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Cylinder gratings in conical incidence with applications to modes
of air-cored photonic crystal fibers
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We develop a formulation for cylinder gratings in conical incidence, using a multipole method. The theory,
and its numerical implementation, is applied to two-dimensional photonic crystals consisting of a stack of
one-dimensional gratings, each characterized by its plane wave scattering matrix. These matrices are used in
combination with Bloch’s theorem to determine the band structure of the photonic crystal from the solution of
an eigenvalue problem. We show that the theory is well adapted to the difficult task of locating the complete
band gaps needed to support air-guided modes in microstructured optical fibers, that is, optical fibers in which
the confinement of light in a central air hole is achieved by photonic band-gap effects in a periodic cladding
comprising a lattice of air holes in a glass matrix.
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[. INTRODUCTION holes running parallel to the fiber rather than by doping the
fiber core[6,7]. One type of microstructured optical fiber has
The study of the electromagnetic diffraction by gratings isa central air hole as well as confining air holes, and its aim is
now a mature field, with numerical formulations available toto achieve a fiber in which light propagates as much as pos-
provide results of high accuracy for theoretical and technosible in airf8—10]. The confinement of light in the central air
logical investigationgsee, for example, the books by Hutley hole is achieved by photonic band-gap effects and the loca-
[1] and by Loewen and Popoj2]). However, by far the tion of the modes that can propagate in this type of fiber is a
majority of investigations into grating diffraction concern numerically difficult task. We will show how this task may
themselves with the case of classical diffraction, where thde expedited using the scattering properties of gratings in
grating is illuminated by a plane wave with a zero compo-conical incidence.
nent along the direction of the grating generators. Loewen The diffraction grating we study here is an assemblage of
and Popov justify this in the following way: “The more gen- circular cylinders, which may be composed of either dielec-
eral case of conical diffraction does not introduce fundamentric or metal. For simplicity, we will consider the case where
tal difficulties, but complicates the mathematical and numerithe unit cell of the grating contains only one cylinder, al-
cal treatment and also is not widely used in practice. Anythough the generalization to multiple cylinders per unit cell
theory that can deal successfully with the two fundamentals straightforward and valuabld1,12. We note that L{13]
cases of polarization can be generalized, if necessary, to delads treated conical diffraction by gratings composed of rect-
with the conical case.” It is one of the purposes of this paperngular rods, generalizing our earlier work on a modal for-
to show that this judgement was somewhat premature, givemulation for dielectric and metallic lamellar grating$4],
two recent applications which have emerged, and which juswhile Centeno and Felbadd5,16 consider the behavior of
tify the development of formulations for conical diffraction band gaps in photonic crystals as functions of polarization
by gratings. Both are connected with photonic band-gammnd conicity of the incident plane wave. Li’s formulation has
structures. The first is the so-called woodpile structure fobeen exploited in recent work on woodpiles composed of
achieving a photonic band gap. For references relating to theielectric lamellar gratings in the thesis by Gra[d®].
origin of this geometry, see Reff3]. It has attracted much We begin with the formulation for the theory for the coni-
attention recently, since it is a three-dimensional structurecal diffraction of a single cylinder gratingSec. 1). This
yet it can be fabricated using two-dimensional lithography inmethod extends the treatment of R¢fis3,19 to derive plane
a multistep process. As a result, Lin and Flemjdgs] have  wave scattering matrices and, in Sec. Ill, a different form of
been able to fabricate a structure exhibiting a band gap at ththe Bloch method, which enables us to compute dispersion
important telecommunications wavelength band near 1.diagrams for periodic structures such as photonic crystals.
pum. The method is based on a Rayleigh identity treatmi&hi1 2]
The second application is concerned with microstructurednvolving lattice sums, which are in keeping with Maystre’s
optical fibers, a new type of optical fiber in which confine- theorem on conical diffractiof20], in that they are the same
ment of light is achieved by the introduction of numerous airas lattice sums for classical diffraction if we replace the wave
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nentsk, andH,, for which we develop plane wave expan-
sions in terms of the TE and TM resolutes of the electric field
(Sec. 11 B.

In Sec. IIC, we make use of the Rayleigh multipole
method in which the longitudinal components of the field in
the vicinity of the grating are expressed in terms of two-
dimensional cylindrical harmonic functions, with field

sources represented by the irregular functidres., Hankel

y ~_ functions of the first kingd The essence of the Rayleigh
D ¢ eg method is that the regular, or nonsingular, part of the field
(expressed in terms of Bessel functions of the first kiimd
the vicinity of each cylinder derives from sources on all the
other cylinders, plus contributions from sources at infinity
which appear in the form of incident plane waves. In the case
vector by its projection perpendicular to the grating plane.of a grating, the periodicity imposes a Bloch condition on the
The formulation has been verified using a set of convergencsource coefficients that leads to the introduction of lattice
and conservation criteria and by comparison with our previsums that encapsulate the periodicity and geometry of the
ous formulations for classical incidenf#8,21]. In Sec. IV, lattice. In this way, we may determine the coefficients of the
our techniques are applied to the study of the modes whicBource terms associated with each cylinder and subsequently
can exist in photonic crystals composed of circular dielectricceconstruct the outgoing reflected and transmitted plane
rods, for the case of out-of-plane propagati@g]. We show wave coefficient§Sec. II D), in turn leading to the compu-
that this leads to a method capable of indicating the regiongtion of plane wave scattering matrices.
in which one may expect to find the air-guided modes of For gratings which are up-down symmetric, it is possible
microstructured optical fibel@OF) with air cores[8,9]. to take advantage of the symmetry to reduce the computa-

In a future paper, we shall apply this treatment to structional complexity of the formulation. In Ref18], this sim-
tures in the woodpile configuratidi3]. The additional layer plification was implemented by considering two problems,
introduces dispersion in the orthogonal direction and theassociated, respectively, with symmetric and antisymmetric
plane wave set is indexed by dual subscripts. This feature isicidence field configurations from above and below the
adopted here to maintain a consistent notation for both pagrating; an arbitrary problem can always be written as a su-
pers. The prescription of the scattering matrix requires theperposition of these. This enables the resulting systems of
solution of a family of diffraction probleméor each layer  equations to be “folded,” thereby halving their number. In
associated with the dispersion directions introduced by thé¢his paper we adopt a more general approach by supposing
second layer. The scattering matrices are thus not dense, hthiat the grating is illuminated from both above and below
comprise a sequence of block®r some permutation with arbitrary incident fields. This enables the diffraction
thereoj, each derived from the application of the basic coni-properties of the grating to be characterized by plane wave
cal diffraction problem. The theory can then be applied toscattering matrices that specify reflection and transmission
deduce the spectral properties of the woodpile layering andoefficients in each output channgle., diffracted order
the band diagram for a woodpile photonic crystal. corresponding to unit inputs in each of these chanf&é.

We conclude this introductory section with a brief de-11D). In this way, we are able to express the scattering matrix
scription of our notation. At the lowest levélevel 1, say, as a 2<2 block matrix, in which individual blocks sepa-
we denote vectors and matrices by boldface Roman or Grealately comprise reflection and transmission matrices from
letters A,X,4,...). Thenotationf=[f4] denotes a vector of above and below the gratirdegs. (52) and (53)]. The ad-
coefficientsfy. Block matrices of level 1 objects are denoted vantage of this approach is that no assumptions are made
by boldface calligraphic capital letters or, occasionally, bold-regarding the up-down symmetry of the grating, but in the
face Fraktur capitalg.4,F R, ...). Such level 2 objects case where the grating is up-down symmetric, we are still
encapsulate both electric and magnetic fields or TE and Thble to reduce the number of equations by a folding proce-
fields. Block matrices of level 2 objects are denoted by bolddure.
sans serif capital letterS,F, . . .). These encapsulate fields
both above and below a grating.

FIG. 1. A grating of cylinders in they plane.

B. Plane wave expansions

We consider a single grating consisting of identical paral-
lel cylindrical rods of radius whose axes are separated by a
distanceD. In the chosen Cartesian coordinate system, the
cylinder axes are parallel to theaxis and lie in thexy plane

We consider conical diffraction by a single grating con-(rig. 1). The primary incidence channel is defined by the
sisting of a planar layer of identical parallel cylindrical rods \yave vector

of radiusa whose axes are separated by a distddch the
chosen Cartesian coordinate system, the cylinder axes are
parallel to thex axis and lie in thexy plane (Fig. 1). The
problem is formulated in terms of the longitudinal compo-with wave numberk=w/c=(a3+ B5+ v3

Il. CONICAL DIFFRACTION THEORY
A. Outline of the theory

ki=(ag,B0,~ Y0)s 1

Y2, where w is
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the angular frequency ardlis the speed of light in vacuum.

With 6 denoting the angle betwedn and thez axis, and¢ Etzz [é5YAE e "+ ES £7RE
denoting the azimuthal angle between the projectiork;of
onto thexy plane and the positive direction of tlxeaxis, the + gé’z{pl—se—iysq Fo Sei 7s7) Rg"], (6)

wave-vector components of the specular channel @ge
=ksinfcose, Bo=ksinfsin¢g, yo=k cosé.

. . 5 _ 12f=— o1 i E
We denote the transverse resolute in tiyelane of field ZX Kt—ES [£4E & "~ Ep &R
quantities by a subscripted(e.g., E;), while scalar compo-
nents along the, y, andz axes will be denoted bg,, E,, +§§1’2{F,”Se*iysz— Fp o€ Y$ARMY, 7

and E,, respectively. We introducK =ZyH, where Z,

=Juo/ €, is the characteristic impedance of free space, thugvhere E, ¢ and F, ¢, respectively, denote the TE and TM

normalizing the field equations to involve only electric quan-components of the incoming electric field, whll%,S and

tities. ngs, respectively, denote the TE and TM components of the
We resolve the fields into a sum of two principal polar- outgoing electric field in the upper half space. In the half

izations: transverse magnetiM), in which K=K;, and  space below the grid, there exist analogous expressions for

transverse electri€TE), in which E=E;. These modes are E, and2XE, in terms of the component:e,ﬁS andFﬁ,S of the

specified by a polarization anglé (Fig. 1), which is the  incoming electric field and the componelfts . andF . of
angle between the direction of the electric figldand the the outgoing electric field. ' '

vector While the plane wave diffraction problem is best formu-
lated in TE/TM modes, the multipole scattering problem is

kix2z best handled in terms of principal Cartesian field components

Y= ksine (@ parallel to the cylinder axes. These may be derived from Egs.

(6) and(7), usingE,=E;-X andK,=—2X(2XK,)-X. This
normal to the plane of incidence. For TE and TM polariza-léads to
tions, we haves=0,7/2, respectively. £ =
The periodicity of the layer of cylinders introduces dis- x :2 ( Es
persion in they direction characterized bg'##¥, with 3, Kl 5 (1 0ks
=Bo+2m7p/D. For in-plane incidence in either of the two
principal polarizations, the problemxsnvariant for a single
layer. However, in conical diffraction, the dependence is £ [f-
e'“* while the addition of orthogonal layers, as in a wood- 1= ( Es
pile, introduces dispersion in thedirection, leading to ax Kl 5 L Tkes
dependence oé'“@*, with aq=ay+27q/D. The formula-
tion of the single-layer scattering matrices for a two
dimensional(2D) diffraction problem in such configurations

e 17+

g
E,s ei ysz] eiQS~r (8)
K,s]

above the grating and

e v

5;3- iyz\ AiQg-r
; e'7s?; e!'s (9)
,S]

_below the grating, where the outgoing fie[dg ] and[ f (]
are defined by

thus requires the solution of the familg} of diffraction £+ ¢ £ E:
problems associated with all possilig directions. For con- i A * D.s , (10)
venience, we index plane wave coefficientsshyhich de- fesl [—é. —€5llFps
notes the pailp,q) for crossed orthogonal gratings, or the ~ -
simple subscripp [more preciselyp, 0)] for conical diffrac- fes| |~ §s €a||Eps 11
tion involving only one-dimensional grating structures, or frsl | &, 5]l Fos 1D
stacks of such. If we pus= a %+ 3,9, thezdependence of ' ’
plane wave fields may be written as'”s?, where and where
_re12 _r 12
ye= k2= Q2 seQ,={s|Q<k2 3) Ep=1&s " BplQsl,  &u=[&s aq/Qsl. (12)
The incoming fields[ g ;] and [ ;] are defined analo-

ys=iVQi—K?,  seQ.={s|Qi>k?, (4)  gously to[ fZ ] and[fy ].

with s=(p,q) denoting an integer pair. C. Multipole expansions

As in Ref.[23], we expand the transverse fields in linear

combinations of the TE and TM plane wave modes, Here, we consider conical diffraction of fields with a

specifiedx dependence & “@, and form a 2D projection of
o 2% Q the problem in theyz plane, denotingr=(y,z) (Fig. 2.
RY(n=3e%", REN=-5—€%" (5 Then

Qs Qs .
v E+KE=0,
We defineés= ys/k. Above the gratind23], the transverse 5 5
electric and magnetic fields are Vi H+KTH=0,
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v El(r,0)= >, [AEJ (k r)+BEHM(k r)]e"’e *,
n=-—owo
; 7

Ka(r,0)= 2 [ARIn(kir)+BIHP (k ) Je" e o,
n=-—owo
y (18)

applying in the vicinity of the central cylinder. In all other
cells, the field is inferred from the Bloch condition which,
U in turn, implies that the coefficients for the field expan-
sions in cell m satisfy a quasiperiodicity reIatiorBE{“)
U- =B, expimpD).

As illustrated in Fig. 2, the regio@ is the cross section of
dthe cylinder inside the unit cell and we letA=U\C denote
the area enclosed by the perimeter of the cylinder and the
boundary of the unit cell. The boundary Afis denoted/A.
The multipole coefficientsBE=[BE] and BX=[BX] may
now be determined from a Rayleigh field identity, the deri-
vation of which follows from Green’s theorem,

FIG. 2. The unit cell for a single-layer grating. The crosshatche
region represents the arelC for the first integral in Green'’s theo-
rem|[Eqg. (19)].

where the projected wave vectér is given by kf+a§
=k? and V;, denotes the operatar’/dy?+ 9%/ 3z%. We in-
troduce the free space Green’s functiGn possessing the

quasiperiodicity of the incident field and satisfying
Ex(r)=fA[Ex(r’)Vf,G(r;r’)—G(r;r’)Vf/Ex(r’)]dA’

[

(V2 +kG(r)= X 8(r—nDg)ePm.  (13) P P

n=—o — A A A ’ ’

fﬁm Ex(r') -7 G(rir' ) =G(rir") - Ex(r') |ds’,

Its Cartesian representation is (19)

S wheren’ denotes the outward pointing normal.
GN=5p 76'(393’”32‘), (14) Following the treatment in Ref18], the Rayleigh identity

p=== Vs

while in the cylindrical harmonic form, the Green’s function AE=m:E_w Sn_mBEﬁ-p:_w (InpOe.pt Inpdep) (20

IS

is derived by a straightforward but lengthy manipulation, in
o (1) - ~imargr) which the cylindrical harmonic field representati¢iv) and
G(r)=-— 4 Ho (kL|r|)+m:E_w Sudm(k,[r)e ) the plane wave representatio(® and (9) of fields above
and below the grating are substituted into EtP), and the
(15 resultant form compared with EGL7). In Eq. (20), the first
where arg() denotes the polar angle of the vectorThis series_ expresses the contributions to the_: regular field due to
form (15) of the Green's functio{24—27 underpins the outgoing fields sourced on aII_othe_r cylinders ar_1d dep_ends
application of the Rayleigh method and mirrors the structurepnly on the geqmetry and per|0d|C|t_y Of. the gratlngl Iattlcg.
of the field identity. Its first term, having a singularitgr The second series arises from contributions QUe tc_) incoming
sourcé at the origin, is associated with a contribution from Plane waves from above and below the grating with Jpe
the central =0) unit cell, while the other terms, associated @1d J, , which are given below, respectively, denoting the
with the regular Bessel functions, derive from sources in alcoefficients of downward and upward propagating incident
other unit cells (#0), with contributions specified by the Plane waves in the cylindrical harmonic basis. Here
lattice sums

J;p:(_l)ne—inﬂp’ ‘];—p: einﬂp’ (21)
_ HDO(Inlk, D)elFonDeimen. 16 whereﬁpzarg(Bp+iyp). .
Sm rgo m (nfk. D) (16 Similarly, we may use Green’s theorem to obtain the mag-

netic field K,, leading to an analog of Eq20). Equation
Here, ¢,= mH(—n), where’H is the usual Heaviside step (20) and its magnetic analog may be combined in matrix

function. form to obtain

The longitudinal field components in the vicinity of each 5
cylinder may be written in terms of cylindrical harmonics A= 554_5—1[‘()E e } (22)
with the following representations: [ o)’
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where A=[(AF)T(A")T]T, B=[(BF)"(B)"]" and fe o
F: fi ’ ’Dt: 5i 1 (30)
S 0 S [ o “ :
S=|y o S=ISwml T=|, | @3 s 0 k= o 1
g_ 0 G ’ - O Ki ’ (3 )
with 3% =[J]. _ o N
The boundary conditions, which require the continuity ofand whereG=diad yl, K‘%[Kgn]=[(i1)ne+'nas]- .
the tangential field componense.,E,, K,, E,, andK ) at As noted in Sec. Il A, it is advantageous to exploit up-
the cylinder boundaries, couple the coefficieds, Af,  down symmetry when it occurs. We do this through the in-
BE, andBX through the following equatiofderived in Ap-  troduction of thesymmetrizing transformatio@,
pendix A as Eq(A14)]: [ o e -
][ e " ¢ -el
Al [MKE MK BR) where
where the matrix elementsl 55, MEX MKE MK encapsu- Cs— Y cam Y 33
late the material propertigse., refractive indices and ragii o Iy 0 -1

of the cylinders. In block matrix form, we write
(Here, and in the sequel, we usgZ, or | to denote the
A=—MB, (25)  identity matrix, with the notation determined by the context.

The form of C reflects the symmetry relationships between
electric and magnetic quantities that are imposed by Max-
well’s equations. IfE, is symmetric, therH, is antisymmet-
ric and conversely.

(26) We now develop an expression for the scattering matrix
S, which characterizes the scattered fields above and below
the grating. The scattering matrix appears as>a22block

Here MPR=diagM"?], whereP and Q select the polariza- matrix, in which the individual partitions separately com-
tion parameter& o? K. prise reflection and transmission matrices from above and

From Egs.(22) and(25) we deduce the Rayleigh Identity P&low the grating. We begin by multiplying E@9) by C,
which commutes wittG, to form

where M is the block matrix.

M=

MEE MEK
MKE MKK:|'

o |6 o 2 ks
a linear system for the multipole coefficieriss where
D. Plane wave reconstruction and scattering matrices F= F D= D G= g
f + | D+ ’ 0 g ’
Following Appendix C in Ref[18], the plane wave coef-

ficientsf,ﬁ,K in Egs.(8) and (9) may be generated with the K® 0 K 0

aid of Green’s theorertil9), where, this time, we exploit the ICS= ol 8= ol (35
plane wave form(14) of the Green’s function and take 0 K 0 K

to be located above or below the grating; thatzz;a or andK®©=K - +K".

z=—a. The reconstruction equation 6  is Then, substituting the solution of the Rayleigh identity
% (27) into Eq.(34) gives

> (x1)"e*indsBE, (28)

fEe=0r et ——=
E,;s E,s ')’sD s

S
xca|(M+8) T~ TID,
Equation(28), together with an analogous expressiom‘f@’rS (36
may be cast in matrix form as

2 K
CF=CD—5G‘1

which we can write as
-
f +

D
D+

K-
’C+

KLT® K°LT?
K:LT® K3LT?

2[g™t 0
"ol o gt

B, (29 CF=CD—%Gl[ }CD, (37)

where where
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L=(M+8)"1 | O [0 X1G 1= (47)
=(M+8)7Y TJ°= . JB= : =z X
( 0 XX 0 J ki
(38)

The scattering matri, in terms of the symmetric and anti-

andJ®©=J"=J*. symmetric fields problems, can now be written as
Equation(37) has been derived without making any as-

sumptions about the symmetry of the grating. However, as k

shown in Appendix B, the term&CSL J? and KC2 L J° van- S=I- EQBX

ish for gratings having an up-down symmetry, in which case L

the system decouples completely. . . . .
4 P B y The final step is to derive terms for the reflection and

Next, we express the solution of the diffraction problem o , . )
in terms of plane wave scattering matrices using TE-TM delransmission matrices, using E@8). Using the transforma-
T I
T= (49)

tion
z -I|

KSLTs

KxeLcgs “9

KeLcg? y
KiLge|

compositions of plane wave fields by introducing a transfor-"
mation that converts the plane wave components contained
within F andD into TE and TM components. This is done
with a transformationX’, whose form follows from Eq(11).
We expressX as the block matrix

we convert the symmetrized field vectors to up and down

—& & ropagating plane waves as follows:
= B ’ (39) propagating p
b Fo F [F Fe
) D _T-1 D | :T_l | (50)
with _7:5' _7_-[&)1 ) ~7"|+ j:la )
&s mﬁq} g{ Lay where
=di ,  &,=dia 40
gB E{ QS g Qs ( ) . .
- D - _|Er
We have Fp= Fz ) Fr= Fe | (52)
S S
CF= X 075 _|X OfF (41  Consequently,
0 X||F5) 0 X||F°
Fo|_ 1ad T
where 7 =T ST F (52
Ep+ES Ep—Ep , _ _
5= =4+ E |- 2= S (42) Let R, andR,, respectively, denote reflection matrices
ptFp - D for incidence above and below the grating andZgtand 7y
o o denote the corresponding transmission matrices. It is clear
s_ E +E a_ E —E 43 that
IR R TV IR R
define th & Fol| | T R 7 (53
We define the scattering matr& as = .
1 Ing -7:5 Ra ,z,b ‘7:|+
fg' ]:Is i . ..
Fa|= S Fal (44) A comparison between Eq&2) and(53) thus yields explicit
D ! expressions for the reflection and transmission matrices. In
the case where the matrix is up-down symmetric, we have
so that from Eqs(37), (41), and(44), p Yy
1 ICSLTS KSLT? — - s S_ 1-a a
S=I-=XGTY L e alX (4D Ra=Ro= " gp MILT-ICLTDX, (54
D KLT® K°LT

whereX=diag X, X]. However, we can express E@5) in
a simpler form. It is elementary thaX¥ 1= £X, where £
=diad (&+ &) 1, (£+ &) 1] and, consequently,

k
T=Ty=T— 575 XUCLI+ K LT X, (55
1

which generalizes our earlier results in REE8]. For grat-
ings exhibiting up-down symmetry, it is possible to take ad-
vantage of various symmetry relationships among the terms
A simple calculation shows that the diagonal terms of then order to halve the number of equations, thus reducing
matrix £G ! are of the forrrk/kf, so that computational complexity. This is discussed in Appendix B.

X lgl=cglx (46)
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Ill. THE BLOCH METHOD AZ
We now lay the groundwork for the consideration of O O
modes in MOFs with air cores in Sec. IV. The same ideas Fr

will apply to band diagrams for woodpile configurations. The

idea is to use scattering matrices to determine frequency re

gions in which propagating modes satisfying the Bloch con-

dition exist, and to formulate this condition as an eigenvalue O

constraint problem, which enables us to determine the bant

structure of planar, stratified photonic crystals. Our treatment

is based on a technique developed originally in electron dif- _

fraction by McRae[28] and applied recently in photonic T 2

crystals by Gralak17] and Bottenet al. [19], but reformu- O O O O O O

lated here to increase the robustness of the method in order

to handle the greater computational demands associated with FIG. 3. Geometry of the unit celdefined by the fundamental

gratings and grids in conical diffraction. translation vectorsr and 7) for the Bloch method calculations. The
Our earlier approach(19], based upon al matrix  phase origin®; andP, of the fieldsF ; ,F; ,F, , andF , ,

formulation! worked well for general 2D structures provided above and below the grating, respectively, are shown.

that the dimension of the scattering matrices was not too

large. To improve the stability of the method for 2D struc- T, R, T;O) RE)O)
tures, and to make possible the calculations for 3D structures [ }z 0) 0 |PQ (57)
(such as the woodpilein which the diffracting element gen- Ra T Ry Ty
erates a doubly dimensioned set of plane waves, we haveh
reformulated the eigenvalue problem in terms oRamatrix where
formulation[29,30. The formulation outlined here applies to o g pr2
the most general3D) configuration. In the case of the air- Q:[ 1/2}, —[ 14, (59
guided modes of photonic crystal fibers, a minor simplifica- 0 Q o P
tion, requiring the replacement of a doubly dimensioned set ) )
of plane waves by the singly dimensioned set for a grating in Q=diad Q,Q], P=diadP,P], (59
conical incidence, is required. . 10c- (08, .5,) . s
We begin with TE-TM reflection and transmission scatter- Q=diade"~s">>’], P=diade' > >]. (60

ing matrices for the elementary, single layer relative to the

o . . In the nomenclature of Sec. Il D, we have denoted fields
standard phase origin at the center of the primary cylinder, . -
: o incident from above and below the layer by partitioned vec-
and denoted by the superscripté®d). For incidence from

above and below, these ar®(", 7®) and (R, T, tors.c.)f plane wave Eoefficientﬁ-'f anq outgping.fi'elds by
respectively. The array is constructed in §eplane, using partitioned vectorsFp [Eq. (51)]; In this section, it is more
basis vectorsr=D8&, and 7=s,8,+s,8,, wheres, ands, con\{enle_nt to write ; andF , , respectively, for the in-
are real. As in Ref[19], we introduce phase origins at the €0MINg fields above and below thg Igyer, where these fields
center of the upper and lower edges of the baparal- € now referred to the phase origins Ry and P,. The
lelopiped cell generated by the basis vectassand = at ~ outgoing fieldsF ; (above the laygrand 7 , (below the
points P, =(0,5,/2,5,/2) above the layer anB,=(0,—s,/2, |§y€t’) are expressgd in terms of the interaction of the incident
—5s,/2) below the laye(Fig. 3. fields with the basic layer:

Relative to these origins, the component of the electric

+_ - +
field transverse to the elementary layer is F1=ReF 1+ T 5, (61)
Fo=T,F +R,F,. (62)
EN=2 [& YAE, o 4+ E €7 HRE From Eq.(56) and its magnetic analog, the total transverse
s electric and magnetic fields can be written as the vectors
+ 1/2 E- e—iys(Z—Zj)_,’_Fﬂ' ein(Z—Zj) RM ’ 56 3 N
gs { j,S ]S } 5] ( ) 81=x 1/2(.7:]' +‘7:]'+)’ (63)
_ 12— +
wherej =1 refers to the region above the layer grd2 to Ki=X"(F | -Fj), (64)

the region below. An analogous expression may be derived e 4 e
from Eq. (7) for the magnetic field. Correspondingly, the WhereX=diad£,¢ "] and £=diad ys/K]. -
reflection and transmission scattering matrices relative t? The 2% matrix is then introduced through the definition
these phase origins are then given by 30]

_— |:£1:|:x_1/2|:9:{11 m12:| x-l/Z{’Cl} (65)
Unrelated to the matrif in Sec. I D. & Ry Ry IC;
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and by substituting Eq(64) into Eq. (65 and settingF | M’'=(1+¢M) ! (¢ constan), the eigenvalues of which are
and F , in turn to 0, we form expressions that lead to the (1+/u) %, from which the values ofx may be inferred.

partition elements ofA: Some elementary manipulation inveNE analytically,
Ry = (V1 + X)) (T- X,4,) 7, (66) ;| DD —NRONRy 75
_ D DRt LR R}
Ry~ 22, X,(T- %,7) (67 Pt £ P}
D={R,— "R+ LR~ R}, (76)

R1=22Z,X,(T— X,X) 1, (68)
thus removing any numerical instabilities. While the value of
Rpp=— (Yot X1 20,)(T— X, X,) (69 s chosen to avoid singular behavior, the valdes+1
generally suffice.

(T 1 Ny _
where Zi=(I-R)) *, V=(T+R) 2, X=T 2. An alternative treatment involves the consideration of the
Solving Egs.(64) and (65), we derive the cross layer o qified matrixM” = (¢(M+ ¢~ *M~ 1L, the eigenvalues of

transformation which are ¢u+¢ *u 1)1 Again, ill conditioning is
G,=MG;, (70) eliminated by analytic inversion to yield
-1 -1
where M’ = ¢ M OA B 0 77)
0 I|B —2A] |0 PRy

(71)  where2A=MR,,— MRy, and V= R,,+ (MR, The inverse

I_mll I+m11
Gj: i

z z in the central factor of Eq(77) may be calculated analyti-
with cally as before, or numerically, as this form is already well
conditioned.
MR~ Ry T 9%[21 0 Appropriate values of may easily be chosen, particularly
=[ T 0} 0 M, (72 for lattices and layers which exhibit high symmetry. In the

case of structures such as the woodpile, for which the under-

and lying layer (comprising crossed grating layg¢moes not ex-
hibit a simplifying up-down symmetry, we utilize the preced-
ing general technique witli= 1.

(73 In the case of the calculation of the space-filling modes of
an air-guided holey fiber, the lattice is a 2D hexagonal struc-

The Bloch condition for field quasiperiodicity in the di- turé composed of individual 1D cylinder gratings, each of

rection e, imposes the constraint which is up-down symmetric. In this case, the lattice repli-
cation vector ise;=(0,,,s,), wheres,=d/2, s;=v3d/2.
_7r:2i:#_7r:1i with w=exp(—ikq-&,) (74) This, in turn, simplifies the form of the lateral shift matigx

and introduces a natural choice fgr Here, @=('?Q,,

(wherek, denotes the Bloch vectpiand, in turn, this re- with {=exp(B,d) and with Q,=diag(—~1)>. The imposed
quires thatG,=uG;, resulting in the eigenvalue problem lattice symmetry and relations in Eq&7) and(58) lead to
MG;=uG;. T,=73PQyT, Qo Py, together with analogous identi-

In its present form, the cross layer transformation matrixties for the reflection matrices.
M is just a reformulation of thd matrix treatment. It thus These, together with Eqs(66)—(69), reduce R,
suffers from the same ill conditioning that causes cata=—9R;; and { R;,= —{R,;, thereby block diagonaliz-
strophic numerical errors with increasing matrix dimension.ing M”, Eq. (77), and halving the dimension of the eigen-
These manifest themselves particularly in the case of 3value problem. The Bloch factorg may thus be inferred
problems, for which the plane wave orders are doubly difrom the eigenvaluesiu+¢ 1)t of {7 19R M.,
mensioned. Here, the problem is associated with the inver- |n addition to the eigenvalues, it is advantageous in some
sion of !,,*, which, in turn, is related to the inversion of the situations to also characterize a semi-infinite crystal by a
transmission scattering matric8which occur in thelT ma-  reflection scattering matriR.., which can be derived from
trix method. These problems are due to the peripheral entriethe eigenvectors. In all cases, we generate an eigenv&ctor
of R and Z; associated with highly evanescent input andfor each eigenvalue and infer from these the corresponding
output orders, becoming small with increasing order. WhileeigenvectorsF=[F ~F *]7 of the original problem. As
neitherR nor I are well conditioned, a diagonally dominant discussed in Ref 19|, the eigenvalues are paired into for-
matrix such asZ—R is well conditioned with increasing ward and backward propagating states. For evanescent states,
order. which carry no energy, those with eigenvallye|<1 are

These problems may be alleviated in various ways, all ofegarded as forward propagating, while those wjith>1
which eliminate the necessity to invert the ill-conditioned are regarded as backward propagating.
matrices R, and 9R,;. One approach, also adopted by For states that carry energy, the treatment is more delicate,
Gralak [17], is to consider the eigenproblem for a matrix requiring a calculation of the downward flux:
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A=50, a=15

A=50, a=175

98 B

10 105 11 115 12 125 510 105 11 115 12 125 10 105 11 115 12 125
B A B A B A

9 95 10 105 I 115 12 125 9 95 10 105 I 115 12 125 9 95 10 105 I 115 12 125
B A B A B A

FIG. 4. Finger diagrams for a hexagonal array of air holes, in a silica magfisactive indexv=1.4897), showing a plot dfA versus
BA (both dimensionlegswith A=5.0um, using radiia=1.5, 1.6, and 1.7%m. The graphical representations below the finger diagrams
depict reflectance of a semi-infinite crystal for various values of the Bloch vector and a fixedkvatu®0. The dotted line represents the
case where the component of the Bloch vector perpendicular to the grating plane lies on th& patbn the border of the irreducible
segment of the Brillouin zone. The solid line represents the case where the component of the Bloch vector perpendicular to the grating plane
lies on the linel'M.

Er=FULF ~FUTF —iF TF +iFITF Nesr= Bl (79
(78)

[this equation may be derived from E(C6)]. Those states Where the fields vary axially as exp), and \:TV%er& de-

with E->0 are regarded as forward propagating, while thosd©t€S the wave number in free space of the nfodee real

with Er<0 are backward propagating. With all modes par_part of ngs governs the propagation properties of the mode,

titioned b ¢ tricE dE. th | while the imaginary part determines its energy loss during

olfl(\)/?rﬁcha;ri t(;]\:ee;/\clevceto(r);‘n rgﬁdn;-‘sointhe_fc;errgopL:gqpnas- propagation through its lateral spread. This imaginary part
o\ _

: ; X has to be reduced t tically i I i i
gating stas. Folowing Re{19], we form the reficton 125 102 rediced to pracically imposed values by ncreasing

matrixR..=F. F_, from which we may compute the energy  The determination of air-guided modes requires two cri-
reflectanceR"Z, R from a corresponding incidence field teria to be simultaneously satisfied: first, the air holes sur-

D, with R=R..D. rounding the central hole must provide a “mirror” condition
corresponding to the cladding array operated in a photonic
IV. AIR-GUIDED MODES band gap in which no propagating modes capable of carrying

energy to infinity exist; second, the mode must satisfy an
We look now at the application of these tools to the guid-appropriate phase or propagation condition, i.e., an eigen-
ing of light in air-cored optical fibers, the confinement value equation. Furthermore, for low-loss propagation we
mechanism of which is the photonic band gap. In these phorequire the bulk of the light to propagate in air, necessitating
tonic crystal fibers, the light propagates in a large centrathatnez~1, and a reasonable approximation to the propaga-
hole in a silica matrix surrounded by a cladding, which con-tion condition, namely, that the modes lie close to the light
sists of a hexagonal array of smaller air holes. For soméine [35], given by 3=k.
modes, the bulk of the energy propagates in the central hole, The Bloch formulation of Sec. Il provides us with a con-
allowing the possibility of low-loss propagation at those venient method of specifying regions in theB plane in
wavelengths for which the glass is highly absorbing. which the mirror condition of a total band gap is satisfied.
The location of such modes is a delicate process and @he search for modes can then be carried out in localized
demanding numerical task which we have commented brieflyegions of this plane, a feature we have found indispensable
on previously[31], in the context of the multipole method in our studies of air-guided modes.
[32,33, where what is required is to find a narrow minimum  We illustrate the effectiveness of this technique in Fig. 4,
of a determinant as a function of a complex propagation
constant. This quantity represents the variation of fields—
along the axigOx here of the cylindrical holes, and is gen-  2This use ofg is at variance with that established in Sec. I B, but
erally specified in terms of a complex effective index is standard optical fiber notation.
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where we show that we call “finger diagrams,” named so for TABLE I. The width of a finger as a function of inclusions
the fine unshadefwvhite) fingers that denote complete band radiusa and area fractiom, for a hexagonal array of air holes, in a
gaps. These are plotted for a structure in which air holes ofilica matrix (refractive index»=1.4897). The array constant is
steadily increasing radius are used to confine a mode in 4=50um.

central hole of the type shown in Fig. 6. Each point on these

diagrams shows the result of a search for modes as the Bloch 2 (#M f FingerA FingerB

vector traverses the edge of the irreducible segment of the 1 75 0.444381 0.0616 0.0243
Brillouin zone for an array of hexagonally packed air holes 1 7¢ 0.419350 0.0528 0.0657
in a siIica_matrix, with a prescribed value bfand 8. In fact_ 1.65 0.395046 0.0449 0.0822
[19] the sidel'M o_f the |rredu<:|ble_ se_gment of the Brl_lloum_ 1.60 0.371466 0.0269 0.0818
zone is characterized by normal incidence on a gratm_g with 4 5 0.348612 0.0090 0.0748
period D=A, the hexagonal array constan_t, and with 150 0.326484 0.0040 0.0736
= A/2 ands,=v3A/2, while the segmertKM is character- 145 0305081 0.0000 0.0655

ized by normal incidence on a grating with peridal
=Vv3A, and withs,=v3A/2 ands,=A/2. The finger dia-

grams are the result of scanning over a rectangular mesh {gnich show the total band gap with a 100% reflectance. Total
k- space, searching for propagating states onltNeand  pang gaps, however, are not a necessary condition for the
I'KM sides and shading thel d_|agram acc.ord_lng.to the NUMairguided modes, as exemplified in Fig. 2 of Whiteal.

ber of modes found—providing some indication of the[31] in which modes have been found outside the total con-
“leakiness” of the confining structure. Unshadéalhite) re-  finement finger, but which lie within thEM aspect.

gions denote an absence of propagating modes and thus rep-rigyre 5, shows the finger diagram, the dispersion curve
resent complete band gaps, the first requirement for aifgo; an ajr-guided mode, and the light line for a photonic
guided modes. Our calculations are performed with a hybridystal fiber with specified geometry. The location of the
MATHEMATICA/FORTRAN code in which the scattering matri- gispersion curve on the high-frequency side of the light line
ces are computed in BORTRAN routine and communicated ypjies that the guiding mechanism cannot be total internal
via MATHLINK 0 MATHEMATICA, in which the eigenvalue yefiection, but instead must arise through band-gap effects.
problem of Sec. lll is solved and the finger diagram drawn.ye o not detail the method by which these are located but
The method is quite efficient, requiring some 50 min of com-afer the reader to our multipole treatmei¥1—33. The

putation time for a 10x 101 array ink- space on a 600- mode of Fig. 6 was found by searching in fingeof Fig. 4.
MHz Pentium Il system.

The graphs below the finger diagrams attempt to charac- A= a =175
terize the dispersion diagram for a fixkd = 10 by display- 12.5 ;
ing the reflectance of a semi-infinite array, illuminated at
normal incidence from above corresponding to the Brillouin 12
zone segmentsM andI’KM. This reflectance is calculated ‘
from the scattering matriR.. described in Sec. lll. The dot- 115 |

ted line is the case for which the component of the Bloch
vector perpendicular to the grating plane lies on the path
I’'KM [22] on the border of the irreducible segment of the «
Brillouin zone. For a given value g8A andkA, this com-

pletely determines the Bloch vector. The solid line is the case
where the component of the Bloch vector perpendicular to

the grating plane lies on the segmétl.

Figure 4 displays finger diagraméor arrays of varying
cylinder radius and it is evident that the confinement region ol
of the finger labeledA widens with increasing air hole ra- ‘
dius, and vanishes completely for normalized radius
a/A=<0.3. That is, for holes with normalized radii less than
0.3, such air-guided modes can no longer be supported. Also
note that not all confinement regions grow with air hole ra-
dius, as shown by the narrowing of the finger labeBih
Fig. 4. In Table | we give indicative figures for the widths of
two prominent fingers in Fig. 4.

In all cases of Fig. 4, the width of fingeY is determined
by the 'KM aspect, as exemplified in the lower graphs,

12.5

9 95 10 105 11 115 12 125

3A full color version of Fig. 6 may be viewed at our website FIG. 5. Dispersion curve for the mode shown in Fig. 6, with
http://www.physics.usyd.edu.au/theory/dif/node7.html A=5.0um anda=1.75um.
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0.2

0.15

01 FIG. 6. A mode confined in a central air hole,
of radius 5.55um, in a silica matrix, by a set of

0.05 three layers of air holes hexagonally packed. The

hexagonal structure around the central hole con-
sists of a finite set of air holegradius a
=1.75um), in a silica matrix(refractive index
v=1.4897), and corresponds to a hexagonal ar-
ray of constant\ =5.0 um. The top two contour
plots display electric and scaled magnetic field
magnitudes, while the lower two graphs display
the axial Poynting vector.

V. CONCLUSION properties of the structure which are contained withit is

. S . . a computationally attractive feature that is common to all
The theory described in this paper, for the conical Ollf-fr""C'Rayleigh multipole methods. The introduction of conical dif-

tion of plane waves by dielectric or metallic cylinder grat- ¢racion is most significantly reflected in the lattice sums
ings, is an important addition to our tool kit of computational \yhich now involve a projected wave numbler in accor-
methods for photonic crystal structures. The method genefjance with Maystre’s theorem. When the axial component of
ates plane wave reflec_tlon gn'd transmission scattering matfihe wave vector is sufficiently largk, becomes imaginary.
ces, which are the basic building blocks of energy and propam the context of the examples in his paper, this occurs when
gation property calculations. In this paper, the theory isthe light line is crossed. The issue is of greatest significance,
formulated in a general fashion, enabling its use in the conhowever, in the case of a cross grating such as the woodpile
struction of 2D stacks of 1D gratings, and its future use inin which the diffracted plane wave set is doubly dimensioned
the study of the 3D stacks in the woodpile configuration. Weand imaginary values d€, arise routinely. Fortunately, this
have also outlined a computationally robust formulation ofcauses little problem as the lattice sum series converges very
the Bloch problem for propagation characteristics of 2D andapidly. Indeed, our computational methdd$§] based on the

3D arrays, and have described elegant simplifications thawvork of Ref.[36] readily extend to accommodate this case.
halve the dimension of the eigenproblem for highly symmet-As a final aside, we note that the theory of conical diffrac-
ric structures. These tools have underpinned our numericdion, when operated in-plane, generates in a block diagonal
studies of guided modes in air-cored photonic crystal fiberstructure the scattering matrices for both principal polariza-
[31] and have proved to be both efficient and accurate. WEONS. _

have exemplified the use of the method and numerically Finally, we note that the paper outlines a number of gen-
demonstrated relationships between the width of total bano?al conservation relations for lossless structures, derived

gap fingers in the dispersion diagram and the radius of thfOM €nergy conservation, applicable to 2D and 3D struc-
holes in the cladding. ures. For multipole formulations, these are analytically con-

o . erved, independently of series truncation, while for other
: The g.enerall'zatlon of the methods desgrlbed here to graf'echniques they provide convergence tests. In our context,
ings having cylinders composed of metallic or lossy materi-

S . . . . we have found these identities to be an invaluable aid in the
als is immediate, and no numerical problems arise, with th?esting of our code

sole change being that the boundary condition elements de-

fined in Appendix A involve complex quantities. As with all ACKNOWLEDGMENTS

multipole methods, the field representation in Wijngaard . )

multipole expansions is quite efficient, yielding good com-  1he authors acknowledge financial support from the Aus-
putational accuracy for relatively small computational times fralian Research Council, and helpful discussions with C. M.
While the detail of theory that is described here refers only tg'€ Stérke and T. P. White.

C|rcu[ar cyllndgrs, the gengral framework is amenable to APPENDIX A- BOUNDARY CONDITIONS

noncircular cylinders, requiring only the replacement of the

“‘impedance” matricesM in the modal scattering operator  The field in the vicinity of each cylinder is expressed in

(M+8) L. This separation of the lattice geometry encap-terms of cylindrical harmonics. Thus, in the vicinity of the

sulated in lattice sums which populaf and the material central cylinder we write
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(E) (E)y4(1) 0 ik kT € ik, k? ? k?
E,(r,0)= Z [AB (k1) +BEHWD (K r)jenlelkix, e - G
(A1) (Al11)
. wherek® =k, andk! =v?k?>—KkZ.
Ke(r,0)= > [AKI (k1) +BOHD (K, r)]enelkix, We can now eliminatéC(®)} and{C{*)} frgm Eqs.(A'7)—_
n=—c (A10). In order to express the result of this calculation in a

(A2)  compact form, we introduce the nomenclature

with e’ denoting thex dependence of the fields. These J(kea)  J'(K. a)
series converge in an annular region bounded inwardly by Jc)= I(KE —CJ 2 (A12)
r=a and outwardly by the radial distance to the next field n(kia) n(kLa)
source located at the center of the nearest adjacent cylinder. _
Within each cylinder of radius, the field is given by the Hi(kfa)  J)(k|a)
regular expansion H(c)= e CT A (A13)
Hn(kia) —Jn(kia)
< o The result can be expressed in the form
Ex(r,0)= > CFJ.(vk r)enleki, (A3)
n=—cw
[Aﬂ‘— Mo Bﬂ (A14)
. AEIK) M[I?E MﬁK BE]K) J
Kx(r,e)zn;w CYO(vkynyenel,  (Ad)
where v denotes the refractive index of the cylinders. At the e 1 Hn(k$a) 2 5
cylinder boundarie€, , K, E, andK, are continuous. We " TA, I (KCa) [eon+ T (ca)H(cy)], (ALD)
can findg, andK, from Eqgs.(A1)—(A4), while the follow-
ing equationg 37]: 2 n:
MEK= _yke— 2| L[ 2C (A16)
| n "AL I (ka)| wka
EyZ:k_Z(kHVyZEX_k)’ZX VyZKX)! (AS)
L e
1 Hp(kfa)
ME = 5 3 () [N+ T (O M), (ALD)
i 1
KyZ=E(kErXX VyZEX+ kIIVyZKX)! (AG) and
which follow from Maxwell’s equations, together with the An=T(cy) T(c3)+can?, (A18)
relations E,=E,,-  and K,=K,,- 8, can be used to find _ x ‘e
expressions foE, andK . It is easy to see tha¥l;~ andM ;- are real. Furthermore,

We find, after some simplification, that the boundary con-2 little straightforward manipulation shows that
ditions imply
MEE=1+i),,

APJ (k®a)+BEH (k®a)=CFJ,(k a), (A7) "
MKK=1+i),, (A19)

AYVI(KSa)+ By H, (kS a)=CJy(K @),  (A8) where\; andX\, are real.
In the case wherk;=(0,8¢,— vo), that is,¢= /2, Eqs.

AﬁE)J,Q(kfa)+BﬁE)Hgl)’(kfa) (A15)—(A17) simplify to those given in Ref.18]:
=c,C®J/ (Kl a)+c,nCMI (K| a), (A9) MEE_ v/ (vka)H(ka) —J,(vka)H/ (ka) (A20)
" w3/ (vka)d,(ka)—J,(vka)J/(ka) ’

AgK)Jr;(kia)JfBgK)Hgl),(kfa) EK_ pKE
(E) [ (K) 17 (i M"=M;==0, (A21)
=—c,nC Ikl a)+c3Ch/(kja).  (A10)

In these equations, the constanis c,, andc; are defined MKK:J”(Vka)H”(ka)_ vIn(vkaHy(ka) . (A22)
by " Jl(vka)d,(ka)— vd,(vka)d) (ka)
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APPENDIX B: SYMMETRY OPERATIONS AND FOLDING ]Ca(M+ S)—lj s=0. (B9)
In this section we show how up-down symmetry reducess_ iarl

the computational complexity of the formulation. In the first >'™M"a"y

instance, we show that the block§*L 7 2 and K3L T ® .

vanish in the case of up-down symmetry. Next, we derive a K(M+S8) T ?=0. (B10)

folding procedure, which halves the number of equations. _ _
Through the use of the matri@ to decompose the fields These considerations show that the syst@7 decouples
into symmetric and antisymmetric components, the Rayleigiéompletely for gratings having an up-down symmetry.

identity (27) may be written as

1
53=—§(M+5)*1[JS.73]CD. (B1)
We may get two equations from E@B1), one involving
J ° and the other involving7 2. For the J ° case, let us
suppose that(BF)T (BX)T]" is a solution of the equation

E
X
(M+8)| g | =T Ty |. (B2)
with [X] XJ]17=(CD);. Then
MEFBE+SB=+ME*BX] [J ®X, 3)
MKEBE+ SBX+MKKBK| ™| J ©X, |

Let U=diad (—1)™] and let the reversing matri® be the

Finally, we note that we can reduce computational com-
plexity by “folding” the equations, thus reducing their num-
ber by a factor of 2. Consider the expressi6AL 7 5(CD),
appearing in Eq(37). The above methods show that if

[BE BX]"=LJ(CD),, (B11)

then [BE BX]T=[PUBE —PUBK]". Consequently, after
some matrix manipulation, we have
def RE

S

K“BE
KOBK

BE

K:S BK: =

BK

: (B12)

where the tilde denotes a folded matrix, that i&®/©
=[KE®], n=0 andB¥=[BYX], n=0.

After a straightforward calculation, we find from Eq.
(B11) that

matrix with secondary diagonal terms equal to unity and all

other terms equal to zero, that B=[5_p, ,]. The symme-
tries MEE=MEE - MKK=M K MKE=—MKE and MEX

-ns -ns -ns
=—MEX which follow from Eqgs.(A15)—(A17), and are a

consequence of the up-down symmetry for a uniform cylin-

der grating, allow us to deduce that

PUMEFUP=MFF, PUMKKUP=MKK,

PUMEKUP=—MFX, PUMXFUP=-MX%,  (B4)
while from S,,=(—1)"S_, we deduce
PUSUP=S. (B5)

Substitution of these results into E@®3) and resultant sim-
plification leads to

s PUB® | _[X,
(M+ ) _PUBK _j X2 ’ (BG)
showing that
BE=PUBF, BX=-PUBK, (B7)
since Eq.(B2) has a unique solution.
We now have
BE] [K®BE
KA M+8) 1T =K% gk|=|epgk|-  (BY)

Using Egs. (B7) and the resultsk®=—-K®UP, K¢
=K®UP, we deduce thak ®BE=0 andK ®BX=0. Thus

MEK

MK 11 5®

-1
T %(CD),,
(B13)

MEEe 1+ 57

FAre

EE
EK

where[ G 1=[Sn-n+ (—1)"Snsnl, Mmn=0 and

1/2 if m=0

1 if m>0, B19

e=diad e,], Sm:{

denotes the Neumann symbol.

Thus K3L£J S(CD),=2K°LT $(CD), and similarly

ICAL T 3(CD),=2K2*L T 3(CD),. Hence, for up-down
symmetric gratings we can write EG8) as

S=| 2I(xfcszjs ° X B1
e o kezzet ®P
The matrices
SP=|— 2k XKSLTSX,
k’D ’
2k ...
SP=1- - XK3LT3X (B16)
k?D

are the scattering matrices corresponding to the symmetric
and antisymmetric problems discussed in R&8].
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Ty . o K *
jﬂﬂrﬁhl' ! ;u\/'(_ e Re[ JU+Et'ZXKt ds]=Re| jUEt~z><ths}. (C3

0.1 l
i | | | We now substitute Eqg6) and(7) into Eq. (C3). After sim-
' | plification, we find that the downward fluxes ldt” andU ~

| { are related by

0,00001 | |
| {
I"x/'ll _ _
_1.__)& 2 [(|E|,s|2+|F|,s|2)_(|ES,s|2+|FI-5,S|2)]
0.4 0.6 0.8 1 1.2 sel)y
FIG. 7. Graph showing the transmittantdor ten parallel lay- _ z E*Ef _E *E* )
ers of cylinders as a function of wavelengttor TM polarization. ISE 0, [(E/sEps—FisFos
The incidence parameters are=0.3, Bo= and 7y,
=1 (um)~L. The cylinder radii are 0.0%m, the Iayer periodicity —(E/ Eps—F/2Fpd)]

is 0.25um, and the layer separatidonenter to centeris 0.22 um.

— 2 2 2 2
APPENDIX C: VERIFICATION OF THE CODE sEEr [([Ep o+ IFp ) —(IE/J*+IF/ ]

1. Convergence tests

_ +
Figure 7 shows the transmittance for TM polarization as a Is;e [(EpiE s~ FolFiy)

function of wavelength for a ten-layer stack of cylinder grat- A e
ings in a square array. The incidence parametersagre —(Ep<E s~ Fp<Fi ol (CH

=0.3, Bp=0.5, andy,=1. The cylinder radii are 0.0&m,

the layer periodicity is 0.25um, and the layer separation . .

(center to centgris 0.22,um. We let the number of cylindri- \(/vr)lere the seté), and(}, have been defined in Eq&) and

cal harmonics such as in Eq47) and(18) be 2N,,+1 and : . . . .

we let the number of plane wave orders in representationfc, TheFvanous telrms of EqC4) can be written in matrix
such as Eq(28) be 2N,+1. Tables Il and Il show that 'O FOr €Xampie,
stability is achieved for only a modest number of terms.

2. Energy conservation 2 |ED o/ 2=(EQ)™ED

se),

From

V- (EXH*)=iw(uo|H|[*— €*|E[?), (C1)
2 EiJEps=(E)"eEp. (C5)
which follows from Maxwell’s equations, and an application selle
of Gauss’s theorem t&XH* —E* XH over the regionA
=W\C b‘?twee’.‘ the cross sectlmofacylmdgr and the unit Here, |, and |, are unit diagonal projection matrices that,
cell U (Fig. 2), it follows that for lossless cylinders respectively, select th@eal propagating and the evanescent
orders. That is} 1, ],q= dyq for pe ), and 0 otherwise. Cor-
Re(f 2-E><H*ds} :Re(f 2-E><H*ds}, (C2) respondingly|[ l¢]pq= dpq for pe e and 0 otherwise, and
ut u- thusl,+1.=I andl,l.=0.
In turn, using the composite nomenclature of Exi), the
that is, energy fluxes al™ andU~ reduce to
TABLE II. Table showing convergence of the transmittance for ten parallel layers of cylinders at a
wavelengthh =0.385um. The parameterll, andN,, as well as the physical specifications of the system
are described in the text and in the caption of Fig. 7.

Nh:2 Nh:4 Nh:6 Nh:8 Nh:10 Nh:12

N,=2 0.943521 0.916007 0.915795 0.915789 0.915789 0.915789
N,=3 0.943530 0.915960 0.915739 0.915731 0.915730 0.915730
N,=4 0.915730 0.915729 0.915729
N,=5 0.915729 0.915729
N,=6 0.915729 0.915729
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TABLE lll. As for Table I, but at a wavelength =0.61 xm.

Nh:2 Nh:4 Nh:6

Nh:8 Nh:].O Nh:12

4.390910< 107
4.393621 1077

6.11197% 1077
6.11716x 10”7

2 zZ2zZZ2Z2
UH
o0 wWwN

4.381656<10 7
4.38427410°7

4.381076<10° 7
4.38363% 107
4.38364% 107
4.38364% 107
4.38364% 107

4.381076<10 7
4.38363% 107
4.383650< 107
4.383650< 107
4.383650 107

4.381086<10 7
4.38364% 1077
4.383666¢107 7

Fho,Fr -Filt,Fi-iF "T.F}
+tiFiT,F =F T, F-F "T,F
—iFohTz.F +iFMF,, (C6)

whereZ, =diadl, ,l,] andZ.=diadle,—l¢].

By substituting the following relationship&xpressed in
terms of scattering matricebetween the outgoing and inci-
dent fields:

Fp=R.F +T,F | (C7)
Fo=T.F | +R,F,, (C8)
into Eq. (C6), we derive
FITI,—S",S—il.S+iSMI.]F,=0, (C9
whereF,=[(F )" (F,)"]" and
S= Ra ’Ik; L= Ir/e (ClO)
- 7; Rb ' e 0 Ir/e .

Since Eq.(C9) must hold for allF;, we conclude that

S, S=1,—il,S+iSH,. (C11)
Extracting the four partitions, we derive
THZTARIZR. =T, - Z.R,+IRVZ,,
(C12

TYZ R+ RIZ T =-iZ.7+iTZ,, (C13

RIT T+ THIT,R.=—il.T,+iTIZ,, (C149
RIZRATHT T,=Z,- I Z.R,+iRIZ,.
(C19

The energy conservation relationshif@11)—(C15 rely
entirely on physical principles. However, a generalization of
the argument in Sec. 3A2 of Ref21] shows that these
conservation properties are embedded in the modal formula-
tion and preserved to within machine precision in any com-
putational implementation. In a computational sense, while
Eqgs.(C11)—(C15 provide an indication of the quality of the
coding of the program, they are not by themselves sufficient
to provide a test of the convergence and accuracy of the
method.
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