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Coherence properties of the parametric three-wave interaction driven from an incoherent pump
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We consider the basic problem of the parametric generation process from an incoherent pump wave. The
analysis of the degenerate configuration of the two-wave interaction reveals that the mutual corfzection
group-velocity differencebetween the incoherent pump and the signal, the daughter wayanay quench
their parametric interaction, so that the gain experienced by the signal may become arbitrarily small. Con-
versely, in the absence of convection, the incoherent pump efficiently amplifies the signal wave, although this
amplification process cannot lead to the generation of a coherent signal. However, in the case of nondegenerate
three-wave interaction, we show the existence of a convection-induced phase-locking mechanism in which the
incoherence of the pump is absorbed by the idler wave allowing the signal wave to grow efficiently with a high
degree of coherence. We calculate explicitly the autocorrelation function of the generated signal in this regime
of coherent-incoherent interaction. The analysis reveals that, owing to the convection-induced averaging pro-
cess that accompanies the phase-locking mechanism, the degree of coherence of the signal increases as the
degree of coherence of the pump decreases. We establish the experimental conditions that would allow for the
observation of the transition between the incoherent and the coherent regimes of the three-wave parametric

interaction.
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[. INTRODUCTION three interacting waves are considered to be incoherent so

that their relative phases are not significant to their evolution

Resonant wave interaction processes are fundamental aathd can thus be averaged over. This incoherent parametric
ubiquitous in physics. They generally take place in weaklyinteraction has been deeply investigated in plasma physics
nonlinear media characterized by either quadratic or cubi€8], especially as regards the important issue of inertial con-
nonlinearities and are thus encountered in such diverse fieldsnement fusion. In this respect, the incoherence of the pump
as plasma physics, fluid dynamics, acoustics, and nonlinedield is expected to quench the parametric instabilities, a fea-
optics [1,2]. In particular, resonant wave mixing processesture that appears to be essential in the control of the inertial
were recently introduced to describe the physical propertiesonfinement proced9].
of Fermi resonances in multilayer superlattid&s, chiral The coherent and incoherent regimes of the three-wave
liquids susceptibilitieg4], dipolar spin waves at microwave interaction have been commonly considered as being dis-
frequencied5] as well as interacting Bose-Einstein conden-tinct. More specifically, a recent work showed that the tran-
sateq6]. sition between the two regimes occurs sudderndy a first

The three-wave parametric interaction is among the mostrder phase transition as the correlation time of the pump
widely studied wave-mixing configurations. It refers to thefield 7. is varied[10]. Let us remark that this previous study
parametric amplification process where energy is transferregias carried out in the framework of a simple model that
from an external excitatioricalled pump waveinto two  neglects the convectiofi.e., the group-velocity differenge
daughter waves, usually called the signal and the idlebetween the interacting waves. Conversely, the analysis of
waves. From a theoretical point of view, two alternative ap-the role of the convection in the three-wave interaction re-
proaches have been developed to render the analysis of threaled the existence of a mixed interaction regime character-
parametric interaction tractable. On one hand, one finds thized by the coexistence of an incoherent pump and a coher-
phase coherent approximatidhat is considered when the ent generated signal wavdl]. This coherent-incoherent
pump wave is assumed to be stationary with respect to thiateraction survives in the nonlinear regime of strong pump
characteristic evolution timey of the nonlinear interaction, depletion in the form of a parametric soliton composed of
i.e., 7.>19, Where 7, is the correlation time of the pump both incoherent and fully coherent fielgkl]. Then, in con-
wave. In the framework of this approximation, the relative trast with the conclusion of Ref10], an incoherent pump is
phase between the three interacting waves is the key pararable, under certain conditions, to efficiently generate a coher-
eter that governs the coherent evolution of the fields. Thent signal. This mixed interaction regime is rather counterin-
equations governing this coherent parametric interactionuitive since one may reasonably expect that, owing to the
have been solved exactly and, in particular, soliton solutionsesonant nature of the parametric interaction, an incoherent
were identified and studied in various physical contextspump would lead to the generation of incoherent daughter
[2,7]. On the other hand, when the pump field evolves on avaves, so that the relative phases in the system vary ran-
time scaler. that is short with respect to the evolution time domly and can be averaged over, as described by the stan-
of the nonlinear interaction, i.er,< 7, one usually applies dard random phase approximation approach. Let us mention
the random phase approximatiof8]. In this situation the that this particular mixed interaction regime has also been
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studied experimentally owing to conical optical beams byFor definiteness we calh;,A,,A; the signal, idler, and
exploiting their specific phase-matching conditions in quapump waves, respectively. They are complex functions rep-
dratic nonlinear medigl2]. resenting the evolution im andt of the amplitudeg/Aj| and

The present paper is devoted to giving a deeper insighthe phase ¢;=Arg(A;) of each wave. The parameters
into the problem of the parametric interaction driven from anv;, «; are respectively the group velocities and the damp-
incoherent pump field. For this purpose, we consider the baing rates of the waves at frequencies. The nonlinear co-
sic configuration of the parametric interacti¢8ec. 1) in efficientsy; are linked to the effective second order suscep-
which the incoherent pump amplifies the daughter fieldsibility d through the relation yj=dkj/n,-2 while the
from noise fluctuations. Our study begins by showing thaldispersion coefficients are given bxgj:(,ﬁk/(;wZ)j/z,
the convection between the interacting waves is the key pagheren; and kj=n;w;/c are the refractive indices of the
rameter that governs the evolution of the daughter waves agystal and the wave vector moduli at frequencigs Note
well as their coherence propertiéSec. Ill). More specifi-  that although dispersion effects in nonlinear quadratic crys-
cally, we show both analytically and numerically, that, as aals are in many cases considered as negligible, their influ-
general rule, the convection between the incoherent pumgnce must be accounted for in our model because of the large
and the daughter waves quenches their parametric interagpectral bandwidth associated with the incoherent external
tion. But our study also shows that there exists specific congycitation.
ditions under which convection leads to a phase-locking |n the present paper we study Eqs) by following the
mechanism in which a coherent signal may be efficientlyscheme usually employed in nonlinear optics, namely, the
generated by the incoherent pump. The rest of the paper igitial condition of the fields is given by specifying their
devoted to the study of this peculiar regime of coherenttemporal profiles at the entry of the medium, .8 (X
incoherent interaction for which we give a general descrip-—t), and Egs.(1) are solved to get the evolution of the
fields. In particular, we derive explicit criteria that elucidate A;(x,t). Correspondingly, it proves convenient to define the
the nature of the phase-locking mechanism and determingyre|ation length of the pumbp, =47, as well as the non-
the conditions required for the emergence of the mixed injinear characteristic lengthL, = 1/(yse,), Wwhere e,
teraction regimd&Sec. 1V). To determine the key parameters —(|As(z=01)|?)¥2is the average amplitude of the pump.
that govern the coherence properties of the generated signal, Ngte that Egs(1) also hold for the description of purely
we explicitly cal_culate its autocorrela_tion fur_lction in the {yansverse spatial dynamics governed by diffraction and spa-
long term evolution of the three-wave interacti@ec. V). ja| walkoff. Indeed, the substitution @) (21 at)— p;al ay

We present our Work in the c_ontext of nonlmear. Opt'cs(wherepj represents the spatial walkptind ,8,—((92/(?t2)—>
becau§v_e quadratic nonll_near optical media offer unique op-. Ki(az/&yz) (where x; = 1/2k; is the diffraction parametgr
portunities for the experimental study of the parametric proy;ansforms Eqs(1) into the well-known equation for trans-

cess driven from an incoherent pump wave. To motivate ae e effects in quadratic nonlinear crystls, 14.
experimental confirmation of our theory, we establish the ’

experimental conditions in which the mixed interaction re-
gime and the fully incoherent regime of the parametric pro- Il. THE ROLE OF CONVECTION

cess could be observed and studigéc. VI. _
A. Degenerate case withv;=v4

Il. GOVERNING EQUATIONS To obtain a basic insight into the role of convection on the

our starti int th Lth - wave-mixing process driven from an incoherent pump, it is
" u;hs tar dlng p_gln tﬁre etIUfua rele-wa;/et_mmn;g e?.uafnteresting to consider first the idealized situation of a degen-
lons that describe the spatiotemporal evolution of Oplcal, o1 jnteraction 1= w5,A1=A,) in a dispersionlessf;

fields in nonlinear quadratic media in one dimension. Assum-_ s . B
ing the spectral width of the three interacting waves to be_o) and transpareniag=0) quadratic crystal. In this situ

. . . ) ation the group velocities of the pump and the degenerate
much smaller than their respective carrier frequencies( ; _ o
<o;, }=1,23 With w3=w,+w;) one can make the signal wave are equabg=uv, 5). Under these conditions, we

lowl . | imation for th litud simulate from Eq.1) the basic parametric generation pro-
slowly varying enveiope approximation Tor tn€ amplitude €n-qq o, \yhich the incoherent pump amplifies the signal field
velopesA; that obey the coupled partial differential equa-

considered here as noise fluctuatigasy., quantum vacuum

tions field). A typical result is shown in Fig. 1 that illustrates the
JA 1 A A evolution of the signal and pump envelopes in the reference
T L iB 2 A= v ALAE (19  frame traveling at their common group velocityr=(t
3 ot P15 T A= viAsA; T
X U —2/vs,z=X). As initial conditions inx=0, we take a small
amplitude d-correlated complex random noise for the signal
A, 1 9A, envelopeA,(x=0,7). To predetermine the initial noise in-

A
T o T+|,82?+a2A2=72A3A’{, (1D tensity, we considered that in the presence of a coherent
pump wave, an amplification factor of 10 orders of magni-
5 tude is necessary to obtain a signal intensity comparable to
‘9_'6‘3+ia_A3+iﬁ3’9_A3+a As=—ysAA,. (1¢ that of the pump[15], so that one hag|A;|4(x=0,7))
X vz dt at? s ! =10 %%} (see Fig. L For the pump field, we assume that
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FIG. 2. Same as in Fig. 1, but the initial signal wave is a fully
T [units of 1-0] coherent pulse: The signal becomes incoherent during its parametric
amplification.

FIG. 1. Efficient amplification of the signal wave from the in- ) )
coherent pump that propagates at the same group-vel@sten-  because of the incoherent nature of the pump, the gain expe-
erate configuration The signal wave evolves towards an incoherentrienced by the signal at this point is not correlated to the
state (amplitudes are given in units &&,, 7 is in units of 7,  gain experienced at the neighboring poipt-d». In this
=L, /v3=18.6 ps, v3=1.56x10° m/s, see the text for the other way, one may expect that the temporal profile of the signal
parametens field becomes decorrelated during the parametric amplifica-

tion, regardless of its initial correlation. This result is con-
the stochastic procegs(x=0,7) is Gaussian, translationally firmed by the numerical simulation illustrated in Fig. 2. This
invariant with zero meaA;(x=0,7))=0 and exponential simulation has been realized in the same conditions as Fig. 1,

autocorrelation ~ function (Ag(x=0,7'+7)A%(x=0,'))  except that the initial signal field is a fully coherent pulse.
=eZexp(—|d/7), 7 being the correlation time. To numeri- Let us note that these conditions correspond to the basic

cally generate the amplitudi;(x=0,7) with these stochas- problem of parametri_c amplificati_on of a signal_ puls_e from

tic properties, we employed the Omstein-Uhlenbeck method@" incoherent pump in the traveling-wave configuration. As

that is based on the solution of the Langevin equation with alustrated in Fig. 2, the signal rapidly loses its initial coher-

s-correlated stochastic sourf®6]. For concreteness, in the €Nce and, as expected, follows an evolution similar to that

example of Fig. 1 we took.=75 fs, and an average pump obtained starting from an incoherent signal, as evidenced by
. . ,

intensity ofe5=64 MW/cn? with an effective nonlinear sus- ;[jhe comparison of Figs. 1| ?jndthz'ﬁf] a_su(r)r;]rgaerr)]/tof tr:']is _brir?:;t
ceptibility of d=5 pm/V. iscussion, we may conclude that the incoherent pump is

As illustrated in Fig. 1, the signal field is amplified by the 2PI€ 10 generate a coherent signal field when the group-

incoherent pump and keeps its initial incoherence all annde'OCItIes of the pump and the signal are matched.
the amplification process, even in the nonlinear regime of
pump depletion £>10L,,). In other terms, the pump and
signal fields remain fully incoherent during their parametric  Let us now consider the more general physical situation
interaction. This result may be easily interpreted by notingwhere the pump and signal waves propagate with two differ-
that in the absence of convection and dispersion, Ebs. ent group-velocities, i.e., when there is a mutual convection
reduce to a continuous set of ordinary differential equationgetween the two waves. We solved numerically Ed3for
for the variabler=t—x/v3. This means that the field evolu- the same parameters as in Fig. 1, except that we introduce a
tion at a particular pointr= 7 is independent of the field group-velocity difference between the pump and the signal
evolution in the neighboring point’ = +d# so that these through the walkoff parameter 6=(1/v;—1/3) !
evolutions remain intrinsically decorrelated and there is no=1.89 mm/ps. Note that this value actually corresponds to a
means to obtain the emergence of a coherent signal. In thigalistic experimental situation, as will be discussed in detail
situation it is clear that, independently of the initial condi-in Sec. VI. Figure 3 illustrates the evolution of the signal
tions, the incoherent pump unavoidably leads to the generantensity in its own reference frame. In this case, the signal
tion of an incoherent signal, so that the parametric interacfield follows an evolution that is fundamentally different
tion results to be erratic, as illustrated in Fig. 1. from that discussed in Figs. 1 and 2: the signal field is no
Following this very simple reasoning, one may expectionger efficiently amplified by the incoherent pump and its
that this conclusion about the incoherence of the generateaimplitude remains almost constant during the whole propa-
signal would remain unchanged, even in the case where thgation. In other terms, the interaction between the signal and
initial signal field is assumed to be fully coherent. Indeed,pump fields is inefficient, which leads us to conclude that the
the evolution of the signal at a particular poiptis com-  parametric amplification process is quenched by the mutual
pletely governed by the the pump at the same pginthen, convection between the fields. Note that this scenario is not

B. Degenerate case withy;#Fv3
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makes the energy goes back and forth between the fields so
that the average gain experienced by the signal becomes neg-
ligible. In that case, the rapid fluctuations of the pump pre-
vent the amplification of the signal whose intensity remains
almost constant during propagation, as illustrated in Fig. 3
lz=7.5Ly whereLﬁ”/Ln|:0.05.

This quenching of the parametric instability induced by
pump incoherence may be described by a rigorous math-
ematical treatment of the linearized Ed$). For this pur-
pose, let us consider the degenerate configuration of the in-
teraction @;=A,) in the undepleted pump approximation
and let us neglect the dispersion effet€0). Under these
conditions, we may consider the evolution of the signal in its
own reference framef=t—x/v3,é=x), where it sees a
pump that fluctuates with the effective correlation Ierig@lﬂf
iven by Eq.(2). Importantly, in this reference frame the

FIG. 3. Same as in Fig. 1 but in the presence of a temporag . : . . . - )
walkoff between the pump and the down-converted degenerate si%-VOIUtlon of the signal amplitude at a given ting Is de

i re - oupled from its evolution at the neighboring time so that
nal wave: The parametric interaction is almost quenched by th?he equation fol. reduces to an ordinary differential equa-
incoherence of the pumfparameters are8” ~=0.53 ps/mm, 7. q 1 y q

&
T

Intensity 1A 12

T [units of ‘I:(')]

—75fs so thatLe'™=0.14 mm, andL,=2.9 mm, rh=L, /5  UON
=1.53 ps). dA, r . .

| o a7 = 7lANH +IAY(E)IAT ®
affected by the coherence properties of the initial signal 3

wave, the same result being obtained starting the numerical ; i . .
simulation from a fully coherent signal where A; and A; represent the real and imaginary parts of

This important influence of convection on the amplifica- e PUMP amplitudes. Ir:ior simplicity we assume that the
tion process may be simply interpreted by considering thétochastic functions A3'(¢) are & correlated, i.e.,
relevant characteristic length scales involved in the paramefAs' (§')A3'(€)) =6, j0%8(¢—¢'). Note that although this
ric interaction. We should consider the fact that, due to theédssumption is not realistic, it represents a good approxima-
convection, a given point of the signal field sees a fluctuatingion for a pump field whose effective correlation length is
pump that evolves on a length scalg'" given by much smaller than the nonlinear length, ikf/'<L,,. In-
deed, in that case the noise parametécan be expressed in
terms of the mean square deviation of the pump amplitude
(|As]?)=€} and the finite correlation length.S™: o2
=e3L2"/2. In this way, the average valuéal'A% ) may be
In other words,Lgff represents the pump field correlation simply determined through Novikov's theordrh7,16
length as seen by the signal field due its convection with
respect to the pump. Yet at this point, one should compare - 5 SAY
this effective correlation length®'" with the characteristic (Ag'AY)=0 SALI [’ (4)
length of the nonlinear interactidn, = 1/(ys€p). 3

WhenL¢""> L, the amplification of the signal wave takes where the variational derivatives may be easily determined
place on a characteristic length that is shorter than the effegrom Eq. (3), which yields
tive correlation length of the pump, so that the signal has the
time to adapt its phase; to the local value of the pump SA* SA%
phase ¢5. In this way, the following phase relatiogs —=v1A1, T =—iviAL (5)
—2¢,=0 can be satisfied, a condition that guarantees an 284 28
efficient energy transfer between the two fields. In this situ- . . .
ation, the signal is not influenced by the pump incoherencér.he equation governing the eVOlgt'gn of the. mean .Of the
and can be efficiently amplified during the propagation. Thissignal then reduces t(A,)/dé=2y10*(A,). This equation
regime of the parametric interaction actually corresponds t§2n be easily solved to get
the velocity-matched configuration&ff(1=0) considered eff,
abov.e.(SecéflfllA) s!nce in that c'as.e.g '|s infinite and the <A1>(§)=<A1>(0)8XF< c2 ) ©)
conditionL; '>L,, is always satisfied, independently of the nl
pump correlation length. .

Conversely, when the parameters of the interaction ar@here we used the approximatiarf=eZL¢"/2. Then, as
such that.¢'<L,, the signal does not have sufficient time expected from the previous simple reasoning, the ratio be-
to adapt its phase to the random phase of the incoming puniween the effective correlation lengt"" and the nonlinear
and the phase differenag;—2 ¢, evolves randomly, which lengthL,, governs the amplification rate of the signal ampli-

L
LeM=r o= v—:a 2)
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tude. In particular, it becomes apparent from Hj).that the that the influence of convection is simply to reduce the para-
parametric instability may be fully quenched by the incoher-metric coupling between the waves. In contrast with this
ence of the pump in the limit, wheile?'/L,, tends to zero. ~conclusion, we show now that, provided one considers the

Yet to this point, one may object that, although the growthnondegenerate configuration of the interaction, convection
of the mean(A,) is strongly reduced by the pump incoher- between the fields may be responsible for a phase-locking
ence, one may still have an efficient growth of the secondnechanism which permits an efficient amplification of a sig-
order moment(|A,|?) of the signal field. To give an ex- nal with a high degree of coherence. This mechanism thus
ample, this may be the case when the amplitAgddollows  results in a mixed coherent-incoherent regime of interaction,
pure random phase fluctuations such ##f)=0, while its ~ as already discussed in R¢f1]. Our scope here is to de-
mean intensity|A;|?) keeps a finite value. To determine the scribe the phase-locking mechanism in more details by ana-
evolution of (|A,]?), we follow an analysis similar to that lyzing, in particular, the specific coherence properties that
outlined for the mearA,). Indeed, one may notice that the are inherent to the mixed regime of interaction.

evolution of the second order momqml|2> is governed by To get a first InSIght |nt0 the role of ConveCtiqn in the
the following equation: nondegenerate configuration, we assume that the influence of

the dispersion may be neglecte; &0) with respect to that
d(|A1]%) %2 . 5 of the convection. Note that the influence of the dispersion
Cde = 71l(As(OAT") + (A3 (HAD]. (M) on the mixed regime of interaction will be discussed in detail
in the following Section(Sec. I\V). We also restrict our analy-
The average values in the right hand side of this equatiosis to the linear regime of the parametric interaction and thus
may be evaluated through the Novikov's theorem, whichassume that the incoherent pump is not affected by the down-
yields converted signal and idler fields. Assuming furthermore that
A2 the pump attenuation is negligible4=0), the pump field is
1 stationary in its own reference frame and its amplitédds
(A3(§)AD) = ‘72< 5Ar> =2y10%|All?), (88 5 stochastic function of the single varialle-t—x/v 3, with
3 the time correlationr, .
SA2 It proves convenient for our purpose to study the evolu-
(Ais(g)A§>= 02< _1> =92i 7102<|A1|2>. (8b) tion of the fields in the reference frame of the idler wave, as
' defined by the following variablesr{=t—x/v,,z=x). In

3
_ _ _ _ this reference frame the linearized E@b). read
In this way, one obtains a closed equation for the evolution

of (JA;|?), whose solution straightforwardly yields oA 1 9A
<| l| > g yy _1+—_1+C!1A1:’)/1A3(72+Z/52) ;, (103)
Leffz (92 w (97'2
<|A1|2>(§)=<|A1|2>(0)exp<4 EZ ) 9 A
! _2 + a2A2= ’)’2A3( ’7'2+ Z/ 52)A* y (10b)

We may then conclude that, as for the méan) [Eq. (6)], Iz

the growth of the second order moméf#, |?) of the signal
is strongly reduced by the incoherence of the pump field.
Note that the analytical prediction given in E@®) is in
good agreement with the numerical simulation reported
Fig. 3. In this example we ha\leﬁff/Lm:0.0S. According to
Eqg. (9), the expected intensity of the signal &t 15L,, is
therefore(|A,|2)=2x 10" %€}, a value that agrees well with
the numerical simulation(see Fig. 3 atz=15L,) where

where 15,=1/v,— 1lv; represents the walkoff between the
idler field and the pump, andw~ 1/v,— 1/v, is the walkoff

irPetween the daughter waves. The Et0Ob) may be easily
integrated and the solution substituted in EfP3a yields a
closed equation for the evolution of the signal amplitéde
in terms of the stochastic pung;,

IA, 1 A,

(|AL[%)=1.7x10" %€, — A
In summary, our analysis reveals the essential role played 9z W JTp
by the effective correlation length?'" of the pump field in ; /
the dynamics of the signal wave. Indeed, we showed that one = ylygf e~ (272 )A3(72+ z'168,)
cannot simply compark, andL,, to describe the basic fea- 0
tures of the parametric process in the presence of convection, XA} (15+2/85)Aq(7,,2")dZ . (11

but one must instead compdrg, to the effective correlation
lengthLe"" [Eq. (2)] that takes into account the influence of

i * H
convection. The presence of the fact@s(7,+2'/5,)A3(7m,+2/6,) in

the integrand of Eq(11) reveals the existence of a particular
regime of interaction. Indeed, as soon as the idler and pump
velocities are equal, one has '=0 andr,= 7, so that the
According to the above discussion on the degenerate parfactor in the integrand becomd#;(7)|2, which clearly
metric interaction, it seems that an incoherent pump cannathows that the signal evolution is no longer sensitive to the
lead to the generation of a coherent signal and, moreovefluctuations of the pump phasg;(7). In this situation, the

C. Nondegenerate case: Phase-locking mechanism
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signal wave may be amplified efficiently, independently of Assuming pure random phase fluctuations for the pump, we
the rapid fluctuations of the pump phdgd]. have|A3|2=e§. We may then take the ensemble average of
We may interpret this feature through the analysis of theEq. (15), to derive the evolution equation of the ensemble
idler wave, whose evolution is given by the solution of Eq.averaged mutual coherence functid®)(z),
(10b):
s
z —+2a——-T|(Q)=0, (16)
Ax(715,2)=1> fo e a2(272,)A3( To+2'18,)AY (1,,2')dZ . 9z 9z
(12)  Wherea=(a;+ a;)/2 represents the average damping of the
daughter waves, and= mzeg— a,a5. Note that the con-
It becomes apparent from this expression that, if the pumpglition I'>0 merely corresponds to the threshold condition
and idler group velocities are matched,(=0), the pump  for the growth of the signal and idler fields in the presence of
amplitude A; becomes independent of the varialZleand  a constant pump of amplitudg,. The solution to Eq(16)
can thus be removed from the integral, so that the idler amfor large propagation distancegields the following behav-
plitude A, is simply proportional to the incoherent pump ior of the mutual coherence function:

amplitudeAs. Let us now assume that the pump wave ex- >
hibits only pure random phase fluctuations, i.8s(7) (Q()=exd (Ve +TI'—a)z]. (17)

=egexfligg(7)]. In this ideal case, the idler amplitudd® |t hecomes apparent that, provided the threshold condition
obtained through the interaction with an incoherent pump iggy the parametric instability is satisfied, i.€>0, the mu-
simply proportional to the amplituda5®" that would have  tyal coherence between the pump and the idler waves in-
been obtained through the interaction with a fully coherentreases exponentially as the waves propagate in the nonlinear

pump since we can write medium.
inc coh _ To conclude this discussion, let us notice that the emer-
Ay (1,2)=A; (7.z7)exfdiga(7)]. (13 gence of the mixed regime of coherent-incoherent interaction

. . ) _does not require an exact velocity matching=v; between
This relation clearly shows that the phase of the idler wave ig,q pump and idler waves. Indeed, considering (&), it is
locked to that of the pump. In this way, the idler phasg g ficient that the velocities obey the following criterion:
cancels the fast phase variations of the pump phaseso
that the phase relationshifi;— ¢,— ¢,=0 may be satisfied
with slow variations of the signal phas,. In other terms,
owing to their velocity-matched interaction, the idler wave

absorbs the rapid fluctuations of the pump wave so as t#h order to remove the pump amplitudg from the integral
allow the signal to grow coherently. (11). Accordingly, the idler wave will follow the pump phase

To illustrate in a more explicit way this mechanism of fluctuations in exactly the same way as discussed above.
pump-idler phase-locking, let us show that, in this particularSince matching of the pump and idler velocities in an actual
regime of interaction, the idler and pump waves are mutuallyphysical system can never be achieved exactly, crited@h
coherent. For this purpose, it proves convenient to study thelays an essential role to find the relevant experimental con-

evolution of the fields in the signal reference frame that isditions required for the observation of the mixed coherent-
defined by the following variablesr{(=t—x/v;,z=x). In  incoherent regime of interaction. This aspect will be dis-

1

< 1
v, U3 tear (18

this reference frame the linearized E¢®). read cussed in further details in Sec. VI.
0A; IV. THE ROLE OF DISPERSION
=z TeA= Y1AzAS (149
For the sake of simplicity, we analyzed in the previous
oA, 1 A section the phase-locking mechanism by neglecting the in-
2 2 . . . .

— — — —+ a,A,=v,AAT (14b)  fluence of chromatic dispersion. However, the propagation of
gz W Im the fields in any nonlinear media will unavoidably be af-

. . . .._fected by dispersion and it is essential to consider its influ-
where we have implicitly assumed that the pump and idler y disp

y . : 1 - . ence on the mixed regime of coherent-incoherent interaction.
group-velocities are identicabg ~=0). Defining the instan-
taneous mutual coherence function of the pump and idler A. Dispersion of the pump wave
waves asQ(ry,z)=As(71,2)A5(71,2), Eq. (149 gives
A(71,2)=yJ% . exden(Z —2)]Q(7,,2')dZ. By noting that
dAzldTi=wdAz/dz, we may then derive from Edl4b) a
closed equation for the evolution of the mutual coherenc
function Q(74,2)

Let us begin our study by considering the influence of
dispersion on the propagation of the incoherent pump itself.
According to the above analysis, the phase-locking mecha-
Shism between the pump and idler waves may take place pro-
vided that the pump wave can be assumed to be stationary in
g g 1 9 its reference framd¢see Eqs.(10)—(13)]. Clearly, this as-
(_+ al) <__ 4 az)Q= v172/A3/?2Q. (15)  sumption is no longer verified whenever the propagation of

9z Jz. W dry the pump is affected by dispersion. Our aim here is to find
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the conditions for which the dispersion of the pump is suffi-the pump or, in other words, to allow the pump-idler phase-
ciently small to allow the phase-locking mechanism to takdocking mechanism and, in turn, the coherent-incoherent re-

place. gime of interaction to take place.
For simplicity, let us assume that the pump wave is not
affected by the down-converted fields, i.e., we restrict our B. Dispersion of the idler wave

study to the linear regime of the parametric interaction,
as above. The evolution of the pump amplitullg in its

reference frame is then govern he following linear o X . . .
eference frame is then govemed by the following linea considering that dispersion unavoidably affects the evolution

Dispersion of the idler wave may also affect the mecha-
nism of phase-locking. This may be easily understood by

equation: of the idler phasep, that might become unable to follow the
IA P2A rapid fluctuations of the pump phasg; if the dispersion
07—;’+iﬁ3 723 =0, (19 parameters, is too large.
J

To consider the influence of dispersion of the idler wave,
we assume that the group-velocities of the idler and pump
waves are matched and that the inequdlty) is satisfied, so
fhat the pump amplitudas(7) may be considered as station-
ary in its reference frame. Under these conditions, the equa-
tion governing the evolution of the idler amplitude satis-

where the variables =t—x/v3,z=x) represent the re-
tarded time and spatial variables in the reference frame of th
pump. The solution to Eq19) can be given in terms of the
initial condition of the pump amplitude at the entry of the
mediumA; o 7) =A3(7,2=0),

fies
A (Tz)lei—wf A O(t)exp[_i(t—_ﬂ2 dt. (20 A, A,
s Bszl)yn > 4Bz | —+|ﬂ2ﬁ+azA2=yZA3<r>Ai<fr,z>. (22)

0z

Assuming a small dispersion paramef, one may inte-
grate Eq.(20) through the stationary phase method. In this
respect, we remark that the exponential factor in the inte
grand of Eq.(20) has a critical point of the first kind &t
=17, so that the result of the integral simply reaflg( 7,2)

The amplitudeA,(7,z), solution of this equation may be
given by the convolution of the Green’'s functids(r,z)
=exp(—wz)exd —i7/(4B,2)(imB,2)"? with the “source”
term of Eq.(22),

:As,o(T)- 7 e~ a2z-2")
This result merely means that, provided the dispersion AZ(TaZ):')’Z\/;f dz7 —
parametelBs is “perturbative,” the pump wave remains sta- 0 N=ipy(z=2")

tionary in its reference frame. This is actually a condition ) )

required to the appearance of the phase-locking mechanism. Xf dtex —i(t=7) As(HA* (1,2

It is therefore essential to specify the conditions in which the % 4B,(z—7") 3 e
dispersion parameteB; may be considered as “perturba-

tive” so as to be able to apply the stationary phase method. (23

In fact, this method can be applied provided that the OSCi"aConsidering now a small dispersion parameger we may
tions of the exponential factor of the integrand are faster thag,ow the same reasoning as that outlined in Sec. IVA to
the variations of the stochastic functiéa (7). In thisway,  giscuss the influence of dispersion on the pump wave. Ac-
the positive and negative contributions of the integrand te”%ordingly, the integral over the time varialilef Eq. (23) can

to compensate each other, except at the critical poit  pg cajculated by the stationary phase method provided that
where the oscillation of the exponential factor is not com- 2

pensated. This indicates that the interval of integraidn ,[Tﬁzfzo’?rf](z 2') so that the amplitude of the idler wave takes
that significantly contributes to the integral is of the order of

5t=(2B32z)Y2 The stationary phase method can be applied z )

provided that the stochastic functidky o 7) is almost con- Ax(7,2)= szodz'ewZ(Zﬂ JAS(TAT(1.2'). (24
stant in this interval. Considering thAg  7) has a correla-

tion time 7, it results that the dispersion may be consideredRemarking that the interval of integration that contributes
as perturbative provided thadt<r;,, a condition that is significantly to the integral(24) is in the rangez—z’'
equivalent toz<Ly, where Ly=72/(2f3) represents the =1/q,, the condition of applicability of the stationary phase
characteristic dispersion length. This simply means that, inmethod becomes

the limit of small propagation distances, the incoherent pump

is not affected by dispersion. Ba<a,2l2. (25)
In short, at this point we may consider thatLif>L,, ) ) ) )
ie. In this way, we can consider that the mixed regime of
coherent-incoherent interaction is not affected by the idler
B3< Tﬁ?’seo/Z, (21 dispersion, as long as the dispersion paramgieobeys the

inequality (25).
the dispersion-induced variations of the pump wave are suf- Let us notice here the unexpected role played by the idler
ficiently slow to allow the idler to follow the fluctuations of dampingea, in the coherent-incoherent regime of interaction.
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On one hand, the inequalit{25) reveals that the damping Imiky}
parametera, tends to favor the phase-locking between the (©)
pump and the idler fields. On the other hand, the inequality Re(k)
(18) derived in Sec. Il C reveals that the idler damping can )
compensate for the group-velocity mismatch between the >
pump and idler waves so as to warrant their mutual phase-

locking. This important role of the idler damping in the

phase-locking mechanism may be interpreted by simply not-  FIG. 4. ContourC of integration in the complex plarie

ing that an increase of the damping allows the idler field

to adiabatically follow the fluctuations of the incoherent Where, for simplicity, we neglect the dispersion of the signal
pump. This aspect becomes apparent through a simple anakyave. We also implicitly assume that the inequaliti@s),

sis of Egs.(1): Assuming the idler damping, to be very (25, and(18) are verified, so that one can neglect the pump
large, one can make the adiabatic elimination of the idle@nd the idler dispersion as well as their group-velocity-
wave, which becomes a slave variable of the pump and sighismatch. The parameter dy= 1/v,—1/v5 in Eq. (268 rep-

nal amplitudes:A,= y,A;A%/a,. This relation shows that resents the amount of convection between the signal and the
the idler amplitudeA, is directly proportional to the incoher- €omoving pump and idler waves. A remarkable aspect of
ent pump amplitudés, so that the idler phase is locked to Egs. (26) is that a closed equation for the evolution of the

that of the pump, as discussed in Sec. Il C. signal amplitudeA, may be easily derived
d g 1 4 )
V. COHERENCE PROPERTIES S Taz|| =+ 5 ar +ag | A= y172lAsl?(1)A;.

(27)

In the previous sections we discussed the phase-locking

mechanism and the related mixed regime of COheren?ote that this expression confirms that, by virtue of the

incoherent interaction by assuming that the incoherence hase-locking mechanisiisee Sec. 111G, the evolution of

the pump wave only arses from the fluctuat|0n§ .Of.'ts phas he signal wave is not sensitive to the fluctuations of the
&3, Whereas its amplitudpA;| keeps a deterministic con-

stant value. The case of pure phase incoherence is rathggﬁ/zed(ﬁsbgf tmhgéggor;?rfﬁ é p:g;‘t)iAF?ZUOESL?QD&T)Z:;E?B%

unrealistic in the sense that the dispersion of the medium w _ . B

couples the phase and the amplitude and, in this way, urff1(7:K) =/ "=Ai(7.k)exp(-ikz)dZ, which leads to

avoidably leads to amplitude fluctuations after some propa- L ors

gation distance even if the initial pump wave exhibits pure -~ F

phase fluctuations. In the present section we analyze the co- Au(m2)= ﬂﬁ@ Au(r=0k)exif(k)z]dk,  (28)

herence properties of the generated signal wave by calculat-

ing explicitly its autocorrelation function in the more realis- \ynere

tic situation where the pump wave exhibits both phase and

intensity fluctuations. Before entering into the detail of the

analysis, let us remark that, thanks to the mutual convection f(k):<1+—rn(7-)_ik_ ay

between the pump and the signal waves, we may expect the Lﬁl(a2+ik)

intensity fluctuations of the pump to be averaged out, so that

the pump would appear to the signal as being merely conyhere the function m(7) is given by m(7)

tinuous. As will be shown hereafter, this prediction is CON-= 1/ 7¢(t)dt, e(7) being the normalized intensity fluctua-

flrmed by the analysis of the autocorrelation function of the;;ns of the pump field defined throug|hA3|2(r)=e(2)[1

signal wave. . . . +e(7)] with (e(7))=0. Since we are interested in the long
A.S n Sec._lll, It proves convenient to derive the AUtoCor40m evolution of the signal amplitudg,, the integral(28)

relation function from Eqs(1) in the reference_frame of the can be calculated by the steepest descent method for large

pump wave ¢=t—x/vs,z=x) where, as considered above, .- qiion distances[18]. For this purpose, let us notice

the stochastic amplituday(7) is Gaussian, ergodic, W'Fh that the functiorf of the real variablék [see Eq(29)] can be

zero mean (As(x=0,7))=0 and h‘,"‘s an exponfanual analytically continued in the complek plane, and that the

autgcorrelatlon function (As(x=0,7"+7)A3(x=0,7"))  corresponding complex functidi{k) exhibits a saddle point

=ej exp(—|7/7). In the reference frame of the pump wave ko=ia,—i\8,7(L+m)/(z—8,7)/L,,. Then, according

T
T+|k, (29)

the linearized Eqs(1) read to Cauchy’s theorem, we can calculate the inte(®8) along
any contouiC in the complex plan& connecting the extrema
AL 1 9A N of integration, provided that the integrand has no singulari-
oz " 5, or +tarA=1As(1)A;, (268 ties in the area bounded by the original and the new contour.

We can thus calculate the integfaB) on a contour that goes
A through the saddle point, as depicted in Fig. 4. This method
on2 _ * yields the following expression for the asymptotic signal am-
oz Tahe= vA(DAL, (260 plitude A, ( ,z) <exy f(ky)z], where the functiorf (k,) reads
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2J1+m(7) B. Incoherent case
flko)=(az=ar)a-azt Lo a(1=a). (30 This brief discussion about the process of coherent signal

amplification indicates that the autocorrelation function of

the signal wave generated by an incoherent pump may be
The parameter = 6,7/z represents the slope of the space-conveniently calculated along the characterigtje: 1/2. For
time characteristic associated with the veloaity[2]. this purpose, let us determine the asymptotic expression of
the signalA; in the new reference framef(¢) associated
with gqo=1/2. For large propagation distanceg,
one can use the following expansion of the stochastic

Yet to this point, it is instructive to analyze the coherencefunction m(7)=m(68+ &/25;) =m(&/28,)+ (25,601 &)[m(6)

properties of the signal wave in the simplest case where the m(¢/26,)]+ O[(28,6)%/£?]. Moreover, by virtue of the
pump field is fully coherent. The corresponding expressiorpresupposed ergodic and Gaussian nature of the random field
of the signal amplitude\l may be simply deduced from Eq. A,(7), one has the following inequalitym(7)|<\/7./7
(30) by imposing e(7)=0 and thusm(r)=0. To further - /7 7(6+ £25,) [23] which, for large values of, allows
simply the discussion, let us neglect the losses of the signgls to considefm(7)|<1. Thanks to these approximations,
and idler waveg(i.e., «;=a,=0). In these limits, the ex- \ye can expand the functiof(k,) of Eq. (30) to the second
pression for the signal amplitude simply reduce\i@7,2)  order with respect to the small paramete; /¢, to get the
*exp(2/q(1—q)z/Ly). It thus becomes apparent that the signal amplitudeA, (7, &) in the reference frameg(&),
gaing(q)=2+vq(1—q)/L, experienced by the signal is de-

A. Coherent case

pendent on the particular characteristjcalong which the 6,0 1
gain is evaluated. This is a classic feature of the theory of Aq(0,8)xexp (az—ay) T"' 2 £ ax§|F(6G(0),
instabilities in wave propagatidi9]. In the present case, the (33

gain g(q) exhibits a maximum atjp=1/2. Let us remark

that this characteristic actually corresponds to the referencehere F(¢) and G(6) are the spatial and temporal random
frame that moves at the average velocity of the signal and theontributions of the signal,

idler waves. Along this characteristic, the effective gain ex-

perienced by the signal ig=1/L,,, corresponding to the F(g)zexp(i 1+Em(i)“ (349
value found in the general theory of coherent parametric am- Lo 2 \261))°

plification processef20].

To investigate the coherence properties of the signal wave G(0) =ex;{ L5_1f96(t)dt> |
nlJO

in the present context, it is more convenient to analyze the (34D

signal wave along the characteristig=1/2 corresponding

to the reference frame defined by the variables=¢  Let us notice at this stage that, according to the exponential
—12/261,6=17). In this reference frame the parametric insta-factor of F (&) [Eq. (34a], the gain experienced by the signal
bility is an absolute instability and the expression of the sig-A; in the presence of an incoherent pump, is of the same
nal amplitude takes the following form for large propagationorder of magnitude than that obtained for the coherent case

distancegqi.e., for z> 8, 7): in Eq. (31) since|m(£/268,)|<1.
2.0 The expression of the signal amplitude in E8g) can be
A6 §)xexr{i> exp(— 2610 ) (31 used to determine its temporal autocorrelation function
no Lo Lo | Cinc(0) =(Aq(t+ 0,0 A% (1,O)/(|A2(t,£)).  Since the

function G( ) is the stochastic part &k,(6,¢), the normal-
ized autocorrelation functions @ and of A; coincide[i.e.,

c(0)=Cinc(6)]. To calculateCg( ), let us notice that the
random functione(7) is Gaussian and then the function
y(8)=[5e(t)dt is Gaussian too, which allows us to write
[24]

This expression can now be used to calculate the tempor
autocorrelation functio,,( #,&) of the signal at the propa-
gation distance,

52
(G(t+ a)G*(t)>=exp{ﬁ<[y(t+ e)+y<t)]2>]-
nl (35)

* 2
Co(p,po P OON D) p( o )

(A1) 262
(32

where the functiorﬂc(g):él‘lx/ng/Z has the meaning of It is important to notice here that, althougtf#) is not a
the correlation time of the signal amplitude obtained by parastationary process, it does have stationary incremigik
metric amplification after a distancg Let us remark that Its autocorrelation functionCy(t+ 6,t)=(y(t+6)y*(t))
this correlation time increases with the propagation distancthus takes the following fornj23] C,(t+ 6,t)=[D(t+ 6)
¢, and with the group-velocity differencgy * [21], a feature  +D(t)—D(]6])1/2 where D(t+6,t)=([y(t+ ) —y(t)]%)
that was pointed out since the pioneering works on paramet=20fg(1— 710)C(7)d7 is the structure function and
ric fluorescence in quadratic nonlinear crys{&g]. C.(7)=(e(t+7)e*(t)) is the autocorrelation function of
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€(t). Owing to the property of factorizability of stochastic the relative weight betwedrt'" andL ,,, as was predicted in
Gaussian fields, one can determifig{7) from the autocor- the degenerate parametric interacti@ec. 11l B).
relation function of the pump amplitud;(7), which yields ForL¢"'>L,, one gets large values of i.e., small val-
C(7)=exp(=2|7/z). ues of the correlation timé, .. This indicates that the signal

In the following we shall assume for simplicity th@&  amplitude is strongly influenced by the pump fluctuations
>r7¢, i.e., we restrict our analysis to the highly incoherentand consequently turns out to be incoherent. This is in par-
regime. Let us notice, in particular, that this assumption preticular the case when the parametric process takes place with
vents from considering the limit where the pump wave isa negligible convectior(i.e., 5; *=0) where there is no
fully coherent, i.e., when tends to infinity. With this ap- means for the emergence of a coherent signal, as was dis-
proximation one gets the following simplified expression for cussed in detail in Sec. Ill A in the framework of the degen-

the autocorrelation of(t): erate interaction.
) Conversely, forL¢''<L,,, one gets small values of the
Tc arameter, which leads to the generation of a coherent sig-
Cy(t+0,)= 7ot + —exp(— 2| 6]/ 7). 3¢ Para ) | €T .
y( )=Te 4 A =2[0|/7o) (36) nal field. This feature may be easily interpreted by consider-

ing that a strong convection between the signal and the co-
Note that the nonstationary property of the procgd$ ap-  moving pump and idler waves is responsible for an
pears explicitly through its varianc€(t,t) = 7.(t+ 7./4) averaging process in which the signal is no longer sensitive
that grows linearly with time. Owing to this expression of to the pump fluctuations. Moreover, we may notice thi
Cy(t+6,t), we can now determine through E@5) the nor-  proportional to the pump correlation timg, which means
malized autocorrelation of the signal amplituds, .(0) that the coherence of the signal increases as the coherence of
=Cg(6), which yieldsC;,.(8)=C,(6)C,(6), where the pump decreases. This merely confirms the intuitive idea

that the process of convection-induced averaging is more ef-

r? 2|6 icient i ime. i
Cyl 6)=exp{ _ Z[l—ex;{ _ 7|- |)H (373 ficient if the pump coherence timg, is shorter.
Cc

In summary, thanks to the phase-locking mechanism, and
to the mutual convection between the waves, a coherent sig-
r2| 6| nal field may be generated from an incoherent pump that
C,( 0)=exp( ~ . ) (37b  exhibits both amplitude and phase fluctuations. In REf]
C

we also verified numerically this result in the nonlinear re-
where we introduced the dimensionless parameter

gime of the three-wave interaction. In that previous work, we
discussed, in particular, the nonlinear regime of soliton
Left 5 propagation and showed that a coherent localized signal is

Cc Cc

r= =T (38) generated and sustained from an incoherent pump wave.
nl nl

The expression of the autocorrelation function in terms of VI. EXPERIMENTAL CONFIGURATION

the two factorsC, () andC,(6) allows us to conveniently | ot ys now discuss the experimental configuration that
decompose our analysis of the res.ults |.nto two parts. The first,ould allow us to observe and study this peculiar phenom-
factor C,(6) introduces a correlation timé, ; that can be  enon of incoherently-driven coherent signal generation. In
determined by considering the slope of the autocorrelatiogne following we shall consider the feasibility of such an
function at the origin, i.e.f;¢=|dC;/d6|(6=0), which  experiment in noncentrosymmetric optical crystals with qua-

yields dratic nonlinearity because, thanks to its simplicity, this sys-
tem is the most promising. In this respect, it is worth discuss-

Te ing some recent interesting experiments where the process of

91,5?- (39 incoherent parametric excitation has been investigated. In

Refs.[26] the authors experimentally demonstrate that a co-
herent amplification may be achieved for a single signal
wave through its coupling with two distinct pump beams that
are not correlated to each other. More precisely, the authors
showed that for specific phase-matching conditions, a single
signal wave may be phase matched to a couple of pump
Te . .
Orc=— (400  waves and to the corresp_o_ndlng set of _|dler waves, so that the
r signal mode may be efficiently amplified by taking advan-
tage of the two distinct uncorrelated pump beams simulta-
These correlation times clearly show that the coherenc@eously. Moreover, this process of cumulative pump action
properties of the generated signal wave are essentially goas also been observed in the spatial domain owing to coni-
erned by the parameteEq. (38)]. Note that this parameter cal optical beams by exploiting their specific phase-matching
involves the effective correlation Ieng|h§ff that accounts conditions[12]. It was shown, in particular, that a spatially
for convection, as discussed in Sec. II[Bg. (2)]. As a incoherent conical beam can pump an optical parametric os-
consequence, the evolution of the signal field is governed byillator and, in this way, induce a coherent signal oscillation

This correlation time is almost identical to that introduced by
the second facto€,(#), which is an exponentially decreas-
ing autocorrelation function whose correlation time reads
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in the cavity. Although these experiments corroborate thehat, to phase match the chosen wavelengths, the required
results of the phase-locking theory presented in Sec. Il C, iperiod | of the periodically poled KTiOPQ crystal is |
would be of great interest to observe in a straightforward=32 ym.
way the predicted phenomenon of incoherent excitation of a | et us now discuss the characteristic features of the inco-
coherent Signal, as well as the transition between this miXEHerent pump. In this respect, we remark that the inequa“ty
interaction regime and the fully incoherent regime discusse@l41) would require a short pump correlation time. For
in Sec. Il B. ) ) concreteness, we assume in our numerical simulations that
Let us recall that this gxperlmen_tal study woulq only beie pump spectrum has a Lorentzian shape whose spectral
significant if the parametric interaction took place in the re-handwidth at EWHM isAv=5 THz. The corresponding
gime defined by the following inequality: autocorrelation function of the pump field then reads
(Ag(x=0t'+1)A%(x=0t"))=eZexp(—|tl/7), where =,
eff_ _ =1/(wAv)=130 fs. We consider an average pump intensity
Lo '=710<Ly, (41) 5 ) ! -
of e§=64 MW/cn?, a value that is readily accessible from
pulsed laser sources operating in the nanosecond range. With
wheres *=|v; '—v3?| is the group-velocity difference be- such long pulse durations, one can take advantage of the

tween the pump and the signal waves. This is importanpatural Fresnel reflections of the waves at the crystal faces to
since, according to the standard criterion for applicability ofincrease the effective nonlinear interaction lengths. This is
the random phase approximation, the signal wave would ndnteresting because of the short interaction lengths typically
be able to evolve to a coherent state if this inequality waswvailable in nonlinear crystals. In the present case, we deter-
verified (see Secs. I-I)I mine the Fresnel reflections coefficieptsfor the intensities

Let us remark that an experiment aimed at observing th¢A;|? of the three waves from their respective refractive in-
generation of a coherent signal from an incoherent excitatiodexesn;, i.e., p;=(n;—1)%/(n;+1)? [27]. For the wave-
imposes severe constraints on the group-velocities of thiengths specified above, we obtain=0.025, p,=0.053,
three interacting waves. Indeed, one may first observe thand p;=0.04. The numerical simulations has been realized
the inequality(41) requires that the parametric interaction by taking into account these reflections at the crystal faces
takes place in the presence of a strong convecfioh be- and by assuming that the backward waves do not interact
tween the pump and the signal waves. Moreover, we recallith the forward waves since they are not phase-matched
that the generation of a coherent signal relies on the phasevith each other. We consider a pump pulse duratior bf
locking mechanism, which requires that the pump and idler=4 ns, and a crystal length af=1 cm, which allows the
group velocities are matchedee Sec. I)l. One can over- reflected signal to interact with the pump for about 40 round
come these constraints by considering the configuration itrips.
which the pump and the signal modes are polarized along the Before discussing the results of the numerical simulations,
same axis, while the idler is polarized along the perpendiculet us notice that, for the experimental parameters specified
lar axis(i.e., the so-called type Il configuratiprin this way, above, one had ¢'/L,=1/12 (and L. /L,=6x10"3).
one can take advantage of crystal birefringence to substarrherefore, according to the standard criterion for applicabil-
tially reduce the group-velocity difference between the pumpity of the random phase approximation, the interaction would
and the idler waves, whereas the necessary convection bpe fully incoherent and one should not expect the generation
tween the signal and the pump may be large owing to thef a coherent signal from the incoherent pump. However, let
natural crystal dispersion. Also note that, in order to avoidys recall that it is essentially the parameteurLﬁ”/Ln, [Eq.
the detrimental influence of spatial walkoff, we assume tha(gg)] that governs the coherence properties of the generated
the crystal operates in the noncritical phase-matching corsignal wave, as discussed in Sec V. In particular, as the pa-
figuration. rameterr decreasesincreasel the correlation time of the

Under these Conditions, we consider a periOdica"y pOIe(benerated Signa| increasédecreases since the ratio be-
KTIOPO, crystal that is quasi-phase-matched for the follow-tween the pump and the signal correlation times scale$ as
ing wavelengths of the three modes=1.5um (Y polar-  [see Eqs(39)—(40)]. According to our theoretical analysis,
ized), A,=0.868um (Z polarized, A3=0.55um (Y polar-  we may therefore expect that the small vahse1/12 con-
ized with an effective nonlinear susceptibility ofl  sidered here allow for the generation of a signal with a high
=5 pm/V. One can determine the respective values of thelegree of coherence.
group velocities using the dispersion relatio(Bellmeier Figure 5 illustrates the intensity profilgs;| of the waves
equationg of the KTIOPQ, crystal [27]. For the chosen obtained by the numerical simulations of E@$) with the
wavelengths we find that the pump and idler group-velocitiereviously specified parameters. The average pump intensity
are matched y,=v3=1.56x10° m/s), while the temporal profile remains almost unchanged during the propagation, a
walkoff between the signal and the comoving pump-idlerfeature that indicates that the parametric interaction takes
waves is rather large 5~ '=0.468 ps/mm¢;=1.683 place essentially in its linear regime. The signal and idler
X 10° m/s). We also considered the following realistic val- waves have been generated from small amplitude fluctua-
ues of the loss parametess=0.046 cmi* and of the dis- tions, that have been modeled through a random complex
persion parameter&!=0.1 pg/m, which, for simplicity, noise distributed all along the crystal lengee Sec. Ill A
have been assumed to be the same for the three waves. Ndte detailg. As expected from theory, the initial fluctuations
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FIG. 5. Temporal profiles of the three amplitudes| at the FIG. 6. Spectra of the three wavéd;| (A, being the Fourier

output of the crystal according to the envisaged experimental congansform ofA;) associated with their respective temporal profiles
figuration described in Sec. VI. Amplitudes are given in units of 4¢ Fig. 5. The frequency is in units of v,=78 GHz.

€y, 7isin units of 7g=21.6 ps.
action, for instance, by tuning the wavelength of the pump

of the signal are smoothed down during the parametric gensource. In this way, the interaction would be phase-matched
eration procesfsee Fig. &)], while the idler wave absorbs for different wavelengths and the corresponding group-
the rapid fluctuations of the pump. This feature is confirmedselocities would no longer satisfy the severe constraints im-
by the analysis of the spectra of the three waves. As illusposed by the phase-locking mechanism. To be precise, it is
trated in Fig. 6, the width of the idler spectrum is almost theindeed sufficient that the group velocities of the pump and
same as that of the pump@ ¢,=Av3), whereas the signal idler waves do not satisfy the criteridd8) derived in Sec.
spectrum is extremely narrow. More precisely, we evaluatg|| C to prevent the generation of a coherent signal. This
the following ratio between the signal and the pump spectraituation naturally corresponds to the more general case that
widths, Avs/Av,=135, which gives the corresponding cor- is usually encountered in experimental study of parametric
relation timeé, of the generated signaf,=135r.. Consid-  generation processes. Numerical simulations realized in this
ering thatr=L§”/Ln|:1/12, we remark that this result general case indicate that the generation of a signal with a
agrees well with the correlation time, .« r./r? that has  high degree of coherence is no longer possible. Nevertheless,
been derived theoretically in Sec.[¥ee Egs(39) and(40)]. a proper theoretical study of the coherence properties of this

The proposed experimental configuration would also pergeneral case still needs to be done. Let us recall, however,
mit to study the fully incoherent regime of parametric inter-that in the simpler case of the degenerate configuration, our
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theoretical analysis developped in Sec. lllA-1lIB could responsible for an averaging process in which the signal is
serve as a useful guide for the experimental investigation oo longer sensitive to the fluctuations of the pump wave. As
the fully incoherent parametric interaction, as confirmed bya result of this convection-induced averaging process, the
our numerical simulationésee Figs. 1-Bof realistic experi-  degree of coherence of the signal increases as the degree of
mental situations. coherence of the pump decreases, a feature that has been
confirmed by numerical simulations. We also derived explicit
criteria that determine the conditions required for the emer-
) ) ~gence of this mixed regime of coherent-incoherent interac-
In conclusion, we considered the fundamental phys'caﬁon. In this way, we have been able to establish the experi-
problem of the parametric interaction driven from an inco-mental conditions in which this regime of interaction may be
herent pump wave and showed that the convection betweefhserved and studied. According to this preliminary theoret-
the intgracting fields is the key parameter th'at governs theii!'(;a| study, we may expect to be able to observe the incoher-
dynamics as well as their coherence properties. The analysigt and coherent-incoherent regimes of the parametric inter-
of the degenerate configuration of the interaction reveals thaction in a near future thanks to currently available nonlinear
the convection between the pump and the signal is respofyptical crystals.
sible for a quenching of their parametric interaction. Con- '~ geside the context of optics, the present work is also rel-
versely, in the absence of signal-pump convection, the gaigyant to many branches of nonlinear physics owing to the
experienced by the signal is of the same order of magnitudgnjyersality of the parametric wave mixing procésse Sec.
as in the coherent case, so that the signal may be efficiently Refs.[1-9]). Along these lines, the experimental verifica-
amplified by the incoherent pump regardless of its degree dfon of our predictions would be of great interest for the
coherence. Importantly, this efficient amplification processndamental study of the spontaneous organization of non-
cannot lead to the generation of a coherent signal, i.e., finear ordered states in stochastic environméags; 16,21,
signal field whose degree of coherence exceeds the degreegfch as, for instance, the recently studied systems of inco-
coherence of the incoherent pump. _ _ herent soliton$29,14). Moreover, the proposed experimental
We showed that the situation is completely different in thegy,dy would also be relevant from a practical viewpoint for a

nondegenerate configuration of the parametric interactionyetter knowledge and control of broadband parametric am-
Indeed, in this case, our theory revealed that the convectiopjifiers [30] driven from an incoherent pump.

between the fields may be responsible for a phase-locking
mechanism in which the incoherence of the pump is ab-
sorbed by t_h(_e comoving |d|(_er wave, which allows the signal ACKNOWLEDGMENTS
to grow efficiently with a high degree of coherence. More

precisely, owing to their velocity-matched interaction, the The authors thank K. Gallo, P. Baldi, P. Aschieri, and G.
idler wave turnsout to be mutually coherent to the pump andMillot for their valuable comments and help in this work.
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