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Pulse dynamics in actively mode-locked lasers with frequency shifting
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The dynamics of wave packet splitting in a dissipative Sdmger-like dynamical system is theoretically
studied by considering the model of an amplitude-modulated mode-locked laser with frequency shifting pro-
vided by an intracavity frequency modulation. It is shown that as the strength of the frequency modulation is
increased, a bifurcation takes place which corresponds to a transition from a single-pulse steady-state oscilla-
tion to a two-pulse coherent oscillatory dynamics. An analytical model for pulse splitting bifurcation and onset
of two-mode oscillatory dynamics, based on a Gaussian pulse analysis, is presented and compared with
numerical simulations.
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[. INTRODUCTION dynamical systems which has been proposed as a general
mechanism for turbulence in hydrodynamik3]. Analo-

The method of active mode locking of lasers is a powerfulgously, in case of frequency-modulaté@M) lasers it has
means for the generation of ultrashort laser pulses, which haseen recognizedi7] that the transition region between fre-
been extensively studied both theoretically and experimenguency modulation laser oscillation and FM mode locking
tally since a long timefor earlier references on this subject [14,15 shows large excess noise levels, a scenario usually
see, e.g., Ref§1-4], and references therginrhough major  encountered in non-Hermitian dissipative systdses, e.g.,
efforts on active mode locking have been devoted to theRefs.[16,17). Finally, the existence of transient coherent
achievement of clean and stable short laser pulses to be usedcillations in the spectrum of a weakly dissipative FM-
in applications, it has been recently recognized that this opeperated laser, analogous to Bloch oscillations found in other
erational regime hides several involved and interesting dyeptical systemg18], have been recently predicted and ob-
namical phenomena that provide a remarkable realization iserved in a solid-state lasgt9].
the optical context of rather universal dynamical features In this paper we investigate the pulse dynamics in
found in dissipative dynamical systerfi5—7]. In the sim-  amplitude-modulated mode-locked lasers in presence of fre-
plest case of an amplitude-modulatéM ) mode-locked la- quency shifting induced by an intracavity frequency modu-
ser with an exact synchronism between the modulation péation and reveal the existence of a pulse splitting bifurca-
riod of cavity losses and the cavity round-trip time, the pulsetion. The frequency-shift-induced bifurcation corresponds to
dynamics inside the laser cavity is described by the Schroa coherent two-pulse oscillatory dynamics which resembles
dinger equation of the quantum harmonic oscilld®f; but  the coherent two-mode dynamics found in many conserva-
with the complex time transformation—it, which makes tive dynamical systems, such as in quantum dynamical tun-
the dynamics nonconservative. As compared to the wavaeling [20] or in coupled waveguidel21]. The pulse split-
packet dynamics of corresponding conservative harmonic osing bifurcation provided by our model is nevertheless of
cillator, which can show coherent oscillations due to interfer-purely dissipative nature and is therefore rather distinct from
ence of initially excited higher-order modes, the complexdifferent mechanisms of wave packet splitting previously
time transformation makes the dynamics quite trivial in thepredicted in other conservative physical systems, such as the
dissipative case since the fundamental Gaussian mode is alynamic splitting(dichotomy of wave packets exhibited by
ways the only one that survives after transient, the higheran electron bound by an atomic potential subjected to a
order Hermite-Gaussian modes being damped out. Despittrong laser field22] or the wave packet splitting of a Bose-
this, the inclusion of perturbations, albeit small, in the pulseEinstein condensate in a periodically shaken fi2{.
dynamics may strongly destroy this simple scenario. In par- The paper is organized as follows. In Sec. Il the model of
ticular, it is well known that a pulse-train instability in AM an AM actively mode-locked laser with frequency sliding
mode-locked lasers is commonly observed when the modyroduced by an intracavity phase modulation is introduced
lation frequency is detuned, even slightly, from the cavityand the eigenmode analysis, revealing the existence of a
free spectral rangésee, e.g., Refd8-10], and references pulse splitting bifurcation, is presented. In Sec. Ill a Gauss-
therein; detailed numerical simulatior{$,11,13 have con- ian pulse analysis of the mode-locking master equation is
firmed the onset of the instability and revealed its sensitivitypresented and an analytical model for the pulse splitting tran-
to the noise level present in the system. Such an instabilitysition is derived. In Sec. IV the pulse dynamics in the param-
which is analogous to the drift instability encountered ineter region corresponding to pulse splitting, which takes into
other optical and hydrodynamic systerffs, has recently account for the gain dynamics, is investigated by means of
found[6] a rather elegant explanation in terms of the strongan eigenmode expansion analysis and by a direct numerical
non-normal transient growth of weak perturbations inducedanalysis of the mode-locking master equation. Finally, in
by time detuning, a generic feature of non-normal dissipativeSec. V the main conclusions are outlined.
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II. BASIC MODEL AND MODE-LOCKING ANALYSIS

92 19
A. Mode-locking master equation Dgﬁ_} -! T_m at -1 (28
We consider a homogeneously broadened laser with a
slow gain medium containing an amplitude modulator, thatvhere
introduces a sinusoidal change of cavity loss rate at a fre-

guencyw,, close to the cavity axial mode separatid,,, T(w)= 1__R ~ 1

and a phase modulator that varies sinusoidally the optical 1—Rexp(27i w/A wgsp) 27R o
cavity length at a harmonic frequenayw,,,, wherem is an ""TTR Awrer
integer. The phase modulator is used to introduce a continu- (2b)

ous frequency shift of the intracavity pulse; to this aim, the

FM signal is assumed to be shifted with respect to the AMiS the complex transmission function of the etalénis the
signal such that in correspondence of the minima of losgpower reflectivity of the etalon facets, andogsgis the free
modulation the FM signal is nearly linear, producing a fre-spectral range of the etalofh«{| <A wggg). Similarly, if the
quency drift of the pulse at each transit. The evolution equagain bandwidth were limited by the atomic transition line,
tion for the pulse envelope(t,T) at successive transits in in Eq. (1a) the operatorD 4%/ dt* should be replaced by

the cavity readgsee e.g., Ref§3,6,12,19) gix[—i1(2/T)alot]—1), where y(w) is the normalized

complex Lorentzian function of the atomic transiti¢see,

Ay 32 for instance, Ref[15]). In the following we will mostly use
79Dyt _VEJ’DQE’LA[COS(ZWU_” the operatorD 43?/9t? in the master equation to describe

finite gain bandwidth effects, checking that the main effects
predicted by the analysis persist also by considering the other

—iAssin Zwmt)] 7 above mentioned models. Owing to the cavity boundary con-
ditions, the periodicity condition

=(g—Dy+L(t)y. (1a W(—1/2T) = (1/2T) 3

. . . . has further to be imposed for the pulse envelope.
e e o . We note that, when it —0 or 0, £q.(1 rc
P m= £ Om, 9 y P duces to the usual mode-locking models describing AM or

o e S of e s S £ mode ockin,respecve, i ave been widel i
. o ; _g P . P vestigated in previous publications. Here we consider the
successive transits in the cavity= (A wyx— wm)/ oy, is the

frequency detuning parametefy{<1); A and A, are the combined effects of amplitude and frequency modulation,

single-pass modulation depths impressed by the amplitudthneille?gS; providing a continuous frequency shift of the pulse

and phase modulators, respectivatyis an integer that de-
fines the harmonic order of the frequency modulatlas;the
cavity loss rate;g is the round-trip saturated gairf,
=(2'n'Ng)_2 is the normalized filtering parameter that ac- The main dynamical properties of the mode-locking re-
counts for the finite gain bandwidth introduced by a tuninggime are determined by the eigenmodes and corresponding
element, such as an etalon, or by the atomic gain lineNand  eigenvalues of the operatdi(t) entering Eq(1a); as it will
is the number of cavity axial modes that fall under the gainbe shown in Sec. IV, the role of the gain dynamics is to force
line. The saturated gaig obeys the separate rate equation, the laser, after transient, to oscillate on the eigenmode with
the lowest damping rate. Owing to the periodicity condition
(3), the determination of the eigenmodes of the operétor
e T)|2dt} (1b) can _be r.educe(.j t_o.the _calculiation of the eigenmodes of a
' ' matrix with an infinite dimension, which can be accurately
performed by standard numerical routines. Analytical expres-
sions for eigenvalues and eigenmodes in terms of complex-
whereg, is the small-signal gain due to the pumping and valued Gauss-Hermite polynomials can be derived under a
is the gain relaxation rate normalized to the modulation frepparabolic approximation for both AM and FM terms entering
quency (yj<1). In writing Eq.(1a), we used the weak pulse Eg.(1a. Such an analysis, though providing rather approxi-
shaping approximation, assuming that the pulse suffers smathate results, especially close to bifurcation points, will be
changes at each transit in the cavity, and we adopted thdeveloped in the following section and will be useful to un-
simple operatorD(_;ﬁZ/(?t2 to account for the finite spectral derstand the bifurcation scenario found in the numerical
gain extent of the laser cavity. Different operators can beanalysis done in this subsection.
used, if needed, to more properly account for finite gain Let us indicate by{|n)=®,(t)} and{\,} the eigenmodes
bandwidth effects. For instance, if the gain bandwidth wereand corresponding eigenvalues of the mode-locking operator
limited by an intracavity etalon, in Eqla) the following L. SinceL(t) is not self-adjoint, the eigenvalues are in gen-
change would be in order: eral complex valued. The real part ®f, after a sign rever-

B. Eigenmode analysis and pulse splitting bifurcation
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sal, represents the loss rate of the eigenmode -Re(™) Im(?»n)
[n), whereas its imaginary paet,=Im(\,) corresponds to a . "
slow phase drift that accumulates at successive transits in th >
cavity. In the following the eigenmodes will be ordered such 0.25
that =Re(\,)=Re(\,;1)(n=0,1,2...), i.e., the loss rate 02
increases with the mode ordar In order to transform the
differential eigenvalue equatiof(t)d,(t)=\,P,(t) into

an algebraic matrix equation, following E(B) we expand 0.1
the eigenmoded ,(t) in Fourier series by settingp,(t) 0.05f
=37 __ FMexp(2nilt); the eigenvalue equation then re-

0.15

duces to the linear algebraic equatiadl__,.A4, F" 0 01 02 03
=\ .F(", where the infinite-dimensional matrid,  is 03 —
given by[24] 02 - ]
g
1\2] A R el
A|,s:[—A—27T7i|—<N—> st 5 (0 sr1t 0 5-1) 0 #:‘_:::M """

g S,

_?(5I,s+m_ 5I,s—m)- (4) 02 - -7~ j' \*{.::

0 0.1 0.2 0.3

Notice that the eigenmodé& ("} of the matrix.A represent 03
the spectra of the mode-locking eigenmodegb,(t)} of 0.25
L(t). 02
We have performed an extended analysis of eigenvalue!
and eigenmodes of the matriA in parameter space by as-
suming the modulation depth; of frequency modulation as 0.1~ ‘
a control parameter; we typically assumed a zero time detun: ¢ gsfJ—"_._
ing (y=0), however we checked that the bifurcation sce- 0 ‘ ‘ ‘ ‘
nario observed ay=0 persists also by allowing for small © 0 0.1 0.2 0.3 0 0.1 0.2 0.3
detunings(see, e.g., Fig. 3 discussed bejow typical be- .
havior of the eigenvalue spectrum as a functiothpfind for Modulation Depth Af
a few values of the harmonic orderis shown in Fig. 1. For
small values of the modulation depty the eigenvalues are ; _
real valued and there is one domindluwest-ordey mode, lowest-order eigenvalues, (up to n=9) for the mode-locklng
o . . peratorL(t) versus the deptih; of phase modulation and for a
the |0) mode, which is always a Gaussian-like wave packef . .. .

. . ew values of the harmonic orden. () m=2; (b) m=4; (¢c) m
gentered m_correspondence qf the minimum of loss m(.)dula-=6. The other parameter values Mg=60, A=1, andy=0.
tion cycle, i.e., att=0 [see Fig. 2a)]. In this case, an in-
crease of the FM depth; leads to a shift of pulse spectrum two modes|0*) and|0~). The crossing of the two lowest-
from the center of the gain line with a corresponding increas@rder eigenvalue curves nefif=A¢., shown in Fig. 1, will
of the loss ratgsee Fig. 2b)]. From the dynamical view- be denoted as a pulse splitting bifurcation, since it will cor-
point, this case does not show appreciable distinctive aspectespond to a splitting of the mode-locked pulse into two
as compared to the usual AM mode-locking model withoutslightly displaced and coherently interacting pulésse Sec.
phase modulation; as we will show in Sec. lll, for low values|Vv). The numerical analysis of the eigenvalue and eigenvec-
of A¢ the eigenvalue spectrum is fully captured by approxi-tor spectra shows that the bifurcation paly, decreases as
mating the frequency modulation term in E@a) by alinear  the harmonic order is increased and, for not too large values
phase term around the pulse positten0, i.e., by neglecting of m[25], it scales likeA .~ m~2; in addition, the temporal
the chirp term induced by the phase modulator. However, agisplacement of the two dominant pulses fromo0 is found
the modulation deptid; is increased above a critical value to slightly increase a4 is increased, with the appearance of
A¢c, a qualitative change of the eigenvalue spectrum is oba frequency chirp with opposite sign in the two displaced
served[25]. Above the critical valued., the eigenvalue pulses. A detailed explanation of these features will be given
curves in Fig. 1 start to coalesce in pairs, corresponding tin the following section using a Gaussian approximation for
the appearance of pairs of complex conjugate eigenvaluete mode-locking eigenmodes. The physical picture of the
(see Fig. 1. The two lowest-order modes, that we indicate bypulse splitting bifurcation can be nevertheless qualitatively
|0*) and|0~), have the same loss rgtRe(\) ] but opposite  captured by observing that the simultaneous action of ampli-
slow frequency shiftIm(\)]. In the time domain these tude and phase modulations on the pulse produces two com-
modes look like chirped Gaussian wave packets whose pealggting mechanisms, one of which favors the pulse to be cen-
are slightly and symmetrically displaced fram O [see Fig. tered close to the minimum of loss modulation, i.e.,tat
2(c)]. Furthermore, the sign of the chirp is opposite for the=0, and the other one, due to the frequency shifting, which

FIG. 1. Behavior of realleft) and imaginary(right) parts of
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Pulse intensity Pulse spectrum Re(A,) Im(4,)
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FIG. 3. Behavior of realleft) and imaginary(right) parts of
lowest-order eigenvaluek, (up to n=9) for the mode-locking
operatorL(t) in case of nonzero detuning. Parameter values are the
same as in Fig. (t) except fory=1x10"3.

for the spectral gain bandwidth. As an example, in Fig. 3 itis
plotted the eigenvalue spectrum in case of a nonzero detun-
ing, showing the persistence of eigenvalue crossing and of
the pulse splitting bifurcation.

Ill. GAUSSIAN PULSE ANALYSIS

0.6} - - -+

o4 The determination of the eigenvalue spectrum and the
' ' ' corresponding eigenvectors for the mode-locking operéfor
0.2 : : A as given in EqJ(1a), requires in general a direct numerical
analysis. Nevertheless, if the mode-locked pulses are as-
-0.2 0 . . .
-0.1 0 0.1 40 20 0 20 40 sumed to be well localized somewhere, with a duration much
© Fast time ¢ Mode number / shorter thanT,,/m, the sinusoidal AM and FM terms enter-

ing the expression of(t) may be expanded up to second
FIG. 2. Behavior of normalized pulse intensiteft) and corre-  order in time, leading to an expression fdft) which is

sponding spectréight) for the two lowest-order modes for increas- linear in 9%/dt?, d/dt, t, andt?. For such an operator, the
ing values of modulation depth¢: (&) A¢=0; (b) A;=0.02;(c)  eigenvalues and corresponding eigenmodes can be deter-
A¢=0.1. The other parameter values are=4, Ng=60, A=1,  mined analytically in terms of complex Hermite-Gaussian
and y=0, corresponding ta\;=0.055[see Fig. lb)]. The thin  mpdes(see, for instance, Ref26]). In order to properly
curves in the left plots represent the loggM) and phaseFM)  describe the pulse splitting bifurcation found in the numeri-
modulation profiles. cal analysis, the pulse center of magsas to be left unde-

termined at this stage. We thus expand the AM and FM terms

tends to push the pulse far away frdm 0 in either direc-  entering Eq(1a) up to second order it—t,, yielding
tions. The former mechanism is merely due to the loss modu-

lation dynamics, whereas the latter one arises from the phase P 52

modulation term which, close to=0, varies linearly with L(t)=— Yo +Dg— + Bo(t—1tg)%+ By (t—to) + Bo,
time, producing a continuous frequency drift of the pulse ot

spectrum at successive transits. This continuous frequency 5

drift causes the pulse spectrum to move far away from the " .
center of the spectral gain band, thus increasing the puls¢here the coefficientgy, B,, and3; are given by
loss. As the pulse center is shifte@dtime away fromt=0,

the frequency drift is reduced and tends to vanish close to Bo=—A[1-cog2mty)]—iAsin2mmt), (63
==*T,/(2m), where the phase modulation has two station- ) _
ary points. Since the rate of the frequency drift is propor- B1=—2mAsin2mty) —2mimAcog2mmty),  (6b)

tional to the modulation depth;, for sufficiently high phase

modulation strengths the loss mechanism introduced by the  B,= —272Acoq 27tg) + 2m2im2Asin(2rmty). (60)
spectral pulse drift may become dominant over the loss

modulation, leading to the pulse splitting bifurcation. We The eigenvalue equatiofi(t)|n)=\,|n) can be satisfied as-
note that the competition between these two mechanismsuming for |n) a complex Hermite-Gaussian mode of the
persists also in presence of a slight detuning between thierm [26]

modulation frequency,, and the cavity free spectral range

Aw,y, i.e., fory#0, or using in Eq(1a a different model Iny=H,(ét+p)exd —a(t—ty)2+iB(t—ty)], (7)
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where a=ag+iq, is the complex-valued Gaussian pulse Equationg11) always admit of a solution corresponding to a
parameter defining pulse duration and pulse chitgp>*0); pulse centered aty,=0 without chirp (@,=0); for such a
[ is a real-valued parameter that determines the pulse fresolution one has

qguency shift; andH,(x) is the Hermite polynomial of order

n with complex argument=ét+p, where & and p are to=0, (129
complex-valued parameters. The pulse parametgrsa, ,

B, & andp entering the ansat¢7), as well as the pulse a;=0, (12b
positionty, have to be determined by subsitution of Ed).

into the eigenvalue equatiof(t)|n)=X\,|n) and imposing /A

that the resulting equation fdi,, reduces to the differential YRTTN 2D (129

g
equation of Hermite polynomials, i.e.,d’H,/dx?

—2xdH,/dx+2nH,=0. Using Eqs(5) and(6), after some mA;
cumbersome but straightforward calculations one obtains the B=——, (12d
following expressions for the eigenvalues and parameters 2ADy
¢ andp: leading to a real eigenvalisee Eq(8b)],
An=No—4aDygn (n=1,23...), (8a 2x2
Ao~ f
No=—Dy(2a+ %) —iBy+Acog2mty) — A No==m2ADy~ 5 (13
—iA¢sin(2mmty), (8D Notice that in absence of the phase modulatiap0), this
_ solution reduces to the usual Gaussian pulse of AM mode-
5 _y—2IB locked lasers, with a pulse duration determined by the laser
§=\2a, p= 2\2a B \/Zto’ ©) gain bandwidth through Eq120); the presence of a phase

modulation A;#0) merely produces a shift of the pulse
where «, B8, andt, are the solutions of the following spectrum from the center of the gain ling#0) by an
coupled equations: amount which is proportional to the strength of the phase
modulation[see Eq.(12d)]; the pulse spectrum shift pro-
2ya—4iafDy—2mwAsin(2mty) — 2mimAcog2mmiy) =0,  duces a corresponding increase of the loss[see Eq(13)],
(108 despite pulse position and pulse duration not being influ-
. . enced by the phase modulation. However, for sufficiently
4a2Dg—2772Acos(277t0)+2772|m2AfS|n(27Tmto)=(1).0b high values of the modulation deptky, the coupled equa-
(100 tions (11) admit of a solution corresponding to a chirped

Since the pulse parameters 8, andt, do not depend on the Pulse withty,#0, i.e., to a pulse which is detuned in time
mode ordemn, Eq. (8a) clearly shows that the mode loss rate from the minimum of loss modulation. Notice also that since
—Re(\,) increases with the mode order and thus the EGs.(11) are invariant under the change— —to anda;—
lowest-order mode, attained at=0, corresponds always to — i, time-detuned pulse solutions appear always in pairs,
a Gaussian pulse, which is in general chirpeg#0) and Symmetrically displaced froro=0, and with opposite sign
shifted in frequency from the center of the spectral gainOf chirp «;. In addition, from Eq.(8b) it follows that these
curve (8#0). In addition, the coupled equatioi0a and  two companion solutions have the same loss raiRe(\o)
(10b), which define the pulse parameters and pulse positiorPut opposite values of In(). The time displacemert} can
may admit multiple solutions leading to different loss ratesPe found as a root of the following transcendental equation:
through Eq.(8b). Such a multiplicity is indeed responsible

for the eigenvalue crossing and pulse splitting bifurcation .

found in the numerical analysis of Sec. Il. To simplify our sin(2mmt)
analysis, let us consider the case of zero detuning, i.e., let us

m3A? cog2mmt;) m sin(2wtg)
2A2 sin(2mwty) 2 cog2mwmty)

assumey=0. In this case, after setting= ag+ia,, from =cog27ty). (14

Egs. (10a and (10b) the following equations for the real- _
valued pulse parametets;, «,, ty, andg are derived: In correspondence, the pulse parameters are given by
2mmAcog 2mmty) = —4BDyaR, (11a \/w2m3A$ sin(4mmty) (153

aRp= . ’
. 8D aga 8ADy sin(2ty)
2mmAssin(2mmty) = — ———, (11b
ma . \/ﬂ-zmA sin(2mty)sin(27rt,) -
: - “~=N"4p co2mmty) (150
2mwAsIN2mty) = 48Dy, , (110 g
4(a’%—a?)D, A cog2mmty)sin(2wty)

27wAcog 27ty) = Alag—ai)Dy (110 B=- \/ (150

- mDy sin(2mmty)
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0.0 , ; ‘ IV. PULSE DYNAMICS

In the previous sections we have determined the proper-
ties of the mode-locking operatdi(t), revealing the exis-
tence of eigenvalue coalescing as the modulation d&pik
increased, which corresponds to the emergence of two domi-
nant pulse states symmetrically displaced in time from the
minimum of loss modulation. In this section we study both
analytically and numerically the dissipative pulse dynamics
by taking into account the role of the gain variable and de-
scribe in detail the onset of FM-induced pulse slitting.

0.04

0.02

Loss rate -Re(4)

A. Pulse splitting and gain dynamics:
Eigenmode expansion analysis

Frequency shift Im(A)

0.0 The dynamics leading to the formation of a steady-state

mode-locking regime is provided by the mechanism of gain

saturation, which is ruled by E@lb). To study the evolution

of an arbitrary initial field distributiony,(t) at successive

il ! : transits in the cavity, it is convenient to expand the field

: 0"05 0"1 O"15 B2 envelopey(t,T) in series of the eigenmod¢s>=<bn(t) of

Modulation Depth A, the mode-locking ope_ratodi(_t), which we assume to be a
complete set of functions with respect to the variablé/e

FIG. 4. Behavior of loss raté), slow frequency shiftb), and then set

time displacemen(c) versus modulation depth; for the lowest-

order pulse mode as calculated by the Gaussian pulse an@ghis W(t,T)= E f(TP (1), (17)

curves and by the eigenvector computation of mode-locking matrix n

A (dotted curvel Parameter values aridly=60,A=1, m=6, and

y=0. where the coefficients,, in the expansion depend on the

round-trip variableT. In order to determine the equations of

Equation (14) leads to acceptable pulse solutions providedOtion for these coefficients, let us indicate tp')
that the modulation depth; is larger than a critical value = ®n(t) the eigenmode of the adjoint mode-locking opera-
Aq.: whenA, approaches\ . from above., goes to zero, tor, £'(t), with eigenvalue\}; . The set of functiongn) and
thus recovering the solution given by E¢2). The value of |n') are hence orthogonal, and we assume a normalization
A, is found by setting,=0 in Eq.(14) and reads such that (m[n)= 3 dtd} () (1) =6y, and (n|n)
=12 dtd* (t)D,(t)=1 [27]. Substituting expansiofil7)
into Eq. (1a, multiplying both sides of the equation so ob-

0.02

Time offset £,

24 tained by(brTn(t), and integrating over the fast time variable
Age= m2 (16) ¢, one then obtains the following equations for the coeffi-
cientsf,(T):
For A;>Aq., the loss rate- Re(\,) for the displaced solu- %z(g—l A f (18)
tions, as obtained from Eq8b) using Egs.(14) and (15), dT mzime

turns out to be smaller than that given by Et@). The value

A+ thus provides an estimate of the bifurcation point con-with the initial conditionsf,(0)=(m'|¢,). The equation for
necting the unchirped and centered Gaussian pulse solutidghe gain dynamic§Eq. (1b)] then reads

|0), found at low values of\;, with the chirped and time-

displaced Gaussian pulse solutides ) and|0~) found at dg .

larger values ofA; and discussed in the preceding section. FraRd 9_90+9% Kmnfmfn|s (19)
As an example, in Fig. 4 we show the behavior of the loss '

rate, slow frequency shift, and time displacement for the _ _ L%
lowest-order Gaussian mode as computed from the approx}'l_yﬁerf wel have Se.Km'“f_ém“:PS (K”“'”_ L Kma= K“'m)'
mate Gaussian pulse analy$i&gs. (8b) and (10)] and by a e formal integration of Eqg18) allows one to write
direct numerical analysis as in Sec. Il. Note that the approxi-

mate Gaussian pulse analysis provides a good fit to the full f(T)=fo(T) fn(0) exd (\y—Ao) T1. (20)
numerical curves, apart for a small region around the bifur- " fo(0) "

cation point. Moreover, the dependence of the bifurcation

point A, on the harmonic ordem, as given in Eq(16), isin  If we assume thah;<A;, there is one dominant mode with
good agreement with the numerical results. real eigenvalue\y, i.e., Ref\,)<\o for n=1,2,3,.., so that
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after an initial transient one hdg(T)=0 forn=1, and the
dynamics is merely described by the following two coupled
equations forfy andg:

dfo
a1 91— a0, (213

dg_ )
ﬁ——y||(g—go+g|fo| )s (21b

where g=—Re(\() is the loss rate of dominant Gaussian

mode. These equations admit of the stationary solugon

=l+q and|fo|>=go/(I1+q)—1 for go>g,=1+4q, corre-

sponding to a steady-state mode-locked pulse operation.
For A;>A;., there are two dominant eigenmodes with  FIG. 5. Evolution of the mode-locked pulse intendiis(t, T)|?

the same loss ratg=—Re(\o)=—Re(\,;) and opposite at successive transits in the cavity after switching on of the phase

slow frequency shifte=Im(\o)=—Im(\,); these modes modulator atT=0. Parameter values afe=1, m=5, Ny=50,

were indicated by0 ") and 0°) in Sec. II. In this case, from A1=0.3, y=0, 7=0.01,1=0.05,g,/I=1.5.

Eq. (20) after transient one obtairfg(T)=0 for n=2,

Va 0.2

wherety,, a=artiq,, and B are given by Eqs(14) and

f1(0 1
t1T =T o= 20T, (22 (19 and
fo(0)
L . . 1
and the dynamics is described by the following two coupled K= Z ext( — 2 aat? 2
equations forf, andg: [Koal =5 Jarlal M —2agty). (27)
dfy _ N
ﬁ:(g—l—q)foﬂefo, (233 In order to understand the onset of the pulse splitting dy-

namics, let us suppose that the phase modulator is initially
dg switched off A;=0) and the AM mode-locked laser oscil-
7 Y{0— g0+ gl 1+|A|2+2|Kq | A|cog 2€T lates on the steady-state Gaussian pulse centettecd(atAs
the phase modulator is suddenly switched on with a modu-
—#)|fol2 (23b) lation depth larger thai;., after a transient the pulse enve-
o b lope ¢ (t,T) is attracted toward Eq24) with |A|=1, i.e., a
_ Ise splitting takes place, corresponding to the coherent os-
where we have set A=f,(0)/fo(0) and ¢  PY'SE : T
=Im{In(Ko+A)}. We note that since is not self-adjoint ~ cillation of the two displaced pulse mod¢s™) and |0~)
[27], one h’asiKo]J#O, so that the dynamics given by Egs. according tp Eq(24). An example of pulse splitting induced
(233 and (23bj is nonautonomous and the solution by the application of a steplike FM signal to the AM mode-
fo(T),g(T) is attracted toward a limit cycle. The mode- locked laser is shown in Fig. 5, where the evolution of pulse
locked pulse is now given by the superposition of the twog‘tenSityW’(t’T) ||2 at SLIICCGSSi\;e ro;r;d trig)?,)as obtaineddby a
: : irect numerical simulation of Eq$l) and (3), is reported.
displaced pulse modeBo(t) and®,(t) according to We note that an unbalanced excitation of the two displaced
T =fo(T)[Dg(t)+ AD,(t)exp(—2ieT)]. (24)  Pulses [A|#1) may break the symmetric splitting behavior
shown in Fig. 5. Such a situation occurs, for instance, when
Equation(24) shows that the mode-locked pulse varies peri-¥# 0 or when the spectral gain model given by E@®) and
odically with the round-trip numbeF with a period given by ~ (2b) is used. A detailed numerical analysis of these cases is
wle, and its shape is determined by the coherent interferenc@iven in the following subsection.
of the two displaced pulse eigenmodkg(t) and®,(t) with
a relative amplitude equal th, which depends on the initial
conditions. In particular, if we assumeg=0 and use the

parabolic approximation for the mode-locking operatgt), A direct investigatiqn of the pulse dynamics for the AM
one has mode-locked laser with frequency shifting has been per-

formed by numerical integration of Egél) and (3) under
T\ 4 different operational conditions. The integration was typi-
Dy(t)= <g> exd —a(t—tg)?+iB(t—ty)], (25 cally done in the spectral domain by numerical integration of
R a set of ordinary differential equations obtained by discretiz-
1a ing the mode-locking operatd} as in Sec. Il B and account-
d)l(t)z(—> exf — a* (t+1t,)2+iB(t+1,)], (26)  ing for the gain dynamics. After introducing the expansion
2ag Y(t,T)=2,F,(T)exp(2rint), these equations read explicitly

B. Numerical results
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FIG. 8. Same as Fig. 5 but with=1x10"" FIG. 8. Same as Fig. 5, but for a spectral filtering simulated

using the transmission function of an etalpsee Eqgs.(2a and
(2b)]. Parameter values for the etalon afR=0.9, Awggr/ 0y
=2000, andy=0.0045; the other parameter values are as in Fig. 5.

(283 The value ofy has been chosen to compensate for the linear dis-
persive part of the etalon spectral functimee Eq.(2b)].

dF,
daT

=(g—|)Fn+2I A F (n=0,21,+2,...),

dg

—=— —go+ Fol? 28b
at 97 9% g; IFal®) (28 initial condition according ta\ =(®]|yo)/(® | o), where

PYo(t) is the AM mode-locked pulse dt=0. In case of zero
where the mode-locking matriXd is given by Eq.(4) [24].  detuning the projections of the mode-locked pulgs(t)
Equations (28) have been integrated using an accurateynto the two adjoint eigenmod@{(t) andCDZ(t) yield the
variable-step fourth-order Runge-Kutta method with differ-same value, however in the detuned case this is not the case,
ent initial conditions and including a sufficient number of leading to]A|# 1. At increasing values of, A may vanish,
modes in the expansion to safely accommodate the entifgaging eventually to the disappearance of the pulse splitting
spectrum o_f the mode-locked pul_se during its evolution. (see Fig. 7. We also checked that the pulse splitting bifur-

We first integrated Eqg28) starting from a small random  cation persists by assuming a different model to account for
noise with the phase modulator switched off, so that after gne finjte spectral gain bandwidth of the cavity, as discussed
fast transient the stationary mode-locked pulse of the AMy sec. 11 A. As an example, in Fig. 8 we show the occur-
mode-locking regime is attained. At=0 we then suddenly rence of pulse splitting by assuming an intracavity etalon as
switched on the phase modulator, and recorded the evolutiog spectral selective element. In order to understand the asym-
of the pulse intensity at successive transits in the cavity. F_'gmetry of splitting in the figure, let us notice that in this case
ures 5 and 6 show typical behaviors of such a pulse evolutiofhe dispersive properties introduced by the etalon spectral
for a zero(Fig. 5 and for a nonzerdFig. 6 detuning pa-  fynction[Eq. (2b)], despite to slightly change the cavity free
rametery. In both cases a pulse splitting is observed afterspectral range of the bared cavity, also slightly affect the

the FM switch is on, however in the detuned case the tWahape and offset of the two displaced chirped pulses, making
pulses have different peak intensities. The reason thereof igyain|A|+# 1 in Eq. (24).

that the parametek, entering Eq(24) and defining the rela-
tive amplitude of the two displaced pulses, depends on the

02
0.1 W
L gy, 100 gt L : :
er 02 FIG. 9. Periodic two-pulse coherent dynamics after transient
laser switch on aff=0. Parameter values ate=1, m=5, Ng
FIG. 7. Same as Fig. 5 but with=4x10"*. =50, A¢=0.1, y=0, =103, 1=0.05,9,/I=1.5.

056607-8



PULSE DYNAMICS IN ACTIVELY MODE-LOCKED.. .. PHYSICAL REVIEW E66, 056607 (2002

1500

20
15 AR
§1ooo 1000 . 500 7
L% 10 HHHTIHTH _ﬂ.é g
500 :
g ® 2 £
= 500 0 2250 =
~ % 200 400 1000 1400 1800 E 2
T g
5 8
o —An ] A=
0 500 1000 1500 2000 ~
. 0
Round-trip number T 5 1 5 i 5

) 2 ) Fast time [ns] Fast time [ns]
FIG. 10. Behavior of pulse energy,”dt|#(t,T)|?, versus

round-trip number, showing the onset of transient relaxation oscil- FIG. 11. (a) Behavior of pulse intensity versus round-trip num-
lations after laser switch ofinset on the left sideand periodic  ber after transient for the Nd:YAG mode-locked laser model dis-
oscillations due to the coherent two-pulse dynamics after transierdussed in the texi(b) Detailed intensity pulse profiles taken &t
(inset on the right side Parameter values are as in Fig. 9. =0 (solid line) and atT =80 (dashed ling The value ofy has been
chosen to compensate for the linear dispersive part of the etalon
Finally, we integrated Eq928) assuming thaboth AM spectral functiorfsee Eq(2b)].
and FM signals are zero at<0, and that they are simulta-

neously switched on af=0. ForA;>A,, after an initial duced by the phase perturbation. At low values of phase

modulation depth, the mode-locked pulse is single peaked

t'ransie.nt the m'ode—locked pulse undergoes a periodip eVOlL&'/\'/ith a peak position locked at the minimum of loss modula-
tion, with a period equal te=/ e as predicted by the eigen- yqn byt with a spectrum which is shifted away from the

value analysis, showing a periodic pattern that results fromianer of the gain line due to continuous frequency sliding.
the interference of the two displaced pulses according to Eqyowever, as the modulation depth is increased above a
(24). We note that if the pulse displacement is comparablgnreshold value, a pulse splitting bifurcation is observed,
with the pulse duration, the interference pattern leads to hich leads to the coherent oscillation of two chirped wave
considerable pulse reshaping rather than pulse splitting; apackets, symmetrically displaced in time from the minimum
example of such a periodic pattern is shown in Fig. 9. Theof loss modulation(see Figs. 5, 6, and)8Since the two
transient switch on of the AM and FM signals also leads towave packets are slightly shifted in frequengyn(\o)=
the transient excitation of laser relaxation oscillations, as—Im(\,)], their interference leads to a periodic intensity
shown in Fig. 10. pattern during successive round trisee Figs. 9 and 11

As a practical example, let us consider a Nd:yttrium alu-This feature bears a close connection with the periodic dy-
minum garnet(YAG) laser (gain bandwidth=126 GHz at namical behavior found in conservative systems involving
300 K, gain relaxation rate-4.35 kH2 AM mode locked at the interference of two modes, such as periodic power ex-
a repetition frequency,,=1/T,=100 MHz, and assume change in two coupled waveguidgal] or quantum tunnel-
that the gain bandwidth of the cavity is determined by aning of a wave packet in a double-well potentjab], where
intracavity thin etalon with a free spectral randevrsg  the periodic dynamics is due to frequency splitting of the two
=200 GHz and coated facets with reflectiviR=90%. A  symmetric and antisymmetric supermodes. As a final remark,
transmission peak of the etalon is assumed to be tuned at tiige point out that the pulse splitting behavior found in our
center of the atomic gain line at 1064 nm. Assumiig mode-locking model provides an example of wave packet
=0.1, m=5, A;=0.03, andy=0.0045, one obtains for the dichotomy in a Schidinger-like dissipativedynamical sys-
modes|0™) and |0~) a duration(full width at half maxi- tem and it is thus rather different from the wave packet split-
mum) of =701 ps and 735 ps, respectively, with a timeting dynamics encountered in otheonservativedynamical
displacement,, fromt=0, given by=475 ps and=375 ps  systems. In particular, the classic wave packet splitting found
for the two pulses, respectively. Furthermore, the periodicityfor Schralinger wave packets in a single-well potential, such
due to coherent pulse dynamics, givenie, is about 179 as the dichotomy of the wave function of a bound electron in
round-trip numbers, corresponding $01.79 us. Figure 11  a strong laser field22] or the splitting of a Bose-Einstein
shows the coherent two-pulse dynamics of the mode-lockedondensate in a periodically shaken tfag], occurs in pres-
pulse train as obtained after relaxation oscillation transientence of a time-dependent periodic potential. In such case the

assuming =0.05, go /I =1.3, andy;=4.35X 105, wave packet splitting arises due to a nonadiabatic effect:
when the time scale of the shaking is shorter than the other
V. CONCLUSIONS AND DISCUSSION relevant time scales of the system, the time-periodic potential

can be replaced by its time average, and the wave packet
We have analyzed the dynamical behavior of the classigplitting results from the existence of a double well in the
loss-modulated mode-locked laser mofig] in presence of averaged potential. Conversely, in our model wave packet
simultaneous frequency shift provided by an intracavitysplitting is of purely dissipative nature and does not require
phase modulator, and found a pulse splitting bifurcation in-any nonautonomous dynamics.
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