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Coherence properties of the parametric three-wave interaction driven from an incoherent pump
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We consider the basic problem of the parametric generation process from an incoherent pump wave. The
analysis of the degenerate configuration of the two-wave interaction reveals that the mutual convection~i.e.,
group-velocity difference! between the incoherent pump and the signal~i.e., the daughter wave! may quench
their parametric interaction, so that the gain experienced by the signal may become arbitrarily small. Con-
versely, in the absence of convection, the incoherent pump efficiently amplifies the signal wave, although this
amplification process cannot lead to the generation of a coherent signal. However, in the case of nondegenerate
three-wave interaction, we show the existence of a convection-induced phase-locking mechanism in which the
incoherence of the pump is absorbed by the idler wave allowing the signal wave to grow efficiently with a high
degree of coherence. We calculate explicitly the autocorrelation function of the generated signal in this regime
of coherent-incoherent interaction. The analysis reveals that, owing to the convection-induced averaging pro-
cess that accompanies the phase-locking mechanism, the degree of coherence of the signal increases as the
degree of coherence of the pump decreases. We establish the experimental conditions that would allow for the
observation of the transition between the incoherent and the coherent regimes of the three-wave parametric
interaction.

DOI: 10.1103/PhysRevE.66.056605 PACS number~s!: 42.25.Kb, 42.65.Sf, 42.65.Yj, 42.65.Tg
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I. INTRODUCTION

Resonant wave interaction processes are fundamenta
ubiquitous in physics. They generally take place in wea
nonlinear media characterized by either quadratic or cu
nonlinearities and are thus encountered in such diverse fi
as plasma physics, fluid dynamics, acoustics, and nonlin
optics @1,2#. In particular, resonant wave mixing process
were recently introduced to describe the physical proper
of Fermi resonances in multilayer superlattices@3#, chiral
liquids susceptibilities@4#, dipolar spin waves at microwav
frequencies@5# as well as interacting Bose-Einstein conde
sates@6#.

The three-wave parametric interaction is among the m
widely studied wave-mixing configurations. It refers to t
parametric amplification process where energy is transfe
from an external excitation~called pump wave! into two
daughter waves, usually called the signal and the id
waves. From a theoretical point of view, two alternative a
proaches have been developed to render the analysis o
parametric interaction tractable. On one hand, one finds
phase coherent approximationthat is considered when th
pump wave is assumed to be stationary with respect to
characteristic evolution timet0 of the nonlinear interaction
i.e., tc@t0, wheretc is the correlation time of the pum
wave. In the framework of this approximation, the relati
phase between the three interacting waves is the key pa
eter that governs the coherent evolution of the fields. T
equations governing this coherent parametric interac
have been solved exactly and, in particular, soliton soluti
were identified and studied in various physical conte
@2,7#. On the other hand, when the pump field evolves o
time scaletc that is short with respect to the evolution tim
of the nonlinear interaction, i.e.,tc!t0, one usually applies
the random phase approximation@8#. In this situation the
1063-651X/2002/66~5!/056605~14!/$20.00 66 0566
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three interacting waves are considered to be incoheren
that their relative phases are not significant to their evolut
and can thus be averaged over. This incoherent param
interaction has been deeply investigated in plasma phy
@8#, especially as regards the important issue of inertial c
finement fusion. In this respect, the incoherence of the pu
field is expected to quench the parametric instabilities, a f
ture that appears to be essential in the control of the ine
confinement process@9#.

The coherent and incoherent regimes of the three-w
interaction have been commonly considered as being
tinct. More specifically, a recent work showed that the tra
sition between the two regimes occurs suddenlyvia a first
order phase transition as the correlation time of the pu
field tc is varied@10#. Let us remark that this previous stud
was carried out in the framework of a simple model th
neglects the convection~i.e., the group-velocity difference!
between the interacting waves. Conversely, the analysi
the role of the convection in the three-wave interaction
vealed the existence of a mixed interaction regime charac
ized by the coexistence of an incoherent pump and a co
ent generated signal wave@11#. This coherent-incoheren
interaction survives in the nonlinear regime of strong pu
depletion in the form of a parametric soliton composed
both incoherent and fully coherent fields@11#. Then, in con-
trast with the conclusion of Ref.@10#, an incoherent pump is
able, under certain conditions, to efficiently generate a coh
ent signal. This mixed interaction regime is rather counter
tuitive since one may reasonably expect that, owing to
resonant nature of the parametric interaction, an incohe
pump would lead to the generation of incoherent daugh
waves, so that the relative phases in the system vary
domly and can be averaged over, as described by the s
dard random phase approximation approach. Let us men
that this particular mixed interaction regime has also be
©2002 The American Physical Society05-1
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studied experimentally owing to conical optical beams
exploiting their specific phase-matching conditions in qu
dratic nonlinear media@12#.

The present paper is devoted to giving a deeper ins
into the problem of the parametric interaction driven from
incoherent pump field. For this purpose, we consider the
sic configuration of the parametric interaction~Sec. II! in
which the incoherent pump amplifies the daughter fie
from noise fluctuations. Our study begins by showing t
the convection between the interacting waves is the key
rameter that governs the evolution of the daughter wave
well as their coherence properties~Sec. III!. More specifi-
cally, we show both analytically and numerically, that, as
general rule, the convection between the incoherent pu
and the daughter waves quenches their parametric inte
tion. But our study also shows that there exists specific c
ditions under which convection leads to a phase-lock
mechanism in which a coherent signal may be efficien
generated by the incoherent pump. The rest of the pap
devoted to the study of this peculiar regime of cohere
incoherent interaction for which we give a general desc
tion in terms of the coherence properties of the interact
fields. In particular, we derive explicit criteria that elucida
the nature of the phase-locking mechanism and determ
the conditions required for the emergence of the mixed
teraction regime~Sec. IV!. To determine the key paramete
that govern the coherence properties of the generated si
we explicitly calculate its autocorrelation function in th
long term evolution of the three-wave interaction~Sec. V!.

We present our work in the context of nonlinear opt
because quadratic nonlinear optical media offer unique
portunities for the experimental study of the parametric p
cess driven from an incoherent pump wave. To motivate
experimental confirmation of our theory, we establish
experimental conditions in which the mixed interaction
gime and the fully incoherent regime of the parametric p
cess could be observed and studied~Sec. VI!.

II. GOVERNING EQUATIONS

Our starting point are the usual three-wave mixing eq
tions that describe the spatiotemporal evolution of opti
fields in nonlinear quadratic media in one dimension. Assu
ing the spectral width of the three interacting waves to
much smaller than their respective carrier frequencies (Dv j
!v j , j 51,2,3 with v35v11v2) one can make the
slowly varying envelope approximation for the amplitude e
velopesAi that obey the coupled partial differential equ
tions

]A1

]x
1

1

v1

]A1

]t
1 ib1

]2A1

]t2
1a1A15g1A3A2* , ~1a!

]A2

]x
1

1

v2

]A2

]t
1 ib2

]2A2

]t2
1a2A25g2A3A1* , ~1b!

]A3

]x
1

1

v3

]A3

]t
1 ib3

]2A3

]t2
1a3A352g3A2A1 . ~1c!
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For definiteness we callA1 ,A2 ,A3 the signal, idler, and
pump waves, respectively. They are complex functions r
resenting the evolution inx and t of the amplitudeuAj u and
the phasef j5Arg(Aj ) of each wave. The paramete
v j , a j are respectively the group velocities and the dam
ing rates of the waves at frequenciesv j . The nonlinear co-
efficientsg j are linked to the effective second order susce
tibility d through the relation g j5dkj /nj

2 while the
dispersion coefficients are given byb j5(]2k/]v2) j /2,
where nj and kj5njv j /c are the refractive indices of th
crystal and the wave vector moduli at frequenciesv j . Note
that although dispersion effects in nonlinear quadratic cr
tals are in many cases considered as negligible, their in
ence must be accounted for in our model because of the l
spectral bandwidth associated with the incoherent exte
excitation.

In the present paper we study Eqs.~1! by following the
scheme usually employed in nonlinear optics, namely,
initial condition of the fields is given by specifying the
temporal profiles at the entry of the medium, i.e.,Aj (x
50,t), and Eqs.~1! are solved to get the evolution of th
temporal profiles during their propagation alongx, i.e.,
Aj (x,t). Correspondingly, it proves convenient to define t
correlation length of the pumpLc5v3tc as well as the non-
linear characteristic lengthLnl51/(g3e0), where e0
5^uA3(z50,t)u2&1/2 is the average amplitude of the pump

Note that Eqs.~1! also hold for the description of purel
transverse spatial dynamics governed by diffraction and s
tial walkoff. Indeed, the substitution (1/v j )(]/]t)→r j]/]y
~wherer j represents the spatial walkoff! and b j (]

2/]t2)→
2k j (]

2/]y2) ~wherek j51/2kj is the diffraction parameter!
transforms Eqs.~1! into the well-known equation for trans
verse effects in quadratic nonlinear crystals@13,14#.

III. THE ROLE OF CONVECTION

A. Degenerate case withv1Äv3

To obtain a basic insight into the role of convection on t
wave-mixing process driven from an incoherent pump, it
interesting to consider first the idealized situation of a deg
erate interaction (v15v2 ,A15A2) in a dispersionless (b i
50) and transparent (a i50) quadratic crystal. In this situ
ation the group velocities of the pump and the degene
signal wave are equal (v35v1,2). Under these conditions, w
simulate from Eq.~1! the basic parametric generation pr
cess in which the incoherent pump amplifies the signal fi
considered here as noise fluctuations~e.g., quantum vacuum
field!. A typical result is shown in Fig. 1 that illustrates th
evolution of the signal and pump envelopes in the refere
frame traveling at their common group velocity (t5t
2z/v3 ,z5x). As initial conditions inx50, we take a small
amplituded-correlated complex random noise for the sign
envelopeA1(x50,t). To predetermine the initial noise in
tensity, we considered that in the presence of a cohe
pump wave, an amplification factor of 10 orders of mag
tude is necessary to obtain a signal intensity comparabl
that of the pump@15#, so that one haŝ uA1u2(x50,t)&
510210e0

2 ~see Fig. 1!. For the pump field, we assume th
5-2



y
l

i-
-
ho
h
e
p
-

e
n
o

d
ric
in

on
-

n
th
i-

er
a

c
at

t
d

xpe-

nal
ca-
n-
is
g. 1,
e.
asic
m
As
r-
hat

by
rief
not
up-

ion
fer-
ion

ce a
nal

to a
tail
al
nal
t
no
its
pa-
and
the
tual
not

-

n

r

lly
etric

COHERENCE PROPERTIES OF THE PARAMETRIC . . . PHYSICAL REVIEW E66, 056605 ~2002!
the stochastic processA3(x50,t) is Gaussian, translationall
invariant with zero mean̂A3(x50,t)&50 and exponentia
autocorrelation function ^A3(x50,t81t)A3* (x50,t8)&
5e0

2 exp(2utu/tc), tc being the correlation time. To numer
cally generate the amplitudeA3(x50,t) with these stochas
tic properties, we employed the Ornstein-Uhlenbeck met
that is based on the solution of the Langevin equation wit
d-correlated stochastic source@16#. For concreteness, in th
example of Fig. 1 we tooktc575 fs, and an average pum
intensity ofe0

2564 MW/cm2 with an effective nonlinear sus
ceptibility of d55 pm/V.

As illustrated in Fig. 1, the signal field is amplified by th
incoherent pump and keeps its initial incoherence all alo
the amplification process, even in the nonlinear regime
pump depletion (z.10Lnl). In other terms, the pump an
signal fields remain fully incoherent during their paramet
interaction. This result may be easily interpreted by not
that in the absence of convection and dispersion, Eqs.~1!
reduce to a continuous set of ordinary differential equati
for the variablet5t2x/v3. This means that the field evolu
tion at a particular pointt5h is independent of the field
evolution in the neighboring pointt85h1dh so that these
evolutions remain intrinsically decorrelated and there is
means to obtain the emergence of a coherent signal. In
situation it is clear that, independently of the initial cond
tions, the incoherent pump unavoidably leads to the gen
tion of an incoherent signal, so that the parametric inter
tion results to be erratic, as illustrated in Fig. 1.

Following this very simple reasoning, one may expe
that this conclusion about the incoherence of the gener
signal would remain unchanged, even in the case where
initial signal field is assumed to be fully coherent. Indee
the evolution of the signal at a particular pointh is com-
pletely governed by the the pump at the same pointh. Then,

FIG. 1. Efficient amplification of the signal wave from the in
coherent pump that propagates at the same group-velocity~degen-
erate configuration!. The signal wave evolves towards an incohere
state ~amplitudes are given in units ofe0 , t is in units of t0

5Lnl /v3518.6 ps, v351.563108 m/s, see the text for the othe
parameters!.
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because of the incoherent nature of the pump, the gain e
rienced by the signal at this pointh is not correlated to the
gain experienced at the neighboring pointh1dh. In this
way, one may expect that the temporal profile of the sig
field becomes decorrelated during the parametric amplifi
tion, regardless of its initial correlation. This result is co
firmed by the numerical simulation illustrated in Fig. 2. Th
simulation has been realized in the same conditions as Fi
except that the initial signal field is a fully coherent puls
Let us note that these conditions correspond to the b
problem of parametric amplification of a signal pulse fro
an incoherent pump in the traveling-wave configuration.
illustrated in Fig. 2, the signal rapidly loses its initial cohe
ence and, as expected, follows an evolution similar to t
obtained starting from an incoherent signal, as evidenced
the comparison of Figs. 1 and 2. As a summary of this b
discussion, we may conclude that the incoherent pump is
able to generate a coherent signal field when the gro
velocities of the pump and the signal are matched.

B. Degenerate case withv1Ä” v3

Let us now consider the more general physical situat
where the pump and signal waves propagate with two dif
ent group-velocities, i.e., when there is a mutual convect
between the two waves. We solved numerically Eqs.~1! for
the same parameters as in Fig. 1, except that we introdu
group-velocity difference between the pump and the sig
through the walkoff parameter d5(1/v121/v3)21

51.89 mm/ps. Note that this value actually corresponds
realistic experimental situation, as will be discussed in de
in Sec. VI. Figure 3 illustrates the evolution of the sign
intensity in its own reference frame. In this case, the sig
field follows an evolution that is fundamentally differen
from that discussed in Figs. 1 and 2: the signal field is
longer efficiently amplified by the incoherent pump and
amplitude remains almost constant during the whole pro
gation. In other terms, the interaction between the signal
pump fields is inefficient, which leads us to conclude that
parametric amplification process is quenched by the mu
convection between the fields. Note that this scenario is

t

FIG. 2. Same as in Fig. 1, but the initial signal wave is a fu
coherent pulse: The signal becomes incoherent during its param
amplification.
5-3
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PICOZZI, MONTES, AND HAELTERMAN PHYSICAL REVIEW E66, 056605 ~2002!
affected by the coherence properties of the initial sig
wave, the same result being obtained starting the nume
simulation from a fully coherent signal.

This important influence of convection on the amplific
tion process may be simply interpreted by considering
relevant characteristic length scales involved in the param
ric interaction. We should consider the fact that, due to
convection, a given point of the signal field sees a fluctuat
pump that evolves on a length scaleLc

e f f given by

Lc
e f f5tcd5

Lc

v3
d. ~2!

In other words,Lc
e f f represents the pump field correlatio

length as seen by the signal field due its convection w
respect to the pump. Yet at this point, one should comp
this effective correlation lengthLc

e f f with the characteristic
length of the nonlinear interactionLnl51/(g3e0).

WhenLc
e f f@Lnl the amplification of the signal wave take

place on a characteristic length that is shorter than the ef
tive correlation length of the pump, so that the signal has
time to adapt its phasef1 to the local value of the pump
phasef3. In this way, the following phase relationf3
22f150 can be satisfied, a condition that guarantees
efficient energy transfer between the two fields. In this s
ation, the signal is not influenced by the pump incohere
and can be efficiently amplified during the propagation. T
regime of the parametric interaction actually correspond
the velocity-matched configuration (d2150) considered
above~Sec. III A! since in that caseLc

e f f is infinite and the
conditionLc

e f f@Lnl is always satisfied, independently of th
pump correlation lengthLc .

Conversely, when the parameters of the interaction
such thatLc

e f f!Lnl , the signal does not have sufficient tim
to adapt its phase to the random phase of the incoming p
and the phase differencef322f1 evolves randomly, which

FIG. 3. Same as in Fig. 1 but in the presence of a temp
walkoff between the pump and the down-converted degenerate
nal wave: The parametric interaction is almost quenched by
incoherence of the pump~parameters ared2150.53 ps/mm, tc

575 fs so that Lc
e f f50.14 mm, andLnl52.9 mm, t085Lnl /d

51.53 ps).
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makes the energy goes back and forth between the field
that the average gain experienced by the signal becomes
ligible. In that case, the rapid fluctuations of the pump p
vent the amplification of the signal whose intensity rema
almost constant during propagation, as illustrated in Fig
whereLc

e f f/Lnl50.05.
This quenching of the parametric instability induced

pump incoherence may be described by a rigorous m
ematical treatment of the linearized Eqs.~1!. For this pur-
pose, let us consider the degenerate configuration of the
teraction (A15A2) in the undepleted pump approximatio
and let us neglect the dispersion effect (b i50). Under these
conditions, we may consider the evolution of the signal in
own reference frame (h5t2x/v3 ,j5x), where it sees a
pump that fluctuates with the effective correlation lengthLc

e f f

given by Eq. ~2!. Importantly, in this reference frame th
evolution of the signal amplitude at a given timeh0 is de-
coupled from its evolution at the neighboring timeh, so that
the equation forA1 reduces to an ordinary differential equ
tion

dA1

dj
5g1@A3

r ~j!1 iA3
i ~j!#A1* , ~3!

whereA3
r and A3

i represent the real and imaginary parts
the pump amplitudeA3. For simplicity we assume that th
stochastic functions A3

r ,i(j) are d correlated, i.e.,
^A3

r ,i(j8)A3
r ,i(j)&5d r ,is

2d(j2j8). Note that although this
assumption is not realistic, it represents a good approxi
tion for a pump field whose effective correlation length
much smaller than the nonlinear length, i.e.,Lc

e f f!Lnl . In-
deed, in that case the noise parameters2 can be expressed in
terms of the mean square deviation of the pump amplit
^uA3u2&5e0

2 and the finite correlation lengthLc
e f f : s2

.e0
2Lc

e f f/2. In this way, the average values^A3
r ,iA1* & may be

simply determined through Novikov’s theorem@17,16#

^A3
r ,iA1* &5s2K dA1*

dA3
r ,i L , ~4!

where the variational derivatives may be easily determin
from Eq. ~3!, which yields

dA1*

dA3
r

5g1A1 ,
dA1*

dA3
i

52 ig1A1 . ~5!

The equation governing the evolution of the mean of
signal then reduces tod^A1&/dj52g1

2s2^A1&. This equation
can be easily solved to get

^A1&~j!5^A1&~0!expS Lc
e f fz

Lnl
2 D , ~6!

where we used the approximations2.e0
2Lc

e f f/2. Then, as
expected from the previous simple reasoning, the ratio
tween the effective correlation lengthLc

e f f and the nonlinear
lengthLnl governs the amplification rate of the signal amp

al
ig-
e
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COHERENCE PROPERTIES OF THE PARAMETRIC . . . PHYSICAL REVIEW E66, 056605 ~2002!
tude. In particular, it becomes apparent from Eq.~6! that the
parametric instability may be fully quenched by the incoh
ence of the pump in the limit, whereLc

e f f/Lnl tends to zero.
Yet to this point, one may object that, although the grow

of the mean̂ A1& is strongly reduced by the pump incohe
ence, one may still have an efficient growth of the seco
order moment̂ uA1u2& of the signal field. To give an ex
ample, this may be the case when the amplitudeA1 follows
pure random phase fluctuations such that^A1&50, while its
mean intensitŷ uA1u2& keeps a finite value. To determine th
evolution of ^uA1u2&, we follow an analysis similar to tha
outlined for the mean̂A1&. Indeed, one may notice that th
evolution of the second order moment^uA1u2& is governed by
the following equation:

d^uA1u2&
dj

5g1@^A3~j!A1*
2&1^A3* ~j!A1

2&#. ~7!

The average values in the right hand side of this equa
may be evaluated through the Novikov’s theorem, wh
yields

^A3
r ~j!A1

2&5s2K dA1
2

dA3
r L 52g1s2^uA1u2&, ~8a!

^A3
i ~j!A1

2&5s2K dA1
2

dA3
i L 52ig1s2^uA1u2&. ~8b!

In this way, one obtains a closed equation for the evolut
of ^uA1u2&, whose solution straightforwardly yields

^uA1u2&~j!5^uA1u2&~0!expS 4
Lc

e f fz

Lnl
2 D . ~9!

We may then conclude that, as for the mean^A1& @Eq. ~6!#,
the growth of the second order moment^uA1u2& of the signal
is strongly reduced by the incoherence of the pump field

Note that the analytical prediction given in Eq.~9! is in
good agreement with the numerical simulation reported
Fig. 3. In this example we haveLc

e f f/Lnl50.05. According to
Eq. ~9!, the expected intensity of the signal atz515Lnl is
thereforê uA1u2&5231029e0

2, a value that agrees well with
the numerical simulation~see Fig. 3 atz515Lnl! where
^uA1u2&.1.731029e0

2.
In summary, our analysis reveals the essential role pla

by the effective correlation lengthLc
e f f of the pump field in

the dynamics of the signal wave. Indeed, we showed that
cannot simply compareLc andLnl to describe the basic fea
tures of the parametric process in the presence of convec
but one must instead compareLnl to the effective correlation
lengthLc

e f f @Eq. ~2!# that takes into account the influence
convection.

C. Nondegenerate case: Phase-locking mechanism

According to the above discussion on the degenerate p
metric interaction, it seems that an incoherent pump can
lead to the generation of a coherent signal and, moreo
05660
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that the influence of convection is simply to reduce the pa
metric coupling between the waves. In contrast with t
conclusion, we show now that, provided one considers
nondegenerate configuration of the interaction, convec
between the fields may be responsible for a phase-lock
mechanism which permits an efficient amplification of a s
nal with a high degree of coherence. This mechanism t
results in a mixed coherent-incoherent regime of interacti
as already discussed in Ref.@11#. Our scope here is to de
scribe the phase-locking mechanism in more details by a
lyzing, in particular, the specific coherence properties t
are inherent to the mixed regime of interaction.

To get a first insight into the role of convection in th
nondegenerate configuration, we assume that the influenc
the dispersion may be neglected (b j50) with respect to that
of the convection. Note that the influence of the dispers
on the mixed regime of interaction will be discussed in de
in the following Section~Sec. IV!. We also restrict our analy
sis to the linear regime of the parametric interaction and t
assume that the incoherent pump is not affected by the do
converted signal and idler fields. Assuming furthermore t
the pump attenuation is negligible (a350), the pump field is
stationary in its own reference frame and its amplitudeA3 is
a stochastic function of the single variablet5t2x/v3, with
the time correlationtc .

It proves convenient for our purpose to study the evo
tion of the fields in the reference frame of the idler wave,
defined by the following variables (t25t2x/v2 ,z5x). In
this reference frame the linearized Eqs.~1! read

]A1

]z
1

1

w

]A1

]t2
1a1A15g1A3~t21z/d2!A2* , ~10a!

]A2

]z
1a2A25g2A3~t21z/d2!A1* , ~10b!

where 1/d251/v221/v3 represents the walkoff between th
idler field and the pump, and 1/w51/v121/v2 is the walkoff
between the daughter waves. The Eq.~10b! may be easily
integrated and the solution substituted in Eq.~10a! yields a
closed equation for the evolution of the signal amplitudeA1
in terms of the stochastic pumpA3,

]A1

]z
1

1

w

]A1

]t2
1a1A1

5g1g2E
0

z

e2a2(z2z8)A3~t21z8/d2!

3A3* ~t21z/d2!A1~t2 ,z8!dz8. ~11!

The presence of the factorA3(t21z8/d2)A3* (t21z/d2) in
the integrand of Eq.~11! reveals the existence of a particul
regime of interaction. Indeed, as soon as the idler and pu
velocities are equal, one hasd2

2150 andt25t, so that the
factor in the integrand becomesuA3(t)u2, which clearly
shows that the signal evolution is no longer sensitive to
fluctuations of the pump phasef3(t). In this situation, the
5-5
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PICOZZI, MONTES, AND HAELTERMAN PHYSICAL REVIEW E66, 056605 ~2002!
signal wave may be amplified efficiently, independently
the rapid fluctuations of the pump phase@11#.

We may interpret this feature through the analysis of
idler wave, whose evolution is given by the solution of E
~10b!:

A2~t2 ,z!5g2E
0

z

e2a2(z2z8)A3~t21z8/d2!A1* ~t2 ,z8!dz8.

~12!

It becomes apparent from this expression that, if the pu
and idler group velocities are matched (d2

2150), the pump
amplitudeA3 becomes independent of the variablez8 and
can thus be removed from the integral, so that the idler a
plitude A2 is simply proportional to the incoherent pum
amplitudeA3. Let us now assume that the pump wave e
hibits only pure random phase fluctuations, i.e.,A3(t)
5e0 exp@if3(t)#. In this ideal case, the idler amplitudeA2

inc

obtained through the interaction with an incoherent pump
simply proportional to the amplitudeA2

coh that would have
been obtained through the interaction with a fully coher
pump since we can write

A2
inc~t,z!5A2

coh~t,z!exp@ if3~t!#. ~13!

This relation clearly shows that the phase of the idler wav
locked to that of the pump. In this way, the idler phasef2
cancels the fast phase variations of the pump phasef3, so
that the phase relationshipf32f22f150 may be satisfied
with slow variations of the signal phasef1. In other terms,
owing to their velocity-matched interaction, the idler wa
absorbs the rapid fluctuations of the pump wave so as
allow the signal to grow coherently.

To illustrate in a more explicit way this mechanism
pump-idler phase-locking, let us show that, in this particu
regime of interaction, the idler and pump waves are mutu
coherent. For this purpose, it proves convenient to study
evolution of the fields in the signal reference frame tha
defined by the following variables (t15t2x/v1 ,z5x). In
this reference frame the linearized Eqs.~1! read

]A1

]z
1a1A15g1A3A2* , ~14a!

]A2

]z
2

1

w

]A2

]t1
1a2A25g2A3A1* , ~14b!

where we have implicitly assumed that the pump and id
group-velocities are identical (d2

2150). Defining the instan-
taneous mutual coherence function of the pump and i
waves asQ(t1 ,z)5A3(t1 ,z)A2* (t1 ,z), Eq. ~14a! gives
A1(t1 ,z)5g1*2`

z exp@a1(z82z)#Q(t1,z8)dz8. By noting that
]A3 /]t15w]A3 /]z, we may then derive from Eq.~14b! a
closed equation for the evolution of the mutual cohere
function Q(t1 ,z)

S ]

]z
1a1D S ]

]z
2

1

w

]

]t1
1a2DQ5g1g2uA3u2Q. ~15!
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Assuming pure random phase fluctuations for the pump,
haveuA3u25e0

2. We may then take the ensemble average
Eq. ~15!, to derive the evolution equation of the ensemb
averaged mutual coherence function^Q&(z),

S ]2

]z2
12a

]

]z
2G D ^Q&50, ~16!

wherea5(a11a2)/2 represents the average damping of t
daughter waves, andG5g1g2e0

22a1a2. Note that the con-
dition G.0 merely corresponds to the threshold conditi
for the growth of the signal and idler fields in the presence
a constant pump of amplitudee0. The solution to Eq.~16!
for large propagation distancesz yields the following behav-
ior of the mutual coherence function:

^Q&~z!}exp@~Aa21G2a!z#. ~17!

It becomes apparent that, provided the threshold condi
for the parametric instability is satisfied, i.e.,G.0, the mu-
tual coherence between the pump and the idler waves
creases exponentially as the waves propagate in the nonl
medium.

To conclude this discussion, let us notice that the em
gence of the mixed regime of coherent-incoherent interac
does not require an exact velocity matchingv25v3 between
the pump and idler waves. Indeed, considering Eq.~11!, it is
sufficient that the velocities obey the following criterion:

U 1

v2
2

1

v3
U!tca2 ~18!

in order to remove the pump amplitudeA3 from the integral
~11!. Accordingly, the idler wave will follow the pump phas
fluctuations in exactly the same way as discussed ab
Since matching of the pump and idler velocities in an act
physical system can never be achieved exactly, criterion~18!
plays an essential role to find the relevant experimental c
ditions required for the observation of the mixed cohere
incoherent regime of interaction. This aspect will be d
cussed in further details in Sec. VI.

IV. THE ROLE OF DISPERSION

For the sake of simplicity, we analyzed in the previo
section the phase-locking mechanism by neglecting the
fluence of chromatic dispersion. However, the propagation
the fields in any nonlinear media will unavoidably be a
fected by dispersion and it is essential to consider its in
ence on the mixed regime of coherent-incoherent interact

A. Dispersion of the pump wave

Let us begin our study by considering the influence
dispersion on the propagation of the incoherent pump its
According to the above analysis, the phase-locking mec
nism between the pump and idler waves may take place
vided that the pump wave can be assumed to be stationa
its reference frame@see Eqs.~10!–~13!#. Clearly, this as-
sumption is no longer verified whenever the propagation
the pump is affected by dispersion. Our aim here is to fi
5-6
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COHERENCE PROPERTIES OF THE PARAMETRIC . . . PHYSICAL REVIEW E66, 056605 ~2002!
the conditions for which the dispersion of the pump is su
ciently small to allow the phase-locking mechanism to ta
place.

For simplicity, let us assume that the pump wave is
affected by the down-converted fields, i.e., we restrict
study to the linear regime of the parametric interactio
as above. The evolution of the pump amplitudeA3 in its
reference frame is then governed by the following line
equation:

]A3

]z
1 ib3

]2A3

]t2
50, ~19!

where the variables (t5t2x/v3 ,z5x) represent the re
tarded time and spatial variables in the reference frame of
pump. The solution to Eq.~19! can be given in terms of the
initial condition of the pump amplitude at the entry of th
mediumA3,0(t)5A3(t,z50),

A3~t,z!5A ip

b3zER
A3,0~ t !expF2 i ~ t2t!2

4b3z Gdt. ~20!

Assuming a small dispersion parameterb3, one may inte-
grate Eq.~20! through the stationary phase method. In th
respect, we remark that the exponential factor in the in
grand of Eq.~20! has a critical point of the first kind att
5t, so that the result of the integral simply readsA3(t,z)
5A3,0(t).

This result merely means that, provided the dispers
parameterb3 is ‘‘perturbative,’’ the pump wave remains sta
tionary in its reference frame. This is actually a conditi
required to the appearance of the phase-locking mechan
It is therefore essential to specify the conditions in which
dispersion parameterb3 may be considered as ‘‘perturba
tive’’ so as to be able to apply the stationary phase meth
In fact, this method can be applied provided that the osci
tions of the exponential factor of the integrand are faster t
the variations of the stochastic functionA3,0(t). In this way,
the positive and negative contributions of the integrand t
to compensate each other, except at the critical pointt5t
where the oscillation of the exponential factor is not co
pensated. This indicates that the interval of integrationdt
that significantly contributes to the integral is of the order
dt.(2b3z)1/2. The stationary phase method can be appl
provided that the stochastic functionA3,0(t) is almost con-
stant in this interval. Considering thatA3,0(t) has a correla-
tion timetc , it results that the dispersion may be conside
as perturbative provided thatdt!tc , a condition that is
equivalent toz!Ld , where Ld5tc

2/(2b3) represents the
characteristic dispersion length. This simply means that
the limit of small propagation distances, the incoherent pu
is not affected by dispersion.

In short, at this point we may consider that ifLd@Lnl ,
i.e.,

b3!tc
2g3e0/2, ~21!

the dispersion-induced variations of the pump wave are
ficiently slow to allow the idler to follow the fluctuations o
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the pump or, in other words, to allow the pump-idler pha
locking mechanism and, in turn, the coherent-incoherent
gime of interaction to take place.

B. Dispersion of the idler wave

Dispersion of the idler wave may also affect the mech
nism of phase-locking. This may be easily understood
considering that dispersion unavoidably affects the evolut
of the idler phasef2 that might become unable to follow th
rapid fluctuations of the pump phasef3 if the dispersion
parameterb2 is too large.

To consider the influence of dispersion of the idler wav
we assume that the group-velocities of the idler and pu
waves are matched and that the inequality~21! is satisfied, so
that the pump amplitudeA3(t) may be considered as station
ary in its reference frame. Under these conditions, the eq
tion governing the evolution of the idler amplitudeA2 satis-
fies

]A2

]z
1 ib2

]2A2

]t2
1a2A25g2A3~t!A1* ~t,z!. ~22!

The amplitudeA2(t,z), solution of this equation may be
given by the convolution of the Green’s functionG(t,z)
5exp(2a2z)exp@2it2/(4b2z)#(ip/b2z)

1/2 with the ‘‘source’’
term of Eq.~22!,

A2~t,z!5g2ApE
0

z

dz8
e2a2(z2z8)

A2 ib2~z2z8!

3E
R

dt expF 2 i ~ t2t!2

4b2~z2z8!
GA3~ t !A1* ~ t,z8!.

~23!

Considering now a small dispersion parameterb2, we may
follow the same reasoning as that outlined in Sec. IV A
discuss the influence of dispersion on the pump wave.
cordingly, the integral over the time variablet of Eq. ~23! can
be calculated by the stationary phase method provided
tc

2@2b2(z2z8) so that the amplitude of the idler wave tak
the form

A2~t,z!5g2E
0

z

dz8e2a2(z2z8)A3~t!A1* ~t,z8!. ~24!

Remarking that the interval of integration that contribut
significantly to the integral~24! is in the rangez2z8
.1/a2, the condition of applicability of the stationary phas
method becomes

b2!a2tc
2/2. ~25!

In this way, we can consider that the mixed regime
coherent-incoherent interaction is not affected by the id
dispersion, as long as the dispersion parameterb2 obeys the
inequality ~25!.

Let us notice here the unexpected role played by the id
dampinga2 in the coherent-incoherent regime of interactio
5-7
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PICOZZI, MONTES, AND HAELTERMAN PHYSICAL REVIEW E66, 056605 ~2002!
On one hand, the inequality~25! reveals that the dampin
parametera2 tends to favor the phase-locking between t
pump and the idler fields. On the other hand, the inequa
~18! derived in Sec. III C reveals that the idler damping c
compensate for the group-velocity mismatch between
pump and idler waves so as to warrant their mutual pha
locking. This important role of the idler damping in th
phase-locking mechanism may be interpreted by simply n
ing that an increase of the dampinga2 allows the idler field
to adiabatically follow the fluctuations of the incohere
pump. This aspect becomes apparent through a simple a
sis of Eqs.~1!: Assuming the idler dampinga2 to be very
large, one can make the adiabatic elimination of the id
wave, which becomes a slave variable of the pump and
nal amplitudes:A25g2A3A1* /a2. This relation shows tha
the idler amplitudeA2 is directly proportional to the incoher
ent pump amplitudeA3, so that the idler phase is locked
that of the pump, as discussed in Sec. III C.

V. COHERENCE PROPERTIES

In the previous sections we discussed the phase-loc
mechanism and the related mixed regime of cohere
incoherent interaction by assuming that the incoherence
the pump wave only arises from the fluctuations of its ph
f3, whereas its amplitudeuA3u keeps a deterministic con
stant value. The case of pure phase incoherence is ra
unrealistic in the sense that the dispersion of the med
couples the phase and the amplitude and, in this way,
avoidably leads to amplitude fluctuations after some pro
gation distance even if the initial pump wave exhibits pu
phase fluctuations. In the present section we analyze the
herence properties of the generated signal wave by calc
ing explicitly its autocorrelation function in the more reali
tic situation where the pump wave exhibits both phase
intensity fluctuations. Before entering into the detail of t
analysis, let us remark that, thanks to the mutual convec
between the pump and the signal waves, we may expec
intensity fluctuations of the pump to be averaged out, so
the pump would appear to the signal as being merely c
tinuous. As will be shown hereafter, this prediction is co
firmed by the analysis of the autocorrelation function of t
signal wave.

As in Sec. III, it proves convenient to derive the autoc
relation function from Eqs.~1! in the reference frame of th
pump wave (t5t2x/v3 ,z5x) where, as considered abov
the stochastic amplitudeA3(t) is Gaussian, ergodic, with
zero mean ^A3(x50,t)&50 and has an exponentia
autocorrelation function ^A3(x50,t81t)A3* (x50,t8)&
5e0

2 exp(2utu/tc). In the reference frame of the pump wav
the linearized Eqs.~1! read

]A1

]z
1

1

d1

]A1

]t
1a1A15g1A3~t!A2* , ~26a!

]A2

]z
1a2A25g2A3~t!A1* , ~26b!
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where, for simplicity, we neglect the dispersion of the sign
wave. We also implicitly assume that the inequalities~21!,
~25!, and~18! are verified, so that one can neglect the pum
and the idler dispersion as well as their group-veloci
mismatch. The parameter 1/d151/v121/v3 in Eq. ~26a! rep-
resents the amount of convection between the signal and
comoving pump and idler waves. A remarkable aspect
Eqs. ~26! is that a closed equation for the evolution of th
signal amplitudeA1 may be easily derived

S ]

]z
1a2D S ]

]z
1

1

d1

]

]t
1a1DA15g1g2uA3u2~t!A1 .

~27!

Note that this expression confirms that, by virtue of t
phase-locking mechanism~see Sec. III C!, the evolution of
the signal wave is not sensitive to the fluctuations of
phasef3 of the incoherent pump. Equation~27! can then be
solved by means of the spatial Fourier expansion@i.e.,
Ã1(t,k)5*2`

` A1(t,k)exp(2ikz)dz], which leads to

A1~t,z!5
1

2pE2`

1`

Ã1~t50,k!exp@ f ~k!z#dk, ~28!

where

f ~k!5S 11m~t!

Lnl
2 ~a21 ik !

2 ik2a1D d1t

z
1 ik, ~29!

where the function m(t) is given by m(t)
51/t*0

te(t)dt, e(t) being the normalized intensity fluctua
tions of the pump field defined throughuA3u2(t)5e0

2@1
1e(t)# with ^e(t)&50. Since we are interested in the lon
term evolution of the signal amplitudeA1, the integral~28!
can be calculated by the steepest descent method for l
propagation distancesz @18#. For this purpose, let us notic
that the functionf of the real variablek @see Eq.~29!# can be
analytically continued in the complexk plane, and that the
corresponding complex functionf (k) exhibits a saddle poin
at k05 ia22 iAd1t(11m)/(z2d1t)/Lnl . Then, according
to Cauchy’s theorem, we can calculate the integral~28! along
any contourC in the complex planek connecting the extrema
of integration, provided that the integrand has no singula
ties in the area bounded by the original and the new cont
We can thus calculate the integral~28! on a contour that goes
through the saddle point, as depicted in Fig. 4. This meth
yields the following expression for the asymptotic signal a
plitude A1(t,z)}exp@f(k0)z#, where the functionf (k0) reads

FIG. 4. ContourC of integration in the complex planek.
5-8
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COHERENCE PROPERTIES OF THE PARAMETRIC . . . PHYSICAL REVIEW E66, 056605 ~2002!
f ~k0!5~a22a1!q2a21
2A11m~t!

Lnl
Aq~12q!. ~30!

The parameterq5d1t/z represents the slope of the spac
time characteristic associated with the velocityd1 @2#.

A. Coherent case

Yet to this point, it is instructive to analyze the coheren
properties of the signal wave in the simplest case where
pump field is fully coherent. The corresponding express
of the signal amplitudeA1 may be simply deduced from Eq
~30! by imposing e(t)50 and thusm(t)50. To further
simply the discussion, let us neglect the losses of the sig
and idler waves~i.e., a15a250). In these limits, the ex-
pression for the signal amplitude simply reduces toA1(t,z)
}exp(2Aq(12q)z/Lnl). It thus becomes apparent that th
gain g(q)52Aq(12q)/Lnl experienced by the signal is de
pendent on the particular characteristicq along which the
gain is evaluated. This is a classic feature of the theory
instabilities in wave propagation@19#. In the present case, th
gain g(q) exhibits a maximum atq051/2. Let us remark
that this characteristic actually corresponds to the refere
frame that moves at the average velocity of the signal and
idler waves. Along this characteristic, the effective gain e
perienced by the signal isg51/Lnl , corresponding to the
value found in the general theory of coherent parametric
plification processes@20#.

To investigate the coherence properties of the signal w
in the present context, it is more convenient to analyze
signal wave along the characteristicq051/2 corresponding
to the reference frame defined by the variables (u5t
2z/2d1 ,j5z). In this reference frame the parametric ins
bility is an absolute instability and the expression of the s
nal amplitude takes the following form for large propagati
distances~i.e., for z@d1t):

A1~u,j!}expS j

Lnl
DexpS 2

2d1
2u2

Lnlj
D . ~31!

This expression can now be used to calculate the temp
autocorrelation functionCcoh(u,j) of the signal at the propa
gation distancej,

Ccoh~u,j!5
^A1~ t1u,j!A1* ~ t,j!&

^uA1u2~ t,j!&
5expS 2

u2

2uc
2D ,

~32!

where the functionuc(j)5d1
21ALnlj/2 has the meaning o

the correlation time of the signal amplitude obtained by pa
metric amplification after a distancej. Let us remark that
this correlation time increases with the propagation dista
j, and with the group-velocity differenced1

21 @21#, a feature
that was pointed out since the pioneering works on param
ric fluorescence in quadratic nonlinear crystals@22#.
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B. Incoherent case

This brief discussion about the process of coherent sig
amplification indicates that the autocorrelation function
the signal wave generated by an incoherent pump may
conveniently calculated along the characteristicq051/2. For
this purpose, let us determine the asymptotic expressio
the signalA1 in the new reference frame (u,j) associated
with q051/2. For large propagation distancesj,
one can use the following expansion of the stocha
function m(t)5m(u1j/2d1)5m(j/2d1)1(2d1u/j)@m(u)
2m(j/2d1)#1O@(2d1u)2/j2#. Moreover, by virtue of the
presupposed ergodic and Gaussian nature of the random
A3(t), one has the following inequalityum(t)u&Atc /t
5Atc /(u1j/2d1) @23# which, for large values ofj, allows
us to considerum(t)u!1. Thanks to these approximation
we can expand the functionf (k0) of Eq. ~30! to the second
order with respect to the small parameter 2d1u/j, to get the
signal amplitudeA1(t,j) in the reference frame (u,j),

A1~u,j!}expF ~a22a1!S d1u

z
1

1

2D j2a2jGF~j!G~u!,

~33!

whereF(j) and G(u) are the spatial and temporal rando
contributions of the signal,

F~j!5expH j

Lnl
F11

1

2
mS j

2d1
D G J , ~34a!

G~u!5expS d1

Lnl
E

0

u

e~ t !dtD . ~34b!

Let us notice at this stage that, according to the exponen
factor ofF(j) @Eq. ~34a!#, the gain experienced by the sign
A1 in the presence of an incoherent pump, is of the sa
order of magnitude than that obtained for the coherent c
in Eq. ~31! sinceum(j/2d1)u!1.

The expression of the signal amplitude in Eq.~33! can be
used to determine its temporal autocorrelation funct
Cinc(u)5^A1(t1u,j)A1* (t,j)&/^uA1u2(t,j)&. Since the
functionG(u) is the stochastic part ofA1(u,j), the normal-
ized autocorrelation functions ofG and ofA1 coincide@i.e.,
CG(u)5Cinc(u)]. To calculateCG(u), let us notice that the
random functione(t) is Gaussian and then the functio
y(u)5*0

ue(t)dt is Gaussian too, which allows us to writ
@24#

^G~ t1u!G* ~ t !&5expH d1
2

2Lnl
2 ^@y~ t1u!1y~ t !#2&J .

~35!

It is important to notice here that, althoughy(u) is not a
stationary process, it does have stationary increments@25#.
Its autocorrelation functionCy(t1u,t)5^y(t1u)y* (t)&
thus takes the following form@23# Cy(t1u,t)5@D(t1u)
1D(t)2D(uuu)#/2 where D(t1u,t)5^@y(t1u)2y(t)#2&
52u*0

u(12t/u)Ce(t)dt is the structure function and
Ce(t)5^e(t1t)e* (t)& is the autocorrelation function o
5-9
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PICOZZI, MONTES, AND HAELTERMAN PHYSICAL REVIEW E66, 056605 ~2002!
e(t). Owing to the property of factorizability of stochast
Gaussian fields, one can determineCe(t) from the autocor-
relation function of the pump amplitudeA3(t), which yields
Ce(t)5exp(22utu/tc).

In the following we shall assume for simplicity thatu
@tc , i.e., we restrict our analysis to the highly incohere
regime. Let us notice, in particular, that this assumption p
vents from considering the limit where the pump wave
fully coherent, i.e., whentc tends to infinity. With this ap-
proximation one gets the following simplified expression
the autocorrelation ofy(t):

Cy~ t1u,t !5tct1
tc

2

4
exp~22uuu/tc!. ~36!

Note that the nonstationary property of the processy(t) ap-
pears explicitly through its varianceCy(t,t)5tc(t1tc/4)
that grows linearly with time. Owing to this expression
Cy(t1u,t), we can now determine through Eq.~35! the nor-
malized autocorrelation of the signal amplitudeCinc(u)
5CG(u), which yieldsCinc(u)5C1(u)C2(u), where

C1~u!5expH 2
r 2

4 F12expS 2
2uuu
tc

D G J , ~37a!

C2~u!5expS 2
r 2uuu
4tc

D , ~37b!

where we introduced the dimensionless parameter

r 5
Lc

e f f

Lnl
5

tcd1

Lnl
. ~38!

The expression of the autocorrelation function in terms
the two factorsC1(u) andC2(u) allows us to conveniently
decompose our analysis of the results into two parts. The
factor C1(u) introduces a correlation timeu1,c that can be
determined by considering the slope of the autocorrela
function at the origin, i.e.,u1,c

215udC1 /duu(u50), which
yields

u1,c5
tc

2r 2
. ~39!

This correlation time is almost identical to that introduced
the second factorC2(u), which is an exponentially decreas
ing autocorrelation function whose correlation time reads

u2,c5
tc

r 2
. ~40!

These correlation times clearly show that the cohere
properties of the generated signal wave are essentially
erned by the parameterr @Eq. ~38!#. Note that this paramete
involves the effective correlation lengthLc

e f f that accounts
for convection, as discussed in Sec. III B@Eq. ~2!#. As a
consequence, the evolution of the signal field is governed
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the relative weight betweenLc
e f f andLnl , as was predicted in

the degenerate parametric interaction~Sec. III B!.
For Lc

e f f@Lnl , one gets large values ofr, i.e., small val-
ues of the correlation timeu i ,c . This indicates that the signa
amplitude is strongly influenced by the pump fluctuatio
and consequently turns out to be incoherent. This is in p
ticular the case when the parametric process takes place
a negligible convection~i.e., d1

21.0) where there is no
means for the emergence of a coherent signal, as was
cussed in detail in Sec. III A in the framework of the dege
erate interaction.

Conversely, forLc
e f f!Lnl , one gets small values of th

parameterr, which leads to the generation of a coherent s
nal field. This feature may be easily interpreted by consid
ing that a strong convection between the signal and the
moving pump and idler waves is responsible for
averaging process in which the signal is no longer sensi
to the pump fluctuations. Moreover, we may notice thatr is
proportional to the pump correlation timetc , which means
that the coherence of the signal increases as the coheren
the pump decreases. This merely confirms the intuitive i
that the process of convection-induced averaging is more
ficient if the pump coherence timetc is shorter.

In summary, thanks to the phase-locking mechanism,
to the mutual convection between the waves, a coherent
nal field may be generated from an incoherent pump t
exhibits both amplitude and phase fluctuations. In Ref.@11#
we also verified numerically this result in the nonlinear r
gime of the three-wave interaction. In that previous work,
discussed, in particular, the nonlinear regime of solit
propagation and showed that a coherent localized signa
generated and sustained from an incoherent pump wave

VI. EXPERIMENTAL CONFIGURATION

Let us now discuss the experimental configuration t
would allow us to observe and study this peculiar pheno
enon of incoherently-driven coherent signal generation.
the following we shall consider the feasibility of such a
experiment in noncentrosymmetric optical crystals with qu
dratic nonlinearity because, thanks to its simplicity, this s
tem is the most promising. In this respect, it is worth discu
ing some recent interesting experiments where the proces
incoherent parametric excitation has been investigated
Refs.@26# the authors experimentally demonstrate that a
herent amplification may be achieved for a single sig
wave through its coupling with two distinct pump beams th
are not correlated to each other. More precisely, the auth
showed that for specific phase-matching conditions, a sin
signal wave may be phase matched to a couple of pu
waves and to the corresponding set of idler waves, so tha
signal mode may be efficiently amplified by taking adva
tage of the two distinct uncorrelated pump beams simu
neously. Moreover, this process of cumulative pump act
has also been observed in the spatial domain owing to c
cal optical beams by exploiting their specific phase-match
conditions@12#. It was shown, in particular, that a spatial
incoherent conical beam can pump an optical parametric
cillator and, in this way, induce a coherent signal oscillati
5-10
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COHERENCE PROPERTIES OF THE PARAMETRIC . . . PHYSICAL REVIEW E66, 056605 ~2002!
in the cavity. Although these experiments corroborate
results of the phase-locking theory presented in Sec. III C
would be of great interest to observe in a straightforw
way the predicted phenomenon of incoherent excitation o
coherent signal, as well as the transition between this mi
interaction regime and the fully incoherent regime discus
in Sec. III B.

Let us recall that this experimental study would only
significant if the parametric interaction took place in the
gime defined by the following inequality:

Lc
e f f5tcd!Lnl , ~41!

whered215uv1
212v3

21u is the group-velocity difference be
tween the pump and the signal waves. This is import
since, according to the standard criterion for applicability
the random phase approximation, the signal wave would
be able to evolve to a coherent state if this inequality w
verified ~see Secs. I–III!.

Let us remark that an experiment aimed at observing
generation of a coherent signal from an incoherent excita
imposes severe constraints on the group-velocities of
three interacting waves. Indeed, one may first observe
the inequality~41! requires that the parametric interactio
takes place in the presence of a strong convectiond21 be-
tween the pump and the signal waves. Moreover, we re
that the generation of a coherent signal relies on the ph
locking mechanism, which requires that the pump and id
group velocities are matched~see Sec. III!. One can over-
come these constraints by considering the configuration
which the pump and the signal modes are polarized along
same axis, while the idler is polarized along the perpend
lar axis~i.e., the so-called type II configuration!. In this way,
one can take advantage of crystal birefringence to subs
tially reduce the group-velocity difference between the pu
and the idler waves, whereas the necessary convection
tween the signal and the pump may be large owing to
natural crystal dispersion. Also note that, in order to av
the detrimental influence of spatial walkoff, we assume t
the crystal operates in the noncritical phase-matching c
figuration.

Under these conditions, we consider a periodically po
KTiOPO4 crystal that is quasi-phase-matched for the follo
ing wavelengths of the three modesl151.5 mm (Y polar-
ized!, l250.868mm (Z polarized!, l350.55mm (Y polar-
ized! with an effective nonlinear susceptibility ofd
55 pm/V. One can determine the respective values of
group velocities using the dispersion relations~Sellmeier
equations! of the KTiOPO4 crystal @27#. For the chosen
wavelengths we find that the pump and idler group-veloci
are matched (v2.v351.563108 m/s), while the tempora
walkoff between the signal and the comoving pump-id
waves is rather large d2150.468 ps/mm (v151.683
3108 m/s). We also considered the following realistic va
ues of the loss parametersa i50.046 cm21 and of the dis-
persion parameterski950.1 ps2/m, which, for simplicity,
have been assumed to be the same for the three waves.
05660
e
it
d
a
d
d

-

t
f
ot
s

e
n
e
at

ll
e-
r

in
he
-

n-
p
e-
e
d
t

n-

d
-

e

s

r

ote

that, to phase match the chosen wavelengths, the requ
period l of the periodically poled KTiOPO4 crystal is l
.32 mm.

Let us now discuss the characteristic features of the in
herent pump. In this respect, we remark that the inequa
~41! would require a short pump correlation timetc . For
concreteness, we assume in our numerical simulations
the pump spectrum has a Lorentzian shape whose spe
bandwidth at FWHM isDn.5 THz. The corresponding
autocorrelation function of the pump field then rea
^A3(x50,t81t)A3* (x50,t8)&5e0

2 exp(2utu/tc), where tc

.1/(pDn)5130 fs. We consider an average pump intens
of e0

2564 MW/cm2, a value that is readily accessible fro
pulsed laser sources operating in the nanosecond range.
such long pulse durations, one can take advantage of
natural Fresnel reflections of the waves at the crystal face
increase the effective nonlinear interaction lengths. This
interesting because of the short interaction lengths typic
available in nonlinear crystals. In the present case, we de
mine the Fresnel reflections coefficientsr i for the intensities
uAi u2 of the three waves from their respective refractive
dexesni , i.e., r i5(ni21)2/(ni11)2 @27#. For the wave-
lengths specified above, we obtainr150.025, r250.053,
and r350.04. The numerical simulations has been realiz
by taking into account these reflections at the crystal fa
and by assuming that the backward waves do not inte
with the forward waves since they are not phase-matc
with each other. We consider a pump pulse duration ofDt
54 ns, and a crystal length ofL51 cm, which allows the
reflected signal to interact with the pump for about 40 rou
trips.

Before discussing the results of the numerical simulatio
let us notice that, for the experimental parameters speci
above, one hasLc

e f f/Lnl.1/12 ~and Lc /Lnl.631023).
Therefore, according to the standard criterion for applica
ity of the random phase approximation, the interaction wo
be fully incoherent and one should not expect the genera
of a coherent signal from the incoherent pump. However,
us recall that it is essentially the parameterr 5Lc

e f f/Lnl @Eq.
~38!# that governs the coherence properties of the gener
signal wave, as discussed in Sec V. In particular, as the
rameterr decreases~increases!, the correlation time of the
generated signal increases~decreases!, since the ratio be-
tween the pump and the signal correlation times scales ar 2

@see Eqs.~39!–~40!#. According to our theoretical analysis
we may therefore expect that the small valuer .1/12 con-
sidered here allow for the generation of a signal with a h
degree of coherence.

Figure 5 illustrates the intensity profilesuAi u of the waves
obtained by the numerical simulations of Eqs.~1! with the
previously specified parameters. The average pump inten
profile remains almost unchanged during the propagatio
feature that indicates that the parametric interaction ta
place essentially in its linear regime. The signal and id
waves have been generated from small amplitude fluc
tions, that have been modeled through a random comp
noise distributed all along the crystal length~see Sec. III A
for details!. As expected from theory, the initial fluctuation
5-11
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PICOZZI, MONTES, AND HAELTERMAN PHYSICAL REVIEW E66, 056605 ~2002!
of the signal are smoothed down during the parametric g
eration process@see Fig. 5~c!#, while the idler wave absorb
the rapid fluctuations of the pump. This feature is confirm
by the analysis of the spectra of the three waves. As ill
trated in Fig. 6, the width of the idler spectrum is almost t
same as that of the pump (Dn2.Dn3), whereas the signa
spectrum is extremely narrow. More precisely, we evalu
the following ratio between the signal and the pump spec
widths,Dn3 /Dn1.135, which gives the corresponding co
relation timeuc of the generated signal,uc.135tc . Consid-
ering that r 5Lc

e f f/Lnl.1/12, we remark that this resu
agrees well with the correlation timeu1,2,c}tc /r 2 that has
been derived theoretically in Sec. V@see Eqs.~39! and~40!#.

The proposed experimental configuration would also p
mit to study the fully incoherent regime of parametric inte

FIG. 5. Temporal profiles of the three amplitudesuAi u at the
output of the crystal according to the envisaged experimental c
figuration described in Sec. VI. Amplitudes are given in units
e0 , t is in units oft0521.6 ps.
05660
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action, for instance, by tuning the wavelength of the pu
source. In this way, the interaction would be phase-matc
for different wavelengths and the corresponding grou
velocities would no longer satisfy the severe constraints
posed by the phase-locking mechanism. To be precise,
indeed sufficient that the group velocities of the pump a
idler waves do not satisfy the criterion~18! derived in Sec.
III C to prevent the generation of a coherent signal. T
situation naturally corresponds to the more general case
is usually encountered in experimental study of parame
generation processes. Numerical simulations realized in
general case indicate that the generation of a signal wi
high degree of coherence is no longer possible. Neverthe
a proper theoretical study of the coherence properties of
general case still needs to be done. Let us recall, howe
that in the simpler case of the degenerate configuration,

n-
f

FIG. 6. Spectra of the three wavesuÃi u (Ãi being the Fourier
transform ofAi) associated with their respective temporal profil
of Fig. 5. The frequencyn is in units ofn0578 GHz.
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theoretical analysis developped in Sec. III A–III B cou
serve as a useful guide for the experimental investigation
the fully incoherent parametric interaction, as confirmed
our numerical simulations~see Figs. 1–3! of realistic experi-
mental situations.

VII. CONCLUSION

In conclusion, we considered the fundamental phys
problem of the parametric interaction driven from an inc
herent pump wave and showed that the convection betw
the interacting fields is the key parameter that governs t
dynamics as well as their coherence properties. The ana
of the degenerate configuration of the interaction reveals
the convection between the pump and the signal is resp
sible for a quenching of their parametric interaction. Co
versely, in the absence of signal-pump convection, the g
experienced by the signal is of the same order of magnit
as in the coherent case, so that the signal may be efficie
amplified by the incoherent pump regardless of its degre
coherence. Importantly, this efficient amplification proce
cannot lead to the generation of a coherent signal, i.e
signal field whose degree of coherence exceeds the degr
coherence of the incoherent pump.

We showed that the situation is completely different in t
nondegenerate configuration of the parametric interact
Indeed, in this case, our theory revealed that the convec
between the fields may be responsible for a phase-loc
mechanism in which the incoherence of the pump is
sorbed by the comoving idler wave, which allows the sig
to grow efficiently with a high degree of coherence. Mo
precisely, owing to their velocity-matched interaction, t
idler wave turnsout to be mutually coherent to the pump a
it is their convection with respect to the signal wave th
constitutes the key ingredient governing the coherence p
erties of the generated signal. In short, this convection
ky
,

J.

.

tu

v

05660
of
y

l
-
en
ir

sis
at
n-
-
in
e

tly
of
s
a
of

n.
n
g
-
l

d
t
p-
is

responsible for an averaging process in which the signa
no longer sensitive to the fluctuations of the pump wave.
a result of this convection-induced averaging process,
degree of coherence of the signal increases as the degr
coherence of the pump decreases, a feature that has
confirmed by numerical simulations. We also derived expl
criteria that determine the conditions required for the em
gence of this mixed regime of coherent-incoherent inter
tion. In this way, we have been able to establish the exp
mental conditions in which this regime of interaction may
observed and studied. According to this preliminary theor
ical study, we may expect to be able to observe the inco
ent and coherent-incoherent regimes of the parametric in
action in a near future thanks to currently available nonlin
optical crystals.

Beside the context of optics, the present work is also
evant to many branches of nonlinear physics owing to
universality of the parametric wave mixing process~see Sec.
I, Refs. @1–9#!. Along these lines, the experimental verific
tion of our predictions would be of great interest for th
fundamental study of the spontaneous organization of n
linear ordered states in stochastic environments@28,16,21#,
such as, for instance, the recently studied systems of in
herent solitons@29,14#. Moreover, the proposed experiment
study would also be relevant from a practical viewpoint fo
better knowledge and control of broadband parametric a
plifiers @30# driven from an incoherent pump.
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