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Pulse dynamics in actively mode-locked lasers with frequency shifting

S. Longhi
INFM, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy

~Received 15 July 2002; published 21 November 2002!

The dynamics of wave packet splitting in a dissipative Schro¨dinger-like dynamical system is theoretically
studied by considering the model of an amplitude-modulated mode-locked laser with frequency shifting pro-
vided by an intracavity frequency modulation. It is shown that as the strength of the frequency modulation is
increased, a bifurcation takes place which corresponds to a transition from a single-pulse steady-state oscilla-
tion to a two-pulse coherent oscillatory dynamics. An analytical model for pulse splitting bifurcation and onset
of two-mode oscillatory dynamics, based on a Gaussian pulse analysis, is presented and compared with
numerical simulations.
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I. INTRODUCTION

The method of active mode locking of lasers is a power
means for the generation of ultrashort laser pulses, which
been extensively studied both theoretically and experim
tally since a long time~for earlier references on this subje
see, e.g., Refs.@1–4#, and references therein!. Though major
efforts on active mode locking have been devoted to
achievement of clean and stable short laser pulses to be
in applications, it has been recently recognized that this
erational regime hides several involved and interesting
namical phenomena that provide a remarkable realizatio
the optical context of rather universal dynamical featu
found in dissipative dynamical systems@5–7#. In the sim-
plest case of an amplitude-modulated~AM ! mode-locked la-
ser with an exact synchronism between the modulation
riod of cavity losses and the cavity round-trip time, the pu
dynamics inside the laser cavity is described by the Sch¨-
dinger equation of the quantum harmonic oscillator@3#, but
with the complex time transformationt→ i t , which makes
the dynamics nonconservative. As compared to the w
packet dynamics of corresponding conservative harmonic
cillator, which can show coherent oscillations due to interf
ence of initially excited higher-order modes, the comp
time transformation makes the dynamics quite trivial in t
dissipative case since the fundamental Gaussian mode
ways the only one that survives after transient, the high
order Hermite-Gaussian modes being damped out. Des
this, the inclusion of perturbations, albeit small, in the pu
dynamics may strongly destroy this simple scenario. In p
ticular, it is well known that a pulse-train instability in AM
mode-locked lasers is commonly observed when the mo
lation frequency is detuned, even slightly, from the cav
free spectral range~see, e.g., Refs.@8–10#, and references
therein!; detailed numerical simulations@5,11,12# have con-
firmed the onset of the instability and revealed its sensitiv
to the noise level present in the system. Such an instab
which is analogous to the drift instability encountered
other optical and hydrodynamic systems@5#, has recently
found @6# a rather elegant explanation in terms of the stro
non-normal transient growth of weak perturbations induc
by time detuning, a generic feature of non-normal dissipa
1063-651X/2002/66~5!/056607~10!/$20.00 66 0566
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dynamical systems which has been proposed as a ge
mechanism for turbulence in hydrodynamics@13#. Analo-
gously, in case of frequency-modulated~FM! lasers it has
been recognized@7# that the transition region between fre
quency modulation laser oscillation and FM mode locki
@14,15# shows large excess noise levels, a scenario usu
encountered in non-Hermitian dissipative systems~see, e.g.,
Refs. @16,17#!. Finally, the existence of transient cohere
oscillations in the spectrum of a weakly dissipative FM
operated laser, analogous to Bloch oscillations found in ot
optical systems@18#, have been recently predicted and o
served in a solid-state laser@19#.

In this paper we investigate the pulse dynamics
amplitude-modulated mode-locked lasers in presence of
quency shifting induced by an intracavity frequency mod
lation and reveal the existence of a pulse splitting bifur
tion. The frequency-shift-induced bifurcation corresponds
a coherent two-pulse oscillatory dynamics which resemb
the coherent two-mode dynamics found in many conser
tive dynamical systems, such as in quantum dynamical t
neling @20# or in coupled waveguides@21#. The pulse split-
ting bifurcation provided by our model is nevertheless
purely dissipative nature and is therefore rather distinct fr
different mechanisms of wave packet splitting previou
predicted in other conservative physical systems, such as
dynamic splitting~dichotomy! of wave packets exhibited by
an electron bound by an atomic potential subjected to
strong laser field@22# or the wave packet splitting of a Bose
Einstein condensate in a periodically shaken trap@23#.

The paper is organized as follows. In Sec. II the mode
an AM actively mode-locked laser with frequency slidin
produced by an intracavity phase modulation is introduc
and the eigenmode analysis, revealing the existence
pulse splitting bifurcation, is presented. In Sec. III a Gau
ian pulse analysis of the mode-locking master equation
presented and an analytical model for the pulse splitting tr
sition is derived. In Sec. IV the pulse dynamics in the para
eter region corresponding to pulse splitting, which takes i
account for the gain dynamics, is investigated by means
an eigenmode expansion analysis and by a direct nume
analysis of the mode-locking master equation. Finally,
Sec. V the main conclusions are outlined.
©2002 The American Physical Society07-1
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II. BASIC MODEL AND MODE-LOCKING ANALYSIS

A. Mode-locking master equation

We consider a homogeneously broadened laser wit
slow gain medium containing an amplitude modulator, t
introduces a sinusoidal change of cavity loss rate at a
quencyvm close to the cavity axial mode separationDvax ,
and a phase modulator that varies sinusoidally the opt
cavity length at a harmonic frequencymvm , wherem is an
integer. The phase modulator is used to introduce a cont
ous frequency shift of the intracavity pulse; to this aim, t
FM signal is assumed to be shifted with respect to the A
signal such that in correspondence of the minima of l
modulation the FM signal is nearly linear, producing a fr
quency drift of the pulse at each transit. The evolution eq
tion for the pulse envelopec(t,T) at successive transits i
the cavity reads~see e.g., Refs.@3,6,12,19#!

]c

]T
5~g2 l !c1H 2g

]

]t
1Dg

]2

]t2
1D@cos~2pt !21#

2 iD fsin~2pmt!J c

[~g2 l !c1L~ t !c. ~1a!

In Eq. ~1a!, t is the fast time variable, normalized to the AM
period Tm52p/vm , describing the intracavity pulse enve
lope shape (21/2,t,1/2); T is the round-trip number
which accounts for the slow change of the pulse envelop
successive transits in the cavity;g[(Dvax2vm)/vm is the
frequency detuning parameter (ugu!1); D and D f are the
single-pass modulation depths impressed by the ampli
and phase modulators, respectively;m is an integer that de
fines the harmonic order of the frequency modulation;l is the
cavity loss rate;g is the round-trip saturated gain;Dg
5(2pNg)22 is the normalized filtering parameter that a
counts for the finite gain bandwidth introduced by a tuni
element, such as an etalon, or by the atomic gain line; andNg
is the number of cavity axial modes that fall under the g
line. The saturated gaing obeys the separate rate equation

]g

]T
52g iFg2g01gE

21/2

1/2

uc~ t,T!u2dtG , ~1b!

whereg0 is the small-signal gain due to the pumping andg i
is the gain relaxation rate normalized to the modulation f
quency (g i!1). In writing Eq.~1a!, we used the weak puls
shaping approximation, assuming that the pulse suffers s
changes at each transit in the cavity, and we adopted
simple operatorD g]2/]t2 to account for the finite spectra
gain extent of the laser cavity. Different operators can
used, if needed, to more properly account for finite g
bandwidth effects. For instance, if the gain bandwidth w
limited by an intracavity etalon, in Eq.~1a! the following
change would be in order:
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]2

]t2
→T F2 i

1

Tm

]

]t G21, ~2a!

where

T ~v!5
12R

12Rexp~2p iv/DvFSR!
.

1

12 i
2pR

12R

v

DvFSR
~2b!

is the complex transmission function of the etalon,R is the
power reflectivity of the etalon facets, andDvFSR is the free
spectral range of the etalon (uvu!DvFSR). Similarly, if the
gain bandwidth were limited by the atomic transition lin
in Eq. ~1a! the operatorD g]2/]t2 should be replaced by
g„x@2 i (1/Tm)]/]t#21…, where x(v) is the normalized
complex Lorentzian function of the atomic transition~see,
for instance, Ref.@15#!. In the following we will mostly use
the operatorD g]2/]t2 in the master equation to describ
finite gain bandwidth effects, checking that the main effe
predicted by the analysis persist also by considering the o
above mentioned models. Owing to the cavity boundary c
ditions, the periodicity condition

c~21/2,T!5c~1/2,T! ~3!

has further to be imposed for the pulse envelope.
We note that, when eitherD f50 or D50, Eq. ~1a! re-

duces to the usual mode-locking models describing AM
FM mode locking, respectively, which have been widely
vestigated in previous publications. Here we consider
combined effects of amplitude and frequency modulati
the latter providing a continuous frequency shift of the pu
envelope.

B. Eigenmode analysis and pulse splitting bifurcation

The main dynamical properties of the mode-locking
gime are determined by the eigenmodes and correspon
eigenvalues of the operatorL(t) entering Eq.~1a!; as it will
be shown in Sec. IV, the role of the gain dynamics is to fo
the laser, after transient, to oscillate on the eigenmode w
the lowest damping rate. Owing to the periodicity conditi
~3!, the determination of the eigenmodes of the operatoL
can be reduced to the calculation of the eigenmodes o
matrix with an infinite dimension, which can be accurate
performed by standard numerical routines. Analytical expr
sions for eigenvalues and eigenmodes in terms of comp
valued Gauss-Hermite polynomials can be derived unde
parabolic approximation for both AM and FM terms enteri
Eq. ~1a!. Such an analysis, though providing rather appro
mate results, especially close to bifurcation points, will
developed in the following section and will be useful to u
derstand the bifurcation scenario found in the numeri
analysis done in this subsection.

Let us indicate by$un&5Fn(t)% and$ln% the eigenmodes
and corresponding eigenvalues of the mode-locking oper
L. SinceL(t) is not self-adjoint, the eigenvalues are in ge
eral complex valued. The real part ofln , after a sign rever-
7-2
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PULSE DYNAMICS IN ACTIVELY MODE-LOCKED . . . PHYSICAL REVIEW E66, 056607 ~2002!
sal, represents the loss rate of the eigenm
un&, whereas its imaginary parten5Im(ln) corresponds to a
slow phase drift that accumulates at successive transits in
cavity. In the following the eigenmodes will be ordered su
that 0>Re(ln)>Re(ln11)(n50,1,2, . . . ), i.e., the loss rate
increases with the mode ordern. In order to transform the
differential eigenvalue equationL(t)Fn(t)5lnFn(t) into
an algebraic matrix equation, following Eq.~3! we expand
the eigenmodeFn(t) in Fourier series by settingFn(t)
5( l 52`

` Fl
(n)exp(2pilt ); the eigenvalue equation then r

duces to the linear algebraic equation(s52`
` Al ,sFs

(n)

5lnFl
(n) , where the infinite-dimensional matrixAl ,s is

given by @24#

Al ,s5F2D22pg i l 2S l

Ng
D 2Gd l ,s1

D

2
~d l ,s111d l ,s21!

2
D f

2
~d l ,s1m2d l ,s2m!. ~4!

Notice that the eigenmodes$Fl
(n)% of the matrixA represent

the spectra of the mode-locking eigenmodes$Fn(t)% of
L(t).

We have performed an extended analysis of eigenva
and eigenmodes of the matrixA in parameter space by as
suming the modulation depthD f of frequency modulation as
a control parameter; we typically assumed a zero time de
ing (g50), however we checked that the bifurcation sc
nario observed atg50 persists also by allowing for sma
detunings~see, e.g., Fig. 3 discussed below!. A typical be-
havior of the eigenvalue spectrum as a function ofD f and for
a few values of the harmonic orderm is shown in Fig. 1. For
small values of the modulation depthD f the eigenvalues are
real valued and there is one dominant~lowest-order! mode,
the u0& mode, which is always a Gaussian-like wave pac
centered in correspondence of the minimum of loss mod
tion cycle, i.e., att50 @see Fig. 2~a!#. In this case, an in-
crease of the FM depthD f leads to a shift of pulse spectrum
from the center of the gain line with a corresponding incre
of the loss rate@see Fig. 2~b!#. From the dynamical view-
point, this case does not show appreciable distinctive asp
as compared to the usual AM mode-locking model witho
phase modulation; as we will show in Sec. III, for low valu
of D f the eigenvalue spectrum is fully captured by appro
mating the frequency modulation term in Eq.~1a! by a linear
phase term around the pulse positiont50, i.e., by neglecting
the chirp term induced by the phase modulator. However
the modulation depthD f is increased above a critical valu
D f c , a qualitative change of the eigenvalue spectrum is
served@25#. Above the critical valueD f c , the eigenvalue
curves in Fig. 1 start to coalesce in pairs, corresponding
the appearance of pairs of complex conjugate eigenva
~see Fig. 1!. The two lowest-order modes, that we indicate
u01& andu02&, have the same loss rate@Re(l)# but opposite
slow frequency shifts@ Im(l)#. In the time domain these
modes look like chirped Gaussian wave packets whose p
are slightly and symmetrically displaced fromt50 @see Fig.
2~c!#. Furthermore, the sign of the chirp is opposite for t
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two modesu01& and u02&. The crossing of the two lowest
order eigenvalue curves nearD f5D f c , shown in Fig. 1, will
be denoted as a pulse splitting bifurcation, since it will c
respond to a splitting of the mode-locked pulse into tw
slightly displaced and coherently interacting pulses~see Sec.
IV !. The numerical analysis of the eigenvalue and eigenv
tor spectra shows that the bifurcation pointD f c decreases as
the harmonic order is increased and, for not too large val
of m @25#, it scales likeD f c;m22; in addition, the temporal
displacement of the two dominant pulses fromt50 is found
to slightly increase asD f is increased, with the appearance
a frequency chirp with opposite sign in the two displac
pulses. A detailed explanation of these features will be giv
in the following section using a Gaussian approximation
the mode-locking eigenmodes. The physical picture of
pulse splitting bifurcation can be nevertheless qualitativ
captured by observing that the simultaneous action of am
tude and phase modulations on the pulse produces two c
peting mechanisms, one of which favors the pulse to be c
tered close to the minimum of loss modulation, i.e., at
50, and the other one, due to the frequency shifting, wh

FIG. 1. Behavior of real~left! and imaginary~right! parts of
lowest-order eigenvaluesln ~up to n59) for the mode-locking
operatorL(t) versus the depthD f of phase modulation and for a
few values of the harmonic orderm. ~a! m52; ~b! m54; ~c! m
56. The other parameter values areNg560, D51, andg50.
7-3
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S. LONGHI PHYSICAL REVIEW E 66, 056607 ~2002!
tends to push the pulse far away fromt50 in either direc-
tions. The former mechanism is merely due to the loss mo
lation dynamics, whereas the latter one arises from the ph
modulation term which, close tot50, varies linearly with
time, producing a continuous frequency drift of the pu
spectrum at successive transits. This continuous freque
drift causes the pulse spectrum to move far away from
center of the spectral gain band, thus increasing the p
loss. As the pulse center is shiftedin time away fromt50,
the frequency drift is reduced and tends to vanish closet
56Tm /(2m), where the phase modulation has two statio
ary points. Since the rate of the frequency drift is prop
tional to the modulation depthD f , for sufficiently high phase
modulation strengths the loss mechanism introduced by
spectral pulse drift may become dominant over the l
modulation, leading to the pulse splitting bifurcation. W
note that the competition between these two mechani
persists also in presence of a slight detuning between
modulation frequencyvm and the cavity free spectral rang
Dvax , i.e., for gÞ0, or using in Eq.~1a! a different model

FIG. 2. Behavior of normalized pulse intensity~left! and corre-
sponding spectra~right! for the two lowest-order modes for increa
ing values of modulation depthD f : ~a! D f50; ~b! D f50.02; ~c!
D f50.1. The other parameter values are:m54, Ng560, D51,
and g50, corresponding toD f c.0.055 @see Fig. 1~b!#. The thin
curves in the left plots represent the loss~AM ! and phase~FM!
modulation profiles.
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for the spectral gain bandwidth. As an example, in Fig. 3 i
plotted the eigenvalue spectrum in case of a nonzero de
ing, showing the persistence of eigenvalue crossing and
the pulse splitting bifurcation.

III. GAUSSIAN PULSE ANALYSIS

The determination of the eigenvalue spectrum and
corresponding eigenvectors for the mode-locking operatoL,
as given in Eq.~1a!, requires in general a direct numeric
analysis. Nevertheless, if the mode-locked pulses are
sumed to be well localized somewhere, with a duration mu
shorter thanTm /m, the sinusoidal AM and FM terms ente
ing the expression ofL(t) may be expanded up to secon
order in time, leading to an expression forL(t) which is
linear in ]2/]t2, ]/]t, t, and t2. For such an operator, th
eigenvalues and corresponding eigenmodes can be d
mined analytically in terms of complex Hermite-Gaussi
modes~see, for instance, Ref.@26#!. In order to properly
describe the pulse splitting bifurcation found in the nume
cal analysis, the pulse center of masst0 has to be left unde-
termined at this stage. We thus expand the AM and FM te
entering Eq.~1a! up to second order int2t0, yielding

L~ t !52g
]

]t
1Dg

]2

]t2
1b2~ t2t0!21b1~ t2t0!1b0 ,

~5!

where the coefficientsb0 , b1, andb2 are given by

b052D@12cos~2pt0!#2 iD fsin~2pmt0!, ~6a!

b1522pDsin~2pt0!22p imD fcos~2pmt0!, ~6b!

b2522p2Dcos~2pt0!12p2im2D fsin~2pmt0!. ~6c!

The eigenvalue equationL(t)un&5lnun& can be satisfied as
suming for un& a complex Hermite-Gaussian mode of th
form @26#

un&5Hn~jt1r!exp@2a~ t2t0!21 ib~ t2t0!#, ~7!

FIG. 3. Behavior of real~left! and imaginary~right! parts of
lowest-order eigenvaluesln ~up to n59) for the mode-locking
operatorL(t) in case of nonzero detuning. Parameter values are
same as in Fig. 1~c! except forg5131023.
7-4
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PULSE DYNAMICS IN ACTIVELY MODE-LOCKED . . . PHYSICAL REVIEW E66, 056607 ~2002!
where a5aR1 ia I is the complex-valued Gaussian pul
parameter defining pulse duration and pulse chirp (aR.0);
b is a real-valued parameter that determines the pulse
quency shift; andHn(x) is the Hermite polynomial of orde
n with complex argumentx5jt1r, where j and r are
complex-valued parameters. The pulse parametersaR , a I ,
b, j, and r entering the ansatz~7!, as well as the pulse
position t0, have to be determined by subsitution of Eq.~7!
into the eigenvalue equationL(t)un&5lnun& and imposing
that the resulting equation forHn reduces to the differentia
equation of Hermite polynomials, i.e.,d2Hn /dx2

22xdHn /dx12nHn50. Using Eqs.~5! and~6!, after some
cumbersome but straightforward calculations one obtains
following expressions for the eigenvaluesln and parameters
j andr:

ln5l024aDgn ~n51,2,3, . . .!, ~8a!

l052Dg~2a1b2!2 ibg1Dcos~2pt0!2D

2 iD fsin~2pmt0!, ~8b!

j5A2a, r5
g22ib

2A2a
2A2at0 , ~9!

where a, b, and t0 are the solutions of the following
coupled equations:

2ga24iabDg22pDsin~2pt0!22p imD fcos~2pmt0!50,
~10a!

4a2Dg22p2Dcos~2pt0!12p2im2D fsin~2pmt0!50.
~10b!

Since the pulse parametersa, b, andt0 do not depend on the
mode ordern, Eq. ~8a! clearly shows that the mode loss ra
2Re(ln) increases with the mode ordern, and thus the
lowest-order mode, attained atn50, corresponds always t
a Gaussian pulse, which is in general chirped (a IÞ0) and
shifted in frequency from the center of the spectral g
curve (bÞ0). In addition, the coupled equations~10a! and
~10b!, which define the pulse parameters and pulse posit
may admit multiple solutions leading to different loss ra
through Eq.~8b!. Such a multiplicity is indeed responsib
for the eigenvalue crossing and pulse splitting bifurcat
found in the numerical analysis of Sec. II. To simplify o
analysis, let us consider the case of zero detuning, i.e., le
assumeg50. In this case, after settinga5aR1 ia I , from
Eqs. ~10a! and ~10b! the following equations for the real
valued pulse parametersaR , a I , t0, andb are derived:

2pmD fcos~2pmt0!524bDgaR , ~11a!

2pmD fsin~2pmt0!52
8DgaRa I

mp
, ~11b!

2pDsin~2pt0!54bDga I , ~11c!

2pDcos~2pt0!5
4~aR

22a I
2!Dg

p
. ~11d!
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Equations~11! always admit of a solution corresponding to
pulse centered att050 without chirp (a I50); for such a
solution one has

t050, ~12a!

a I50, ~12b!

aR5pA D

2Dg
, ~12c!

b52
mD f

A2DDg

, ~12d!

leading to a real eigenvalue@see Eq.~8b!#,

l052pA2DDg2
m2D f

2

2D
. ~13!

Notice that in absence of the phase modulation (D f50), this
solution reduces to the usual Gaussian pulse of AM mo
locked lasers, with a pulse duration determined by the la
gain bandwidth through Eq.~12c!; the presence of a phas
modulation (D fÞ0) merely produces a shift of the puls
spectrum from the center of the gain line (bÞ0) by an
amount which is proportional to the strength of the pha
modulation @see Eq.~12d!#; the pulse spectrum shift pro
duces a corresponding increase of the loss rate@see Eq.~13!#,
despite pulse position and pulse duration not being in
enced by the phase modulation. However, for sufficien
high values of the modulation depthD f , the coupled equa-
tions ~11! admit of a solution corresponding to a chirpe
pulse with t0Þ0, i.e., to a pulse which is detuned in tim
from the minimum of loss modulation. Notice also that sin
Eqs.~11! are invariant under the changet0→2t0 anda I→
2a I , time-detuned pulse solutions appear always in pa
symmetrically displaced fromt50, and with opposite sign
of chirp a I . In addition, from Eq.~8b! it follows that these
two companion solutions have the same loss rate2Re(l0)
but opposite values of Im(l0). The time displacementt0 can
be found as a root of the following transcendental equati

sin~2pmt0!Fm3D f
2

2D2

cos~2pmt0!

sin~2pt0!
2

m

2

sin~2pt0!

cos~2pmt0!G
5cos~2pt0!. ~14!

In correspondence, the pulse parameters are given by

aR5Ap2m3D f
2

8DDg

sin~4pmt0!

sin~2pt0!
, ~15a!

a I56Ap2mD

4Dg

sin~2pmt0!sin~2pt0!

cos~2pmt0!
, ~15b!

b52A D

mDg

cos~2pmt0!sin~2pt0!

sin~2pmt0!
. ~15c!
7-5
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S. LONGHI PHYSICAL REVIEW E 66, 056607 ~2002!
Equation~14! leads to acceptable pulse solutions provid
that the modulation depthD f is larger than a critical value
D f c ; whenD f approachesD f c from above,t0 goes to zero,
thus recovering the solution given by Eqs.~12!. The value of
D f c is found by settingt050 in Eq. ~14! and reads

D f c5
A2D

m2
. ~16!

For D f.D f c , the loss rate2Re(l0) for the displaced solu-
tions, as obtained from Eq.~8b! using Eqs.~14! and ~15!,
turns out to be smaller than that given by Eq.~13!. The value
D f c thus provides an estimate of the bifurcation point co
necting the unchirped and centered Gaussian pulse solu
u0&, found at low values ofD f , with the chirped and time-
displaced Gaussian pulse solutionsu01& and u02& found at
larger values ofD f and discussed in the preceding sectio
As an example, in Fig. 4 we show the behavior of the lo
rate, slow frequency shift, and time displacement for
lowest-order Gaussian mode as computed from the appr
mate Gaussian pulse analysis@Eqs. ~8b! and ~10!# and by a
direct numerical analysis as in Sec. II. Note that the appro
mate Gaussian pulse analysis provides a good fit to the
numerical curves, apart for a small region around the bi
cation point. Moreover, the dependence of the bifurcat
point D f c on the harmonic orderm, as given in Eq.~16!, is in
good agreement with the numerical results.

FIG. 4. Behavior of loss rate~a!, slow frequency shift~b!, and
time displacement~c! versus modulation depthD f for the lowest-
order pulse mode as calculated by the Gaussian pulse analysis~solid
curves! and by the eigenvector computation of mode-locking ma
A ~dotted curves!. Parameter values are:Ng560, D51, m56, and
g50.
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IV. PULSE DYNAMICS

In the previous sections we have determined the prop
ties of the mode-locking operatorL(t), revealing the exis-
tence of eigenvalue coalescing as the modulation depthD f is
increased, which corresponds to the emergence of two do
nant pulse states symmetrically displaced in time from
minimum of loss modulation. In this section we study bo
analytically and numerically the dissipative pulse dynam
by taking into account the role of the gain variable and d
scribe in detail the onset of FM-induced pulse slitting.

A. Pulse splitting and gain dynamics:
Eigenmode expansion analysis

The dynamics leading to the formation of a steady-st
mode-locking regime is provided by the mechanism of g
saturation, which is ruled by Eq.~1b!. To study the evolution
of an arbitrary initial field distributionc0(t) at successive
transits in the cavity, it is convenient to expand the fie
envelopec(t,T) in series of the eigenmodesun&5Fn(t) of
the mode-locking operatorL(t), which we assume to be
complete set of functions with respect to the variablet. We
then set

c~ t,T!5(
n

f n~T!Fn~ t !, ~17!

where the coefficientsf n in the expansion depend on th
round-trip variableT. In order to determine the equations
motion for these coefficients, let us indicate byun†&
5Fn

†(t) the eigenmode of the adjoint mode-locking ope
tor, L †(t), with eigenvalueln* . The set of functionsun& and
un†& are hence orthogonal, and we assume a normaliza
such that ^m†un&5*21/2

1/2 dtFm* (t)Fn(t)5dm,n and ^nun&
5*21/2

1/2 dtFn* (t)Fn(t)51 @27#. Substituting expansion~17!
into Eq. ~1a!, multiplying both sides of the equation so ob
tained byFm

† (t), and integrating over the fast time variab
t, one then obtains the following equations for the coe
cients f m(T):

d fm

dT
5~g2 l 1lm! f m , ~18!

with the initial conditionsf m(0)5^m†uc0&. The equation for
the gain dynamics@Eq. ~1b!# then reads

dg

dt
52g iS g2g01g(

m,n
Km,nf m* f nD , ~19!

where we have setKm,n5^mun& (Kn,n51, Km,n5Kn,m* ).
The formal integration of Eqs.~18! allows one to write

f n~T!5 f 0~T!
f n~0!

f 0~0!
exp@~ln2l0!T#. ~20!

If we assume thatD f,D f c , there is one dominant mode wit
real eigenvaluel0, i.e., Re(ln),l0 for n51,2,3,.., so that
7-6
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after an initial transient one hasf n(T).0 for n>1, and the
dynamics is merely described by the following two coupl
equations forf 0 andg:

d f0

dT
5~g2 l 2q! f 0 , ~21a!

dg

dT
52g i~g2g01gu f 0u2!, ~21b!

where q52Re(l0) is the loss rate of dominant Gaussia
mode. These equations admit of the stationary solutiog
5 l 1q and u f 0u25g0 /( l 1q)21 for g0.gth5 l 1q, corre-
sponding to a steady-state mode-locked pulse operation

For D f.D f c , there are two dominant eigenmodes w
the same loss rateq52Re(l0)52Re(l1) and opposite
slow frequency shifte5Im(l0)52Im(l1); these modes
were indicated byu01& and 02& in Sec. II. In this case, from
Eq. ~20! after transient one obtainsf n(T).0 for n>2,

f 1~T!5 f 0~T!
f 1~0!

f 0~0!
exp~22i eT!, ~22!

and the dynamics is described by the following two coup
equations forf 0 andg:

d f0

dT
5~g2 l 2q! f 01 i e f 0 , ~23a!

dg

dT
52g i$g2g01g@11uLu212uK0,1uuLucos~2eT

2f!#u f 0u2%, ~23b!

where we have set L[ f 1(0)/ f 0(0) and f
[Im$ ln(K0,1L)%. We note that sinceL is not self-adjoint
@27#, one hasuK0,1uÞ0, so that the dynamics given by Eq
~23a! and ~23b! is nonautonomous and the solutio
f 0(T),g(T) is attracted toward a limit cycle. The mode
locked pulse is now given by the superposition of the t
displaced pulse modesF0(t) andF1(t) according to

c~ t,T!5 f 0~T!@F0~ t !1LF1~ t !exp~22i eT!#. ~24!

Equation~24! shows that the mode-locked pulse varies pe
odically with the round-trip numberT with a period given by
p/e, and its shape is determined by the coherent interfere
of the two displaced pulse eigenmodesF0(t) andF1(t) with
a relative amplitude equal toL, which depends on the initia
conditions. In particular, if we assumeg50 and use the
parabolic approximation for the mode-locking operatorL(t),
one has

F0~ t !5S p

2aR
D 1/4

exp@2a~ t2t0!21 ib~ t2t0!#, ~25!

F1~ t !5S p

2aR
D 1/4

exp@2a* ~ t1t0!21 ib~ t1t0!#, ~26!
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where t0 , a5aR1 ia I , and b are given by Eqs.~14! and
~15!, and

uK0,1u5
p

2

1

AaRuau
exp~22aRt0

2!. ~27!

In order to understand the onset of the pulse splitting
namics, let us suppose that the phase modulator is initi
switched off (D f50) and the AM mode-locked laser osci
lates on the steady-state Gaussian pulse centered att50. As
the phase modulator is suddenly switched on with a mo
lation depth larger thanD f c , after a transient the pulse enve
lope c(t,T) is attracted toward Eq.~24! with uLu51, i.e., a
pulse splitting takes place, corresponding to the coherent
cillation of the two displaced pulse modesu01& and u02&
according to Eq.~24!. An example of pulse splitting induce
by the application of a steplike FM signal to the AM mod
locked laser is shown in Fig. 5, where the evolution of pu
intensityuc(t,T)u2 at successive round trips, as obtained b
direct numerical simulation of Eqs.~1! and ~3!, is reported.
We note that an unbalanced excitation of the two displa
pulses (uLuÞ1) may break the symmetric splitting behavi
shown in Fig. 5. Such a situation occurs, for instance, wh
gÞ0 or when the spectral gain model given by Eqs.~2a! and
~2b! is used. A detailed numerical analysis of these case
given in the following subsection.

B. Numerical results

A direct investigation of the pulse dynamics for the A
mode-locked laser with frequency shifting has been p
formed by numerical integration of Eqs.~1! and ~3! under
different operational conditions. The integration was ty
cally done in the spectral domain by numerical integration
a set of ordinary differential equations obtained by discre
ing the mode-locking operatorL as in Sec. II B and account
ing for the gain dynamics. After introducing the expansi
c(t,T)5(nFn(T)exp(2pint), these equations read explicitl

FIG. 5. Evolution of the mode-locked pulse intensityuc(t,T)u2

at successive transits in the cavity after switching on of the ph
modulator atT50. Parameter values areD51, m55, Ng550,
D f50.3, g50, g i50.01, l 50.05, g0 / l 51.5.
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dFn

dT
5~g2 l !Fn1(

l
An,lFl ~n50,61,62, . . .!,

~28a!

dg

dT
52g iS g2g01g(

n
uFnu2D , ~28b!

where the mode-locking matrixA is given by Eq.~4! @24#.
Equations ~28! have been integrated using an accur
variable-step fourth-order Runge-Kutta method with diffe
ent initial conditions and including a sufficient number
modes in the expansion to safely accommodate the e
spectrum of the mode-locked pulse during its evolution.

We first integrated Eqs.~28! starting from a small random
noise with the phase modulator switched off, so that afte
fast transient the stationary mode-locked pulse of the A
mode-locking regime is attained. AtT50 we then suddenly
switched on the phase modulator, and recorded the evolu
of the pulse intensity at successive transits in the cavity. F
ures 5 and 6 show typical behaviors of such a pulse evolu
for a zero~Fig. 5! and for a nonzero~Fig. 6! detuning pa-
rameterg. In both cases a pulse splitting is observed af
the FM switch is on, however in the detuned case the
pulses have different peak intensities. The reason there
that the parameterL, entering Eq.~24! and defining the rela-
tive amplitude of the two displaced pulses, depends on

FIG. 6. Same as Fig. 5 but withg5131024.

FIG. 7. Same as Fig. 5 but withg5431024.
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initial condition according toL5^F1
†uc0&/^F0

†uc0&, where
c0(t) is the AM mode-locked pulse atT50. In case of zero
detuning the projections of the mode-locked pulsec0(t)
onto the two adjoint eigenmodesF1

†(t) andF2
†(t) yield the

same value, however in the detuned case this is not the c
leading touLuÞ1. At increasing values ofg, L may vanish,
leading eventually to the disappearance of the pulse split
~see Fig. 7!. We also checked that the pulse splitting bifu
cation persists by assuming a different model to account
the finite spectral gain bandwidth of the cavity, as discus
in Sec. II A. As an example, in Fig. 8 we show the occu
rence of pulse splitting by assuming an intracavity etalon
a spectral selective element. In order to understand the as
metry of splitting in the figure, let us notice that in this ca
the dispersive properties introduced by the etalon spec
function @Eq. ~2b!#, despite to slightly change the cavity fre
spectral range of the bared cavity, also slightly affect
shape and offset of the two displaced chirped pulses, ma
againuLuÞ1 in Eq. ~24!.

FIG. 8. Same as Fig. 5, but for a spectral filtering simula
using the transmission function of an etalon@see Eqs.~2a! and
~2b!#. Parameter values for the etalon are:R50.9, DvFSR/vm

52000, andg50.0045; the other parameter values are as in Fig
The value ofg has been chosen to compensate for the linear
persive part of the etalon spectral function@see Eq.~2b!#.

FIG. 9. Periodic two-pulse coherent dynamics after transi
laser switch on atT50. Parameter values areD51, m55, Ng

550, D f50.1, g50, g i51023, l 50.05, g0 / l 51.5.
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Finally, we integrated Eqs.~28! assuming thatboth AM
and FM signals are zero atT,0, and that they are simulta
neously switched on atT50. For D f.D f c , after an initial
transient the mode-locked pulse undergoes a periodic ev
tion, with a period equal to.p/e as predicted by the eigen
value analysis, showing a periodic pattern that results fr
the interference of the two displaced pulses according to
~24!. We note that if the pulse displacement is compara
with the pulse duration, the interference pattern leads t
considerable pulse reshaping rather than pulse splitting
example of such a periodic pattern is shown in Fig. 9. T
transient switch on of the AM and FM signals also leads
the transient excitation of laser relaxation oscillations,
shown in Fig. 10.

As a practical example, let us consider a Nd:yttrium a
minum garnet~YAG! laser ~gain bandwidth.126 GHz at
300 K, gain relaxation rate.4.35 kHz! AM mode locked at
a repetition frequencynm51/Tm5100 MHz, and assume
that the gain bandwidth of the cavity is determined by
intracavity thin etalon with a free spectral rangeDnFSR
.200 GHz and coated facets with reflectivityR.90%. A
transmission peak of the etalon is assumed to be tuned a
center of the atomic gain line at 1064 nm. AssumingD
.0.1, m55, D f.0.03, andg50.0045, one obtains for th
modesu01& and u02& a duration~full width at half maxi-
mum! of .701 ps and 735 ps, respectively, with a tim
displacementt0, from t50, given by.475 ps and.375 ps
for the two pulses, respectively. Furthermore, the periodic
due to coherent pulse dynamics, given byp/e, is about 179
round-trip numbers, corresponding to.1.79 ms. Figure 11
shows the coherent two-pulse dynamics of the mode-loc
pulse train as obtained after relaxation oscillation transie
assumingl 50.05, g0 / l 51.3, andg i54.3531025.

V. CONCLUSIONS AND DISCUSSION

We have analyzed the dynamical behavior of the clas
loss-modulated mode-locked laser model@3# in presence of
simultaneous frequency shift provided by an intracav
phase modulator, and found a pulse splitting bifurcation

FIG. 10. Behavior of pulse energy,*21/2
1/2 dtuc(t,T)u2, versus

round-trip number, showing the onset of transient relaxation os
lations after laser switch on~inset on the left side! and periodic
oscillations due to the coherent two-pulse dynamics after trans
~inset on the right side!. Parameter values are as in Fig. 9.
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duced by the phase perturbation. At low values of ph
modulation depth, the mode-locked pulse is single pea
with a peak position locked at the minimum of loss modu
tion but with a spectrum which is shifted away from th
center of the gain line due to continuous frequency slidi
However, as the modulation depth is increased abov
threshold value, a pulse splitting bifurcation is observ
which leads to the coherent oscillation of two chirped wa
packets, symmetrically displaced in time from the minimu
of loss modulation~see Figs. 5, 6, and 8!. Since the two
wave packets are slightly shifted in frequency@ Im(l0)5
2Im(l1)#, their interference leads to a periodic intens
pattern during successive round trips~see Figs. 9 and 11!.
This feature bears a close connection with the periodic
namical behavior found in conservative systems involv
the interference of two modes, such as periodic power
change in two coupled waveguides@21# or quantum tunnel-
ing of a wave packet in a double-well potential@20#, where
the periodic dynamics is due to frequency splitting of the t
symmetric and antisymmetric supermodes. As a final rem
we point out that the pulse splitting behavior found in o
mode-locking model provides an example of wave pac
dichotomy in a Schro¨dinger-like dissipativedynamical sys-
tem and it is thus rather different from the wave packet sp
ting dynamics encountered in otherconservativedynamical
systems. In particular, the classic wave packet splitting fou
for Schrödinger wave packets in a single-well potential, su
as the dichotomy of the wave function of a bound electron
a strong laser field@22# or the splitting of a Bose-Einstein
condensate in a periodically shaken trap@23#, occurs in pres-
ence of a time-dependent periodic potential. In such case
wave packet splitting arises due to a nonadiabatic eff
when the time scale of the shaking is shorter than the o
relevant time scales of the system, the time-periodic poten
can be replaced by its time average, and the wave pa
splitting results from the existence of a double well in t
averaged potential. Conversely, in our model wave pac
splitting is of purely dissipative nature and does not requ
any nonautonomous dynamics.

l-

nt

FIG. 11. ~a! Behavior of pulse intensity versus round-trip num
ber after transient for the Nd:YAG mode-locked laser model d
cussed in the text.~b! Detailed intensity pulse profiles taken atT
50 ~solid line! and atT580 ~dashed line!. The value ofg has been
chosen to compensate for the linear dispersive part of the et
spectral function@see Eq.~2b!#.
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