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Generation and growth rates of nonlinear distortions in a traveling wave tube
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The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to
describe the generation of intermodulation frequencies and calculate their growth rates. The model describes
the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential
equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the qua-
dratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation
growth rates is derived and compared to simulation results.
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Traveling wave tube6TWTs) continue to find widespread ance, cold circuit phase velocity, and space charge reduction
application as amplifiers due to their inherently wide band-factor, respectively{4]. The electron beam cross sectional
widths and their high frequency, high power operatingarea isA and the dc electron beam velocity ig. The
points. Due to the advent of very accurate modéls TWT ~ S-MUSE model3] is
bandwidths continue to increase and bandwidths as large as
three octaves are being approachigd Understanding and 4V it
quantifying the nonlinear distortions in wide bandwidth Ve __! fwom_ C I, (1)
TWTs remains a challenge. dz Uo U phe

The nonlinear distortion in TWTs is “intermodulation dis-
tortion.” For steady-state input signals with multifrequency ~ . .
content, an intermodulation product of ordérfor frequen- dly  ifpoo 'feon . ~

. . ——=—==V,— |€+|fgwoApg, 2
ciesfy,f,, ... fpis of the formr f;+rofo+ ... +rpfp, dz K ¢V phe Ug
where r; are integers(possibly zerd and K=|r|+]|r,|
+ ...+]|rp|. This structure also includes harmonic frequen-
cies when all but one of the's are zero. dE, if pwoe  po

The most basic piece of information about the behavior of dz U Eet—, ()
an intermodulation produdiMP) is its exponential growth
rate prior to saturation. In this paper, we study IMP growth
rates in the S-MUSE TWT modgB], which has the form of 47 i, eK -~ e _ . 1 _ o
ordinary differential equations with quadratic nonlinearities. a7 — o REE(—— E if \woUmvn
We show how IMP frequencies are sequentially generated by MeUoU phe e-0 0o My,
the quadratic nonlinearities. We give a series solution of the (4)
nonlinear differential equations and take advantage of the
generating structure to compute maximum IMP growth rates.

ifgwokg,r

This approach provides growth rate estimates and insightip, ifpwoepoKm  €po~ ~  if rwopo~
into the generation of the IMPs. Az Tl le— - queEe— Rl
S-MUSE is a nonlinear, multifrequency, steady-state etloUphe €0 0
TWT model. It is a simplification of the more complete e if oK
MUSE model also derived in Reff3]. The electron beam is -— e
modeled using Eulerian equations, so S-MUSE does not pre- Mellp MmN Uphm
dict electron overtaking. However, S-MUSE captures much mene
of the important nonlinear physics that occurs prior to elec- e -~ ~  Po o
tron overtaking, and compares favorably to large signal - > E RmEmpnt — 2 if hwoUmUn
codes prior to saturatiof8]. Mello (%", Yo, IHy,
The S-MUSE model consists of nonlinear ordinary differ-
ential equations for the Fourier coefficients of circuit voltage if g ~ ~
V., circuit currentl ., space charge electric fiel, , elec- T % UmPn )
tron beam velocity ,, and electron beam charge dengity fm*fn=T¢

as functions of axial positioz. All frequencies are integer

multiples of a fundamental frequeney, i.e.,f=f,wo. The  where —M<¢<M,€+#0. The summations in Eq$4) and
subscript( indexes the frequencids contained in the s€®  (5) are over integersn,n such thatf ,,+f,=f, .

which will Pe giSCUSSEdNShortly. The frequency dependent Equations(l)_(5) may be written in vector form as the
parameterK, v, and R, are circuit interaction imped- sum of a linear and quadratic term
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in the termx(®). For example, iff, andf,, are drive frequen-

Xe=AXet %] Hemn(Xm Xn), ®  cies, then we defin@ ™ to contain the drive frequencies and
ftfn=f¢ the negative drive frequencies:
wherex,=[V1,Ev,p,]". In Eq.(6), the produci ,x, con- QW={—f, —f, f,,f). (13
tains the linear terms in Egs(1)—(5), and the term
SHomn(Xm.X,) represents the quadratic terms in E®—  From Eq.(12), the frequencies produced in the second series

(5). (The entries ofA, andH,,, are described in detail in term are
Appendix Il of Ref.[3].) The dispersion properties of the

TWT are contained im, andH,,. We can write the equa- ~ Q@ ={-2f,,—f,—fp,—2f, f,—f,, —f,+,,2f,.f,
tions for all frequencies together as

+ 1y, 2fp}. (14
X=AxHHOX), ™ Similarly, frequencies ix® are all possible additions of
X(0)=w (8  frequency pairs including one frod(*) and one from(?:

where x=[X_y- - -X_1X;- - -Xn]". The vectorw contains QO®={-3f,,—f,—2f,,—2f,—f,, = 3f,, f,—2fy,—fp,

the initial data of the drive frequencies. —f —2f +f. 2f.—f. f. f f
We solve[8] the nonlinear differential equatiof?) with ar “latlbySia Thelariby fa
the series +2fy, 3f,,2f+fy, fa+ 21,31} (15
B i () Notice thatQ® contains third harmonics and 3IMs, but also
X= 4 X ®  contains the drive frequencies.

In general, O} contains the positive and negative drive
with superscript &) an index, not an exponent. The compo- frequencies, and we defi®(®,a=2,3,4... by
nents of the series satisfy the equations
Q@W=If+g|fcQ®), geQle P,
xW=AxD, xD)=w, (10 (16)
l=B=<a—1, f+g#0}.

a—1
(@ = Ax(®) + Z H(x(8) x(@=A)), (1) In applications, we truncate the frequency generation process
pot described above. Since the highest order of IMRitt) is
X@(0)=0, a=234.... equal toa, we letSto be the highest order IMP of interest
' ” and then defineQ) to be all of the frequencies in
One can show that the series solutit®) converges geo- Q™. ....0(5. Order as
metrically forz<L if |w|||H||(e’*—1)/c<1, whereo is the
largest of the real parts of the eigenvaluesAof (|| and Q={f_mfmra foafi - fuaful, 17
||| are vector and induceld norms in modal coordinates. _ o
The ¢th component of Eq(11) is wheref,>f, if £>mandf_,=—f,. The indices of} are
then used to index.
_ a”l Recall thatx!*) is term « in the series solution for fre-
XEO=AXD+ Y D HemaxP X P, quencyf, . By solving the linear systerL0) and then suc-
pet foAT=t, cessively solving the forced linear systerid), it can be
(12)  shown thax{® is a sum of exponentials of the form
a=234... .
P
The quadratic term in Eq12) dictates how frequency com- X9 (z)= >, alPlexp w{@Pl+ig{@Phz (18
ponents ofxM x®), ... x(e=1) combine to produce fre- p=1

quency components of®. In particular, the solutions for ,
the drive frequencies ir® produce components {2 for ~ Where ay1"l is a complex vector angi{”'", o{”'" are

frequencies that are all possible additions of pairs of drivé®@l- The assumptions underlying EQ38) are d'SCUS(S?[‘L'”

frequencies(and the negatives of the drive frequengies Ref.[9]. Sums, such as E@18), are ordered so that;

Then, components of™ and x? produce components in is the maximum of (W LI @1 - Since

x(3 for frequencies which are all possible additions of pairsu!™™ is the largest real part of the exponentsxiff, we

of frequencies fromx® andx®. Similarly, components of call u{®! the maximum growth ratef term « in the series

x and x(® and components ok® and x> combine to  solution for frequencyf .

produce components of* and so on. Using Eq.(18) and the standard solution of the forced
To keep track of the frequencies generated in this procedinear system(12) [5], a recursive formula for the growth

we construct set@(® that contain the frequencies generatedrate (™ in terms of £ (VM WP plem Dl g
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TABLE I. Growth rates for two drive frequencies and nonlinear products up to order five for the band-
width of 0.8—9.0 GHz. Results for input powers of30 dB;,, —10dB,, and 0 dB, are given.ucy, is
growth rate fit to Christine 1D power versus axial distance data at at an axial position in the “small-signal”
regime, i.e., after the power curves have reached their asymptotic exponential growth state, but prior to
saturation of any of the power curvésee Fig. 1 The percent difference columns comparg,, to formula
(20) using percent difference: | ucn—Ed. (20)|/ sepr -

—30dByy —10dBsy 0 dBgy

Order f(GHz  wcn Percent difference uc,  Percent difference uc,,  Percent difference

1 fo.=3.0 0.744 0.764 0.770
fpb=4.1 0.696 0.728 0.733
2 fo—fa 1.443 0.30 1.514 1.44 1.543 2.53
2f, 1.487 0.03 1.515 0.83 1.555 0.89
fat Ty 1.438 0.07 1.443 3.37 1.457 3.23
2fy 1.387 0.27 1.361 6.99 1.338 9.62
3 2f,—f, 2.185 0.10 2.239 0.75 2.326 2.21
2f,—fy, 2.135 0.01 2.170 2.29 2.225 0.57
3f, 2.227 0.15 2.239 2.38 2.249 2.78
4 2f,—2f, 2.885 0.24 2.930 1.86 3.041 1.10
3fa—f, 2923 0.09 2.966 1.80 3.037 0.26
5 3f,—2f, 3.625 0.09 3.678 1.91 3.864 2.22
3f,—2f, 3.583 0.27 3.664 1.30 3.833 2.39
4f ,—f, 3.665 0.12 3.724 1.61 3.807 0.22
cies and dispersion parameters in this example (E%).pre-
wttt=" max {pP4 laAlLl i 19 dicts the growth rate am times the growth rate of, plusn
f”"iﬁ’g P times the growth rate off,:
pme] M 4 0 20

where[!! is the largest of the real parts of the eigenvalues! Nat is, for the freﬁll]Je_ncies that make up these IMPs, the
of A,. v is the linear growth ratefor frequencyf, ob-  lin€ar growth rates ( Bl)?l]Eq. ((1?);[218 always less than the
tained fromx{®=A,x{*), which is the linear part of Eq. forcing growth rateguy, ™ + up - Fora large class of
(12). uBW 4 @A i the largest real part of the expo- TWT dispersion parameters, E@O) is the correct formula

nents in the quadratic term of E(.2) formed by the product fi)rmfhe maximum growth rate of IMPs of the formf,
b.

of x{) andx{"~#. (We are using the standard fact that a | L.iie | we compare Christine 1D data to £20) [10].
linear system solution is the sum of exponentials involvingT e agreem'ent is excellent for input power 30 dB below the
the natural frt_aquenc_ies of the system and the frequencies ?r{;)ut power that produces saturation at the output
the exponentlgl fo(rc;ng. _ _ (—30dB,,). The agreement is less close for input powers of
To summarizex;” is a solution of the linear syste(@2) —10dB,.and 0 dB,and this is probably due to the nonlin-
forced by products of smaller terms, which are themselveg g ities neglected in deriving the S-MUSE mof). In all
sums of exponentials. Therefoxg contains both exponen- cases, the agreement is very gdad., <10% erro}, indi-
tials from the linear portion of Eq(12) and exponentials cating that the theory may be used for quantitative and quali-
from the products of the smaller terms. Form{l®) states  tative studies of IMPs.
that the maximum growth rate{”!"! of x{* is the maxi- Next we consider a particular case with the drive fre-
mum real part of the exponents of all of the exponentials. quency at the low end of the band such that the second and
Next we present examples illustrating the IMP generationthird harmonics are within the linear gain bandwidth. We
and the application of formule9). The TWT dispersion and  consider the frequencies 1,2, and 3 GHz. In case 1, the drive
beam parameters are based on a slightly modified experfrequency isf;=1 GHz. In case 2, we also includ,

mental Wisconsin Northrup GrummaXWING) wideband =2 GHz andf;=3 GHz as drive frequencies as one might
TWT [6]. Formula(19) is checked against growth rates ob- when using second- and third-harmonic injections.
tained from Christine 10y7]. In case 1, the frequency generation schéf gives

First we consider two drive frequencidég and f,, sepa-
rated by 1.1 GHz. In the bandwidth between 0.8 and 9.0 QW={—f, f}={-1,1, (21)
GHz, twelve IMPs of order five and lower are generated; all
of the IMPs are of the forrmf,—nf,. For the IMP frequen- 0@={-22 (22)
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0®={-3-113. (23 20 ; T ; T T
. P
Formula(19) gives the growth rate of the 2 GHz term as 10~ ‘,-"’ //” —
e —
- -
- -
PP —max( 20 1) = B R N :
e e -
since the linear growth rate[zll for 2 GHz is greater than '8 do———" .
two times the linear growth ratg{P™M=ul! for 1 GHz. 5 e
Moreover, the growth rate for 3 GHz is g0 T 2GHmm =053
o s=. 3GHz,p{"M =0.732
W = max w (P4 @1 I Wiy @) B0F e £ — 0,206 .
EEC [ PR A
That is, the growth rate for the third harmonic is the growth 40 B
rate for the second harmonic plus the growth rate of the ) | | |
drive. Simulations of this case show that the second and thirc 3% ' A 8 ' 12
harmonics do not achieve their asymptotic growth rates prior Axial distance (cm)

to saturation. However, analytic solutions of E@) confirm
that the growth rates predicted by E49) are those of the
dominant terms.

In general application of Eq19), it is important to notice
that the maximum growth rate(”*! is a function ofa. A
frequencyf, may appear in several terms of the series, an

each of these terms has a maximum growth &t8*! . In

many cases, the observed growth rate in a simulation will b&nd provided estimates for IMP growth rates. In this view,
the maximum growth rate for the first term in the series forth® generation of IMP frequencies is a sequential process
which the frequency appears, i.e., corresponding to th&herein higher order IMPs are produced by combining lower
smallesta for which the frequency appears @(®). For order IMPs(and drive frequencigsvia a quadratic nonlin-
example, in case 1, Eqg21) and (23) show that f,  e€arity. The quadratic nonlinearities are the velocity nonlin-
=1 GHz is in bothQ® and Q®) and the corresponding e€arity v(dv/dz) in Newton's law and the definition of cur-
growth rates of these terms gug?!*! and {1 . Although ~ rentpuv in the continuity equatiofi3]. We note that certain
(> W in simulations (P is never observed Models of the klystron and free electron laser can be ex-

and u{P1* characterizes the solution. However, a similarPressed in the same for(7) as S-MUSE, and therefore a

FIG. 1. Power versus axial distance for three harmonically re-
lated drive frequencies predicted by Christine 1D; 1 GHz is a
second-order product of 2 GHz and 3 GHz and exhibits firstvits
=1 maximum growth rate, then ita=2 maximum growth rate
é)roduced by 2 GHz and 3 GHz.

conclusion does not hold in case 2. similar method for understanding and predicting IMPs could
In case 2, the frequency generation schdf® gives be applied to these devices.
Formula(19) indicates that the growth rate of an IMP is
QW=1—f, —f,,—f,,f;,f,,f5}={-3,-2,-1,1,2,3, the greater of the sum of the growth rates of the frequencies
combining to make the IMP and the linear growth rate of the
0@={-6,-5-4,-3,-2,-1,12345%. IMP frequency. In most cases the former growth rate applies

_ o (1) @) o o but there can be exceptions for very wide band TWTs. The
Now f,=1 GHz is in both)'* and)*”. Since it is com-  gpayysis refines and gives insight into the conventional rule
mon for _second-order products to reac_h the Iev_el of drivey thumb[2] of estimating the growth rate of Kth order
frequencies before the TWT saturates,. in simulations we d@\ip asK times the growth rate of the drive frequency.
see thea=2 term for large enough drive levels of 2 GHz
and 3 GHz. This phenomenon is shown in Fig. 1 for a Chris- J. G. Wdlbier and J. H. Booske gratefully acknowledge
tine 1D simulation. Both thewn=1 and =2 maximum  support in part by the AFOSR Grant No. 49620-00-1-0088
growth rates are observed and the=2 maximum growth and by the DUSD(S&T) under the Innovative Microwave
rate is equal to the theoretically predicted sum of the growttWacuum Electronics Multidisciplinary University Research
rates driving it to within 1%. Initiative (MURI) program, managed by the United States
By a mathematical treatment of an approximate nonlineaAir Force Office of Scientific Research under Grant No.
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