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Generation and growth rates of nonlinear distortions in a traveling wave tube
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The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to
describe the generation of intermodulation frequencies and calculate their growth rates. The model describes
the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential
equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the qua-
dratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation
growth rates is derived and compared to simulation results.
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Traveling wave tubes~TWTs! continue to find widespread
application as amplifiers due to their inherently wide ban
widths and their high frequency, high power operati
points. Due to the advent of very accurate models@1#, TWT
bandwidths continue to increase and bandwidths as larg
three octaves are being approached@2#. Understanding and
quantifying the nonlinear distortions in wide bandwid
TWTs remains a challenge.

The nonlinear distortion in TWTs is ‘‘intermodulation dis
tortion.’’ For steady-state input signals with multifrequen
content, an intermodulation product of orderK for frequen-
cies f 1 , f 2 , . . . ,f P is of the formr 1f 11r 2f 21 . . . 1r Pf P ,
where r j are integers~possibly zero! and K5ur 1u1ur 2u
1 . . . 1ur Pu. This structure also includes harmonic freque
cies when all but one of ther j ’s are zero.

The most basic piece of information about the behavio
an intermodulation product~IMP! is its exponential growth
rate prior to saturation. In this paper, we study IMP grow
rates in the S-MUSE TWT model@3#, which has the form of
ordinary differential equations with quadratic nonlinearitie
We show how IMP frequencies are sequentially generated
the quadratic nonlinearities. We give a series solution of
nonlinear differential equations and take advantage of
generating structure to compute maximum IMP growth ra
This approach provides growth rate estimates and ins
into the generation of the IMPs.

S-MUSE is a nonlinear, multifrequency, steady-st
TWT model. It is a simplification of the more comple
MUSE model also derived in Ref.@3#. The electron beam is
modeled using Eulerian equations, so S-MUSE does not
dict electron overtaking. However, S-MUSE captures mu
of the important nonlinear physics that occurs prior to el
tron overtaking, and compares favorably to large sig
codes prior to saturation@3#.

The S-MUSE model consists of nonlinear ordinary diffe
ential equations for the Fourier coefficients of circuit volta
Ṽ, , circuit currentĨ , , space charge electric fieldẼ, , elec-
tron beam velocityṽ, , and electron beam charge densityr̃,

as functions of axial positionz. All frequencies are intege
multiples of a fundamental frequencyv0, i.e., f 5 f ,v0. The
subscript, indexes the frequenciesf , contained in the setV
which will be discussed shortly. The frequency depend
parametersK̃, ,ṽph, , and R̃, are circuit interaction imped
1063-651X/2002/66~5!/056504~5!/$20.00 66 0565
-

as

-

f

.
y
e
e

s.
ht

e

e-
h
-
l

t

ance, cold circuit phase velocity, and space charge reduc
factor, respectively@4#. The electron beam cross section
area is A and the dc electron beam velocity isu0. The
S-MUSE model@3# is

dṼ,

dz
52

i f ,v0

u0
Ṽ,2

i f ,v0K̃,

ṽph,

Ĩ , , ~1!

d Ĩ ,

dz
52

i f ,v0

K̃,ṽph,

Ṽ,2
i f ,v0

u0
Ĩ ,1 i f ,v0Ar̃, , ~2!

dẼ,

dz
52

i f ,v0

u0
Ẽ,1

r̃,

e0
, ~3!

dṽ,

dz
5

i f ,v0eK̃,

meu0ṽph,

Ĩ ,1
e

meu0
R̃,Ẽ,2

1

u0
2 (

m,n
f m1 f n5 f ,

i f nv0ṽmṽn ,

~4!

dr̃,

dz
52

i f ,v0er0K̃,

meu0
2ṽph,

Ĩ ,2
er0

meu0
2
R̃,Ẽ,2

i f ,v0r0

u0
2 ṽ,

2
e

meu0
2 (

m,n
f m1 f n5 f ,

i f mv0K̃m

ṽphm

Ĩ mr̃n

2
e

meu0
2 (

m,n
f m1 f n5 f ,

R̃mẼmr̃n1
r0

u0
3 (

m,n
f m1 f n5 f ,

i f nv0ṽmṽn

2
i f ,v0

u0
2 (

m,n
f m1 f n5 f ,

ṽmr̃n , ~5!

where2M<,<M ,,Þ0. The summations in Eqs.~4! and
~5! are over integersm,n such thatf m1 f n5 f , .

Equations~1!–~5! may be written in vector form as th
sum of a linear and quadratic term
©2002 The American Physical Society04-1
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ẋ,5A,x,1 (
m,n

f m1 f n5 f ,

H,mn~xm ,xn!, ~6!

wherex,5@Ṽ, Ĩ ,Ẽ,ṽ,r̃,#T. In Eq.~6!, the productA,x, con-
tains the linear terms in Eqs.~1!–~5!, and the term
(H,mn(xm ,xn) represents the quadratic terms in Eqs.~4!–
~5!. ~The entries ofA, and H,mn are described in detail in
Appendix II of Ref. @3#.! The dispersion properties of th
TWT are contained inA, andH,mn . We can write the equa
tions for all frequencies together as

ẋ5Ax1H~x,x!, ~7!

x~0!5w, ~8!

where x5@x2M•••x21x1•••xM#T. The vectorw contains
the initial data of the drive frequencies.

We solve@8# the nonlinear differential equation~7! with
the series

x5 (
a51

`

x(a), ~9!

with superscript (a) an index, not an exponent. The comp
nents of the series satisfy the equations

ẋ(1)5Ax(1), x(1)~0!5w, ~10!

ẋ(a)5Ax(a)1 (
b51

a21

H~x(b),x(a2b)!, ~11!

x(a)~0!50, a52,3,4, . . . .

One can show that the series solution~9! converges geo-
metrically forz<L if uwuiHi(esL21)/s,1, wheres is the
largest of the real parts of the eigenvalues ofA. (u•u and
i•i are vector and inducedl 1 norms in modal coordinates.!
The ,th component of Eq.~11! is

ẋ,
(a)5A,x,

(a)1 (
b51

a21

(
m,n

f m1 f n5 f ,

H,mn~xm
(b) ,xn

(a2b)!,

~12!
a52,3,4, . . . .

The quadratic term in Eq.~12! dictates how frequency com
ponents ofx(1),x(2), . . . ,x(a21) combine to produce fre
quency components ofx(a). In particular, the solutions fo
the drive frequencies inx(1) produce components inx(2) for
frequencies that are all possible additions of pairs of dr
frequencies~and the negatives of the drive frequencie!.
Then, components ofx(1) and x(2) produce components in
x(3) for frequencies which are all possible additions of pa
of frequencies fromx(1) andx(2). Similarly, components of
x(1) and x(3) and components ofx(2) and x(2) combine to
produce components ofx(4) and so on.

To keep track of the frequencies generated in this proc
we construct setsV (a) that contain the frequencies generat
05650
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in the termx(a). For example, iff a and f b are drive frequen-
cies, then we defineV (1) to contain the drive frequencies an
the negative drive frequencies:

V (1)5$2 f b ,2 f a , f a , f b%. ~13!

From Eq.~12!, the frequencies produced in the second se
term are

V (2)5$22 f b ,2 f a2 f b ,22 f a , f a2 f b ,2 f a1 f b,2f a , f a

1 f b ,2f b%. ~14!

Similarly, frequencies inx(3) are all possible additions o
frequency pairs including one fromV (1) and one fromV (2):

V (3)5$23 f b ,2 f a22 f b ,22 f a2 f b ,23 f a , f a22 f b ,2 f b ,

2 f a ,22 f a1 f b , 2f a2 f b , f a , f b ,2 f a

12 f b , 3f a ,2f a1 f b , f a12 f b ,3f b%. ~15!

Notice thatV (3) contains third harmonics and 3IMs, but als
contains the drive frequencies.

In general,V (1) contains the positive and negative driv
frequencies, and we defineV (a),a52,3,4, . . . by

V (a)5$ f 1gu f PV (b), gPV (a2b),
~16!

1<b<a21, f 1gÞ0%.

In applications, we truncate the frequency generation proc
described above. Since the highest order of IMP inV (a) is
equal toa, we let S to be the highest order IMP of interes
and then defineV to be all of the frequencies in
V (1), . . . ,V (S). OrderV as

V5$ f 2M f 2M11••• f 21f 1••• f M21f M%, ~17!

wheref ,. f m if ,.m and f 2,52 f , . The indices ofV are
then used to indexx.

Recall thatx,
(a) is term a in the series solution for fre-

quencyf , . By solving the linear system~10! and then suc-
cessively solving the forced linear systems~11!, it can be
shown thatx,

(a) is a sum of exponentials of the form

x,
(a)~z!5 (

p51

P

a,
(a)[ p]exp~m,

(a)[ p]1 is,
(a)[ p] !z, ~18!

where a,
(a)[ p] is a complex vector andm,

(a)[ p] , s,
(a)[ p] are

real. The assumptions underlying Eq.~18! are discussed in
Ref. @9#. Sums, such as Eq.~18!, are ordered so thatm,

(a)[1]

is the maximum of m,
(a)[1] ,m,

(a)[2] , . . . ,m,
(a)[ P] . Since

m,
(a)[1] is the largest real part of the exponents inx,

(a) , we
call m,

(a)[1] themaximum growth rateof terma in the series
solution for frequencyf , .

Using Eq. ~18! and the standard solution of the force
linear system~12! @5#, a recursive formula for the growth
ratem,

(a)[1] in terms ofm,
(1)[1] ,m,

(2)[1] , . . . ,m,
(a21)[1] is
4-2
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TABLE I. Growth rates for two drive frequencies and nonlinear products up to order five for the b
width of 0.8–9.0 GHz. Results for input powers of230 dBsat, 210 dBsat, and 0 dBsat are given.mChr is
growth rate fit to Christine 1D power versus axial distance data at at an axial position in the ‘‘small-s
regime, i.e., after the power curves have reached their asymptotic exponential growth state, but p
saturation of any of the power curves~see Fig. 1!. The percent difference columns comparemChr to formula
~20! using percent difference5umChr–Eq. ~20!u/mChr.

230 dBsat 210 dBsat 0 dBsat

Order f ~GHz! mChr Percent difference mChr Percent difference mChr Percent difference

1 f a53.0 0.744 0.764 0.770
f b54.1 0.696 0.728 0.733

2 f b2 f a 1.443 0.30 1.514 1.44 1.543 2.53
2 f a 1.487 0.03 1.515 0.83 1.555 0.89

f a1 f b 1.438 0.07 1.443 3.37 1.457 3.23
2 f b 1.387 0.27 1.361 6.99 1.338 9.62

3 2f a2 f b 2.185 0.10 2.239 0.75 2.326 2.21
2 f b2 f a 2.135 0.01 2.170 2.29 2.225 0.57

3 f a 2.227 0.15 2.239 2.38 2.249 2.78
4 2f b22 f a 2.885 0.24 2.930 1.86 3.041 1.10

3 f a2 f b 2.923 0.09 2.966 1.80 3.037 0.26
5 3f a22 f b 3.625 0.09 3.678 1.91 3.864 2.22

3 f b22 f a 3.583 0.27 3.664 1.30 3.833 2.39
4 f a2 f b 3.665 0.12 3.724 1.61 3.807 0.22
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wheren,
[1] is the largest of the real parts of the eigenvalu

of A, . n,
[1] is the linear growth ratefor frequencyf , ob-

tained from ẋ,
(a)5A,x,

(a) , which is the linear part of Eq
~12!. mm

(b)[1]1mn
(a2b)[1] is the largest real part of the expo

nents in the quadratic term of Eq.~12! formed by the product
of x,

(b) and x,
(a2b) . ~We are using the standard fact that

linear system solution is the sum of exponentials involv
the natural frequencies of the system and the frequencie
the exponential forcing.!

To summarize,x,
(a) is a solution of the linear system~12!

forced by products of smaller terms, which are themsel
sums of exponentials. Thereforex,

(a) contains both exponen
tials from the linear portion of Eq.~12! and exponentials
from the products of the smaller terms. Formula~19! states
that the maximum growth ratem,

(a)[1] of x,
(a) is the maxi-

mum real part of the exponents of all of the exponentials
Next we present examples illustrating the IMP generat

and the application of formula~19!. The TWT dispersion and
beam parameters are based on a slightly modified exp
mental Wisconsin Northrup Grumman~XWING! wideband
TWT @6#. Formula~19! is checked against growth rates o
tained from Christine 1D@7#.

First we consider two drive frequenciesf a and f b sepa-
rated by 1.1 GHz. In the bandwidth between 0.8 and
GHz, twelve IMPs of order five and lower are generated;
of the IMPs are of the formm fa2n fb. For the IMP frequen-
05650
s
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cies and dispersion parameters in this example, Eq.~19! pre-
dicts the growth rate asm times the growth rate off a plus n
times the growth rate off b :

mma
(1)[1]1nmb

(1)[1] . ~20!

That is, for the frequencies that make up these IMPs,
linear growth ratesn,

[1] in Eq. ~19! are always less than th
forcing growth ratesmm

(b)[1]1mn
(a2b)[1] . For a large class of

TWT dispersion parameters, Eq.~20! is the correct formula
for the maximum growth rate of IMPs of the formm fa
2n fb .

In Table I, we compare Christine 1D data to Eq.~20! @10#.
The agreement is excellent for input power 30 dB below
input power that produces saturation at the out
(230 dBsat). The agreement is less close for input powers
210 dBsat and 0 dBsat and this is probably due to the nonlin
earities neglected in deriving the S-MUSE model@3#. In all
cases, the agreement is very good~i.e., ,10% error!, indi-
cating that the theory may be used for quantitative and qu
tative studies of IMPs.

Next we consider a particular case with the drive fr
quency at the low end of the band such that the second
third harmonics are within the linear gain bandwidth. W
consider the frequencies 1,2, and 3 GHz. In case 1, the d
frequency is f 151 GHz. In case 2, we also includef 2
52 GHz andf 353 GHz as drive frequencies as one mig
when using second- and third-harmonic injections.

In case 1, the frequency generation scheme~16! gives

V (1)5$2 f 1 , f 1%5$21,1%, ~21!

V (2)5$22,2%, ~22!
4-3
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V (3)5$23,21,1,3%. ~23!

Formula~19! gives the growth rate of the 2 GHz term as

m2
(2)[1]5max$2m1

(1)[1] ,n2
[1]%5n2

[1] ,

since the linear growth raten2
[1] for 2 GHz is greater than

two times the linear growth ratem1
(1)[1]5n1

[1] for 1 GHz.
Moreover, the growth rate for 3 GHz is

m3
(3)[1]5max$m1

(1)[1]1m2
(2)[1] ,n3

[1]%5m1
(1)[1]1m2

(2)[1] .

That is, the growth rate for the third harmonic is the grow
rate for the second harmonic plus the growth rate of
drive. Simulations of this case show that the second and t
harmonics do not achieve their asymptotic growth rates p
to saturation. However, analytic solutions of Eq.~7! confirm
that the growth rates predicted by Eq.~19! are those of the
dominant terms.

In general application of Eq.~19!, it is important to notice
that the maximum growth ratem,

(a)[1] is a function ofa. A
frequencyf , may appear in several terms of the series, a
each of these terms has a maximum growth ratem,

(a)[1] . In
many cases, the observed growth rate in a simulation wil
the maximum growth rate for the first term in the series
which the frequency appears, i.e., corresponding to
smallesta for which the frequency appears inV (a). For
example, in case 1, Eqs.~21! and ~23! show that f 1
51 GHz is in bothV (1) and V (3) and the corresponding
growth rates of these terms arem1

(1)[1] andm1
(3)[1] . Although

m1
(3)[1].m1

(1)[1] , in simulationsm1
(3)[1] is never observed

and m1
(1)[1] characterizes the solution. However, a simi

conclusion does not hold in case 2.
In case 2, the frequency generation scheme~16! gives

V (1)5$2 f 3 ,2 f 2 ,2 f 1 , f 1 , f 2 , f 3%5$23,22,21,1,2,3%,

V (2)5$26,25,24,23,22,21,1,2,3,4,5,6%.

Now f 151 GHz is in bothV (1) andV (2). Since it is com-
mon for second-order products to reach the level of dr
frequencies before the TWT saturates, in simulations we
see thea52 term for large enough drive levels of 2 GH
and 3 GHz. This phenomenon is shown in Fig. 1 for a Ch
tine 1D simulation. Both thea51 and a52 maximum
growth rates are observed and thea52 maximum growth
rate is equal to the theoretically predicted sum of the gro
rates driving it to within 1%.

By a mathematical treatment of an approximate nonlin
TWT model, we have yielded a new view of IMP generati
ur

s.

e
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and provided estimates for IMP growth rates. In this vie
the generation of IMP frequencies is a sequential proc
wherein higher order IMPs are produced by combining low
order IMPs~and drive frequencies! via a quadratic nonlin-
earity. The quadratic nonlinearities are the velocity nonl
earity v(]v/]z) in Newton’s law and the definition of cur
rent rv in the continuity equation@3#. We note that certain
models of the klystron and free electron laser can be
pressed in the same form~7! as S-MUSE, and therefore
similar method for understanding and predicting IMPs co
be applied to these devices.

Formula~19! indicates that the growth rate of an IMP
the greater of the sum of the growth rates of the frequen
combining to make the IMP and the linear growth rate of t
IMP frequency. In most cases the former growth rate app
but there can be exceptions for very wide band TWTs. T
analysis refines and gives insight into the conventional r
of thumb @2# of estimating the growth rate of aKth order
IMP asK times the growth rate of the drive frequency.

J. G. Wöhlbier and J. H. Booske gratefully acknowledg
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Air Force Office of Scientific Research under Grant N
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FIG. 1. Power versus axial distance for three harmonically
lated drive frequencies predicted by Christine 1D; 1 GHz is
second-order product of 2 GHz and 3 GHz and exhibits first itsa
51 maximum growth rate, then itsa52 maximum growth rate
produced by 2 GHz and 3 GHz.
E

e-
@1# T.M. Antonsen, Jr., A. Mondelli, B. Levush, J.P. Verboncoe
and C.K. Birdsall, Proc. IEEE87, 804 ~1999!.

@2# C. Armstrong~private communication!.
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@8# The series solution of Eq.~7! can be obtained by settingx

5ey, expanding in a power series in the parametere and
applying the method of small parameters; see e.g., S.G. M
lin and K.L. Smolitskiy,Approximate Methods for Solution o
Differential and Integral Equations~American Elsevier, New
York, 1967!, p. 17.

@9# In general,a,
(a)[ p] is a vector of polynomials inz, i.e., there are

‘‘secular’’ terms in the solution. We assume thata,
(a)[1] is a

constant vector, i.e., the term containing the maximum gro
rate never has a factor ofz multiplying the complex exponen
tial. The secular terms arise in the special case of exact ‘‘re
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nance’’ of eigenvalues ofA, for different values of,. For
example, to have a leading secular term in the harmonic s
tion, the dominant eigenvalue at the harmonic must be exa
equal to two times the dominant eigenvalue at the fundam
tal. For general dispersion, there is a zero probability of hav
such an eigenvalue resonance. However, in a dispersion
model secular terms must be accounted for and the pre
theory would need to be modified.

@10# Since we measure growth rates from power vs axial posit
data, we actually compare two times Eq.~20! to the data. How-
ever, we do not make this distinction in the text of the pap
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