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Breathers in a discrete nonlinear Schralinger-type model: Exact stability results
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Following our earlier workPhys. Rev. Lett84, 3570(2000] we present an exact linear stability analysis
of one-site monochromatic breathers in a piecewise smooth discrete nonlineadigérdype model. Desta-
bilization of the breather occurs by virtue of a growth rate becoming positive as a stability border is crossed,
while above a critical spatial decay rate.f the breather is found to be intrinsically unstable. The model
admits of other exact breather solutions, including multisite monochromatic breathers for which the profile
variable (@,) crosses a relevant threshold at more than one site. In particular, we consider exact two-site
breather solutions with phase differenédetween the two sites above threshold, and present stability results
for =7 (antiphase breather; the in-phase breather witt® happens to be intrinsically unstapl&Ve obtain
a band of extended eigenmodes, together with a pair of localized symmetric modes and another pair of
localized antisymmetric ones. The frequencies of the localized modes vary as the parameters characterizing the
breather are made to vary, and destabilization occurs through the Krein collision of a quartet of growth rates,
leading to temporal growth of a pair of symmetric eigenmodes of nonzero frequency. We clarify thisl limit
—o (N is the gap length between the sites above threghwaiien the two-site breather reduces to a pair of
decoupled one-site breathers. The model offers the possibility of obtaining spatially random vortex-type breath-
ers.
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. INTRODUCTION f(x)=— yx? 3

The discrete nonlinear Schiimger (DNLS) equation,
also known as the discrete self-trapping model, has claimeg the cubic DNLS model.
wide attention in the literature, modeling a great variety of
situations (see[1-7] for a review and for relevant back-
ground. These include excitations in macromolecules
[8—10] self-trapping of electrons in a latti¢é 1], absorption
in waveguideg12], and the leading order approximation in

In Eq. (2), ® stands for the Heaviside step functiopjs
a parameter indicating the strength of nonlinearity, @nd
(>0) plays the role of a threshold parameter which in the
following we scale toa=1. In the following, for conve-

. . . nience in presenting our figures we treat all parameters and
the nonlinear discrete Klein-GorddNDKG) model[1]. Be- \ariapjes as dimensionless. Figure 1 compares the function

ginning from the existepce proof of MacKay and Aubig], f(x) of Eq. (2) with that of Eq.(3) to bring out the qualita-
a large body of numerical and analytical work has accumug;,q similarity in their nature. Assuming that EQL) admits

lated relating to the existence proof of breathers, their Nyt 5 monochromatic breather solution of the form
merical construction, and exploration of their characteristics,

especially their dynamical stability. However, exact con- _
struction of and exact stability results on breathers in DNLS- Yn=dne ', (4)
type models are rare in the literature. In this context, we

considered irf14] a piecewise smoottPWS variant of the
DNLS equation(as also of the NDKG equatignobtaining
exact one-site breather solutions by referring to the stabl
and unstable manifolds of a hyperbolic fixed point of an
associated mapping. The model we consider is of the general
DNLS form

with real-valued profile variableg,, one finds that thep,’s
Satisfy the mapping

.d¢n -1k .
| dt +V(‘/’n+l+‘//nfl):¢nf(|wn|)a (1) §
with nearest neighbor coupling paramet4r>0) and with 2F .
the functionf(x) given by
0 05 1 1.5
a x
f(xX)=—vy 1——)(x—a) (x>0), 2
X FIG. 1. Comparison of functiorf(x) (a) of the usual form
f(x)=—7|x|?2 (y=1) with (b) of Eq. (2), for an appropriately
which is to be compared with the more usual form scaledy.

1063-651X/2002/66)/0566039)/$20.00 66 056603-1 ©2002 The American Physical Society



LAHIRI, PANDA, AND ROY PHYSICAL REVIEW E 66, 056603 (2002

Splitting u, into real and imaginary parts

bni1twdnt dn1=— Y dr—SgN¢,)10(h,—1). 5

Up=Xpt+iy,, (10

The stable and unstable manifolds of the mapping emanating =~ = | . . )
from ¢, =, =0 (this corresponds to a hyperbolic point Substituting in Eqs(1) and(2) and linearizing, we obtain
of the mapping fotw|>2) consist of linear pieces, and ho-
moclinic points can be obtained exactly, thereby leading to
exact breather solutions. The parametér=1 in our calcu-
lationg plays the role of a threshold in the model, and dif- 1
ferent types of breather solutions correspond to the number =g ( _Z
and locations of lattice sites at which the profile variab|e Vxn+ (Yne1t¥n-2) @¥nt v¥ol 1 b
crosses the thresholdd,|>a); such sites will be termed
high, while sites with|¢,|<a will be termedlow. For in-
stance, a one-site breather with only one high site=a0 is
given by

1.
- \_/yn+(xn+l+xnfl)+wxn+7X05n,0:01 (11

6n0=0, (12

where b=vy/(y+X—1/\), and wherey and o (=—A\
—1/\) have been scaled in terms ®to w/V—w, y/V
— 7, which is equivalent to scaling the eigenvalyeqsee
below) by V2. With these rescalings, Eq€ll) and (12) re-

yaln! _ sult from the Hamiltonian
o= (6)
y+A—1/I\ ® 5
. . HZZ {(Xn+1xn+yn+1Yn)+E(Xn—'—yn)
where w,y (appropriately scaled in terms & see below n
and the spatial decay rate(|\|<1) satisfy y 1
+oixa+yd1— = ] (13
lw|>2, w=—(A+1N), 7) 2 b
©y<0, |y|>1+1/\]. ®) The growth rates of perturbations as also the associated

eigenvectors can all be calculated from E@d) and (12).
One can eliminate the,’'s (Xx,'s) to obtain a second order

[Note: Eqgs.(10) and(11) in [14] expressing the above rela- : ;
system inx,’s (y,'s) in the form

tions contained errors due to oversight, which we regv&e
distinguish between breatherstgpe A(A>0,0<—2) and
type B(A<0,0>2), referring to the former in presenting
our results below(results for typeB are obtained analo-
gously. The overbar in Eq(6) is used here to distinguish the
breather solutions from neighboring perturbed solutiEes
below).

As mentioned irf14], the problem of dynamical stability
of the breather$6) can be solved exactly, and the present

X=AX, Y=ATY, (14)
where thex,’'s andy,’s have been combined into single bi-
infinite  columns X=( ... X_2,X_1,X0:X1, X2, ...)", Y
=(....¥-2.Y-1.Y0,Y1.Y2, - . .)T, andA is a banded ma-
trix with elementsa,,, (—e<m,n<~) differing from 0
only when|m—n|<2:

paper is devoted to this exact stability analysis for the one- ap5=2(YN—2—\?), (153
site breathergSec. 1)) as also for two-site antiphase breathers '

(see belowwhich we construct in Sec. Ill. We show that the ap1=ap_1=3\+1, (15b)
destabilization of the lattefSec. 1) involves an interesting ' '

Krein collision of eigenvalues, as opposed to destabilization a10=a 10=2\+2I\—, (150
of the one-site breathers through the double-zero eigenvalue.

All the eigenmodes and eigenvalues can be obtained exactly ann= —(N2+1N°+4), (n#0), (150
in the model, thereby vyielding a complete solution to the

problem of breather stability. This complements the body of Ann+1=an+1n=2(N+1N), (n#0,1), (15¢
numerical stability resultgsee, e.g.[15—20) in the litera- ' '

ture, and may serve to identify key features of breather sta- Ann+2=ans2n=—1. (15f)

bility in more realistic models. One notes in this context that
the stability analysis of discrete breathers was initiated in a The eigenvaluesy) of A are related to growth ratep)
major way by Aubry[21] (see alsd22]), who introduced a of perturbationgrefer to Eqs(11) and(12)] through

number of insights, including an interesting interpretation of

the key concept of the Krein signature. An overview of early (16)

pw=p?,

work on breather stability is to be found jit].

Il. STABILITY OF ONE-SITE BREATHERS

and can be real negative, real positive, or complex, the last
occurring with complex conjugate partners. Correspondingly,
the spectrum of growth ratdshese, in turn, are related in a

We consider perturbations in the “rotating frame” to the Simple manner to the Floquet multipliers considere{it)

breather solution of the form

Yn=Phat Up()e N, 9

can include of a purely imaginary paip€ =iy—u), a real
pair (=+/u), or a quartet of the form£v+iw,v andw
real), respectively. If the spectrum of growth rates is made up
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entirely of pairs of the first typéi.e., the eigenvaluea are aixit+azx; (n=0), (249
all real and negatiyethe breathet4) will be linearly stable. Xn= n n _ 24b
In the following we shall refer to eigenvalues Afwhile the bix: +thax; " (n<0), (24b)
corresponding eigenmodes of perturbations can be obtained | . : .
from Egs.(11) and (12); the real parts of the latter are the anq IS localizedy » bemg those two roots of _E_cql9) that
. N . . satisfiy| x| <1. Once again, the constaras,b;(i=1,2) are
eigenvectors oA (the imaginary parts being the correspond- . s ;
. . T . . to be determined on substituting in E@O). One finds that
ing eigenvectors oAA'), which we consider below. A real

and negative eigenvalue 8fmay be associated with either a possible solutions correspond to spatialmmetricas well
€9 9 . y : asantisymmetrieigenmodes. For a symmetric mode one has
localizedor anextendeceigenmode. The eigenvalues corre-

sponding to extended modes form a band. A typical mod&1~ P1,32=D2 andu is related toy,\ through the relation

belonging to a band is of the form A,B,—A;B,

Y= A = (29
a;cosnf+a,sinnf+azxy"  (n=0), (173 (A1=Ag)+ 2N (B, By)
*n= bicosnf+b,sinnd+bsxy " (n<0). (17b) where
<0< i [ 1
Here 6 (0< <) is determined by Aq=2x5 52| 3N+ N xu2t 2\*+4+pu, (268
(2 cosf+w)2+ =0, (18)
. . 1 1
corresponding to a running wave far away from the breather, Byo= Xi,z_ 20N+ — X§’2+ N2+ =+ 5+u|x12
and the band of eigenvalugs extends from— (w—2)? to A A
—(w+2)? (recall that all our results are for typ% breath- 1
ers. For anyu within this band, the relation 2| A+ X)' (26b)
(x+1ix+w)?>+u=0 (19

The existence of an antisymmetric mode, on the other hand,

gives one single real solution for satisfying|x|<1, and it ~ requires
is this value that occurs in Eq&l79 and (17b), giving the 2,4 _
deviation of the eigenmode from a running wave close to the pFOatxet @) 1= xix2=0. @7
location of the breatheli.e., the sitn=0). While Eqs(178  one has to note in this connection that the existence of a type
and(17b) identically satisfy the eigenvalue equation A breather additionally requirdsee Eq(8)]

> AnXm= MXn (20) ¥>vyo(N)=1+1/\. (28)

For any given\ and y [>vyo(\)] lying within a certain
for |n|=2, the constants;,b;(i=1,2,3) are to be deter- range(see below, Eq. (25 implies the existence of single
mined from Eq.(20) with [n|<1 and from the matching Symmetric localized mode with the eigenvajudying in the
condition range

a;+as=b,+bs. (21) —(0+2)*<u<0. (29

One finds that, ag. approaches the inner band edgéw
+2)?,y approaches;(\) of Eq. (22).

On the other handy approaches thstability limit (u
=0) asy approaches

One finds that each eigenvalue in the interior of the
band (0< <) is doubly degenerate while, for a givan
the band edges are empty except whesatisfies(for the
inner band edge®=0)

2 4 N2
AN=1D)V[(N+IIN)2=2(N+1M)] %\):(Hm\ M)A (30)

) , 2\3 '
A=)+ V[(NHIN)Z=2(N+1N) ]

y=y1(N)=

(22)  This result is obtained from E@25) by expandingA; , and
B, [of Egs.(26a and(26b)] as power series ip for small
||, and retaining terms up to degree three, since higher
degree terms are found to be irrelevant in the lijpit— 0.
Thus, fory lying in the range

or (for the outer band edgé= )

IOV LN P20+ IN)]

VY T T I 20 ] B
(23 yi(N) <y<y(\), (31)

in which case the band is occupied by a single mode. For redhere exists a single localized mode in addition to a band of
negativeu lying outside the band, on the other hand, a typi-extended modes and, subject to the existence cond2®n
cal mode is of the form the breather is stable. The localized mode is spatially sym-
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[0}

FIG. 2. Spectrum of eigenvalues of matixfor (a) y,(\)<vy
<+vy(\) and(b) y>vy(\); the cross denotes eigenvalue for the iso-
lated localized mode while the thick black line denotes the band
the circle corresponds ta=0.

metric, and the possibility of an antisymmetric mode appear
ing in the model is ruled out on the grounds that E2j)
does not actually possess a real negative solutiop faYot-

ing similarly that Eq{(23) is inconsistent with Eq¢(28) for all

\ in the range 8\ <1, one arrives at Fig.(2) depicting the
spectrum of eigenvalues whensatisfies Eq(31). The value
y=17y1(N\) is the threshold for the localized mode whije

=y(\) corresponds to destabilization of the breather. Th
only mode of destabilization of the breath@ is through
the double-zero eigenvalye=0. In this context one notes
that the eigenvalug.=0 exists for all parameter values in
the model, the corresponding eigenmode being

(32)

Xp=0, yn:|Zn|-

At yzy()\) this corresponds to a doubly degenerate eigen

value. However, this eigenmode is quite distinct from the

eigenvector ofA that also happens to exist for ally. In-
deed, Egs(11) and (12) no longer imply Eq.(20) for u
=0. Still, A possesses an eigenvector of the form

xn=N"(a+[n|B), (33)

as can be checked directly from E§§53—(15f), the ratio of
a to B being given by
a 1+\2

= 4
B 1-\2—y\ 39

As mentioned, this represents a spurious eigenmode in th

context of Egs(11) and(12). As vy crosses the stability bor-
der y(\), the eigenvalueu corresponding to the localized

mode becomes positive, thereby giving rise to a positive

growth rate and implying destabilization of the breatfthe
trivial eigenvalueu=0 with eigenmode(32) continues to

exist]. The corresponding localized eigenmode is now of the

form

* %N

ay"+a*y (n=0),
T by " rbr N (n=0),

(353
(35h)

where y and xy* represent the complex conjugate pair of
solutions of Eq.(19) (recall thatu>0), with |x|<1. The
coefficientsa,b can once again be obtained exactly from Eq.
(20), thereby yielding the growing mode beyond the instabil-
ity. Once again, this mode happens to be symmetac (
=b).

e
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%1

a

FIG. 3. Disposition of growth ratgsin the complex plane with
@ y<yand(b) y>y.

Figure 2 depicts the disposition of eigenvalyesn either
side of destabilization, while Fig. 3 indicates how the dispo-
sition of growth rate§p of Eq. (16)] in the complex plane
changes across the destabilization border.

Figure 4 depicts the.-y parameter space for the model
together with the curve£; [y=yo(\)=1+1/], C, [y

v(\)], andCs [ y=v41(N\)]. The breather exists only for
points lying aboveC; and is stable only for points lying
belowC,, i.e., for (\,7y) lying betweenC,; andC, the model
admits of a stable breather solution. The cuBsegives the
threshold for the localized mode. Interestingly, the model
predicts the existence of a critical valuk.f of the spatial
decay rate corresponding to the intersection @f and
C, (A\;=~0.6948) so that the breathers witl>\. are un-
stable for all values of the strength of nonlinearity
[>70(N)].

We show in Fig. 5a) the temporal evolution according to
Egs.(1) and(2) of a profile initially (t=0) coinciding with
Eq. (6), with (\, ) in the region betwee; andC,, while
Fig. 5b) shows similar evolution for a breather witk
>\, aboveC;. One notes that the breather in Figab
performs stable oscillations while that in Figbbbreaks up
within a short time, confirming our results. In this context
see also Figs. 4 and 5 §14].

Finally, one has to reckon with the possibility of complex
eigenvalueg.. Note that such complex solutions must occur
in complex conjugate pairsu, «*) and that correspondingly
the growth ratep form a quartet of the form indicated ear-

200

101

¥

04 0.5

A

FIG. 4. CurvesCy [y=1v(\)], C;[y=7(\)], and C5[y
=1vy1(N\)] in the N-y plane; the point of intersection &, andC,
corresponds ta. =\ ~0.6948.

0 . A N
0 0.1 0.2 03
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ol 1=0, 2048T — (bA ™" (n=<0), (363
oF (a) A=0.5, y=4.35 t=2048T+T/16 - , .
L t=2048T+2T/16 ----- b(1—e'\N) b(e'?—\N)
'a 03 4 N n N—n
s A7 N\, t=2048T+3T/16 - - - _ L T (36b)
& 7T N IF2048THATYI6 - — dn=4 1-—\ 1-\
(0=n=N),
F [ bel oA N (n=N), (360
=
& where
y(1-\%N)

site number (n) —>

b= 2N N Naioy " (37)
FIG. 5. Numerical integration following Eq¢1) and (2) of an Y(A=AT) = (AN=M)(1-1Te)

initial profile given by Eqgs.(4) and (6) at t=0: (@) A=0.5, v

=4.35 betweerC, andC; of Fig. 3—profiles at values dfspan-  Here the parameteis, y, & must satisfy a consistency condi-

ning a quarter of a periodT(4) starting from 2048; (b) A=0.7,  tion (which we do not write downcorresponding to

just beyond the intersection of; and C, in Fig. 3, and y

=2.43[>yo(N)]. | ol =] dn|>1, (388

, o |p1|=|pn-1|<1. (38b
lier. For any suchu the corresponding eigenmode has to be
alocalized one, being of the for(@4a and(24b) where now |, particular, a two-site breather located mtON with

X1:X2 are to be complexsuch a complex eigenmode is al- phase differencé= 7 between the high sites is given by
ways associated with a complex conjugate modelocal-

ized mode of this type could again in principle be either
symmetric or antisymmetric. It is known that such complex
growth rates can arise in Hamiltonian systems through the- 1-\N

Hamiltonian Hopf l_aifurcation(see, e.g.[23])_when eigen- ") a0 (n<0), (39h)
values of the linearized systefgrowth rateg in the present

(\"—AN"") (0=n=N), (399

contex} having opposite Krein signaturg€24] collide on the —bA" N (n>N), (399
imaginary axis and then move off onto the complex pléane

collision on the real axis is also possible but need not bévhere

considered heje Aubry [21] introduced an interesting con-

cept for studying such collisions. Such collisions are, how- y(1=2\N)

ever, ruled out for the one-site breathers for which destabili- = (1AM —(A"T—)) ' (40)

zation occurs not through a complex growth rate but through
a real positive one. On the other hand, as we shall see in Sec. .
V, it is the Krein collision that provides the mode of desta- 2'd A+ are to satisfy

bilization of two-site breathers, i.e., localized excitations

with two high sites separated by a number of low ofs=e 1+t
next section v= 13N

(41

In the next section we present results on the stability of
these two-site antiphase breathers, indicating that the mode
As we mentioned in14], the PWS model1),(2) is a of destabilization of these breathers differs essentially from
veritable little laboratory yielding exact breather solutions ofthat of the one-site breathers discussed in the last section.
a wide variety. For instance, one can constrtwb-site  The antiphase breathers are also distinct from two-site in-

breathers with various possible lengths of the interveningphase breatherss& 0) in that the latter are always unstable,
gapN. One other feature of crucial relevance is the relativej.e., the model(1),(2) does not admit of a stable two-site
phasebetween the two sites. This relates to the fact that Eqgin-phase breather solution.

(4) admits of an arbitrary phase facte’ that becomes rel- It is also easy to construct other multisite breather solu-
evant in two-site or multisite breather solutions. Thus, contions with a larger number of high sites and various lengths
sidering a breather with two high sites m=0 andn=N  of intervening gaps and phase differences between the high
(lnl>1) and all the other sites low|¢,|<1), with the sites. The stability analysis of these breathers, however, gets
high sites having a phase difference 8f one obtains a progressively involved with increasing number of sites. It
monochromatic breather solution of the for@) with the  would be interesting to see, for instance, if there exist stable
breather profilep,, now given by excitations in the model havingrandomspatial structure.

Ill. TWO-SITE BREATHER SOLUTIONS
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IV. TWO-SITE ANTIPHASE BREATHERS: (for the spatial decay ratg) with |y|<1 and thus the ex-
STABILITY RESULTS tended modes are again of the fottva),(17b).

Adopting an approach similar to the stability analysis of ©Once again the extended modes belong to two classes,
one-site breathers we consider perturbations in the rotating@mely, symmetric and antisymmetric ones, but now the
frame over the two-site antiphase breather obtained in th&ms symmetric and antisymmetric refer te=0 and n
last section. The resultant breather variables are =N, i.e,

Y= bn+u,(t)]e 1, (42) UN—n (symmetrig, (469
Up= . .

o ) —Un_, (antisymmetrig. (46b)
whereg, is given by Eqs(393), (39b), and(390). The varia-
tion of the real and imaginary parts of thg'’s is then de- While the band of extended modes remains fixed foryall
scribed by the Hamiltonian [subject to Eq.(41)], the eigenvalues of localized modes
keep moving along the axis asy is made to vary for any
given \. A typical localized mode is of the form

o Y
H:Z ((Xn+1xn+yn+lyn)+ E(Xﬁ"'yﬁ) + E[X%'ﬁ‘Xﬁ

n

Xp=apx; +bix,", (n<0), (479
1
2 2
+(VO+VN)( 1= B) ] 43 =ax] N+ N, (n=N), (47b)
F . ) . : : : _ n n N—n N—n
Eliminating they,’s we again arrive at a matrix equation =agx1tbsxstasxy +haxy
of the form

(0=sn=<N), (470

X=AX, (44 .
wherea; ,b; are appropriate constants and|,|x2|<1. Re-
whereA is a banded matrix with elemenrds, ,=0 whenever call that the eigenvalug for a localized mode must be out-
|m—n|>2, but it includes two 3 blocks centered at the side the band-(w—2)*<u<—(w+2)? additionally, we

(0,0) and N,N) elements, respectively: consider for the present only real negatjecorresponding
to which a mode, if it exists, remains bounded with time. As
B 2 2 1 above, a localized mode may be either symmetric or anti-
890~ ~| 2t 0 oyt (0y+y) 1_6 , (453 symmetric[in the sense of Eqs(46a and 46D, respec-
tively]. Using the superscripts,a to denote symmetric and
1 antisymmetric modes, respectively, one has
aynN=— 2+ w’+wy+(wy+y?) 1_6 , (45b
aAy "+pEAy TN (n<0), (483
apn=—(2+w? (n#0N), (450 | xaltO T NepEAgT (n=N) (48b)
X ) =
1 n C(s,a)X2+ d(s,a)Xgi C(s,a)XTfn
a0’1=aN’N+1=— 2(1)+’}/ 1_5)} (45d) id(s,a)X’2\|—r'l (OSnSN)' (48C)
1 where the four coefficienta(5® b5 c(53) d(2) satisfy
ag_1=ayN-1= — |20+ y| 1— 5) , (4569  the continuity requirements

(s,a) (s,a) — ~(s,a) N (s,a) N
a4+ pBA=cSA(1+ ) +dS¥(1xyy), (49
ajg=anrin=a-10=an-1n= —(20+7y), (450 ! 2

and additionally three other equations of the fai20) with

ann+1=an+1n= —20 (NFON), (459  n==+1,0. Alittle algebra then shows that a nontrivial local-
ized mode exists ifX,y) satisfy a determinantal condition

apn-1=ah-1n= —20 (N#O0N), (45h) of the form

Qnn+2=Ansop=—1 (n#0,N). (450) detB(S’a)ZO, (50

One can now look at the existence of extended and localwhereB(5® is a 4x 4 matrix with elements
ized eigenmodes as before. In the asymptotic regios: (

+x) an extended mode looks like a running wave B1(*¥=B,%¥=1, (519
e“in%e™kt whereu, an eigenvalue oA, is real and nega- 5a) N

tive. Substituting in Eq(44) and making use of Eq$45a— B13>%=—(1%x7), (51b
(45i) one finds thaiuw once again satisfies E(L8) i.e., the N

possible eigenvalueg form a band from—(w—2)2<u< B1{*¥=—(1%x3), (519
—(w+2)? corresponding to & §<. For any givenu in ) )

this range, Eq(19) also possesses one single real solution B, 15 =xi+ (2w +k)x1+2+ 0+ wk+pu, (510
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.25 -0.20 -0.15 -0.10

1]

FIG. 6. y-u plot as obtained from Eq50) for symmetric eigen-
modes;A=0.5, N=8.

-0.05

B, A5V = x5+ (2w+K)xo+2+ w?+ ok+pu, (516

B2 =xi+ 2otk x1=xt T(x1 +20+k), (510
B, A% = x5+ (20+K)xot x5 H(xz '+ 20+k),

(519

B315¥=x1+ 20, (51h

B3 %% =x,+ 20w, (51i)

B3 453 =x3+20x2+ (2+ 02+ w)x1 = xY x1 2+ 2wx "

+24+ w?+p), (51))
Ba A5V =x3+20x3+ (2+ 0?+ w)x2= x5 H(x2 2+ 2wxs "

+24+ w’+p), (51k)
By ¥ =x3+20x3+(2+ 0?+ p)x1+20, (51

B =x3+2wx3+(2+ 0’+ u)x2+ 2w, (51m)

N—-1

ByS¥=x1xx) 1, (51n)
By S =xt x> 1, (5109

and wherek= y(1—1/b).

Evaluating this determinant gives gsas a function ofu
for real negative values g& and one obtains a temporally
bounded mode whenever the valueokatisfies the condi-
tion (41). A similar exercise gives ug as a function ofu for
real positiveu as well, and one thus ends up with the fol-
lowing results relating to the breather stability.

(i) A trivial antisymmetric mode exists witl =0 for all

\,7y.

(ii) A symmetric mode appears at the inner band edge at a

certain threshold value of for any given\; for instance,
with A=0.5, N=8, this threshold value occurs ag,
~4.333; with increasing\ this threshold increases, until for
N— oo it approaches the valug,(\) of Eq.(22) correspond-
ing to the threshold for the one-site breather.

PHYSICAL REVIEW E 66, 056603 (2002

%
T

FIG. 7. Disposition of growth rategp) before and after the
Krein collision.

(iii) At the same time, there occurs a symmetric mode
with eigenvalueu closer to u=0; with increasingy it
moves in an opposite direction compared to the first symmet-
ric mode, and at a certain value of (for given \) there
occurs acollision of the two. Figure 6 gives the variation of
v with w (for fixed \,N) as obtained from Eq$50) and(51)
for the symmetric modes, where one finds that, for any given
v, there occur two values g (corresponding to the two
symmetric modes indicated abgvand that the two values
coincide at a certain maximum value ¢f In terms of the
growth rates(p) this corresponds to a Krein collisidr21]
leading to instability of the breather. As already mentioned,
this instability is associated with what is known as the
Hamiltonian Hopf bifurcation in the literature. When consid-
ered in terms of Floquet multipliers, this corresponds to the
Hamiltonian Hopf bifurcation in mappings, on which there
exists a large literaturg¢see, e.g.[24,25). Denoting the
value of y at the collision asyg(\,N), the question comes
up as to what happens for>yg . Here one encounters the
possibility of complex eigenvaluesu for the system
(44),(45a8—(45i). For a complex eigenvalyge the eigenmode
is of the form(479—(47¢) wherey,; and y, are again solu-
tions to Eq.(19) satisfying|x1|=|x2| <1, but are now com-
plex; it is associated with a second complex conjugate eigen-
mode with eigenvalue.* . In terms of growth rate§p) this
corresponds to a quartet in the complex plane appearing be-
yond the collision as shown in Fig. 7, and leading to tempo-

£=0,5000T
I _ £=5000T+T/16
Ir@y=4.944, A=0.%\ Zs000r+21/16
L /.y t=5000T+3T/16

£\ £=5000T+4T/16

t=0 —
t=103T -
1 1 1 1 1 1 1 1
49 53 57 61 65 69 73 77 81
Site number (n) —=

FIG. 8. Numerical integration following Eq$l) and(2) of an
initial two-site breather profiléwith N=8) given by Eqs(393—
(390: (@ y<yk(\) and(b) y>yg(N).
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.2 T

e

30 40
N

0 10 20 60

FIG. 9. Variation of the value ofyg with N for a fixed A
(=0.5) for the symmetric eigenmodes.

ral growth of the corresponding eigenmdgle The latter can
once again be obtained exactly on substituting the for
(483—(48¢) in Egs. (44) and (45) and theu-y relation is

PHYSICAL REVIEW E 66, 056603 (2002

number of sites between peaks = 9
¥=5.49, 2=0.5

0 ______/\/\/\/___
1=—0.2089

S — | G—
1=—0.0696

T 0
x, |p=00597 V V

site number (n)——»

FIG. 11. Symmetric and antisymmetric localized eigenmodes

rT{or a two-site breather.

again obtained as a determinant condition similar to Eqs¥=>Y(N.N) there results a positive eigenvalue and the mode

(500—(510 For instance, withh=0.5,N=8, one hasyy
~4.9443; and fory=4.9444 beyond the collision one ob-
tainsu=—0.1164+0.0012.

Figures 8a) and 8b) show the evolution according to

Egs.(1) and(2) of a profile corresponding to an exact solu-

tion of the form(39a8—(39¢) for A=0.5, N=8; in (a), for
which y=4.944< vy; , the breather is found to oscillate for
an indefinitely long period while ifb) the breather is seen to
break up quickly fory=4.945> vy, in entire conformity
with our results.

(iv) For given\, the bifurcation valueyy increases with
N and the value ofu at which the collision occurs gets
progressively shifted towarge=0, until at N—c yg ap-
proaches the valu€30) encountered in the context of the
one-site breatheiFig. 9).

grows with time. However, one hag;(\,N)<y(\,N) and
the two-site antiphase breather is destabilized through the
Hamiltonian Hopf bifurcation rather than through the
double-zero eigenvalue. Figure 11 shows the symmetric and
antisymmetric modes as obtained in the above analysis for
N=0.5, y=5.490, and\N=10.

(vi) As y is made to increase beyond\,N), a stage is
reached when one hasvalues of the growth rat@) on the
real axis(in addition to the trivial valugp=0 and the bands
on the imaginary axjs The sequential change in the dispo-
sition of growth rates in the complex plane typically looks as
in Fig. 12.

One notes the interesting manner in which the quartet of
complex growth rates collide on the real axis—a phenom-
enon that can be termed “Krein collision in reverse.” In the

(V) For given)\,N, an antisymmetric mode appears acros§)resent COI’ItEXt, hOWeVer, this collision is without Slgn|f|'

the inner band edge at a certair- {2 >y (Fig. 10. The

cance since the breather has already undergone destabiliza-

eigenvalue for this mode moves toward the trivial eigenvaludion before this collision takes place.

u=0 as vy is made to increase, until at a certain value__

¥(\,N) there occurs a double-zero eigenvalug.at0. For

4.37

4.35

4.33 1 1 1 1 1
¥ 5.00

4.80

4.60
4.40

60

N—>

FIG. 10. (a) Variation of yg, with N for the symmetric eigen-

(vii) As N is made to increase for a given the value of
v(\,N) decreasegFig. 13), until atN—« it approaches the

value y(\) of Eq. (30) encountered in the context of the
one-site breather.

FIG. 12. Sequence of changes in the disposition of growth rates
in the complex plane; thick black lines denote the band while the
dots and circles correspond to localized modes:before Krein
collision (y< yg ; \ fixed); (b) Krein collision y=y; ; (c) a quartet
of complex growth rates resulting from the Krein collision, and a
pair of imaginary growth rates approaching collisionpat 0; (d)

modes;(b) the corresponding graph for antisymmetric eigenmodesKrein collision in reversefe) all growth rates of localized modes

for either graph\ =0.5.

real.
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6.65 T ' ' ' ' dispositions depicted in Fig. 12 all occur closely on the heels
] 55: of one another close ta=0, y=y(\).
i T V. CONCLUDING REMARKS
_ 6'45_ i In summary, we have supplemented our earlier work on
Y the discrete nonlinear Schdimger type mode(1),(2) by con-
6'35: structing an exact two-site antiphase breather sol88a—
.25l | 399 [a more general solution with phase differengée-
: tween the high sites is given by Eq868—(36¢)], and by
6.15 i . ) . . . 1 presenting a complete stability analysis for both the one-site
0 10 20 30 40 50 60 and two-site breathers. While the one-site breather gets de-
N stabilized by the temporal growth of a zero-frequency mode,
the two-site breather is destabilized through the growth of an
FIG. 13. Variation ofy with N for fixed A (=0.5). oscillating mode. Hence one can predict the types of struc-

tures that appear beyond the instability in these two cases:
while the one-site breather breaks up to yield a multisite
o . breather of the same frequency, the two-site breather yields a
(viii) Thus, it is of mtere_st to look at _the sequence c)fmultifrequency breather beyond the instability. The model
events forlarge N as one varies for any givenk. As one gi54 vields a host of other exact single-frequency breather
expects, the breather profile around each of the high siteg,ytions such as the two-site breathers with an arbitrary
approaches the one-site profile given by Eg). [recall the  yhaqe gifference alluded to above. The value éfis crucial
arbitrariness of the overall phase factor in B for N ¢4 the stability of the breather: while antiphase breathers are
—. In thls situation, each of the_symmetr!c modes is assOgiaple for parameter values y lying in some region of the
C|a_ted _W|th a _cprrespondmg antlsymr_netrlc mo@me of parameter space, in-phase breathers are seen to be always
which is the trivial mode ap.=0) forming a nearly dege- ngtaple. Other exact solutions yielded by the model are

narate pair. One thus has two pairs of nearly degeneraigiisite breathers with, say, a numberof high sites
eigenvalues—one neatr=0 and the other appearing at the >2) characterized by a sequence of gaigsN,, . .. No_;
inner band edge at~ y,(\) [one nptes from Fig. 10 thatfor 4nq phase differences;, s, . .. ,8,_4. It would be inter-
large N ¥{7~ ¥~ v2(\)]. As y is made to increase be- esting to look into the stability characteristics of these exact
yond y;()), this latter pair moves towarl=0, until aty  yortex-type breather solutions and to see if stable breathers
~y(\) a Krein collision takes place, followed closely by a of this type withchaoticsequences of gap lengths and phase

double-zero configuration. In other words, the sequence dfifferences are allowed in the model.
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