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Breathers in a discrete nonlinear Schro¨dinger-type model: Exact stability results
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Following our earlier work@Phys. Rev. Lett.84, 3570~2000!# we present an exact linear stability analysis
of one-site monochromatic breathers in a piecewise smooth discrete nonlinear Schro¨dinger-type model. Desta-
bilization of the breather occurs by virtue of a growth rate becoming positive as a stability border is crossed,
while above a critical spatial decay rate (lc) the breather is found to be intrinsically unstable. The model
admits of other exact breather solutions, including multisite monochromatic breathers for which the profile
variable (fn) crosses a relevant threshold at more than one site. In particular, we consider exact two-site
breather solutions with phase differenced between the two sites above threshold, and present stability results
for d5p ~antiphase breather; the in-phase breather withd50 happens to be intrinsically unstable!. We obtain
a band of extended eigenmodes, together with a pair of localized symmetric modes and another pair of
localized antisymmetric ones. The frequencies of the localized modes vary as the parameters characterizing the
breather are made to vary, and destabilization occurs through the Krein collision of a quartet of growth rates,
leading to temporal growth of a pair of symmetric eigenmodes of nonzero frequency. We clarify the limitN
→` (N is the gap length between the sites above threshold! when the two-site breather reduces to a pair of
decoupled one-site breathers. The model offers the possibility of obtaining spatially random vortex-type breath-
ers.
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I. INTRODUCTION

The discrete nonlinear Schro¨dinger ~DNLS! equation,
also known as the discrete self-trapping model, has claim
wide attention in the literature, modeling a great variety
situations ~see @1–7# for a review and for relevant back
ground!. These include excitations in macromolecul
@8–10# self-trapping of electrons in a lattice@11#, absorption
in waveguides@12#, and the leading order approximation
the nonlinear discrete Klein-Gordon~NDKG! model@1#. Be-
ginning from the existence proof of MacKay and Aubry@13#,
a large body of numerical and analytical work has accum
lated relating to the existence proof of breathers, their
merical construction, and exploration of their characterist
especially their dynamical stability. However, exact co
struction of and exact stability results on breathers in DNL
type models are rare in the literature. In this context,
considered in@14# a piecewise smooth~PWS! variant of the
DNLS equation~as also of the NDKG equation!, obtaining
exact one-site breather solutions by referring to the sta
and unstable manifolds of a hyperbolic fixed point of
associated mapping. The model we consider is of the gen
DNLS form

i
dcn

dt
1V~cn111cn21!5cnf ~ ucnu!, ~1!

with nearest neighbor coupling parameterV(.0) and with
the functionf (x) given by

f ~x!52gS 12
a

xDQ~x2a! ~x.0!, ~2!

which is to be compared with the more usual form
1063-651X/2002/66~5!/056603~9!/$20.00 66 0566
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f ~x!52gx2 ~3!

in the cubic DNLS model.
In Eq. ~2!, Q stands for the Heaviside step function,g is

a parameter indicating the strength of nonlinearity, anda
(.0) plays the role of a threshold parameter which in t
following we scale toa51. In the following, for conve-
nience in presenting our figures we treat all parameters
variables as dimensionless. Figure 1 compares the func
f (x) of Eq. ~2! with that of Eq.~3! to bring out the qualita-
tive similarity in their nature. Assuming that Eq.~1! admits
of a monochromatic breather solution of the form

cn5fne2 ivt, ~4!

with real-valued profile variablesfn , one finds that thefn’s
satisfy the mapping

FIG. 1. Comparison of functionf (x) ~a! of the usual form
f (x)52guxu2 (g51) with ~b! of Eq. ~2!, for an appropriately
scaledg.
©2002 The American Physical Society03-1
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fn111vfn1fn2152g@fn2sgn~fn!#Q~fn21!.
~5!

The stable and unstable manifolds of the mapping emana
from fn5fn2150 ~this corresponds to a hyperbolic poi
of the mapping foruvu.2) consist of linear pieces, and ho
moclinic points can be obtained exactly, thereby leading
exact breather solutions. The parametera (51 in our calcu-
lations! plays the role of a threshold in the model, and d
ferent types of breather solutions correspond to the num
and locations of lattice sites at which the profile variablefn
crosses the threshold (ufnu.a); such sites will be termed
high, while sites withufnu,a will be termed low. For in-
stance, a one-site breather with only one high site atn50 is
given by

c̄n5
gl unu

g1l21/l
e2 ivt, ~6!

wherev,g ~appropriately scaled in terms ofV, see below!
and the spatial decay ratel (ulu,1) satisfy

uvu.2, v52~l11/l!, ~7!

vg,0, ugu.111/ulu. ~8!

@Note: Eqs.~10! and ~11! in @14# expressing the above rela
tions contained errors due to oversight, which we regret.# We
distinguish between breathers oftype A (l.0,v,22) and
type B (l,0,v.2), referring to the former in presentin
our results below~results for typeB are obtained analo
gously!. The overbar in Eq.~6! is used here to distinguish th
breather solutions from neighboring perturbed solutions~see
below!.

As mentioned in@14#, the problem of dynamical stability
of the breathers~6! can be solved exactly, and the prese
paper is devoted to this exact stability analysis for the o
site breathers~Sec. II! as also for two-site antiphase breathe
~see below! which we construct in Sec. III. We show that th
destabilization of the latter~Sec. IV! involves an interesting
Krein collision of eigenvalues, as opposed to destabilizat
of the one-site breathers through the double-zero eigenva
All the eigenmodes and eigenvalues can be obtained exa
in the model, thereby yielding a complete solution to t
problem of breather stability. This complements the body
numerical stability results~see, e.g.,@15–20#! in the litera-
ture, and may serve to identify key features of breather
bility in more realistic models. One notes in this context th
the stability analysis of discrete breathers was initiated i
major way by Aubry@21# ~see also@22#!, who introduced a
number of insights, including an interesting interpretation
the key concept of the Krein signature. An overview of ea
work on breather stability is to be found in@1#.

II. STABILITY OF ONE-SITE BREATHERS

We consider perturbations in the ‘‘rotating frame’’ to th
breather solution of the form

cn5c̄n1un~ t !e2 ivt. ~9!
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Splitting un into real and imaginary parts

un5xn1 iyn , ~10!

substituting in Eqs.~1! and ~2! and linearizing, we obtain

2
1

V
ẏn1~xn111xn21!1vxn1gx0dn,050, ~11!

1

V
ẋn1~yn111yn21!1vyn1gy0S 12

1

bD dn,050, ~12!

where b5g/(g1l21/l), and where g and v (52l
21/l) have been scaled in terms ofV to v/V→v, g/V
→g, which is equivalent to scaling the eigenvaluesm ~see
below! by V2. With these rescalings, Eqs.~11! and ~12! re-
sult from the Hamiltonian

H5(
n

H ~xn11xn1yn11yn!1
v

2
~xn

21yn
2!J

1
g

2 H x0
21y0

2S 12
1

bD J . ~13!

The growth rates of perturbations as also the associ
eigenvectors can all be calculated from Eqs.~11! and ~12!.

One can eliminate theyn’s (xn’s! to obtain a second orde
system inxn’s (yn’s! in the form

Ẍ5AX, Ÿ5ATY, ~14!

where thexn’s andyn’s have been combined into single b
infinite columns X5( . . . ,x22 ,x21 ,x0 ,x1 ,x2 , . . . )T, Y
5( . . . ,y22 ,y21 ,y0 ,y1 ,y2 , . . . )T, and A is a banded ma-
trix with elementsamn (2`,m,n,`) differing from 0
only whenum2nu<2:

a0,052~gl222l2!, ~15a!

a0,15a0,2153l11/l, ~15b!

a1,05a21,052l12/l2g, ~15c!

an,n52~l211/l214!, ~nÞ0!, ~15d!

an,n115an11,n52~l11/l!, ~nÞ0,1!, ~15e!

an,n125an12,n521. ~15f!

The eigenvalues (m) of A are related to growth rates~p!
of perturbations@refer to Eqs.~11! and ~12!# through

m5p2, ~16!

and can be real negative, real positive, or complex, the
occurring with complex conjugate partners. Correspondin
the spectrum of growth rates~these, in turn, are related in
simple manner to the Floquet multipliers considered in@21#!
can include of a purely imaginary pair (p56 iA2m), a real
pair (6Am), or a quartet of the form (6v6 iw,v and w
real!, respectively. If the spectrum of growth rates is made
3-2



in
e
d
l
a
e-
d

he

th

-

re
pi

as

nd,

type

her

of

m-

BREATHERS IN A DISCRETE NONLINEAR . . . PHYSICAL REVIEW E 66, 056603 ~2002!
entirely of pairs of the first type~i.e., the eigenvaluesm are
all real and negative! the breather~4! will be linearly stable.
In the following we shall refer to eigenvalues ofA while the
corresponding eigenmodes of perturbations can be obta
from Eqs.~11! and ~12!; the real parts of the latter are th
eigenvectors ofA ~the imaginary parts being the correspon
ing eigenvectors ofAT), which we consider below. A rea
and negative eigenvalue ofA may be associated with either
localizedor anextendedeigenmode. The eigenvalues corr
sponding to extended modes form a band. A typical mo
belonging to a band is of the form

xn5H a1cosnu1a2sinnu1a3xn ~n>0!,

b1cosnu1b2sinnu1b3x2n ~n<0!.

~17a!

~17b!

Hereu (0<u<p) is determined by

~2 cosu1v!21m50, ~18!

corresponding to a running wave far away from the breat
and the band of eigenvaluesm extends from2(v22)2 to
2(v12)2 ~recall that all our results are for typeA breath-
ers!. For anym within this band, the relation

~x11/x1v!21m50 ~19!

gives one single real solution forx satisfyinguxu,1, and it
is this value that occurs in Eqs.~17a! and ~17b!, giving the
deviation of the eigenmode from a running wave close to
location of the breather~i.e., the siten50). While Eqs.~17a!
and ~17b! identically satisfy the eigenvalue equation

( anmxm5mxn ~20!

for unu>2, the constantsai ,bi( i 51,2,3) are to be deter
mined from Eq.~20! with unu<1 and from the matching
condition

a11a35b11b3 . ~21!

One finds that each eigenvaluem in the interior of the
band (0,u,p) is doubly degenerate while, for a givenl,
the band edges are empty except wheng satisfies~for the
inner band edgeu50)

g5g1~l!5
~l21/l!A@~l11/l!222~l11/l!#

~l21/l!1A@~l11/l!222~l11/l!#
,

~22!

or ~for the outer band edgeu5p)

g5g2~l!5
~l21/l!A@~l11/l!212~l11/l!#

~l21/l!1A@~l11/l!212~l11/l!#
,

~23!

in which case the band is occupied by a single mode. For
negativem lying outside the band, on the other hand, a ty
cal mode is of the form
05660
ed
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xn5H a1x1
n1a2x2

n ~n>0!,

b1x1
2n1b2x2

2n ~n<0!,

~24a!

~24b!

and is localized,x1,2 being those two roots of Eq.~19! that
satisfiy uxu,1. Once again, the constantsai ,bi( i 51,2) are
to be determined on substituting in Eq.~20!. One finds that
possible solutions correspond to spatiallysymmetricas well
asantisymmetriceigenmodes. For a symmetric mode one h
a15b1 ,a25b2 andm is related tog,l through the relation

g5
A2B12A1B2

~A12A2!12l~B12B2!
, ~25!

where

A1,252x1,2
2 22S 3l1

1

l Dx1,212l2141m, ~26a!

B1,25x1,2
3 22S l1

1

l Dx1,2
2 1S l21

1

l2
151m D x1,2

22S l1
1

l D . ~26b!

The existence of an antisymmetric mode, on the other ha
requires

m1~x11x21v!2112x1x250. ~27!

One has to note in this connection that the existence of a
A breather additionally requires@see Eq.~8!#

g.g0~l!5111/l. ~28!

For any givenl and g @.g0(l)# lying within a certain
range~see below!, Eq. ~25! implies the existence of asingle
symmetric localized mode with the eigenvaluem lying in the
range

2~v12!2,m,0. ~29!

One finds that, asm approaches the inner band edge2(v
12)2,g approachesg1(l) of Eq. ~22!.

On the other hand,m approaches thestability limit (m
50) asg approaches

ḡ~l!5
~114l21l4!~12l2!

2l3
. ~30!

This result is obtained from Eq.~25! by expandingA1,2 and
B1,2 @of Eqs.~26a! and~26b!# as power series inm for small
umu, and retaining terms up to degree three, since hig
degree terms are found to be irrelevant in the limitumu→0.

Thus, forg lying in the range

g1~l!,g,ḡ~l!, ~31!

there exists a single localized mode in addition to a band
extended modes and, subject to the existence condition~28!,
the breather is stable. The localized mode is spatially sy
3-3
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metric, and the possibility of an antisymmetric mode appe
ing in the model is ruled out on the grounds that Eq.~27!
does not actually possess a real negative solution form. Not-
ing similarly that Eq.~23! is inconsistent with Eq.~28! for all
l in the range 0,l,1, one arrives at Fig. 2~a! depicting the
spectrum of eigenvalues wheng satisfies Eq.~31!. The value
g5g1(l) is the threshold for the localized mode whileg
5ḡ(l) corresponds to destabilization of the breather. T
only mode of destabilization of the breather~6! is through
the double-zero eigenvaluem50. In this context one note
that the eigenvaluem50 exists for all parameter values i
the model, the corresponding eigenmode being

xn50, yn5uc̄nu. ~32!

At g5ḡ(l) this corresponds to a doubly degenerate eig
value. However, this eigenmode is quite distinct from t
eigenvector ofA that also happens to exist for alll,g. In-
deed, Eqs.~11! and ~12! no longer imply Eq.~20! for m
50. Still, A possesses an eigenvector of the form

xn5l unu~a1unub!, ~33!

as can be checked directly from Eqs.~15a!–~15f!, the ratio of
a to b being given by

a

b
5

11l2

12l22gl
. ~34!

As mentioned, this represents a spurious eigenmode in
context of Eqs.~11! and~12!. As g crosses the stability bor
der ḡ(l), the eigenvaluem corresponding to the localize
mode becomes positive, thereby giving rise to a posit
growth rate and implying destabilization of the breather@the
trivial eigenvaluem50 with eigenmode~32! continues to
exist#. The corresponding localized eigenmode is now of
form

xn5H axn1a* x* n ~n>0!,

bx2n1b* x* 2n ~n<0!,

~35a!

~35b!

where x and x* represent the complex conjugate pair
solutions of Eq.~19! ~recall thatm.0), with uxu,1. The
coefficientsa,b can once again be obtained exactly from E
~20!, thereby yielding the growing mode beyond the instab
ity. Once again, this mode happens to be symmetrica
5b).

FIG. 2. Spectrum of eigenvalues of matrixA for ~a! g1(l),g

,ḡ(l) and~b! g.ḡ(l); the cross denotes eigenvalue for the is
lated localized mode while the thick black line denotes the ba
the circle corresponds tom50.
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Figure 2 depicts the disposition of eigenvaluesm on either
side of destabilization, while Fig. 3 indicates how the disp
sition of growth rates@p of Eq. ~16!# in the complex plane
changes across the destabilization border.

Figure 4 depicts thel-g parameter space for the mod
together with the curvesC1 @g5g0(l)[111/l#, C2 @g

5ḡ(l)#, andC3 @g5g1(l)#. The breather exists only fo
points lying aboveC1 and is stable only for points lying
belowC2, i.e., for (l,g) lying betweenC1 andC2 the model
admits of a stable breather solution. The curveC3 gives the
threshold for the localized mode. Interestingly, the mod
predicts the existence of a critical value (lc) of the spatial
decay rate corresponding to the intersection ofC1 and
C2 (lc'0.6948) so that the breathers withl.lc are un-
stable for all values of the strength of nonlinearityg
@.g0(l)#.

We show in Fig. 5~a! the temporal evolution according t
Eqs.~1! and ~2! of a profile initially (t50) coinciding with
Eq. ~6!, with (l,g) in the region betweenC1 andC2, while
Fig. 5~b! shows similar evolution for a breather withl
.lc , aboveC1. One notes that the breather in Fig. 5~a!
performs stable oscillations while that in Fig. 5~b! breaks up
within a short time, confirming our results. In this conte
see also Figs. 4 and 5 of@14#.

Finally, one has to reckon with the possibility of comple
eigenvaluesm. Note that such complex solutions must occ
in complex conjugate pairs (m,m* ) and that correspondingly
the growth ratesp form a quartet of the form indicated ea

-
; FIG. 3. Disposition of growth ratesp in the complex plane with

~a! g,ḡ and ~b! g.ḡ.

FIG. 4. CurvesC1 @g5g0(l)#, C2 @g5ḡ(l)#, and C3 @g
5g1(l)# in the l-g plane; the point of intersection ofC1 andC2

corresponds tol5lc'0.6948.
3-4
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lier. For any suchm the corresponding eigenmode has to
a localized one, being of the form~24a! and~24b! where now
x1 ,x2 are to be complex~such a complex eigenmode is a
ways associated with a complex conjugate mode!. A local-
ized mode of this type could again in principle be eith
symmetric or antisymmetric. It is known that such compl
growth rates can arise in Hamiltonian systems through
Hamiltonian Hopf bifurcation~see, e.g.,@23#! when eigen-
values of the linearized system~growth ratesp in the present
context! having opposite Krein signatures@24# collide on the
imaginary axis and then move off onto the complex plane~a
collision on the real axis is also possible but need not
considered here!. Aubry @21# introduced an interesting con
cept for studying such collisions. Such collisions are, ho
ever, ruled out for the one-site breathers for which destab
zation occurs not through a complex growth rate but throu
a real positive one. On the other hand, as we shall see in
V, it is the Krein collision that provides the mode of dest
bilization of two-site breathers, i.e., localized excitatio
with two high sites separated by a number of low ones~see
next section!.

III. TWO-SITE BREATHER SOLUTIONS

As we mentioned in@14#, the PWS model~1!,~2! is a
veritable little laboratory yielding exact breather solutions
a wide variety. For instance, one can constructtwo-site
breathers with various possible lengths of the interven
gapN. One other feature of crucial relevance is the relat
phasebetween the two sites. This relates to the fact that
~4! admits of an arbitrary phase factoreid that becomes rel-
evant in two-site or multisite breather solutions. Thus, c
sidering a breather with two high sites atn50 and n5N
(ucnu.1) and all the other sites low (ucnu,1), with the
high sites having a phase difference ofd, one obtains a
monochromatic breather solution of the form~4! with the
breather profilefn now given by

FIG. 5. Numerical integration following Eqs.~1! and ~2! of an
initial profile given by Eqs.~4! and ~6! at t50: ~a! l50.5, g
54.35 betweenC1 andC3 of Fig. 3—profiles at values oft span-
ning a quarter of a period (T/4) starting from 2048T; ~b! l50.7,
just beyond the intersection ofC1 and C2 in Fig. 3, and g
52.43 @.g0(l)#.
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f̄n55
bl2n ~n<0!,

b~12eidlN!

12l2N
ln1

b~eid2lN!

12l2N
lN2n

~0<n<N!,

beidln2N ~n>N!,

~36a!

~36b!

~36c!

where

b5
g~12l2N!

g~12l2N!2~1/l2l!~12lNeid!
. ~37!

Here the parametersl,g,d must satisfy a consistency cond
tion ~which we do not write down! corresponding to

uf0u5ufNu.1, ~38a!

uf1u5ufN21u,1. ~38b!

In particular, a two-site breather located atn50,N with
phase differenced5p between the high sites is given by

f̄n55
b

12lN
(ln2lN2n) (0<n<N),

bl2n (n,0),

2bln2N (n.N),

~39a!

~39b!

~39c!

where

b5
g~12lN!

g~12lN!2~l212l!
, ~40!

andl,g are to satisfy

g.
11l21

12lN
. ~41!

In the next section we present results on the stability
these two-site antiphase breathers, indicating that the m
of destabilization of these breathers differs essentially fr
that of the one-site breathers discussed in the last sec
The antiphase breathers are also distinct from two-site
phase breathers (d50) in that the latter are always unstabl
i.e., the model~1!,~2! does not admit of a stable two-sit
in-phase breather solution.

It is also easy to construct other multisite breather so
tions with a larger number of high sites and various leng
of intervening gaps and phase differences between the
sites. The stability analysis of these breathers, however,
progressively involved with increasing number of sites.
would be interesting to see, for instance, if there exist sta
excitations in the model having arandomspatial structure.
3-5
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IV. TWO-SITE ANTIPHASE BREATHERS:
STABILITY RESULTS

Adopting an approach similar to the stability analysis
one-site breathers we consider perturbations in the rota
frame over the two-site antiphase breather obtained in
last section. The resultant breather variables are

cn5@fn1un~ t !#e2 ivt, ~42!

wherefn is given by Eqs.~39a!, ~39b!, and~39c!. The varia-
tion of the real and imaginary parts of theun’s is then de-
scribed by the Hamiltonian

H5(
n

H ~xn11xn1yn11yn!1
v

2
~xn

21yn
2!J 1

g

2H x0
21xN

2

1~y0
21yN

2 !S 12
1

bD J . ~43!

Eliminating theyn’s we again arrive at a matrix equatio
of the form

Ẍ5AX, ~44!

whereA is a banded matrix with elementsam,n50 whenever
um2nu.2, but it includes two 333 blocks centered at th
(0,0) and (N,N) elements, respectively:

a0,052F21v21vg1~vg1g2!S 12
1

bD G , ~45a!

aN,N52F21v21vg1~vg1g2!S 12
1

bD G , ~45b!

an,n52~21v2! ~nÞ0,N!, ~45c!

a0,15aN,N1152F2v1gS 12
1

bD G , ~45d!

a0,215aN,N2152F2v1gS 12
1

bD G , ~45e!

a1,05aN11,N5a21,05aN21,N52~2v1g!, ~45f!

an,n115an11,n522v ~nÞ0,N!, ~45g!

an,n215an21,n522v ~nÞ0,N!, ~45h!

an,n125an12,n521 ~nÞ0,N!. ~45i!

One can now look at the existence of extended and lo
ized eigenmodes as before. In the asymptotic region (n→
6`) an extended mode looks like a running wa
e6 inue6Amt, wherem, an eigenvalue ofA, is real and nega-
tive. Substituting in Eq.~44! and making use of Eqs.~45a!–
~45i! one finds thatm once again satisfies Eq.~18! i.e., the
possible eigenvaluesm form a band from2(v22)2,m,
2(v12)2 corresponding to 0,u,p. For any givenm in
this range, Eq.~19! also possesses one single real solut
05660
f
g
e
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n

~for the spatial decay ratex) with uxu,1 and thus the ex-
tended modes are again of the form~17a!,~17b!.

Once again the extended modes belong to two clas
namely, symmetric and antisymmetric ones, but now
terms symmetric and antisymmetric refer ton50 and n
5N, i.e.,

un5H uN2n ~symmetric!,

2uN2n ~antisymmetric!.

~46a!

~46b!

While the band of extended modes remains fixed for alg
@subject to Eq.~41!#, the eigenvalues of localized mode
keep moving along them axis asg is made to vary for any
given l. A typical localized mode is of the form

xn5a1x1
2n1b1x2

2n, ~n<0!, ~47a!

5a2x1
n2N1b2x2

n2N, ~n>N!, ~47b!

5a3x1
n1b3x2

n1a4x1
N2n1b4x2

N2n

~0<n<N!, ~47c!

whereai ,bi are appropriate constants andux1u,ux2u,1. Re-
call that the eigenvaluem for a localized mode must be ou
side the band2(v22)2,m,2(v12)2; additionally, we
consider for the present only real negativem corresponding
to which a mode, if it exists, remains bounded with time.
above, a localized mode may be either symmetric or a
symmetric @in the sense of Eqs.~46a! and 46b!, respec-
tively#. Using the superscriptss,a to denote symmetric and
antisymmetric modes, respectively, one has

xn
(s,a)55

a(s,a)x1
2n1b(s,a)x2

2n ~n<0!,

6a(s,a)x1
n2N6b(s,a)x2

n2N ~n>N!

c(s,a)x1
n1d(s,a)x2

n6c(s,a)x1
N2n

6d(s,a)x2
N2n ~0<n<N!,

~48a!

~48b!

~48c!

where the four coefficientsa(s,a),b(s,a),c(s,a),d(s,a) satisfy
the continuity requirements

a(s,a)1b(s,a)5c(s,a)~16x1
N!1d(s,a)~16x2

N!, ~49!

and additionally three other equations of the form~20! with
n561,0. A little algebra then shows that a nontrivial loca
ized mode exists if (l,g) satisfy a determinantal conditio
of the form

detB(s,a)50, ~50!

whereB(s,a) is a 434 matrix with elements

B1,1
(s,a)5B1,2

(s,a)51, ~51a!

B1,3
(s,a)52~16x1

N!, ~51b!

B1,4
(s,a)52~16x2

N!, ~51c!

B2,1
(s,a)5x1

21~2v1k!x1121v21vk1m, ~51d!
3-6
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B2,2
(s,a)5x2

21~2v1k!x2121v21vk1m, ~51e!

B2,3
(s,a)5x1

21~2v1k!x16x1
N21~x1

2112v1k!, ~51f!

B2,4
(s,a)5x2

21~2v1k!x26x2
N21~x2

2112v1k!,
~51g!

B3,1
(s,a)5x112v, ~51h!

B3,2
(s,a)5x212v, ~51i!

B3,3
(s,a)5x1

312vx1
21~21v21m!x16x1

N21~x1
2212vx1

21

121v21m!, ~51j!

B3,4
(s,a)5x2

312vx2
21~21v21m!x26x2

N21~x2
2212vx2

21

121v21m!, ~51k!

B4,1
(s,a)5x1

312vx1
21~21v21m!x112v, ~51l!

B42
(s,a)5x2

312vx2
21~21v21m!x212v, ~51m!

B4,3
(s,a)5x16x1

N21 , ~51n!

B4,4
(s,a)5x26x2

N21 , ~51o!

and wherek5g(121/b).
Evaluating this determinant gives usg as a function ofm

for real negative values ofm and one obtains a temporall
bounded mode whenever the value ofg satisfies the condi-
tion ~41!. A similar exercise gives usg as a function ofm for
real positivem as well, and one thus ends up with the fo
lowing results relating to the breather stability.

~i! A trivial antisymmetric mode exists withm50 for all
l,g.

~ii ! A symmetric mode appears at the inner band edge
certain threshold value ofg for any givenl; for instance,
with l50.5, N58, this threshold value occurs atg th

s

'4.333; with increasingN this threshold increases, until fo
N→` it approaches the valueg1(l) of Eq. ~22! correspond-
ing to the threshold for the one-site breather.

FIG. 6. g-m plot as obtained from Eq.~50! for symmetric eigen-
modes;l50.5, N58.
05660
a

~iii ! At the same time, there occurs a symmetric mo
with eigenvaluem closer to m50; with increasingg it
moves in an opposite direction compared to the first symm
ric mode, and at a certain value ofg ~for given l) there
occurs acollision of the two. Figure 6 gives the variation o
g with m ~for fixed l,N) as obtained from Eqs.~50! and~51!
for the symmetric modes, where one finds that, for any giv
g, there occur two values ofm ~corresponding to the two
symmetric modes indicated above! and that the two values
coincide at a certain maximum value ofg. In terms of the
growth rates~p! this corresponds to a Krein collision@21#
leading to instability of the breather. As already mention
this instability is associated with what is known as t
Hamiltonian Hopf bifurcation in the literature. When consi
ered in terms of Floquet multipliers, this corresponds to
Hamiltonian Hopf bifurcation in mappings, on which the
exists a large literature~see, e.g.,@24,25#!. Denoting the
value ofg at the collision asgK

s (l,N), the question comes
up as to what happens forg.gK

s . Here one encounters th
possibility of complex eigenvalues (m) for the system
~44!,~45a!–~45i!. For a complex eigenvaluem the eigenmode
is of the form~47a!–~47c! wherex1 andx2 are again solu-
tions to Eq.~19! satisfyingux1u5ux2u,1, but are now com-
plex; it is associated with a second complex conjugate eig
mode with eigenvaluem* . In terms of growth rates~p! this
corresponds to a quartet in the complex plane appearing
yond the collision as shown in Fig. 7, and leading to temp

FIG. 7. Disposition of growth rates~p! before and after the
Krein collision.

FIG. 8. Numerical integration following Eqs.~1! and ~2! of an
initial two-site breather profile~with N58) given by Eqs.~39a!–
~39c!: ~a! g,gK

s (l) and ~b! g.gK
s (l).
3-7
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ral growth of the corresponding eigenmode~s!. The latter can
once again be obtained exactly on substituting the fo
~48a!–~48c! in Eqs. ~44! and ~45! and them-g relation is
again obtained as a determinant condition similar to E
~50!–~51o! For instance, withl50.5, N58, one hasgK

s

'4.9443; and forg54.9444 beyond the collision one ob
tainsm520.116460.0012i .

Figures 8~a! and 8~b! show the evolution according t
Eqs.~1! and ~2! of a profile corresponding to an exact sol
tion of the form ~39a!–~39c! for l50.5, N58; in ~a!, for
which g54.944,gK

s , the breather is found to oscillate fo
an indefinitely long period while in~b! the breather is seen t
break up quickly forg54.945.gK

s , in entire conformity
with our results.

~iv! For givenl, the bifurcation valuegK
s increases with

N and the value ofm at which the collision occurs get
progressively shifted towardm50, until at N→` gK

s ap-
proaches the value~30! encountered in the context of th
one-site breather~Fig. 9!.

~v! For givenl,N, an antisymmetric mode appears acro
the inner band edge at a certaing5g th

(a).g th
(s) ~Fig. 10!. The

eigenvalue for this mode moves toward the trivial eigenva
m50 as g is made to increase, until at a certain val
ḡ(l,N) there occurs a double-zero eigenvalue atm50. For

FIG. 9. Variation of the value ofgK
s with N for a fixed l

(50.5) for the symmetric eigenmodes.

FIG. 10. ~a! Variation of g th
s with N for the symmetric eigen-

modes;~b! the corresponding graph for antisymmetric eigenmod
for either graphl50.5.
05660
s.

s

e

g.ḡ(l,N) there results a positive eigenvalue and the mo
grows with time. However, one hasgK

s (l,N),ḡ(l,N) and
the two-site antiphase breather is destabilized through
Hamiltonian Hopf bifurcation rather than through th
double-zero eigenvalue. Figure 11 shows the symmetric
antisymmetric modes as obtained in the above analysis
l50.5, g55.490, andN510.

~vi! As g is made to increase beyondḡ(l,N), a stage is
reached when one hassix values of the growth rate~p! on the
real axis~in addition to the trivial valuep50 and the bands
on the imaginary axis!. The sequential change in the disp
sition of growth rates in the complex plane typically looks
in Fig. 12.

One notes the interesting manner in which the quarte
complex growth rates collide on the real axis—a pheno
enon that can be termed ‘‘Krein collision in reverse.’’ In th
present context, however, this collision is without signi
cance since the breather has already undergone destab
tion before this collision takes place.

~vii ! As N is made to increase for a givenl, the value of
ḡ(l,N) decreases~Fig. 13!, until at N→` it approaches the
value ḡ(l) of Eq. ~30! encountered in the context of th
one-site breather.

;

FIG. 11. Symmetric and antisymmetric localized eigenmod
for a two-site breather.

FIG. 12. Sequence of changes in the disposition of growth ra
in the complex plane; thick black lines denote the band while
dots and circles correspond to localized modes:~a! before Krein
collision (g,gK

s ; l fixed!; ~b! Krein collisiong5gK
s ; ~c! a quartet

of complex growth rates resulting from the Krein collision, and
pair of imaginary growth rates approaching collision atp50; ~d!
Krein collision in reverse;~e! all growth rates of localized mode
real.
3-8
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~viii ! Thus, it is of interest to look at the sequence
events forlarge N as one variesg for any givenl. As one
expects, the breather profile around each of the high s
approaches the one-site profile given by Eq.~6! @recall the
arbitrariness of the overall phase factor in Eq.~6!# for N
→`. In this situation, each of the symmetric modes is as
ciated with a corresponding antisymmetric mode~one of
which is the trivial mode atm50) forming a nearly dege
narate pair. One thus has two pairs of nearly degene
eigenvalues—one nearm50 and the other appearing at th
inner band edge atg'g1(l) @one notes from Fig. 10 that fo
large N g th

(s)'g th
(a)'g1(l)]. As g is made to increase be

yond g1(l), this latter pair moves towardm50, until at g

'ḡ(l) a Krein collision takes place, followed closely by
double-zero configuration. In other words, the sequence

FIG. 13. Variation ofḡ with N for fixed l (50.5).
s.

ot

o-
nd

05660
f

es

-

te

of

dispositions depicted in Fig. 12 all occur closely on the he
of one another close tom50, g5ḡ(l).

V. CONCLUDING REMARKS

In summary, we have supplemented our earlier work
the discrete nonlinear Schro¨dinger type model~1!,~2! by con-
structing an exact two-site antiphase breather solution~39a!–
39c! @a more general solution with phase differenced be-
tween the high sites is given by Eqs.~36a!–~36c!#, and by
presenting a complete stability analysis for both the one-
and two-site breathers. While the one-site breather gets
stabilized by the temporal growth of a zero-frequency mo
the two-site breather is destabilized through the growth of
oscillating mode. Hence one can predict the types of str
tures that appear beyond the instability in these two ca
while the one-site breather breaks up to yield a multis
breather of the same frequency, the two-site breather yiel
multifrequency breather beyond the instability. The mod
also yields a host of other exact single-frequency brea
solutions such as the two-site breathers with an arbitr
phase differenced alluded to above. The value ofd is crucial
for the stability of the breather: while antiphase breathers
stable for parameter valuesl,g lying in some region of the
parameter space, in-phase breathers are seen to be a
unstable. Other exact solutions yielded by the model
multisite breathers with, say, a numberm of high sites (m
.2) characterized by a sequence of gapsN1 ,N2 , . . . ,Nm21
and phase differencesd1 ,d2 , . . . ,dm21. It would be inter-
esting to look into the stability characteristics of these ex
vortex-type breather solutions and to see if stable breat
of this type withchaoticsequences of gap lengths and pha
differences are allowed in the model.
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