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Self-consistent nonstationary processes in phase-mixed electron beams focused by mobile ion
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This paper is devoted to the analysis of nonstationary self-consistent processes in electron beam propagation
in the presence of mobile ions. This problem is of particular interest for the recently developed plasma-assisted
slow-wave oscillators~pasotrons!. In pasotrons beam focusing is provided by ions~in contrast to other high-
power microwave sources where the beam is focused by a strong external magnetic field!. Typically, pasotrons
operate in rather long pulses with a pulse duration on the order of 100ms and larger. In such a time scale, the
ion motion can play a significant role, and therefore, the self-consistent nonstationary processes in the beam
transport and ion motion become important. In particular, the interaction with beam electrons may result in ion
axial acceleration. In the present paper, a theory that describes these nonstationary self-consistent processes is
developed, taking account of the phase mixing of electrons having a spread in their initial transverse velocities.
The paper also contains some simulation results obtained for typical pasotron parameters.
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I. INTRODUCTION

The interest in the ion focusing of electron beams ha
long history. This effect by itself is present practically ever
where, where electron beams propagate, because they
propagate in absolute vacuum. In any beam transport c
nel, there is a residual gas, which, once the beam is injec
gets ionized due to the beam impact ionization.~Of course,
the ions can also be produced from neutral gas by us
some laser preionization techniques as well as by o
means!. Then, the beam space charge quickly ejects pla
electrons leaving an ion core. The presence of ions neu
izes the beam space charge, and thus weakens the bea
vergence caused by the radial electric self-field. When
gas-plasma density is high enough, the beam divergence
be suppressed completely, and therefore, due to this ion
cusing, the beam can be transported via a long distance.
an ion focusing is known as the Bennett pinch@1#.

The beam divergence caused by the radial electric s
field, as known~see, e.g., Refs.@2–4#!, is also compensated
to some extent, by the Lorentz force caused by the azimu
magnetic self-field. The latter force isb2 times smaller than
the former one~hereb is the electron axial velocitynz nor-
malized to the speed of light!. Therefore, this Lorentz force
starts playing an important role when the beam voltage
high enough. As follows from the known beam envelo
equation @2–4#, to focus a beam the following conditio
should be fulfilled: f .1/g2. Here f 5ni /nb is the ion to
electron beam density ratio andg5(12b2)21/2 is the Lor-
entz factor of electrons. This condition is known as the Bu
ker condition for beam focusing@5#. As follows from it, to
focus relativistic electron beams, it is enough to have a r
tively low ion density.

This fact, as well as the possibility to avoid the use
focusing magnets and solenoids, attracted a great attentio
the ion focusing of high-current relativistic electron bea
during the 1970s and 1980s~see, e.g., Refs.@6–9# and ref-
erences therein!. Since the pulse duration of these beams w
typically rather short~tens to hundreds of nanoseconds!, the
treatment of this problem was practically always done un
1063-651X/2002/66~5!/056503~10!/$20.00 66 0565
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the assumption that ions are immobile. As an exclusion fr
this rule, it is worth mentioning Refs.@10,11#, where an ex-
perimental study of some effects caused by the ion mo
~ion hose instability! in microsecond long pulse electro
beams is described.

During the 1990s, a new plasma-filled source of coher
microwave radiation was proposed and actively studi
named the pasotron~plasma-assisted slow-wave oscillato!
@12–14#. One of the specific features of the pasotron is
fact that in this device the transport of a high-perveance e
tron beam is provided by the Bennett pinch. A number
theoretical issues related to the beam-wave interaction in
pasotron have been recently analyzed in Refs.@15–17#. Also,
some nonstationary phenomena in the beam transport in
process of gas ionization in pasotrons were recently con
ered in Ref.@18#. In Ref. @18#, however, the effect of phas
mixing of electron trajectories was neglected, while, und
certain conditions, it can be important for the beam propa
tion.

The most important feature, which makes the beam tra
port in pasotrons different from the transport of relativis
electron beams studied earlier, is the length of the be
pulse duration, which in pasotrons is much longer~up to
hundreds of microseconds! than in relativistic beams. In this
time scale the ion motion, in accordance with the estima
made elsewhere@14,18#, can play a role. For example, in th
case of an axially nonuniform gas density profile, the ax
motion of ions increases the ion density in regions of low g
density, and thus, improves the beam focusing there@18#.

Note that the effects of ions on the operation of vacu
microwave tubes have been studied in many papers. On
the first seminal papers was Ref.@19#, in which some modu-
lations in the electron beam current were explained by
presence of ions capable of a quasiperiodic release from
potential well formed by the beam space charge~so-called
ion relaxation oscillations!. In spite of a long history of this
problem, the effect of ions on the operation of vacuum tub
is still actively studied even nowadays~see, e.g., Refs
@20,21#, and references therein!. These studies, however, de
with the beams guided by external magnetic fields provid
©2002 The American Physical Society03-1
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a one-dimensional~1D! electron beam motion. When thes
fields are periodic~like in the case of periodic permane
magnets!, this periodicity may cause a beam scallopin
which can be the reason for ion trapping. Note that in
these devices the presence of ions is inessential for elec
motion. On the contrary, we are concerned about the
focused beam propagation in the absence of guiding exte
fields. In such a case, first, all particles may exhibit a
motion, and second, the only fields which are present i
system are the self-fields of the electron beam and io
which makes the problem under study self-consistent.
interest in this problem was motivated by some experime
with pasotrons@13,14#, in which strong pulsations in the co
lector current have been observed. These oscillations
stem from possible pulsations of the ion density, which,
ing accelerated by an axially inhomogeneous electron be
may acquire enough energy for penetrating through the
tential well. Such ion pulsations may also cause pulsation
the beam current, thus making the process self-consiste

In the present paper we make an attempt to develo
theory describing these self-consistent nonstationary
cesses. The paper is organized as follows. In Sec. II a sim
model describing the physical effects under study is con
ered. In Sec. III equations are derived, which are later u
for more accurate analytical and numerical studies. In S
IV we present some results of the analytical theory and
merical simulations. In Sec. V we interpret the results o
tained in terms of pasotron parameters and present s
simulation results for parameters typical for pasotron exp
ments. Finally, Sec. VI summarizes our considerations.
addition to the main part of the paper, there is an appendi
which electron oscillations in an anharmonic potential w
are analyzed.

II. SIMPLE MODEL OF SELF-CONSISTENT PROCESSES
IN A PHASE-MIXED, ION-FOCUSED

ELECTRON BEAM

When an initially quasilaminar electron beam enters
ion filled region, it experiences ion focusing. The waist of t
beam in the first focal plane depends on the beam emitta
After passing this plane, electrons exhibit betatron osci
tions in the anharmonic potential well formed by the focu
ing force of the ion channel and the defocusing force cau
by the finite emittance. In such a well, the electrons w
different initial transverse velocities oscillate with differe
frequencies, which causes the beam phase mixing.
phase-mixed beam reaches its stationary state at a distan
about several betatron wavelengths. Below we shall ass
that our system is long enough, and hence, such a statio
state can be reached. In turn, the radial profile of the ph
mixed beam density determines the potential well in wh
the ions can move. So, after a certain time, the radial pro
of the ion density will also be redistributed and, as a resu
stationary self-consistent radial distribution of both the i
and beam electron densities in the phase-mixed beam wi
reached. A typical time of this transition process is the ti
of ion transverse oscillations, which for pasotrons is on
order of 1ms or less@18#.
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Let us consider the stability of the phase-mixed elect
beam with respect to the local perturbation in the ion dens
In the absence of perturbations, in an axially uniform syste
the potentialw obeys the 1D Poisson equation

1

r

]

]r S r
]w

]r D54pe~ni2nb!, ~1!

with the following boundary condition at the wall of a radiu
Rw : w(Rw)50. The potential atr 50 which we will use
below for crude estimates, as follows from Eq.~1!, is equal
to

w5w~0!52S I b

nx
2eNi D S 112 ln

Rw

a D , ~2!

wherea is the beam radius andNi is the ion density per unit
length. It is assumed above that the beam and the ion cha
radii are equal and that the beam and ion densities are
mogeneous. When the beam or wall radii and/or the ion d
sity slowly depend onz, so also the potential does. Th
dependence means that an axial electric field,Ez5
2]w/]z, appears in the system, which causes the ion a
motion. The action of this field on the beam electrons can
neglected since the beam electron energy greatly exc
ew.

Now let us consider the effect of the local ion perturbati
on this equilibrium state. Let us assume that the longitudi
scale of this perturbation is larger than the beam radiusa, but
smaller than the betatron wavelengthlb52pa(I A /I b)1/2.
HereI A5(mc3/e)bg is the Alfven current. This assumptio
allows us to use Eq.~1! and its solution given by Eq.~2! for
analyzing the effect of ion perturbations on the potential.
additional number of ions causes beam compression. T
means that after a beam passes the region of ion perturb
with dNi.0, the beam envelope radius decreases:da/dz
,0.

The ion densityNi and velocityn i obey, respectively, the
continuity equation

]Ni

]t
1

]

]z
~Nin i !50 ~3!

and the equation for ion motion

]n i

]t
1n i

]n i

]z
52

e

mi

]w

]z
. ~4!

In the equilibrium state, the ion density per unit leng
and the beam radius are constant and the ion axial velo
equals zero. Thus, the perturbations of the ion density
the ion velocity obey linearized equations~3! and ~4!:

]dNi

]t
1Ni0

]n i

]z
50, ~5!

]n i

]t
52

e

mi S ]w

]Ni
U

Ni0

]dNi

]z
1

]w

]aU
a
*

]da

]z D . ~6!
3-2
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SELF-CONSISTENT NONSTATIONARY PROCESSES IN . . . PHYSICAL REVIEW E66, 056503 ~2002!
Hereda is the perturbation in the beam envelope radius d
to the ion density perturbationdNi . Two derivatives of the
potential in the right-hand side~RHS! of Eq. ~6! are positive
and equal to

]w

]Ni
U

Ni0

5eS 112 ln
Rw

a*
D.0, ~7!

]w

]aU
a
*

52S I b

nz
2eN0i Da

*
21.0. ~8!

If we neglect the last term in the RHS of Eq.~6!, Eqs.~5!
and ~6! yield the wave equation

]2~dNi !

]t2 2
e2N0i

mi
S 112 ln

Rw

a*
D ]2~dNi !

]z2 50, ~9!

which describes the propagation of ion density waves in6z
directions with the phase velocity

nph5Ae2N0i

mi
S 112 ln

Rw

a*
D . ~10!

The presence of the last term in the RHS of Eq.~6! results
in a different effect. Since an addition of ions focuses
beam stronger, in the region of ion fluctuation](da)/]z
,0. So, this second term represents a positive force.
counting for this term in the ion wave propagation describ
above causes the deceleration of the ion wave propaga
backward and the acceleration of the wave propagating
ward. Since the velocity and density perturbations are p
portional to each other, the deceleration of the backw
wave results in its attenuation, while the acceleration of
forward wave results in its amplification, as shown in Fig.

Let us emphasize the role of the phase mixing of elect
betatron oscillations in this process. Once we assume tha
beam electrons exhibit betatron oscillations, whose pe
does not depend on the amplitude of oscillations of in
vidual electrons, it follows that perturbations in the bea
radius and, therefore, in the potentialw, caused by the firs

FIG. 1. Ion density~solid line! and beam current radius~dashed
line! for two instants of time.
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ion fluctuation~backward ion wave!, will continue to oscil-
late behind it in the direction of the beam propagation. C
respondingly, the second ion fluctuation~forward ion wave!
can experience the effect of the variation of the potentialw,
caused by the ion wave propagating backward. However,
electrons oscillate in an anharmonic potential well. The
fore, these betatron oscillations decay at a distance of
order of a few betatron periods. As a result, after the pro
gation of ion fluctuations, which move in the opposite dire
tion over a distance larger than several betatron perio
these fluctuations propagate and evolve independently
each other.

III. GENERAL FORMALISM

In this section we shall derive equations for the io
focused beam envelope in the phase-mixed stage and e
tions describing the ion motion.

In Sec. II we considered a stationary beam of transvers
oscillating electrons whose oscillation phases in the pha
mixed state are uniformly distributed from 0 to 2p. Strictly
speaking, such a beam needs a kinetic description. For
purpose, however, it is enough to mention that this station
beam is formed as a result of the electron motion in
self-consistent potential, and therefore, is characterized b
large spread in the transversal oscillations energy. T
spread is of the order of the difference of the potentials
the axis and at the beam envelope radius. Correspondin
the spread in amplitudes of electron oscillations is of
order of the beam envelope radius. The angular momen
M5mgrn0 of each particle is an integral of motion, ther
fore its value is determined by the boundary conditions at
entrance. The motion of such a particle with a given angu
momentum is the motion in the 1D potential field. In gener
such a particle should exhibit oscillations whose period
pends on the particle total energy, because it oscillates in
anharmonic potential well. These two features, a large spr
in the amplitudes of electron oscillations and the noniso
ronism of the transverse betatron oscillations, are extrem
important because they cause the phase mixing of elec
oscillations and damping of the beam envelope oscillati
@9,22#.

After the phase mixing of betatron oscillations, the bea
reaches its stationary state. In general, the beam enve
equation for a phase-mixed electron beam can be writte
@see Eq.~4.49! in Ref. @4##

d2a

dz2 5
2I b

I Ab2 ~g22 f !
1

a
1

^M2&
m2g2nz

2

1

a3 , ~11!

where f 5Nienz /I b is the ratio of the ion to electron beam
densities per unit length and̂M2& is the mean value of the
squared angular momentum, which is proportional to
beam emittance. So, whenf .1/g2 ~Budker condition!, the
first term on the RHS in Eq.~11! describes the beam com
pressing force, while the second one describes the beam
pansion force caused by the finite transverse ‘‘temperatu
of the beam. The beam equilibrium occurs when these
forces compensate for each other. A corresponding equ
rium radiusa* , as follows from Eq.~11!, is equal to
3-3
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BLIOKH et al. PHYSICAL REVIEW E 66, 056503 ~2002!
a* 5A ^M2&I A

2I b~ f 2g22!m2g2c2. ~12!

Note that, strictly speaking, the radiusa has the meaning o
a scale-beam radius~see, e.g., Ref.@22#!.

Coming back to Eq.~11!, we should emphasize one fa
which is very important for the applicability of this equatio
Usually, this equation is used just for defining the beam
velope radius in the equilibrium state. However, according
this equation, the beam envelope radius, at least when
space charge compensation factorf is constant, can exhibi
axial oscillations with a constant amplitude. At the sam
time, as was mentioned above, numerical simulations cle
indicate @22# that the electron anharmonic betatron oscil
tions cause a damping of these beam envelope oscillati
This means that to be able to describe this damping, Eq.~11!
should be properly modified. Since the damping origina
from the anharmonicity of the betatron oscillations of ind
vidual electrons, we should start from considering this anh
monicity in more detail. Such a consideration is carried
in the Appendix. As is shown there, the spatial frequency
anharmonic betatron oscillations of individual electrons
equal to

k5kbF11
15

16
A M2

^M2& S 12
M2

^M2& D b2

a
*
2 G . ~13!

Hereb is the amplitude of oscillations of an individual pa
ticle andkb is the spatial frequency of the small amplitud
betatron oscillations,

kb52A2I b~ f 2g22!

I Ab2

1

a*
. ~14!

When the angular momentum of beam electrons origina
from some fluctuations causing the spread in electron
pendicular velocities, the ratioM2/^M2& in Eq. ~13! is on the
order of 1. Also, the amplitude of electron oscillationsb can
vary from zero toa* . Therefore, the anharmonicity of thes
oscillations, which can be characterized by the param
dk/d(b2) is rather strong~on the order ofkb /a

*
2 ), and, cor-

respondingly, the spectrum ofk determined by Eq.~13!, Dk,
is on the order ofkb . This means that any disturbance in t
beam envelope shape will be damped due to the phase
ing at the distance on the order of one period of betat
oscillations 2p/kb .

This conclusion is confirmed by numerical simulatio
done for the electron motion in the presence of the self-fie
and the field produced by immobile ions having a pertur
tion localized inz, as was described above in Sec. II. Som
results of these simulations are illustrated in Fig. 2, wh
shows the radial size of the solid beam area containing 2
~curve I! and 50%~curve II! of the total number of particles
as the function of the normalized axial coordinate. The fi
oscillations on the left show the beam compression after
beam injection in a space containing the ion population.
ter a few betatron periods the beam radius, due to the p
mixing, reaches its equilibrium. Then, the beam, which
ready propagates in the equilibrium state, passes through
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localized ion fluctuation~ion density is shown by the dotte
line!. This fluctuation causes some oscillations in the be
radius. As is shown in Fig. 2, these oscillations are dam
after two to three betatron periods. As shown in the App
dix, this damping is due to the anharmonicity of electr
oscillations, which we just discussed above.

To qualitatively describe this damping of beam radius p
turbations, one can introduce into the RHS of Eq.~11! an
additional term describing the dissipation, which should
proportional to2A da/dz. HereA is a constant, which, in
order to provide the damping of perturbations at the dista
on the order of the betatron period, can be determined aA
5xkb , where the coefficientx is on the order of 1. So, the
modified equation for the beam envelope can be written
@cf. Eq. ~11!#

d2a

dz2 5
2I b

I Ab2 ~g222 f !
1

a
1

^M2&
m2g2nz

2

1

a32xkb

da

dz
. ~15!

Now let us discuss the equations describing the ion mot
Small perturbations in the ion density can be described
hydrodynamic approach, which is correct in the absence
intersection of ion trajectories. When there is an intersect
which may occur either in the case of large perturbations
the density, or in an axially bounded system with partic
reflection from the ends, it is necessary to model the
motion numerically, as will be done later.

In the absence of interception and ionization process,
ion motion can be described by the continuity equation~5!,
which can be rewritten for the space charge neutraliza
factor f as

] f

]t
1

]

]z
~ f n i !50, ~16!

FIG. 2. Beam radius evolution from the initial to the equilibriu
radius and the beam response to a local perturbation in the
density shown by the dashed line. The thick and thin solid lin
show, respectively, the beam radius, inside which 50% and 25%
the total beam current are contained.
3-4
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SELF-CONSISTENT NONSTATIONARY PROCESSES IN . . . PHYSICAL REVIEW E66, 056503 ~2002!
and the equation for the ion motion~4!, in which the poten-
tial w is determined by Eq.~2!.

When the process of the beam impact ionization is ta
into account~this case will be considered below in Se
IV C!, Eq. ~16! is replaced by the following:

] f

]t
1

]

]z
~ f n i !5n0~z!nzs, ~168!

wheren0(z) is the gas density ands is the ionization cross
section.

In terms of the space charge compensation factor, Eq~2!
can be rewritten as

w5w~r 50,z!52
I b

nz
~12 f !S 112 ln

Rw

a D . ~17!

Note that now this potential depends on the axial coordin
because the factorf and the beam radiusa are axially depen-
dent. So, equations~15!–~17! and Eq. ~4! form a self-
consistent set of equations, which will be used in the follo
ing section.

IV. RESULTS

A. Linear theory

In the framework of the linear theory, the beam radius,
ion density~or the space charge compensation ratiof, which
is proportional to it!, and the ion velocity can be represent
asa5a* 1da, f 5 f 01d f , andn i5u, respectively. Herea*
and f 0 are the stationary values ofa andf and the stationary
value of the ion velocity is zero. Linearizing Eqs.~4! and
~15!–~17! with respect to these perturbations yields

d2da

dz2 1 1
2 kb

2da1xkb

dda

dz
52 1

4 kb
2a*

d f

f 02g22 , ~18!

]d f

]t
1 f 0

]u

]z
50, ~19!

]u

]t
52

e

mi S ]w

] f U
f 0 ,a

*

]d f

]z
1

]w

]aU
f 0 ,a

*

]da

]z D . ~20!

Here Eqs.~19! and~20! are essentially the same Eqs.~5! and
~6! which were analyzed in Sec. II, while Eq.~18! deter-
mines the relation between the beam envelope and ion
sity perturbations that makes this set of equations s
consistent.

Assuming that these perturbations are proportional
exp@i(kz2vt)#, one can easily derive from Eqs.~18!–~20! the
following dispersion equation:

v25k2
ew f f 0

mi
1k2

ewaa* kb
2

4mi~ f 02g22!

3
~k22 1

2 kb
2 !1 ixkbk

@~k22 1
2 kb

2 !21~xkbk!2#
. ~21!
05650
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Here we introduced the following notations:wa
[]w/]au f 0 ,a

*
, w f[]w/] f u f 0 ,a

*
.

Let us now make some comments regarding the valid
of our approach. Equation~21! is valid for the same range o
wave numbersk as the beam envelope equation~15!. When
the axial scale of ion density perturbation,Li , is larger than
the betatron wavelengthlb , the ‘‘dissipative’’ term in the
latter equation does not make any sense because, wheLi
.lb , the beam electron oscillations can be treated as a
batic, and hence, the phase mixing does not occur. In su
long-wavelength limit of ion perturbations, the beam env
lope radius is equal to its equilibrium valuea* given by Eq.
~12!, which parametrically depends onz because the spac
charge compensation ratiof is determined by the local den
sity of ions: w f[]w/] f u f 0 ,a

*
. So, the wave numbers unde

consideration should be larger than the betatron wave n
ber kb .

For analyzing the wave increment it is convenient to
write Eq. ~21! in normalized variables and also take in
account the definition of the potential given by Eq.~17!. This
yields

V25K2H f 0~ f 02g22!~112 lnRw /a* !

1 1
2 ~12 f 0!

~K22 1
2 !1 ixK

~K22 1
2 !21x2K2J . ~22!

Here

V5v
a*
c

I Ab

2I b
S mi

2mD 1/2

and K5k/kb are the normalized frequency and axial wa
number, respectively.

The analysis of this dispersion equation shows that
wave increment is maximal for the wave numbers on
order of the betatron wave number and in this region
imaginary part of the frequency is on the order of its re
part. Note that in Eq.~22! ( f 02g22) and (12 f 0) are of the
same order because, as the numerical results presented
show, the space charge compensation ratiof 0 oscillates in
the range fromg22 to 1. So, both the frequency and th
increment are predominantly determined by the value of
parameter

a*
c

I Ab2

4I b
S mi

m D 1/2

.

This is a typical time of the instability growth and also
characteristic time of temporal fluctuations in the ion a
beam current densities. For typical pasotron parameters,
time is about 1–2ms.

B. Nonlinear theory: Unbounded system

For numerical studies of the nonstationary, nonlinear, s
consistent processes we used Eq.~15! describing the beam
envelope radius. The ion motion in the field with the pote
tial given by Eq.~17! was described by the method of ma
3-5
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roparticles. It was assumed that each macroparticle re
sents a number of ions distributed over a space whose si
much smaller than the betatron wavelength, which is
axial scale of our problem. This distribution provides
smooth variation of the space charge compensation ratiof in
the beam envelope equation.

Numerical simulations were carried out with the use
equations written in normalized variables:

r5
a

a~0!
, j5

z

a~0!g
A 2I b

I Ab2,

t5t
1

a~0!g
A eIb

minz
A 2I b

I Ab2, u5n iAminz

eIb
, ~23!

c5
wnz

I b
52~12 f !S 112 ln

rw

r D .

Here a(0) is the beam radius at the entrance andrw
5Rw /a(0) is the normalized radius of the wall.

In these normalized variables Eq.~17! and the equation
for ion motion have the following form:

d2r

dj2 5~12 f g2!
1

r
1

Tb

r32x
dr

dj
, ~24!

d2j i

dt2 52
]c

]j i
. ~25!

Here Tb5^M2&I Ab2g2/2m2g2nz
2a2(0)I b and j i is the axial

coordinate of thei th macroparticle. The space charge ne
tralization ratio is determined by

f ~j!5
Ap

D2 (
i 51

N

q expS 2
~j2j i !

2

D2 D , ~26!

whereqi is the charge of thei th macroparticle normalized to
the electron chargee andN is the total number of macropar
ticles. The initial condition for macroparticle location, whic
describes a local perturbation of the ion density, was give
j i 11(0)5j i(0)1h/†11D f exp„2@j i(0)2j0#2/D0

2
…‡. Here

h is the step characterizing the distance between macro
ticles,j0 is the coordinate of a center of ion perturbation,D f
is its amplitude, andD0 is the scale of this localization.

Let us start presenting our results from considering
dynamics of the initially localized perturbation of ion de
sity, which we discussed above. The results of simulati
are shown in Fig. 3. The ion waves shown in this figu
originate from a small initial perturbation of ion density.

The dynamics of these two, copropagating and con
propagating waves agrees well with the results of our qu
tative analysis carried out in Sec. II: the backward wa
decays, while the forward wave grows. An interesting pe
liarity of the solution shown in Fig. 3 is the existence
oscillations in the region between two, copropagating a
contrapropagating waves. These oscillations can be
plained by the fact that, as follows from Eq.~23!, the local
perturbations in ion density cause perturbations in the be
05650
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envelope after electrons pass through this localized reg
Then, these perturbations in the beam envelope provoke
ondary perturbations in the ion density, which in the prese
of the attenuation due to the phase mixing are significan
distances on the order of the betatron wavelength
smaller.

As the amplitude of the ion wave propagating along t
beam increases, the nonlinearity in the ion motion increa
as well. This leads to the wave turnover and to the app
ance of a bunch of accelerated ions, shown in Fig. 3 by
arrow. The velocity of ions in such a bunch is larger than
wave phase velocity. This indicates the appearance of the
acceleration mechanism. Recall that such an ion s
acceleration at the expense of a certain deceleration o
ion-pinched electron beam was already discussed in Sec

C. Nonlinear theory: Bounded system

So far, we have considered the processes in an ax
unbounded system and assumed that the ions are ‘‘prepa
before the beam injection. In real devices, however, the i
are produced from a neutral gas by the beam electrons
also the potential in the entrance and exit cross section
equal zero. The latter leads to the formation of an axial
tential well due to the beam space charge field. Far eno
from these cross sections, the potential can be describe
Eq. ~17! @see also the normalized potentialc~j! in Eq. ~23!#.
Recall that this potential already depends on the axial co
dinate, because the ion density and the beam envelope ra
are axially dependent. In order to take into account the ef
of entrance and exit cross sections, it makes sense to rep
c~j! by the productm(j)c(j). The additional functionm~j!
can be determined as

m~j!5F12expS 2q
j

l D GF12expS 2q
~ l 2j!

l D G , ~27!

where parameterq should be large enough for localizing th
edge effects,l is the normalized coordinate of the exit. Ce
tainly, the appearance of the axial potential well will lead
the reflection of ion waves from potential barriers near

FIG. 3. Space and time evolution of a small local perturbation
the ion density in the axially unbounded system. The arrow po
to the bunch of accelerated ions.
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entrance and the exit, and hence, cause the superpositio
interference of these fluctuations.

To account for the process of the beam impact ionizati
we considered the total number of macroparticlesN as a
function of time, which, due to ionization, increases in tim
proportionally to the RHS term in Eq.~168!. The dimension-
less form of this source term is

S5n0snzga~0!AI Ab2

2I b
Aminz

eIb
. ~28!

It was assumed that the gas density decays exponen
along the axis. Correspondingly, in Eq.~28! the gas density
n0 was given asn(0)exp(2j/lg). The value ofS51 corre-
sponds to the creation of such a number of ions in the t
stepDt51 at the distanceDj51, which causes a complet
neutralization of the beam space charge.

An example of the spatial-temporal evolution of the i
density in the bounded system in the presence of the b
impact ionization is shown in Fig. 4. Here the local spa
charge neutralization ratiof is shown as the function of th
normalized time and axial coordinate. The results presen
in Fig. 4 correspond to the normalized scale of the gas in
mogeneity l g54.0. As one can see in Fig. 4, the syste
exhibits the ion wave motion and the filaments shown in t
figure can be attributed to the ion acceleration.

As the total number of ions trapped by the potential w
increases, the potential barrier decreases, because the
space charge gets compensated. Correspondingly, the e
of ion acceleration becomes more important. Indeed, w
the ion density is high enough, the ions compensate for
beam space charge almost completely. Therefore, eve
small ion acceleration allows them to penetrate throug
small potential barrier. Thus, in such a state, some kind
equilibrium occurs, in which the beam impact ionization
the source of new ions and the release of accelerated
from the potential well compensate for each other. Of cou
this equilibrium is not static, and the beam radius and the
density oscillate about their equilibrium values. An exam
of such oscillations is shown in Fig. 5, which shows the to
number of ions in the system and the beam radius at
collector ~exit! as functions of time. Note that here the tot
space-charge compensation ratio is shown, which is de
mined by the total number of ions trapped by the poten

FIG. 4. Space and time evolution of a small local perturbation
the ion density in the axially bounded system.
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well. From comparison of this dependence with resu
shown in Fig. 3 and 4 it follows that even when the loc
oscillations of the ion density shown in these figures
large, the total number of ions exhibits only weak oscil
tions. At the same time even these weak oscillations m
cause significant oscillations of the beam radius.

V. DISCUSSION: APPLICATION TO THE PASOTRON

Let us estimate the values of the normalized parame
used above for the pasotron experiments carried ou
Hughes Research Lab and at the University of Maryla
@23#. In these experiments the device was driven by an e
tron beam with the typical range of voltages from 36 to
kV and currents from 30 to 50 A. These values of the be
voltage and current correspond tob'0.375– 0.38,g'1.08,
and I A'6.5 kA. Correspondingly, the beam current to A
fven current ratio is about 0.005.

The normalized timet can be represented ast/t* , where
the normalization time t* is equal to
@a(0)/c#@ I A /I b#b@(g/2)(mp /m)A#1/2, where A is the
atomic number of the gas andmp is the proton mass. For th
beam radius at the entrance equal to 2 cm and other pa
eters given above, this yieldst* 50.16AA msec. Corre-
spondingly, for the normalized axial coordinate determin
as j5z/z* , the normalization lengthz* is approximately
equal to 8 cm.

The betatron wave number, in accordance with Eq.~14!,
is inversely proportional to the equilibrium radius of th
beam envelopea* . For a typical value of this radius o
about 1 cm, the betatron wave number is equal to 0.2 cm21

and the period of betatron oscillations is about 30 cm. Si
the equilibrium radius of the beam envelope and the aver
squared initial angular momentum̂M2& are proportional to
each other as given by Eq.~12!, the choice of the equilibrium
radius determines the momentum^M2&.

We also studied some nonstationary phenomena in
beam current density and charge compensation ratio for t

n

FIG. 5. Temporal evolution of the total number of trapped io
or space-charge compensation ratio~a! and the beam radius at th
collector ~b!.
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BLIOKH et al. PHYSICAL REVIEW E 66, 056503 ~2002!
cal pasotron parameters. Simulations were done for the
sotron with the beam voltage and current equal to 35 kV
30 A, respectively. It was assumed that the beam propag
in a wave guide of a radius of 3 cm and a length of 80 cm
was also assumed that the initial beam radius at the entr
is equal to 2 cm, while the equilibrium beam radiusa* is
equal to 1 cm, which corresponds to the angular sprea
^a2&1/250.05 and the normalized temperatureT50.035. The
He pressure at the entrance was taken equal
431024 Torr, so the corresponding ionization time at t
entrance is equal to 10msec. This choice of the device pa
rameters yields a normalization timet* 50.32msec and a
normalization lengthz* 58.0 cm. These values result in th
following values of the normalized parameters adopted
our theory: the source termS53.231022, the normalized
length l 510, the normalized scale of the gas density pro
l g54.0. We also assumed that the dissipation coefficientx is
equal to 0.5.

Results are presented in Figs. 6~a! and 6~b!. Here, Fig.
6~a! shows the ratio of a total charge of all ions in the inte
action space to the total number of all electrons there.
dotted straight line in Fig. 6~a! corresponds to the ion den
sity, at which the beam focusing starts.~In other words, this
is the case when the initial beam radius is equal to the e
librium radius.! As one can see, the charge compensat
ratio fluctuates in a rather small range of values close to 1
typical scale of these temporal oscillations in the beam c
rent density and charge compensation ratio is on the orde
several units oft* or, in other words, on the order of 1 m
Of course, fluctuations in the ion density affect the ax
velocity of electrons, which in pasotron amplifier configur
tions may result in additional fluctuations of the phase of
output signal. This issue, which is extremely important
the performance of amplifiers, is, however, beyond the sc
of the present study.

Figure 6~b! shows the beam current density normalized
the density, which corresponds to the beam with an equ
rium radius. Strong fluctuations in the beam current den

FIG. 6. Temporal evolution of the total space-charge compen
tion ratio ~a! and the normalized beam current density~b! in the
pasotron.
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shown here indicate that there also should be strong osc
tions in the beam current density and the size of the be
area deposition at the collector. Results presented in Fig.~b!
are quite similar to experimental observations of fluctuatio
in the beam current shown in Fig. 14 of Ref.@13#.

VI. SUMMARY

A theory describing the self-consistent nonstationary p
cesses in the propagation of a phase-mixed electron b
through a nonuniform column of mobile ions is developed
is shown that in plasma-assisted slow-wave oscillators th
processes may result in substantial temporal oscillations
the beam current density. Also, these processes may c
acceleration of ions.
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APPENDIX: ELECTRON OSCILLATIONS
IN AN ANHARMONIC POTENTIAL WELL

As known@24#, the transverse motion of electrons, whic
have initial nonzero transverse velocities, in the 1D poten
well, Ueff(r), obeys the following equation:

mg
d2r

dt2
52

]Ueff

]r
, ~A1!

where the effective potential well is determined as

Ueff5eweff1
M2

2mgr 2 . ~A2!

In Eq. ~A2! M5mgrnu is the angular momentum, which i
the invariant of motion. The potentialweff(r), in accordance
with Eq. ~1! and the fact that the beam electric self-field
partly compensated by the magnetic self-field, is equal to

weff~r !52F I b

nz
~12b2!2eNi G S 112 ln

b

a
2

r 2

a2D . ~A3!

Correspondingly, Eq.~A1! can be rewritten as

d2r

dt2
52

eIb
mc32

c2

a2bzg
3 ~12g2f !r 1

M2

m2g2r 3 . ~A4!

The electron radius in the equilibrium state, as follows fro
Eq. ~A4!, is equal to

r 0
45

M2

m2g2c2

I A

2I b~ f 2g22!
a2. ~A5!

When the beam radius is equal to its equilibrium value giv
by Eq. ~12!, a5a* , Eq. ~A5! yields a very simple relation
betweenr 0 anda* :

a-
3-8
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r 0
45a

*
4 M2

^M2&
. ~A6!

Now let us consider small oscillations of the electron
dius about this equilibrium state:r 5r 0(11x). A proper ex-
pansion of the RHS of Eq.~A4! in terms ofx, which implies
the account for the second- and third-order terms in the
term in this equation~cf. Ref. @24#!, reduces Eq.~A4! to

d2x

dz2 1kb
2x1

kb
2

2

M2

^M2&
~23x215x3!50. ~A7!

Here the frequency of the betatron oscillationskb is deter-
mined by Eq.~14!. Equation~A7! describes anharmonic os
cillations, whose frequency of spatial oscillations depends
the oscillation amplitude as@23#

k5kb1S 3c3

8kb
2

5c2
2

12kb
3 D x1

2. ~A8!

Here x1 is the amplitude of oscillations with the frequenc
kb andc2 andc3 are coefficients at the corresponding po
ers ofx in Eq. ~A7!. Substituting the values of these coef
cients into Eq.~A8! results in

k5kbF11x1
2 15

16

M2

^M2& S 12
M2

^M2& D G . ~A9!

The amplitudeb of electron oscillations about the equilib
rium state relates tox1 as b5r 0x1 . Therefore, using Eq
~A6!, one can finally rewrite Eq.~A9! as

k5kbF11
15

16
A M2

^M2& S 12
M2

^M2& D b2

a
*
2 G . ~A10!

Let us now qualitatively describe the effect of anharm
nicity of electron oscillations on the damping of beam en
lope oscillations. In this analysis we shall assume that
perturbations in electron motion are caused by a fluctua
in the space-charge neutralization factorf : f (z)5 f 0
1d f (z), whered f (z) is a small local perturbation.

Macroscopic parameters of an electron beam~such as a
mean radius, radial profile of the beam density, etc.! are de-
termined by the beam microscopic characteristics of in
vidual particles and the beam distribution function. For
stance, the mean beam radiusr̄ (z) can be determined as

r̄ ~z!5E r ~z,b,a!P~b,a!db da. ~A11!

Here r (z,b,a) is a periodic solution of Eq.~A4! with the
amplitudeb and initial phasea @for instance,r 5b cos(kz
1a)], and P(b,a) is the probability function. In a phase
mixed beam,P(b,a)5(1/2p)P(b), and therefore, the mea
radius is constant:r̄ (z)5 r̄ 05const.

Substitutingf (z)5 f 01d f (z) into Eq. ~A4! yields

d2r

dz2 1
2I b

I Ab2 ~ f 02g22!
r

a22
M2

m2g2r 3nz
2 52

2I b

I Ab2

r

a2 d f ~z!.

~A12!
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For the sake of simplicity, assume that the ion pertur
tion localized nearz5z0 can be described by thed function,
and hence, Eq.~A12! can be rewritten as

d2r

dz2 1
2I b

I Ab2 ~ f 02g22!
r

a22
M2

m2g2r 3nz
2

52
2I b

I Ab2

r

a2 D f d~z2z0!. ~A13!

whereD f is the total number of ions in the perturbation.
Consider small oscillations of an electron radius about

equilibrium radiusr 0 . For the variablex, which was deter-
mined above byr 5r 0(11x), Eq. ~A13! reduces to

d2x

dz2 1k2x52 1
4 kb

2 D f

f 02g22 d~z2z0!. ~A14!

Now, in contrast to Eq.~A7!, we account for the linear term
only, but the spatial frequencyk depends on the amplitude o
electron oscillationsb.

On the left and on the right from the point of perturbatio
z5z0 , the solution of Eq.~A14! has the same form,x(z)
5x1 cos@k(b)z1a#, however, the amplitudesb and phasesa
are different before and after the perturbation. Their valu
can be matched by using the boundary conditions atz5z0 :

xuz0205xuz010 ,
dx

dzU
z020

5
dx

dzU
z010

2Dx8. ~A15!

HereDx8 is a step in the derivative at this point, which,
follows from Eq.~A14!, is equal to

Dx852 1
4 kb

2 D f

f 02g22 . ~A16!

By using Eq.~A16! and the assumption that the ion pertu
bation is small, one can readily derive the following expre
sions for steps in the amplitude and phase:

Dx1[x1uz0102x1uz02052
sinf

kb
Dx8,

Da[auz0102auz02052
cosf

kbx1
Dx8. ~A17!

Heref5kz01a is the phase of an unperturbed oscillation
z5z0 .

Now the solution forx at z>z0 can be written as

x~z!5~x11Dx1!cos@k~z2z0!1f1Da#. ~A18!

Substituting Eq.~A18! into Eq.~A11! yields the following
expression for the mean value of the beam radius atz>z0 :
3-9
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r̄ ~z!5r 01
1

2p E db dfP~b! ~A19!

3$~b1Db!cos@k~z2z0!1f1Da#%

'r 01
1

2p E db P~b!E df

3$Db cos@k~z2z0!1f#2bDa sin@k~z2z0!1f#%.

Here b5r 0x1 is the amplitude of oscillations of a particl
radius andDb5r 0Dx1 . With the use of Eq.~A17!, Eq.
~A19! can be readily reduced to

r̄ ~z!5r 01r 0E db P~b!
Dx8

kb
sin@k~z2z0!#. ~A20!

Now, let us take into account that the wave numbek
depends on the oscillation amplitudeb:k5kb(11b2Ra),
where the anharmonicity parameterRa can be easily found
from Eq. ~A10!. Then, Eq.~A20! can be rewritten as
s

el

d
n-
an

nd

G

P.
e-

W

05650
r̄ ~z!5r 01r 0E db P~b!
Dx8

kb
sin@kb~11Rab2!~z2z0!#

5r 01r 0H sin@kb~z2z0!#E db P~b!
Dx8

kb

3cos@kbRab2~z2z0!#1cos@kb~z2z0!#

3E db P~b!
Dx8

kb
sin@kbRab2~z2z0!#J . ~A21!

Equation~A21! shows that atz5z0 the oscillations of the
mean radius of electron oscillations appear. These osc
tions have the spatial frequencykb and they decay with the
departure fromz5z0 . A typical distance, which character
izes this damping, can be estimated as

l c'
2p

kb0Rab̄2
. ~A22!

Here b̄ is a typical scale of the oscillation amplitude, whic
depends on the functionP(b). In our case, the spread i
oscillation amplitudes is on the order of the stationary be
envelope radiusa* ; therefore, accounting for Eq.~A10!, the
distancel c can be estimated asl c'2p/kb . This estimate
shows that the oscillations of the radius decay at the pe
of betatron oscillations.
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