PHYSICAL REVIEW E 66, 056503 (2002
Self-consistent nonstationary processes in phase-mixed electron beams focused by mobile ions
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This paper is devoted to the analysis of nonstationary self-consistent processes in electron beam propagation
in the presence of mobile ions. This problem is of particular interest for the recently developed plasma-assisted
slow-wave oscillatorgpasotrons In pasotrons beam focusing is provided by idimscontrast to other high-
power microwave sources where the beam is focused by a strong external magneti€yfmtdlly, pasotrons
operate in rather long pulses with a pulse duration on the order o.&Ghd larger. In such a time scale, the
ion motion can play a significant role, and therefore, the self-consistent nonstationary processes in the beam
transport and ion motion become important. In particular, the interaction with beam electrons may result in ion
axial acceleration. In the present paper, a theory that describes these nonstationary self-consistent processes is
developed, taking account of the phase mixing of electrons having a spread in their initial transverse velocities.
The paper also contains some simulation results obtained for typical pasotron parameters.

DOI: 10.1103/PhysReVvE.66.056503 PACS nunherd1.85.Ja, 84.40.Fe, 52.59.Px

I. INTRODUCTION the assumption that ions are immobile. As an exclusion from
this rule, it is worth mentioning Ref$10,11], where an ex-
The interest in the ion focusing of electron beams has g@erimental study of some effects caused by the ion motion
long history. This effect by itself is present practically every- (ion hose instability in microsecond long pulse electron
where, where electron beams propagate, because they nevmrams is described.
propagate in absolute vacuum. In any beam transport chan- During the 1990s, a new plasma-filled source of coherent
nel, there is a residual gas, which, once the beam is injectedhicrowave radiation was proposed and actively studied,
gets ionized due to the beam impact ionizatid®f course, named the pasotrofplasma-assisted slow-wave oscillator
the ions can also be produced from neutral gas by usinfl2—14. One of the specific features of the pasotron is the
some laser preionization techniques as well as by othefact that in this device the transport of a high-perveance elec-
mean$. Then, the beam space charge quickly ejects plasmgon beam is provided by the Bennett pinch. A number of
electrons leaving an ion core. The presence of ions neutratheoretical issues related to the beam-wave interaction in the
izes the beam space charge, and thus weakens the beam glisotron have been recently analyzed in Réfs—17. Also,
vergence caused by the radial electric self-field. When thgome nonstationary phenomena in the beam transport in the
gas-plasma density is high enough, the beam divergence ca@nocess of gas ionization in pasotrons were recently consid-
be suppressed completely, and therefore, due to this ion faered in Ref[18]. In Ref.[18], however, the effect of phase
cusing, the beam can be transported via a long distance. Sughixing of electron trajectories was neglected, while, under
an ion focusing is known as the Bennett piridf. certain conditions, it can be important for the beam propaga-
The beam divergence caused by the radial electric selftion.
field, as known(see, e.g., Ref$2—-4]), is also compensated, The most important feature, which makes the beam trans-
to some extent, by the Lorentz force caused by the azimuthglort in pasotrons different from the transport of relativistic
magnetic self-field. The latter force 87 times smaller than electron beams studied earlier, is the length of the beam
the former onghere B is the electron axial velocity, nor-  pulse duration, which in pasotrons is much longep to
malized to the speed of lightTherefore, this Lorentz force hundreds of microsecondthan in relativistic beams. In this
starts playing an important role when the beam voltage isime scale the ion motion, in accordance with the estimates
high enough. As follows from the known beam envelopemade elsewhergl4,18), can play a role. For example, in the
equation[2—-4], to focus a beam the following condition case of an axially nonuniform gas density profile, the axial
should be fulfilled:f>1/y%. Here f=n;/n, is the ion to  motion of ions increases the ion density in regions of low gas
electron beam density ratio and=(1—32%) Y2 is the Lor-  density, and thus, improves the beam focusing th&
entz factor of electrons. This condition is known as the Bud- Note that the effects of ions on the operation of vacuum
ker condition for beam focusinfp]. As follows from it, to  microwave tubes have been studied in many papers. One of
focus relativistic electron beams, it is enough to have a relathe first seminal papers was Rgt9], in which some modu-
tively low ion density. lations in the electron beam current were explained by the
This fact, as well as the possibility to avoid the use ofpresence of ions capable of a quasiperiodic release from the
focusing magnets and solenoids, attracted a great attention pmtential well formed by the beam space cha(ge-called
the ion focusing of high-current relativistic electron beamsion relaxation oscillations In spite of a long history of this
during the 1970s and 1980@see, e.g., Ref46—9] and ref-  problem, the effect of ions on the operation of vacuum tubes
erences therejnSince the pulse duration of these beams wass still actively studied even nowadaysee, e.g., Refs.
typically rather shorftens to hundreds of nanosecopdbe  [20,21], and references thergimhese studies, however, deal
treatment of this problem was practically always done undewith the beams guided by external magnetic fields providing
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a one-dimensionallD) electron beam motion. When these Let us consider the stability of the phase-mixed electron
fields are periodiqlike in the case of periodic permanent beam with respect to the local perturbation in the ion density.
magnety, this periodicity may cause a beam scalloping,In the absence of perturbations, in an axially uniform system,
which can be the reason for ion trapping. Note that in allthe potentialp obeys the 1D Poisson equation
these devices the presence of ions is inessential for electron 10/ 9
motion. On the contrary, we are concerned about the ion __(r_"p
focused beam propagation in the absence of guiding external rori or
fields. In such a case, first, all particles may exhibit a 3D
motion, and second, the only fields which are present in avith the following boundary condition at the wall of a radius
system are the self-fields of the electron beam and ionfRw: ¢(Ry)=0. The potential at =0 which we will use
which makes the problem under study self-consistent. Arbelow for crude estimates, as follows from Ed), is equal
interest in this problem was motivated by some experiment&0
with pasotron$13,14], in which strong pulsations in the col- |
lector current have been observed. These oscillations can ¢:¢(0):_(_b_eNi
stem from possible pulsations of the ion density, which, be- Px
ing accelerated by an axially inhomogeneous electron beam,
may acquire enough energy for penetrating through the ptherea is the beam radius arfdi is the ion denSity per unit
tential well. Such ion pulsations may also cause pulsations ileNgth. Itis assumed above that the beam and the ion channel
the beam current, thus making the process self-consistent. fadii are equal and that the beam and ion densities are ho-
In the present paper we make an attempt to deve|0p grogeneous. When the beam or wall radii and/or the ion den-
theory describing these self-consistent nonstationary prosity slowly depend org, so also the potential does. This
cesses. The paper is organized as follows. In Sec. Il a simpidependence means that an axial electric fiel,=
model describing the physical effects under study is consid=d¢/dz, appears in the system, which causes the ion axial
ered. In Sec. Il equations are derived, which are later useﬂ']OtiOﬂ. The action of this field on the beam electrons can be
for more accurate analytical and numerical studies. In Sedleglected since the beam electron energy greatly exceeds
IV we present some results of the analytical theory and nu€e-
merical simulations. In Sec. V we interpret the results ob- Now let us consider the effect of the local ion perturbation
tained in terms of pasotron parameters and present sonfl this equilibrium state. Let us assume that the longitudinal
simulation results for parameters typical for pasotron experiscale of this perturbation is larger than the beam raaljisit
ments. Finally, Sec. VI summarizes our considerations. Ifsmaller than the betatron wavelengkfy=2ma(la/1,)"2
addition to the main part of the paper, there is an appendix ifierel 4= (mc?/e) By is the Alfven current. This assumption
which electron oscillations in an anharmonic potential wellallows us to use Ed1) and its solution given by Eq2) for
are analyzed. analyzing the effect of ion perturbations on the potential. An
additional number of ions causes beam compression. This
means that after a beam passes the region of ion perturbation
Il. SIMPLE MODEL OF SELF-CONSISTENT PROCESSES with 6N;>0, the beam envelope radius decreasks'dz

=4me(n;—ny), (1)

RW>
1+2 In? , 2

IN A PHASE-MIXED, ION-FOCUSED <0.
ELECTRON BEAM The ion densityN; and velocityv; obey, respectively, the
When an initially quasilaminar electron beam enters arfontinuity equation
ion filled region, it experiences ion focusing. The waist of the Ny 9
beam in the first focal plane depends on the beam emittance. i T 57 (Nizi)=0 ()

After passing this plane, electrons exhibit betatron oscilla-
tions in the anharmonic potential well formed by the focus-
ing force of the ion channel and the defocusing force cause
by the finite emittance. In such a well, the electrons with v, v, e do

different initial transverse velocities oscillate with different EJF Vi T T m ez (4)
frequencies, which causes the beam phase mixing. The !
phase-mixed beam reaches its stationary state at a distance of

In the equilibrium state, the ion density per unit length
about several betatron wavelengths. Below we shall assume o di dthe i ial veloci
that our system is long enough, and hence, such a stationafy’ the beam radius are constant and the ion axial velocity

I ' e’ﬁuals zero. Thus, the perturbations of the ion density and

state can be reached. In turn, the radial profile of the phase:" " . : : . i
mixed beam density determines the potential well in which'%he lon velocity obey linearized equatiof® and (4):

the ions can move. So, after a certain time, the radial profile

8nd the equation for ion motion

of the ion density will also be redistributed and, as a result, a ﬂ _ ﬂ =0 (5)
stationary self-consistent radial distribution of both the ion at % gz ’

and beam electron densities in the phase-mixed beam will be

reached. A typical time of this transition process is the time v, e [ do N, de| o9da

of ion transverse oscillations, which for pasotrons is on the ot H.(ﬂ_N. 9z 9a W) . (6)
order of 1us or lesq18]. Nig a,
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[ .. t=t, ion fluctuation(backward ion wave will continue to oscil-

10 S late behind it in the direction of the beam propagation. Cor-
respondingly, the second ion fluctuatitiorward ion wave

can experience the effect of the variation of the potengial
caused by the ion wave propagating backward. However, the
electrons oscillate in an anharmonic potential well. There-
T 1 fore, these betatron oscillations decay at a distance of the

05+

00 r T T

Ion Density, Beam Radius (arb. units)

1
I t=t,>t order of a few betatron periods. As a result, after the propa-
Lo Wi F gation of ion fluctuations, which move in the opposite direc-
-— A tion over a distance larger than several betatron periods,
05 A these fluctuations propagate and evolve independently of
each other.
®r ' p pA ' A lll. GENERAL FORMALISM
Axial Distance (arb. units) In this section we shall derive equations for the ion-
FIG. 1. lon densitysolid line) and beam current radidashed ~ focused beam envelope in the phase-mixed stage and equa-
line) for two instants of time. tions describing the ion motion.

In Sec. Il we considered a stationary beam of transversely
Here Sa is the perturbation in the beam envelope radius duescillating electrons whose oscillation phases in the phase-
to the ion density perturbatiodN;. Two derivatives of the mixed state are uniformly distributed from 0 ter2Strictly
potential in the right-hand sid&RHS) of Eq. (6) are positive  speaking, such a beam needs a kinetic description. For our

and equal to purpose, however, it is enough to mention that this stationary
9 R, beam is formed as a result of the electron motion in the
—— =el1l+2 In—) >0, (7) self-consistent potential, and therefore, is characterized by a
IN; Nig * large spread in the transversal oscillations energy. This
spread is of the order of the difference of the potentials on
de Iy -1 the axis and at the beam envelope radius. Correspondingly,
—a =2 V_Z_eNOi a, >0. ®  the spread in amplitudes of electron oscillations is of the
8 order of the beam envelope radius. The angular momentum

M =myr v, of each particle is an integral of motion, there-
fore its value is determined by the boundary conditions at the
entrance. The motion of such a particle with a given angular

If we neglect the last term in the RHS of E®), Egs.(5)
and (6) yield the wave equation

J2(6N;)  €2Ny; R, 92(5N)) momentum is the motion in the 1D potential field. In general,
TI_ H1+2 Ina—W)WZ—'=0, (9)  such a particle should exhibit oscillations whose period de-
i *

pends on the particle total energy, because it oscillates in the
anharmonic potential well. These two features, a large spread
in the amplitudes of electron oscillations and the nonisoch-
ronism of the transverse betatron oscillations, are extremely

which describes the propagation of ion density waves in
directions with the phase velocity

NN important because they cause the phase mixing of electron
Vph= \/ o (1+2 |na_W)_ (10) oscillations and damping of the beam envelope oscillations
i * [9,22].

After the phase mixing of betatron oscillations, the beam

The presence of the last term in the RHS of & results reaches its stationary state. In general, the beam envelope

in a different effect. Since an addition of ions focuses theequation for a phase-mixed electron beam can be written as

beam stronger, in the region of ion fluctuatiatda)/dz .
<0. So, this second term represents a positive force. AC[_see Eq(4.49 in Ref. [4]]

counting for this term in the ion wave propagation described d’a _ 21y 2_ g )E+ (M?) 1 (11)
above causes the deceleration of the ion wave propagating dZ 1,82 Y a mzyzvz2 a®

backward and the acceleration of the wave propagating for-
ward. Since the velocity and density perturbations are prowheref=N;ev,/l, is the ratio of the ion to electron beam
portional to each other, the deceleration of the backwardlensities per unit length andM?) is the mean value of the
wave results in its attenuation, while the acceleration of thesquared angular momentum, which is proportional to the
forward wave results in its amplification, as shown in Fig. 1.beam emittance. So, whefi>1/y? (Budker condition, the

Let us emphasize the role of the phase mixing of electrorirst term on the RHS in Eq11) describes the beam com-
betatron oscillations in this process. Once we assume that thessing force, while the second one describes the beam ex-
beam electrons exhibit betatron oscillations, whose perioghansion force caused by the finite transverse “temperature”
does not depend on the amplitude of oscillations of indi-of the beam. The beam equilibrium occurs when these two
vidual electrons, it follows that perturbations in the beamforces compensate for each other. A corresponding equilib-
radius and, therefore, in the potentigl caused by the first rium radiusa, , as follows from Eq(11), is equal to
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2 0.6 -
a*=\/ M, (12)

2lp(f =y H)m?yc?

Note that, strictly speaking, the radiashas the meaning of
a scale-beam radiusee, e.g., Ref.22)).

Coming back to Eq(11), we should emphasize one fact
which is very important for the applicability of this equation.
Usually, this equation is used just for defining the beam en-
velope radius in the equilibrium state. However, according to2
this equation, the beam envelope radius, at least when th<§ 02 1
space charge compensation factds constant, can exhibit
axial oscillations with a constant amplitude. At the same
time, as was mentioned above, numerical simulations clearly?
indicate[22] that the electron anharmonic betatron oscilla- o
tions cause a damping of these beam envelope oscillations ™ 7 ' o i A P " %
This means that to be able to describe this damping(Hyg.
should be properly modified. Since the damping originates
from the anharmonicity of the betatron oscillations of indi-  FIG. 2. Beam radius evolution from the initial to the equilibrium
vidual electrons, we should start from considering this anharradius and the beam response to a local perturbation in the ion
monicity in more detail. Such a consideration is carried outdensity shown by the dashed line. The thick and thin solid lines
in the Appendix. As is shown there, the spatial frequency ofshow, respectively, the beam radius, inside which 50% and 25% of
anharmonic betatron oscillations of individual electrons isthe total beam current are contained.

ensity, Beam Radius
©
S
1

rmalize;

Normalized Axial Distance

equal to
5 0o Ipcalizeq ion fluctgatior(ion density is sh_own by Fhe dotted
ekl 1 2 M M b (13 'ine). This fluctuation causes some oscillations in the beam
AT 16 V(MAL T (M?%))aZ | radius. As is shown in Fig. 2, these oscillations are damped

after two to three betatron periods. As shown in the Appen-
Hereb is the amplitude of oscillations of an individual par- dix, this damping is due to the anharmonicity of electron
ticle andkg is the spatial frequency of the small amplitude oscillations, which we just discussed above.

betatron oscillations, To qualitatively describe this damping of beam radius per-
turbations, one can introduce into the RHS of Efl) an
K.—2 /2|b(f_77 ) i (14) additional term describing the dissipation, which should be
B NG a, proportional to—A da/dz. HereA is a constant, which, in

order to provide the damping of perturbations at the distance

When the angular momentum of beam electrons originategn the order of the betatron period, can be determinedl as
from some fluctuations causing the spread in electron Per= xk,, where the coefficieny is on the order of 1. So, the
pendicular velocities, the ratld */(M?) in Eq.(13) isonthe  modified equation for the beam envelope can be written as
order of 1. Also, the amplitude of electron oscillatidnsan  [cf. Eq. (11)]
vary from zero taa, . Therefore, the anharmonicity of these
oscillations, which can be characterized by the parameter 2
dk/d(b?) is rather strondon the order okﬁlai), and, cor- d_a: ﬁ y 2- ——xks=—. (15
respondingly, the spectrum &fdetermined by Eq(13), Ak, dz* 1,8° a m’y’;a’ Fdz
is on the order ok, . This means that any disturbance in the
beam envelope shape will be damped due to the phase mixjoyy |et us discuss the equations describing the ion motion.
ing at the distance on the order of one period of betatrorsma)| perturbations in the ion density can be described in a
oscillations 2r/ks. _ _ _ ___hydrodynamic approach, which is correct in the absence of

This conclusion is confirmed by numerical simulations;niersection of ion trajectories. When there is an intersection,
done for the electron motion in the presence of the self-fieldg,hich may occur either in the case of large perturbations in

and the field produced by immobile ions having a perturbayhe density, or in an axially bounded system with particle
tion localized inz, as was described above in Sec. Il. Somegfiection from the ends, it is necessary to model the ion

results of these simulations are illustrated in Fig. 2, whichmation numerically, as will be done later.
shows the radial size of the solid beam area containing 25% | the absence of interception and ionization process, the

(curve ) and 50%(curve I) of the total number of particles jo5n motion can be described by the continuity equaiisn

as the function of the normalized axial coordinate. The firSiyhich can be rewritten for the space charge neutralization
oscillations on the left show the beam compression after thgyctorf as

beam injection in a space containing the ion population. Af-

ter a few betatron periods the beam radius, due to the phase

mixing, reaches its equilibrium. Then, the beam, which al- ﬁ+ i(f )=0 (16)
ready propagates in the equilibrium state, passes through the at - gz" '

1 (M%) 1 da
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and the equation for the ion motidd), in which the poten- Here we introduced the following notations:p,
tial ¢ is determined by Eq(2). Ea<p/(7a|foya*, <pfz(9go/af|foya*.

When the process of the beam impact ionization is taken | et ys now make some comments regarding the validity
into account(this case will be considered below in Sec. of our approach. Equatiof21) is valid for the same range of

IV C), Eq. (16) is replaced by the following: wave numbers as the beam envelope equatids®). When
the axial scale of ion density perturbatidn,, is larger than
(9_f+i(f,,.)=n (2)v,0 (16 the betatron wavelength,, the “dissipative” term in the

at gz ! 0 e latter equation does not make any sense because, hen

>\p,, the beam electron oscillations can be treated as adia-
whereng(z) is the gas density and is the ionization cross batic, and hence, the phase mixing does not occur. In such a

section. long-wavelength limit of ion perturbations, the beam enve-
In terms of the space charge compensation factor(Bq. lope radius is equal to its equilibrium valag given by Eq.
can be rewritten as (12), which parametrically depends anbecause the space

R charge compensation ratfds determined by the local den-
1+2 |nz‘”), a7 sity of ions: cpfza<p/af|foya*. So, the wave numbers under

consideration should be larger than the betatron wave num-

|
p=(r=02)=—"(1-1)

Note that now this potential depends on the axial coordinaté?er Kg -

because the factdrand the beam radiusare axially depen- For analyzing the wave increment it is convenient to re-
dent. So, equation§15)—(17) and Eq.(4) form a self- write Eqg. (21) in normalized variables and also take into

consistent set of equations, which will be used in the follow-2ccount the definition of the potential given by Ej7). This

ing section. yields
IV. RESULTS QZ:KZ{ fo(fo—y 2(1+2InR,/a,)
A. Linear theor
near th - (K2=3)+ixK
In the framework of the linear theory, the beam radius, the +3(1—fp) — (22)
ion density(or the space charge compensation rtiehich (Ke=3)*+ x°K

is proportional to it, and the ion velocity can be represented

asa=a, + da, f=fo+ of, andv,=u, respectively. Hera,  Here

andf, are the stationary values afandf and the stationary a, 1.8
value of the ion velocity is zero. Linearizing Eqgl) and Q:w?m
(15—(17) with respect to these perturbations yields

m; 1/2

2m

andK=«/kg are the normalized frequency and axial wave

dsa . , déa _, , of number, respectively.
a2 TKedat xke g 4kﬁa*fo—y*2’ (18 The analysis of this dispersion equation shows that the
wave increment is maximal for the wave numbers on the
a6t au order of the betatron wave number and in this region the
7+f05=0- (19 imaginary part of the frequency is on the order of its real
part. Note that in Eq(22) (fo—y 2) and (1 f,) are of the
au e [do 05f  de 95a same order because, as the numeri(_:al reSL_JIts present-ed later
N s 4T — . (20) show, the space charge compensation ré§imscillates in
at m; ( Jf tom, 02 08l o 97 ) the range fromy 2 to 1. So, both the frequency and the

increment are predominantly determined by the value of the
Here Eqs(19) and(20) are essentially the same E@S) and  parameter

(6) which were analyzed in Sec. I, while E¢L8) deter- a, 1,82/ m\*2

mines the relation between the beam envelope and ion den- < 2\ m

sity perturbations that makes this set of equations self- b

consistent. This is a typical time of the instability growth and also a

Assuming that these perturbations are proportional tqharacteristic time of temporal fluctuations in the ion and

exdi(«xz—wt)], one can easily derive from Eq4.8)-(20) the  peam current densities. For typical pasotron parameters, this
following dispersion equation: time is about 1—-2us.

2

2 zeﬁoffo 2 eﬁoaa*kﬂ B. Nonlinear theory: Unbounded system

T T am (= D)

! itho™ Y For numerical studies of the nonstationary, nonlinear, self-
consistent processes we used Etp) describing the beam

(21)  envelope radius. The ion motion in the field with the poten-

[(k?=3K5)%+ (xkgr)?] ' tial given by Eq.(17) was described by the method of mac-

(k?—3k5) +ixkpgx
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roparticles. It was assumed that each macroparticle repre
sents a number of ions distributed over a space whose size i
much smaller than the betatron wavelength, which is the
axial scale of our problem. This distribution provides a
smooth variation of the space charge compensation fétio
the beam envelope equation.

Numerical simulations were carried out with the use of
equations written in normalized variables:

B a B V4 2|b
a0 aoy Vg
10 2 amasxgmce
_ 1 elb 2|b _ miVZ N(mmhzgdA)ﬂ
"=tay Vi, Vig? U=" Ny &

FIG. 3. Space and time evolution of a small local perturbation in
the ion density in the axially unbounded system. The arrow points

¢ Normalized Ton Density
/;

0.4

40

Y= %: —(1-f)|1+2 In% . to the bunch of accelerated ions.
b
Here a(0) is the beam radius at the entrance ang envelope after electrqns pass through this localized region.
—R,/a(0) is the normalized radius of the wall. Then, these pert_urbat_lons in the bea_lm en\_/elo_pe provoke sec-
In these normalized variables E(L7) and the equation ondary perturb_atlons in the ion den5|ty,_V\_/h|ch in th_e presence
for ion motion have the following form: of the attenuation due to the phase mixing are significant at
distances on the order of the betatron wavelength and

2

p_ o 2l To

dp smaller.

aE’ (249 As the amplitude of the ion wave propagating along the
beam increases, the nonlinearity in the ion motion increases
as well. This leads to the wave turnover and to the appear-

— = ) (25)  ance of a bunch of accelerated ions, shown in Fig. 3 by an

dr & arrow. The velocity of ions in such a bunch is larger than the

. ) wave phase velocity. This indicates the appearance of the ion
Here T,=(M?)1 ,82y%/2m?y?12a%(0)I,, and & is the axial

: - i acceleration mechanism. Recall that such an ion self-
coordinate of theth macroparticle. The space charge neu-acceleration at the expense of a certain deceleration of an

tralization ratio is determined by ion-pinched electron beam was already discussed in Sec. II.

Jr <§—a>2)’

p N
f(f)ZKziZl leF{——AF

d?¢ Iy

(26) C. Nonlinear theory: Bounded system

So far, we have considered the processes in an axially
whereq; is the charge of théth macroparticle normalized to Unbounded system and assumed that the ions are “prepared”
the electron Charge andN is the total number of macropar- before the beam injection. In real devices, however, the ions
ticles. The initial condition for macroparticle location, which are produced from a neutral gas by the beam electrons and
describes a local perturbation of the ion density, was given a8lso the potential in the entrance and exit cross sections is
€11(0)=&(0)+h/[1+Af exp(—[&(0)— &]2/A2)]. Here €qual zero. The latter leads to the formation of an axial po-
h is the step characterizing the distance between macropaiential well due to the beam space charge field. Far enough
ticles, &, is the coordinate of a center of ion perturbatiarf, ~ from these cross sections, the potential can be described by
is its amplitude, and\, is the scale of this localization. Eq. (17) [see also the normalized potenti@k) in Eq. (23)].

Let us start presenting our results from considering thét€call that this potential already depends on the axial coor-
dynamics of the initially localized perturbation of ion den- dinate, because the ion density and the beam envelope radius
sity, which we discussed above. The results of simulation&'® axially dependent. In order to take into account the effect

are shown in Fig. 3. The ion waves shown in this figureOf entrance and exit cross sections, it makes sense to replace
propagating waves agrees well with the results of our quali- ¢
oo
liarity of the solution shown in Fig. 3 is the existence of
plained by the fact that, as follows from E@®3), the local tainly, the appearance of the axial potential well will lead to

originate from a small initial perturbation of ion density. ~ ¥(é) by the productu (&) ¢(¢). The additional functionu(¢)
tative analysis carried out in Sec. II: the backward wave w(é)=

oscillations in the region between two, copropagating andvhere parametey should be large enough for localizing the
perturbations in ion density cause perturbations in the bearthe reflection of ion waves from potential barriers near the

(27

The dynamics of these two, copropagating and contra¢@n be determined as
| —
decays, while the forward wave grows. An interesting pecu- |
contrapropagating waves. These oscillations can be exedge effects| is the normalized coordinate of the exit. Cer-
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Normalized Ion Density | 0] Beam Charge Compensation a
S e ———
0.3
P U
%% 7
2
N 0‘2 T T T 1
i 40 50 60 70 80
10 5 -] Normalized Beam Radius b
0 2 4 6 4
Normalized Axial Distance 34
FIG. 4. Space and time evolution of a small local perturbation in
the ion density in the axially bounded system. 1
0 L} L} T T 1
entrance and the exit, and hence, cause the superposition ar 4 0 Norma o i 0 &
ormalized Time

interference of these fluctuations.

To account for the process of the beam impact ionization, FIG. 5. Temporal evolution of the total number of trapped ions
we considered the total number of macroparticdiésas a  or space-charge compensation ra@ and the beam radius at the
function of time, which, due to ionization, increases in time collector (b).
proportionally to the RHS term in E¢16’). The dimension-

less form of this source term is well. From comparison of this dependence with results
shown in Fig. 3 and 4 it follows that even when the local

1282 [miv, oscillations of the ion density shown in these figures are

S=ngov,ya(0) o1, Vel (28)  large, the total number of ions exhibits only weak oscilla-

tions. At the same time even these weak oscillations may

It was assumed that the gas density decays exponential§@Use significant oscillations of the beam radius.
along the axis. Correspondingly, in E@®8) the gas density
no was given as(0)exp(-é&llg). The value ofS=1 corre- v pISCUSSION: APPLICATION TO THE PASOTRON
sponds to the creation of such a number of ions in the time
stepAr=1 at the distancd é=1, which causes a complete ~ Let us estimate the values of the normalized parameters
neutralization of the beam space charge. used above for the pasotron experiments carried out at
An example of the spatial-temporal evolution of the ion Hughes Research Lab and at the University of Maryland
density in the bounded system in the presence of the beaf?3]- In these experiments the device was driven by an elec-
impact ionization is shown in Fig. 4. Here the local space-lron beam with the typical range of voltages from 36 to 40
charge neutralization ratibis shown as the function of the KV and currents from 30 to 50 A. These values of the beam
normalized time and axial coordinate. The results presente¥oltage and current correspond fo~0.375-0.38,y~1.08,
in Fig. 4 correspond to the normalized scale of the gas inhoand I ,»~6.5 kA. Correspondingly, the beam current to Al-
mogeneityl;=4.0. As one can see in Fig. 4, the systemfven current ratio is about 0.005.
exhibits the ion wave motion and the filaments shown in this The normalized timer can be represented &4, , where
figure can be attributed to the ion acceleration. the  normalization  time t, is equal to
As the total number of ions trapped by the potential well[a(0)/c][1a/1,]1B8[(¥/2)(my/m)A]¥2  where A is the
increases, the potential barrier decreases, because the beat@mic number of the gas amaj, is the proton mass. For the
space charge gets compensated. Correspondingly, the effdigam radius at the entrance equal to 2 cm and other param-
of ion acceleration becomes more important. Indeed, wheeters given above, this yields, =0.16|A usec. Corre-
the ion density is high enough, the ions compensate for thepondingly, for the normalized axial coordinate determined
beam space charge almost completely. Therefore, even as é=2z/z, , the normalization lengtlz, is approximately
small ion acceleration allows them to penetrate through &qual to 8 cm.
small potential barrier. Thus, in such a state, some kind of The betatron wave number, in accordance with #¢),
equilibrium occurs, in which the beam impact ionization asis inversely proportional to the equilibrium radius of the
the source of new ions and the release of accelerated iodeam envelopea, . For a typical value of this radius of
from the potential well compensate for each other. Of coursegbout 1 cm, the betatron wave number is equal to 0.2'cm
this equilibrium is not static, and the beam radius and the iorand the period of betatron oscillations is about 30 cm. Since
density oscillate about their equilibrium values. An examplethe equilibrium radius of the beam envelope and the average
of such oscillations is shown in Fig. 5, which shows the totalsquared initial angular momentu¢M?) are proportional to
number of ions in the system and the beam radius at theach other as given by El2), the choice of the equilibrium
collector (exit) as functions of time. Note that here the total radius determines the momenty 2.
space-charge compensation ratio is shown, which is deter- We also studied some nonstationary phenomena in the
mined by the total number of ions trapped by the potentiabeam current density and charge compensation ratio for typi-
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Beam Charge Compensation a shown here indicate that there also should be strong oscilla-
L I N U tions in the beam current density and the size of the beam
sd area deposition at the collector. Results presented in Hiy. 6
o are quite similar to experimental observations of fluctuations
0.6 in the beam current shown in Fig. 14 of REL3].
1
04 ' ' ' VI. SUMMARY
60 80 100 120
154 A theory describing the self-consistent nonstationary pro-
Normalized Current Density b cesses in the propagation of a phase-mixed electron beam
1.0 through a nonuniform column of mobile ions is developed. It
is shown that in plasma-assisted slow-wave oscillators these
054 processes may result in substantial temporal oscillations of
the beam current density. Also, these processes may cause
00 . : . . . , acceleration of ions.
60 80 100 120
Normalized Time
ACKNOWLEDGMENTS

FIG. 6. Temporal evolution of the total space-charge compensa-
tion ratio (a) and the normalized beam current dengiy in the
pasotron.

This work has been supported by the United States-Israel
Bi-national Science Foundation and the Air Force Office of
Scientific ResearcNew World Vistas program, Grant No.
F496209710270 The authors are also indebted to D. M.

cal pasotron parameters. Simulations were done for the pgoepel for very useful discussions of issues addressed in the
sotron with the beam voltage and current equal to 35 kV anghesent study.

30 A, respectively. It was assumed that the beam propagates
in a wave guide of a radius of 3 cm and a length of 80 cm. It
was also assumed that the initial beam radius at the entrance
is equal to 2 cm, while the equilibrium beam radiags is
equal to 1 cm, which corresponds to the angular spread of As known[24], the transverse motion of electrons, which
{a?)Y2=0.05 and the normalized temperatdre 0.035. The  have initial nonzero transverse velocities, in the 1D potential
He pressure at the entrance was taken equal tovell, Ug(r), obeys the following equation:
4% 10 Torr, so the corresponding ionization time at the d2

. . . X r ‘9Ueff
entrance is equal to 1fsec. This choice of the device pa- My - =— , (A1)
rameters yields a normalization tintg =0.32usec and a dt ar
normalization lengttz, =8.0 cm. These values result in the
following values of the normalized parameters adopted i

APPENDIX: ELECTRON OSCILLATIONS
IN AN ANHARMONIC POTENTIAL WELL

nWhere the effective potential well is determined as

our theory: the source ter8=3.2x10 2, the normalized M?2

lengthl =10, the normalized scale of the gas density profile Uert= €@et 2myr? (A2)
l4=4.0. We also assumed that the dissipation coefficieist

equal to 0.5. In Eq. (A2) M=myr v, is the angular momentum, which is

Results are presented in Figsapand Gb). Here, Fig.  the invariant of motion. The potentige(r), in accordance
6(a) shows the ratio of a total charge of all ions in the inter-with Eq. (1) and the fact that the beam electric self-field is
action space to the total number of all electrons there. Thparﬂy Compensated by the magnetic self-field, is equa| to
dotted straight line in Fig. ® corresponds to the ion den-
sity, at which the beam focusing startkh other words, this
is the case when the initial beam radius is equal to the equi-
librium radius) As one can see, the charge compensation
ratio fluctuates in a rather small range of values close to 1. A-orrespondingly, Eq(Al) can be rewritten as
typical scale of these temporal oscillations in the beam cur-
rent density and charge compensation ratio is on the order of
several units of, or, in other words, on the order of 1 ms.
Of course, fluctuations in the ion density affect the axial . .
velocity of electrons, which in pasotron amplifier configura-The elect_ron radius in the equilibrium state, as follows from
tions may result in additional fluctuations of the phase of the=d- (A4), is equal to
output signal. This issue, which is extremely important for 4 M? Ia )
the performance of amplifiers, is, however, beyond the scope 0=y 2c2 21 (F—y 2 2
of the present study.

Figure @b) shows the beam current density normalized toWhen the beam radius is equal to its equilibrium value given
the density, which corresponds to the beam with an equilibby Eq. (12), a=a, , Eq. (A5) yields a very simple relation
rium radius. Strong fluctuations in the beam current densitypetweenr, anda, :

Pe(r)=—

Iy ) ( b rz)
V—Z(l—ﬂ )—eN 1+2In5—¥ . (A3)

d’r el 2 2

— _ A2
W Zm—cg —2—ga Z‘}/ (1 ’yf)r+—2—2—gmyr . (A4)

(A5)
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4 4 M2 For the sake of simplicity, assume that the ion perturba-
ro:a*<M ) (AB)  tion localized near=z, can be described by th&function,
and hence, EqiA12) can be rewritten as

Now let us consider small oscillations of the electron ra-

dius about this equilibrium state=ry(1+x). A proper ex- d’r 21, T M2
pansion of the RHS of EqA4) in terms ofx, which implies a2 + W(fo_ Y );— m22r3,2
the account for the second- and third-order terms in the last A Y z
term in this equatioricf. Ref.[24]), reduces Eq(A4) to 2l 1
d2X k2 MZ W;Afﬁ(z ZO). (A13)

d—r5+k2x+?ﬁm(—3x2+5x3)=0. (A7) | o |
whereAf is the total number of ions in the perturbation.
Here the frequency of the betatron oscillatidggis deter- Consider small oscillations of an electron radius about the
mined by Eq.(14). Equation(A7) describes anharmonic os- equilibrium radiusrq. For the variablex, which was deter-
cillations, whose frequency of spatial oscillations depends omined above by =ry(1+Xx), Eq. (A13) reduces to
the oscillation amplitude g3]

3c;_ 5¢3 | , OI2X+k2x=—lk2—gA 8(z—20) (A14)
kzkﬁ"r‘ B—kB_Eg X7. (A8) d?- 4 Bfo_ v 0/-

Herex, is the amplitude of oscillations with the frequency Now, in contrast to Eq(A7), we account for the linear terms

kg andc, andc; are coefficients at the corresponding pow- only, but the spatial frequendydepends on the amplitude of
ers ofx in Eq. (A7). Substituting the values of these coeffi- electron oscillation®.

cients into Eq(A8) results in On the left and on the right from the point of perturbation
5 M2 M2 z=17,, the solution of Eq.(A14) has the same formx(z)
k=Kg 1+xi— —2<1— —2) ) (A9) =X; cogk(b)z+a], however, the amplitudes and phases
16 (M*) (M%) are different before and after the perturbation. Their values

The amplitudeb of electron oscillations about the equilib- can be matched by using the boundary conditions=at,:

rium state relates tx; as b=rgx;. Therefore, using Eg. dx
(A6), one can finally rewrite EqA9) as

le15 /MZ(1 |v|2)b2
T VIMA |~ /m2\ | a2
16 (M%) (M%) a, Here Ax’ is a step in the derivative at this point, which, as

Let us now qualitatively describe the effect of anharmo-follows from Eq.(A14), is equal to
nicity of electron oscillations on the damping of beam enve-

_dx

750 dz

—AX'. (A15)

z5+0

X|2070:X|zo+01 d_Z

k=kg . (A10)

- . . Af
lope oscillations. In this analysis we shall assume that the AX' = —%sz_—fz- (A16)
perturbations in electron motion are caused by a fluctuation 0~

in the space-charge neutralization factdr f(z)="f,

+0f(2), wheresf(z) is a small local perturbation. By using Eq.(A16) and the assumption that the ion pertur-
Macroscopic parameters of an electron be@uch as a  bation is small, one can readily derive the following expres-

mean radius, radial profile of the beam density,)eice de-  sjons for steps in the amplitude and phase:

termined by the beam microscopic characteristics of indi-

vidual particles and the beam distribution function. For in- B sing |
stance, the mean beam radig) can be determined as AX=X4|75+ 07 X1lzg-0= — Ky Ax',
HZ)=J r(z,b,a)P(b,a)db da. (A11) Cos¢
Aa= a|zo+0—a|zo,0= - Koy AX'. (A17)

Herer(z,b,a) is a periodic solution of Eq(A4) with the
amplitudeb and initial phasea [for instance,r =b coskz H —Kkz.+ a is the bh f turbed illati t
+a)], and P(b,«) is the probability function. In a phase- foze¢ T a s e phase of an Unperturbed osciiation a
mixed beamP (b, )= (1/27)P(b), and therefore, the mean
radius is constant:(z) =r,=const.

Substitutingf (z) = fy+ 8f(z) into Eq. (A4) yields

Now the solution forx at z=z, can be written as

X(z)=(X1+Ax;)codk(z—2zg)+ p+Aa]. (AL8)
d2r 21, o M?2 b T
a2 152 fomY ) 2 o a3 =1 2 0f(2). - , : :
AB a® moyreus [AB° a Substituting Eq(A18) into Eq.(A11) yields the following
(A12) expression for the mean value of the beam radius=at,:
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!

ot B AX ,
Wz)—rﬁ—ﬁf db d¢P(b) (A19) ﬂz)—r0+r0f db P(b)k—BS|r{kﬁ(l+ R.b%)(z—29)]

!

. AX
=rogt+rg su‘[kﬁ(z—zo)]f db P(b)k_ﬁ

x{(b+Ab)cogk(z—2z,) + ¢+ Aa]}
X cog kgRyb?(2—20) ]+ cog kg(z—20)]

!

1
*hﬁgfdb P(b)fdcb xfdb P(b)Ak—);sir[kﬁRabz(z—zo)]]. (A21)

Equation(A21) shows that az=z, the oscillations of the
X{Abcogk(z—2zy)+ d]—bAasiNk(z—zy)+ ¢]}. mean radius of electron oscillations appear. These oscilla-
tions have the spatial frequenky, and they decay with the

B . . P . departure fromz=2z,. A typical distance, which character-
Here b=rgx, is the amplitude of oscillations of a particle izes this damping, can be estimated as

radius andAb=ryAx;. With the use of Eq.(Al7), Eq. 5
(A19) can be readily reduced to |~ _T (A22)

, k goRab?
WZ):rOHOJ db P(b) k—ﬁsw{k(z—zo)]. (A20)  Hereb is a typical scale of the oscillation amplitude, which
depends on the functioR(b). In our case, the spread in
) oscillation amplitudes is on the order of the stationary beam
Now, let us take into account that the wave numker enyelope radius, ; therefore, accounting for EGA10), the
depends on the oscillation amplitudek=ks(1+b?R,),  distancel, can be estimated ag~2m/k. This estimate
where the anharmonicity parametRy can be easily found shows that the oscillations of the radius decay at the period

from Eq.(A10). Then, Eq.(A20) can be rewritten as of betatron oscillations.
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