)SIN( ;1) ][ COK 6, )SIN( @11~ @)

—COt( 0;)sin( 6;..1) ]+ IStan 6;){1+2aS sin( 6;)cog 6; _1)coS @; _1— ¢;) + €O 6;)sin(6; 1) [} cog ;)
X Sin( ;1 — ¢;) — Cot( 6;)sin( 6;_1)]+2AS” sin( 6;) + g ugB,e tan 6;)cog ¢;)

guB >22 T{[cosw )sin( @) +sin(6;)][cog @i/) +sin(¢;) ]}, (2.6)

i’
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do.
d—i'=JS{1+2aSZ[sin( 6)c0K ;4 1)CO @; 11— ;) +COK 6;)SIN(6; 1 1) ]}COK 6; 1 1)SIN( ;11— @)

+JIS{1+2aS?[Sin( 6;)coS 6; _1)COL @; 1 — @;) + €O 6;)SIN(6; 1) ]}cOK 6; _ 1)SIN(@; -1 — @) — GpBe SIN(@;)

1 cos ¢/ ) .
"‘E(QMBS)Z_Z _i(__(’%){[coi 6;)cos @i ) +sin(6;,)][cog ¢;r) +sin(¢;) ]}

i’

_ Slr:(fi,)[coiﬁi/)Sirl(<Pi/)+Sin(9i')] . B

i’

The set of coupled nonlinear differential-difference equa-ng factor, andv is the volume in the case of a cubic sample,
tions (2.6) and(2.7) define the collective excitations for the but here since we are studying a single spin chain, it stands
in-plane anglep; and the out-of-pland, . In the absence of for the chain length. In rescaling the dimensionless length
the biquadratic exchange and dipolar interactions, EtrictvariablesZ, as given in Eq(2.10, it appears as the term
et al.[54] have shown that in the discrete ferromagnetic spind(1+2aS?). As shown by Ferref55], this term is the con-
chain there may occur two essentially different static in-sequence of the renormalization of the exchange energy,
plane soliton structures, one with its center located on a latvhich is the only effect of the biquadratic exchange energy
tice site (central-spin configuration and the other with its N the sine-Gordon limit. Without the biquadratic exchange

center located in the middle between the two neighboringnd dipole-dipole interactions, that ix=0, Mikeska has
lattice sites(central-bond configuration shown that the dynamics of solitons in a ferromagnetic spin

chain is described by the SG equati&®]. In other words,
the ferromagnetic solitary excitations are composed ofra 2
kink in ¢ and a pulse irg which has amplitude proportional
to the soliton speed. Later, Kumi&7,58, Magyari and Tho-
Meanwhile the model under study is discrete, it is impor-mas[59] have already attracted the attention on the validity
tant to derive the continuum limit, because it allows establimits of the SG approximation for the ferromagnetic domain
lishing the analytical calculation of the influence of the di- Walls. In the absence of dipolar interaction, a linear stability
polar interactions on some critical parameters, so that witfnalysis of a static SG soliton profile shows that for the ap-
further numerical computations, some comparison could b@lied magnetic fieldB.=Be.=2A/3 instability occurs. For
done. Attention is then focused on the study of widely spatfiS critical value of the applied magnetic field, the corre-
tially extended solutions where the variations in space andPonding critical value of the reduced magnetic field is
time are slow, which allow us to use the continuum limit ¢(0)= 5 andb(0)—b(u)~u"", whereuis the soliton ve-

. . . . locity. Then the presence of dipolar interactions in the right-
approximation. Then we can obtain the following perturbedhané/ side of Eqrzz 8 leads to I?he new instability criteriogn
SG equatiorj47]: :

B. Influence of the dipolar interactions in the continuum
approximation

[47],
o FPo o1
52~ g7z thsin(e) b=b.=3+a;9(m) (212
9? dp\?
—by cos(2<p)—(sin(2go)a—z(g+(a—§ cos(zgo)”, and
2.9 be(0) —be(u)=~ x(uxug)??, (213
' where
and
_HgS
=g (2.9 Q=g
where the dimensionless quantities are 1 157
g(ﬂ')=1—8 10.1773+12772—T+967T|n(2)+48 ~ 36,
2ASt 2A 12 7
_ Y e B (2.1
A J(1+2aS?)) ap’ 219 9
_ Tiby _6cy[ e |
b gueBe b _9musHg (2.1 Yo=— X" ¢, \8e,) (215
2AS’ 97 2AS '

~ _ o7 _apl2 4 _
and hereH,=47N4(N/V)gugS is the demagnetizing field C1= i C2=6b;", 04_5bc R

due to the dipolar interactions aij; being the demagnetiz- (2.16

056613-3



NGUENANG, KENFACK, AND KOFANE PHYSICAL REVIEW E66, 056613 (2002

We can also calculate the soliton effective mass for b that E(6,) is the maximum energy for a soliton. Using the

<b,; for small velocitiesu, the stability analysis yields the ansatz of Liebmanet al. [60], we have been able to calcu-

energyE(u) of the moving soliton as late the field dependence of the energy of this second static
soliton and the corresponding excursion angjeas

1
E(u)=E(0)+ Em* u?, (2.17 2 12
E:ESG(O) §+b §+% ’ (219)
with
0 ~
bbA(N) sin2<7°> =b.—b. (2.20
m*=———-. (2.18
B.—b

Then in this region the results obtained in E¢&.19 and
Here,\ =2ASgugB,, andb,, which is the lowest value of (2.20 are identical to those of ngbmanet a]. [60]. We .
b given in Eq.(2.12), is the new critical reduced field when OPserve, however, that the only difference is that there is
the dipolar interactions are taken into accoukf)) is a  S°me kind of renormalization in E¢2.19 on the expression
positive constant for which expression is derived in the Ap-Of the soliton rest energisg(0) given in Ref[47]. Finally,
pendix. Also keep in mind thai, is the critical field in the for the other branches, the solitons are moving with a nega-
absence of the dipolar interactions. Foxb, and E(u) tive velocity (relative to SG. These regions correspond to an
 Eog(0)<Ecd0) pthe soliton is SG‘ like V\;:ith effective inverted parabola. The effective mass of the solitons is given

S SG ’ -

mass given by Eq(2.18. This branch, which has been re- by [45]

ferred to as branch | by WBK, terminates at a maximum H(L—E)/36

velocity u,(b). The branch Il is related to the soliton propa- *x :2—2m , (2.2)
gation for E>E(u,,), where the velocityu decreases with IElo0, bo

increasing energi, leading finally to a second static soliton
with an energy higher thakgsg(0) and with §,,= 6, such  where the negative expression of a Lagrangian is given by

1, , cos(0) , . .
L(0,<p)=fd2 5 (0z2+¢7)+ —5——Dbcog#)cod ¢) — ¢.sin(6) | +bg COI20)[ — ¢z SiN(2¢) +siN(2¢)] -

(2.22

Here,Z and r are defined in Eq2.10. From Egs(2.21) and  motion (2.6) and (2.7) with a fourth-order Runge-Kutta
(2.22), we obtain scheme, so that the continuum approximation is not assumed
in the numerical scheme. The time stdppically 0.03 in
. units (3S) 1] is chosen to preserve the total energy of the
- for b>b,. (223 gpin chain to an accuracy of about 0.01% during the com-
b—b plete run. In the numerical simulations, we consider a system
involving N spins ranging betweeN=100 and 200 spins
with periodic boundary conditions at the two ends of the
by(beb) chain in the case of the collision, but for the propagation of a
TP or b<b.. (2.24  single SG soliton we include an offset ofrat the end of the
b.—b ¢ spin chain. The single SG soliton and pairs of SG soliton-
antisoliton provide initial conditions here.
Moreover, in the absence of dipolar interactions, the nu-
merical simulations of soliton dynamics on a discrete ferro- A. Single-soliton dynamics
magnetic chain, without any SG assumptions, performed by

WBK have revealed a rich behavior such as the existence of " order to study soliton properties in the discrete lattice
a multibranched single-soliton excitation structure. in presence of dipolar interactions, we investigate numeri-
cally the discrete-lattice time evolution of soliton configura-

tions. Approximate initial solutions of Eq$2.6) and (2.7)
are the SG solitons

In this section, we report our numerical results. In order to

. 27by(bs/b)2

and

m**

III. NUMERICAL RESULTS

check the dynamics of a single soliton as well as collisions psc=4 arctariexpyVb[ Z—user)], 3.1
between a soliton-antisoliton pair, we solve numerically the
set of coupled nonlinear differential-difference equations of 5= — 2y \busgsectiy\b(Z—usgr)], (3.2
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FIG. 1. Time development of an exact solution of the continuum equation of motion in a discrete Heisenber@cWithout dipolar
interactionsyb) with dipolar interactions. Stability of a moving soliton, transition to a new configuration due to discreteness effects provided
by increasing the magnetic fiel¢t) Without dipolar interactions(d) with dipolar interactions.

wherey=(1—u3y) ~“?is the Lorentz contraction factor and dipolar interactions are also shown for comparison. With in-
Usg is the velocity. Under this assumption, the degree ofcreasing the reduced magnetic field up to a valuebof
discreteness is controlled by the parameteb. The smaller =0.15, and taking the normalized input velocity agg

the y\b, the better the continuum approximation. Let us=0.5C,, the degree of discreteness duejtgb increases
introduce, as an example, the following set of parameterand more magnons are generated with no dipolar interactions
corresponding to the CsNiFstructure, namely[57]: J [see Fig. 1c)]. Therefore the presence of magnons is evi-
=23.6 K, A=4.5K, andS=1. Using the SG solitongsee  dently associated to the discreteness of the chain. More and
Egs. (3.1) and (3.2)] as initial conditions, we have verified more magnons are radiated in the presence of dipolar inter-
their stability on the discrete lattice. Let the reduced magactions, and the kink shape of the waves disappears progres-
netic field be chosen at the value lof-0.024. The result of  sjvely, such a situation can be seen in the sitesi2840 of

the numerical integration of the system of equations of moFig. 1(d).

tion (2.6) and (2.7) is shown in Figs. (a) and Xb), respec- For further investigations of the dynamics of a single soli-
tively, where we observed that a soliton moving with a nor-ton in the presence of magnetic long-range interactions, we
malized constant speat;;=0.5C, along the discrete chain plot the observed average velocityof the soliton as a func-
and with a constant profile, whe@3=2JSA1+2aS?)a3 tion of the initial velocityugg for different magnetic fields.

is stable when dipolar interactions are abdeee Fig. 18)]  For a given magnetic field, the average velocity was obtained
or presenfsee Fig. 1)]. In some figures, the cases of no by averaging the instantaneous velocity of the soliton during
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FIG. 2. (a) Mean kink effective velocityu) againstugg (Sine-Gordon kink velocitywhen the dipole-dipole interactions are absent for
different value of the reduced magnetic fisdd A=0, B=0.05,C=0.10,D=0.15,E=0.19, F=0.24,G=0.3, H=0.36. (b) When the
dipolar interactions are present for the same value of the magnetic field.

[e]

its propagation in the lattice. The results of our computation(a), which corresponds to the results obtained by WRE]
are shown in Figs. @) and 2b), respectively. At first, three in the case of no dipolar interactions, is also shown here for
results are mentioned: comparison. The field dependence wf is consistent with
(i) In Fig. 2b), the curveA corresponds to the case of a the result of Nguenangt al. [47] as shown in Eq(2.13.

soliton propagation when the magnetic field is nil. In this i) In curvesG andH of Fig. 2(b), the average velocity
situation, some perturbing forces are induced in the systemecreases gradually down to a valuewf,=—0.75 and
by the presence of the dipolar interactions. Their main effecine initial condition of aboutisg/ Co=0.7, then for the initial
is to constrain the resulting wave to propagate in the oppositg,qition’s velocity greater thaneg/Co=0.7, instead of de-
directioq to that of the initial condition w_ith small velocities: creasing as in Fig.(2), it starts increasing. ,Such a behavior
EﬁECséé?n;hEyC:Sneégtggvgv\?;ﬁjgee \I/teilscé'%yor/vtr?:nptrr?g?r?izg?gomes from dipolar effects in the discrete model that creates

o . ST . . new nonlinear excitations in the system for high magnetic
conditions attain a certain minimal velocity that the effective . o ;
velocity of the resulting wave starts increasing. This can bé'eld.s with Increasing speed. .
understood in the sense that, when the initial condition iSdiﬁer%l:]rfeSl)lg?v?/gz:leZLTergsir(lii?g;ne:’amxi\r;eEg-?rzaatﬂitthoi

introduced in the chain with a certain initial momentum, the ' i
WBK (Fig. 3, curve a From this we also note that the re-

resulting wave is suddenly subject to competition between it - Rk ]
momentum and the perturbing forces. Then the effective veduced critical magnetic field is always greater when the di-

locity of the resulting wave is negative and does not increasgolar interactions are preseturve b) than when they are
when the initial momentum of the kink is less than the per-absentcurvea). For instance, we have in the static céise.,
turbing forces. But when this initial momentum is greater oru=0) b.=0.35, whileb,=0.33.
comparable to the perturbing forces, the effective velocity of Figure 4 presents the curves of the energy in terms of the
the resulting wave increases. Therefore, due to the aboveatio AE/Ey as a function of the magnetic field for which
mentioned competition that leads to a permanent balance b&E=E—E,, andE,=E for u=0 is the rest energy of the
tween the initial momentum of the initial condition and the soliton. A result that appears surprising at a first glance when
perturbing forces, the effective velocity of the propagatinglooking at Fig. 4 is that, by comparing energies for discrete
kink while increasing exhibits a nonlinear behavior. This ischain with no dipolar interactionsee Fig. 4, curve) and
different from the linear behavior observed in the cufvef  the case in which dipolar interactions are pressae Fig. 4,
Fig. 2(a), where dipolar interactions are absent. curveb), we observe for the curvesandb that the energy

(i) In the presence of dipolar interactions, the averagalecreases gradually with increasing the magnetic field, but
velocity u is always less thangg. In curvesB, C, D, E and  while decreasing in the curvg the energy displays a non-
F, the velocityu reaches a critical maximura, and then vanishing behavior. However, one must keep in mind that the
begins to decrease with increasings. This maximum de- energy recorded here is that of the maximum mean propaga-
creases with increasing magnetic fidldig. 2(b)]. Figure tion velocity of the soliton for each field. And that, as shown
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E FIG. 3. Maximum mean

bc: Q}JBBJZ AS ] propagation velocity against mag-

0.20— netic field; curvea is the case
3 without dipolar interactions; curve
3 b is the case with dipolar interac-
. tions.
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o)

00 002 004 006 008 010
u/C
/G

in curve G andH of Fig. 2(b), as the magnetic field is in- AE/E, against mean kink velocity/C, for different mag-
creasing, its combination with dipolar energies in the systenmetic fields.
finally generates the nonlinear excitations with increasing ve- The results obtained by WBK are shown in Figa
locity in the magnetic chain that would increase from theirwhile Fig. 6b) corresponds to the discrete chain in which
negative values up to the positive one. Since the energy cor-
responding to positive velocity is greater thag, the energy
in Fig. 4, curveb, instead of decreasing down to the rest
energyE, with increasing magnetic field as in Fig. 4, curve AE
a, it decreases down to a minimal value that is greater thar_ET
the rest energye, of the soliton involving in a magnetic
chain without dipolar interactions.

Figure 5 shows the field dependence of the maximum
angle of excursio, 5. Figure 5, curvea corresponds to the
case of no dipolar interactions, while Fig. 5, curvellus-
trates the case with dipolar interactions. The cuavée-
creases with increasing magnetic field, while the cubve
spread out over many extrema leading then to one more
stable region than in the case of the cuazeEven in this
figure, the curveb (continuous ling clearly indicates the

same value of the critical reduced magnetic fibjd=0.35,
which can be obtained here for the second valuedgf,
which is nil. Note that here the relative size ldf; with the
applied magnetic field iHy/B,~0.0005 therefore fors
=1, a;=0.001[47]. This leads to the value of the critical

field obtained from the analytical calculatifsee Eq(2.12)] 0.00 0:10 020 0:30 0:40
of b,~0.37, which is little bit greater than that of the nu- b%%

merical computation. However, this critical magnetic field is

b.=3~0.33, for both numerical and analytical calculation FIG. 4. Energy as function of magnetic fieldE/E,= (E/E,)

when the dipolar interactions are absent. —1; curvea—in the absence of dipolar interaction; cutwe-in the
Figure 6 displays the energy spectrum in terms of the ratigresence of dipolar interactions.
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max . / FIG. 5. Stability limit of mov-
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dipolar interactions are taken into account. Figurés 6nd  been chosen so that the kink and antikink width are large
6(d) are a zoom that we made from Figgaband Gb),  with respect to the lattice spacingypically 10—20 lattice
respectively. From these curves one can see that the solit@iteg to avoid discreteness effects. Using the same algorithm
motion could be classified into five branches according to thas for the case of single-soliton dynamics, we also made a
size of the out-of-plane angle. Figurddp shows a first numerical analysis of a soliton-antisoliton head-on collision.
branch(l) from point A to B for which the soliton energy Only the results of the cases concerned by the introduction of
increases with its velocity. The energy-velocity relationshipthe dipolar interactions shall be presented. The soliton-
along this branch is qualitatively similar to the one given by antisoliton €9 pair collision is initiated by starting with a
the perturbed SG equation; ther_efore this branch is henC%G Sgpairthat is allowed to evolve in time according to the
forth called the pertu_rbed SQ ;ollton branch. In the branCheéquations of motiori2.6) and (2.7).

(”).’ (1, and(IV), first deviations .from the.perturbed SG We examine the evolution of an initial condition,

soliton begin to be found and an increase in energy of the

solitons results in a decrease of the modulus of their velocity. =0 i—n.—

As pointed out by WBK[45], this first deviation is due to ei=2m— (4 arctapext] y (b(i —ny~ Usch) )}
discreteness effect of the spin chain. In the braf\¢h[see +4 arctafexd — 7\/6(n2—i+USGt)]}), (3.3
Fig. 6(d)], the second deviation from the former is found.

This is attributed to the discrete dipolar effects. We notice 6,=2y\busg(secHexy yvb(i—n;—usdt) ]}

that contrary to the case of Fig(d, the first deviation ap-
pears for dynamical soliton instead of a static soliton and

+secHexd — yvb(n,—i+usd)1}), (3.9
there is a new deviation that appears only for high-field val- . . . )
in which the kink and antikink are moving towards each

ues, which can be seen at polit in Fig. 6(d). The analyti- other with the initial velocityugg which can be interpreted as

cal treatment of this later phenomenon shall be considered e input energy. The parametats andn,, which are the
. 2

a future publication. initial positions of the kink and the antikink &t 0, are fixed
B. Kink-antikink collisi at appropriate values so that the two solitons do not interfere
- Kink-antikink collision with each other. Instead of obtaining four major regions as

This section presents the results of numerical calculationfor the case of the ferromagnetic chain with no dipolar inter-
for classical kink-antikink collision processes in a one-actions, we have obtained here five regions that are summa-
dimensional discrete easy-plane Heisenberg ferromagnetzed as follows.

The results obtained for numerical simulations of a single- Region I. The region | is concerned with low applied
soliton dynamics gave valuable qualitative description.magnetic fieldB,. The reduced field lies within the range
Quantitative description needs to simulate kink-antikinkO<b=<0.10. In Figs. 7a)—7(e), we present a sequence of the
head-on collisions at different range of magnetic fieldstime evolutions of a kink-antikink head-on collision for nor-
through the discrete equations of moti@h6) and(2.7). The  malized velocitiesv;=0.4C, (kink) and v,=—wv; (anti-
lattice size iN=200, and the parameters of the model havekink), and for widths equal th,=L,=10a,. In the plot we
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FIG. 6. (a) Discreteness effect on the energy spectrum with mean kink velocity for different reduced magnetic Aiel@®, B=0.05,
C=0.10,D=0.15,E=0.19,F=0.24,G=0.3, H=0.36. When the dipolar interactions are abséox.The same figure when the dipolar
interactions are presernit) A zoom in one of the curve of the dispersion curvga&fin absence of dipolar interactions showing the different
regions displayed by the magnetic chdid). A zoom in two curvegG andH) of dispersion curve ofb) in presence of dipolar interactions
showing the different regions displayed by the magnetic chain. This figure is presented to motivate the physical difference between the two

systems.

present the in-plane and out-of-plane components of théhat, even in the presence of dipole-dipole interactions in this
spins at different propagation times, and we observed that th@nge of magnetic field, the solutions of the continuum equa-
collision of a pair of kink-antikink is quasielastic with infini- tions for large width are also good solutions for the discrete
tesimal changes in the soliton forms. The in-plane compomedium. Hence, the soliton chosen here as initial condition
nent of the spin displays a robustness property, whereas tritisplays a particlelike behavior. It is also important to note
out-of-plane component faces a little distortion of its profilethat at normalized low velocityusg/Cy<<0.1, and mostly in
during the collision process. This collision process happentow field, the collision even leads to the formation of a
as interpenetration into each other and finally leads to a mudreather, but when the reduced magnetic field is increased to
tual crossing of both of them. Numerical simulations showb=0.08, it is no longer possible to observe such a phenom-
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FIG. 10. Head-on collision for a sequence of times for regiob¥.0.37 andugs/Cy=0.45.

enon for normalized velocities less than 0.1. However, onlychecked fotbh=0.13 andusg/C,=0.5, for the external mag-
very high-normalized velocitiesss/Co>0.8 can lead to the petic field and the normalized velocity, respectively, but we
breather formation. This breather formation appears as thgill not present the figures here. So, due to periodic bound-
result of a colliding kink-antikink pair has been interpreted ary conditions, after any collision at the middle of the chain
by WBK as a balance of the collision time versus energyfor example, they come out with a velocity of opposite sign
dissipation for the kink collective coordinate. and next, they face another collision at the end of the chain.

Region II. In this second region, the reduced magnetidAn interesting effect appears for very small-normalized ve-
field fulfills the following condition: 0.16cb<<0.16. Here, locity ugg/Cy=<0.1, where the kink-antikink pair is annihi-
instead of a bound state formation as it is the case when thated after the first collision. This is understandable as the
dipole-dipole interactions are absddb], the kink-antikink  result of the different soliton branches in the chain at very
pair is reflected after the collision. This case has beeitow applied magnetic field.
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Region lll. In this region, we have 0.8¥0<0.22. Since through the critical field and the critical velocity, this can
the collision time is greater here than those for region Il, andalso be observed in the shape of the maximum value of the
I, the size of the chain ranges from 200 to 100. For illustra-out-of-plane spin component vs the magnetic field. Thanks to
tion, we have choseh=0.17 and the normalized input ve- the numerical experiment, the energy against velocity profile
locity ugg/Cp=0.3. In Figs. 8a)—8(c), we observe that after presents five region. The new region here leads to the gen-
the collision, there is neither crossing and nor reflection, theeration of a shock wave that is stable under the collision
system behaves as if it is pinned. In reality, they just stayprocesses. These dipolar interactions are also responsible for
together and form a pair of kink and antikink. Strictly speak-the nonvanishing behavior of the energy of the system with
ing, such a phenomenon can be observe when the dipoldine increasing magnetic field. From the results presented
interactions are absent only in region Il for a certain value ofabove, it is concluded that the investigation of the dynamics
the applied magnetic field and veloci¢5]. The resulting  of kink and their collisions comprises an interesting task for
wave does not display internal oscillation during the simulaphysics. Then it may result in a broadening of ordinary un-
tion and there are only few radiation at the chain ends, welerstanding of several types of soliton interactions in quasi-
then deduce that, in this range of applied magnetic field, thene-dimensional system, which are represented by the do-
inclusion of the dipole-dipole interactions in the model leadsmain walls of a ferromagnet with uniaxial anisotropy and

to a zero frequency translational mode formation. dipolar interactions.
Region IV. Here, we have 0.220<0.32. The size of the
chain is reduced because the collision process is slower than ACKNOWLEDGMENTS
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nons that are induced in the system by dipolar interactions.

This reflection phenomenon indicates that the soliton of APPENDIX

branch Il can propagate and survive in this region.

Region V. In this region, the reduced version of the ap-
plied magnetic field fulfillsb=0.34. We observe in Fig. 10
that before the collision, as the soliton waves approach eaczy
other, the amplitude of the in-plane spin componende- '

In order to find the expression of the constAhk) in Eq.
(2.18), we use the continuum approximation of the discrete
stem(2.6) and(2.7). In the assumption of small velocities
we expand the solution in power afas

creases while that of the out-of-plad&€omponent increases. 6(S)=Ubp(S) +U36,(S)+U®,(S)++ -, (A1)
After the collision, the in-plane spin component completely
changes its shape to behave as a pulse with a flexure slightly B(S)=po(S) + U1 (S) +Urdo(S)+- - . (A2)

oscillating. We deduced that it is a shock wave that comes
from a partial restoration process that is induced in the sysThen to lowest order im, the continuum system reduced to
tem by the dipole-dipole interactions. In other words, includ- 5

ing this long-range magnetic interactions lead us to the fact d ¢O(S)—sin(¢ (5)=0 (A3)
that, initially from a kink-antikink profile, it follows that the ds’ 0 '

kink and antikink are annihilated through an interpenetrating

process. Next, due to a partial restoration process, there ap- d?¢o(s) d?6y(s)
pear a pulse shock wave that would continue the collision —u a2 d<
process without changing. But, the out-of-plane spin compo-

nent just slightly changes its shape and the initial profile is

rapidly reconstructed with greater amplitude. P T (1+ay)cod¢o(s))

deo(S) 2
“( ds )

bo(s),  (A4)

wherea;=2by/b.
IV. CONCLUSION The solution of Eq(A3) is

In conclusion, we have analyzed the nonlinear dynamics _
of the soliton structure taking the model of Cshlifaterial Po=4 arctartexpis)), (AS5)
o e s . ha oeren A o &= 1B _teer).

) - Jurit. ! ) y introducing Eq.(A5) into Eq. (A4), Eq. (A4) reduces to
soliton’s propagation point out that, in the presence of dipo-
lar interactions, when the degree of discreteness is high, the (N +a;+L,)04(s)=seclis), Oy=-—2ub,, (A6)
single SG soliton is more likely to fail to provide an appro-
priate description of the soliton dynamics. We also note fromwhere
these simulations that, when the degree of discreteness is not
to high, the dipolar interactions that are added in the system
permitted us to observe that the range of stability is raised

d2
Lo=— 42 T[1-6 sech(s)]
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is a Hermitic operator. Here we have neglected the effect ofvith
the dipolar field on the diffusion potential. As in Rg61], to

solve Eq.(A6), we need first to derive the complete ortho- +oo

normal eigenfunctiong,(s) of Ro(k)= Pf,w R(s)¥(s,k)ds, (A15)
Latn=enthn (A7) .
as R}= f_w R(s)¢i(s)ds, j=0,1. (A16)
V3
£0= 3 and o(s)= 7secﬁ(s), (A8)  Using then Egs(A11) and(A14) into Eq.(A6), and note that

Loho=—3to, Lo=0, and Lo =(1+Kk?) ¢, we then
12 multiply the resulting equation by(s,k), ¢o(s), andy(s)
e;=0, and ¢1(S)=(§) seclis)tanf(s), (A9)  successively, and then integrate it ogwe obtain the fol-
lowing relations:

g=1+k? and

0 (k)=ﬁR°(k) (A17)
) exp(iks) 0 1+a;+N+k?’
S = —
WS TRe e " .
X (1+k?+ 3ik tanh(s) — 3 tanf¥(s)). (A10) O0=r. =3 O (A18)
1

Now we can use this complete eigenfunctions to obtain the

expression 0, in Eq. (A6) through a direct approach to Since Ry=(3/2)"?[ % secR(s)tanhg)ds=0, it implies that
the study of soliton perturbation that have been recently use@é: 0,

by Yan and Tand62] to solve a perturbed Korteweg—de

Vries equation. For this purpose, we need to assume that both V3 [+ 3

0(s) and the right-hand sidgR(s) =sech§)] of Eq. (A6) R8=7 f secﬁ(S)dS=T- (A19)
should be expanded in a generalized Fourier integral as o

o +oo Then from Eq.(A15)
®o(3)=j20 Obyj(s)+ PLOO Oo(k) ¥(s,k)dk,

V3
(A11) o__ ™S
9o d4(N+a;—3)° (A20)
where
oo From Eg.(A15), the evaluation oRy(k) leads to
®O(k)=Pf Oo(s)¥(s,k)ds, (A12)
N (k2+1) vﬁk”
sech —
where P denotes the principal value of the integral under R(K)= m 2 A21
consideration and the coefficient) are given by o(k)=~ 2K+ 1) (K2+4) (A21)
. +oo
@Jozj 0Oo(s)¢j(s)ds, j=0,1. (A13)  Finally it comes that
ight- i F(s,\
We also have for the right-hand side of HA6), O(s)— (s,\) , (A22)
1 o )\+ a'l—3
R(s)=>, R +Pf Ro(k) ¢(s,k)dk, (A14
()= 2 RiW(s)+P|  Ro(kju(skodk, (AL4)
|
K k2+1+'kt tantt ik
. _377 : 370+ ay—3) wa sec > 3 ik tanh(s) —tantt(s) | exp(i s)dk -
(sM)=grsechils)= ———P] | (KZ+8)(1+ ag+ A +K) - A2

Then using the properties of the principal value of an integral with the aid of the residue theore28&qcan be suitably
transformed into
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km\ [N+ aq | .
Y secV( —) (—— ik tanh(s) + tantf(s) | exp(iks)

37 3 2 3
F(s,)\)z?secﬁ(s)—jf_w At ay AT K

dk. (A24)

Finally, the expansion of the energy with the velocity leads us to the evaluation of

—+ oo

A()\)=%J7oc F(s,\)seclis)ds, (A25)

which leads to

™

37 N+ ag
A()\)=Z —

+
4 2J1+a;+\ v

!

1+\1+a;+\
2

: (A26)

where ' is the digamma function.
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