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Resistive wall impedance and tune shift for a chamber with a finite thickness
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Since the resistive wall impedance for a beam pipe of a nonround cross section depends on the coordinates
of a witness particle, the witness particle receives an incoherent tune shift. When the expression for the
impedance of an infinitely thick chamber is applied to the calculation of this tune shift, it becomes infinite. We
have derived the resistive wall impedance for a chamber with a finite thickness and calculated the tune shift.
There is no ambiguity in this expression for the tune shift, because it is automatically finite.
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[. INTRODUCTION we omit this factor to define the fields.
We denote byE, the longitudinal component of the elec-

Resistive wall impedances have been studied in accelerdric field generated by a source particle. Once the field on the
tor physics. Gluckstern, van Zeijts, and Zott&ZZ) derived  inner surface of the pipe is knowi, can be calculated by
formulas of impedances for the case of elliptical and rectanthe Kirchhoff integral formuld2,5],
gular cross section when the position of the source particle
and the witness particle are the same, and the thickness of th _ , , N N ) /
beam pipe is infinit¢1]. Yokoya gave a computer algorithm Br)= é [VIEA(r)G(rr) —Er)V, G(r,r)]-nds’,
to calculate the impedances for a general cross section when (1)

the thickness of the beam pipe is infinj@]. ) . .
It is known that a beam pipe of nonround cross sectioﬁ"’heregs is the integral along the boundary surface, the prime

causes an incoherent tune shift, because the resistive w&lfnOtes guantities at the boundarys an outwardly directed
impedance due to the source particle depends not only on tigermal to the boundary surface ar¥d, is the two-

coordinates of the source particle, but also on those of thdimensional gradient. The functid@ is the Green function
witness particld1,2]. However, this tune shift becomes infi- Satisfying
nite when the impedances for a chamber with an infinite A G(rr')=—8(r—r") %)
thickness are applied to its calculation, because the resistive L '

wall wake function is proportional to 5 wheres is the  gince the Kirchhoff integral is valid for any Green function
distance between the source particle and the witness particlgiisfying Eq.(2), we choose the function with its value
In previous studies, the tune shift was calculated by introducaqual to zero at the boundary. By using this Green function,

ing an artificial cutoff[3,4]. This kind of cutoff causes an \ye can calculate the longitudinal impedance when we only
ambiguity in the calculation of the tune shift. It is possible to o E, at the boundary.

avoid this kind of infinity by considering the thickness of the  \yhenE. is obtained. the transverse forBe is calculated
beam pipe. The electromagnetic fields leak out when th%sing the Iéanofsky-wénzel theordi
thickness of the beam pipe is finite. Since the skin depth of ’

the beam pipe material is proportional to (kj wherek is a 1

wave number, this leak actually occurs on a large time scale. FL(Xy)=— j—kVL Ex(xy). Q)
For this case, an important parameter is the thickness of the

beam pipe instead of the skin depth. Thus, it is necessary to knol, at the inner surface of the

It is important to consider the effect of the thickness of thechamber for the case of a finite chamber thickness. The tan-

beam pipe, and to understand how the divergence of the tungntial (azimuthal magnetic componentH,) is calculated
shift can be resolved. In Sec. I, we show how we include the,

effect of the thickness of the chamber to the resistive imped-

ances. In Sec. lll, we explicitly show the impedances and the ZoH=E,=—V , ®(X,y), (4)
tune shift. In Sec. IV, we apply our theory to KEKB electron
ring and compare the experimental data with our theory. A AL D(X,y)=—Zpd(r—ry), (5)

summary is given in Sec. V.
whereE,, is the normal component of the electric fiel, is
Il. DERIVATION OF IMPEDANCES EOR A CHAMBER the impedance of free.space andis the trapsverse coordi-
WITH A EINITE THICKNESS nate of the source particle. In order to obt&inat the bound-
ary, we must find the relation betwe&y andH; along the
We assume throughout that the beam pipe is uniform lonboundary when the thickness of the chamber is finite.
gitudinally and the beam is ultrarelativistic. Since all of the  We consider the case when the radius of the beam pipe is
field quantities which are effective on the wake field aresufficiently larger than the skin depth. In order to find the
proportional to expjk(ct—2)] wherec is the velocity of light,  relation betweert, andH, at the boundary, it is sufficient to
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FIG. 1. A wall with its thicknessd. The beam runs in region
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which give the following relations:
1+j
E,(0)=~k8Zo—5~GH(0), (13)

ev“?]’d/z?_ e V2jd/ s

:emd/5+ o 21d/5" (14)

in normal applications wherkpy<1. Ford—o, Eq. (14)
reproduces the relation

E.(0)= —k520 2 H.(0), (15

which is already knowil]. We expect that Eq.13), which
is obtained in the one-dimensional case, is almost satisfied

consider the one-dimensional problem. Consider a wall wittfor the general beam-pipe case when the radius of the beam

thicknessd (see Fig. 1L We call x<0) region I, (0<x

pipe is sufficiently larger than the skin degtbut, the thick-

<d) region Il, and I<x<<) region Ill. We assume that the ness of the chambéd) may be small
beam runs in region I. The beam creates fields on the inner In order to confirm that this expectation is plausible, we

surface of the wall X=0), which are written a&,(0) and
H:(0). In region I, Maxwell equations are written as fol-

lows:
JkH(X)= (o +jkceg) Eq(X),

JEL(X)
dx

€p _JkEoEZ(X) 0

IE4(X)
dx

dH(x)
X

— (o+jKCeg) EL(X).

According to Eq.(6), E,(X) must satisfy

PE,X)  2j
& pE0=0

wheres=/2py/k andpo=1/uoco (po=10"1m for a cop-
per chamber at room temperatur&he solutions for region

Il are

EZ(X) — Clev?'fx/(S_F c,e” \s‘Z'xlﬁ,

V2j 1+jkpg

H0="5" 7,
The boundary conditions are as follows:
E,(0)=c;+cy,

0= Cle\s“ZJdlé_}_ cze‘ \s“ZJd/:S,

1+jk
t(O)_\/— +JKkpo

—JKEn(X) =~ jkeuoH(X),

———(c 1ev“7fx/5_ coe” ﬁj’xlﬁ).

5 jKZo (c1—cy),

(6)

()

(8)

9

(10

(11)

(12

can consider a simple example for the two-dimension case
where the cross section of the pipe is routiee radius of the
pipe isby and the thickness of the chambedis This prob-

lem was already solved by Ch&6]. The boundary condi-
tions also give Eq(13) whenby> 6 andkpy<<1. These situ-
ations suggest that E¢L3) is almost satisfied for the general
beam-pipe case, when the skin depth is sufficiently smaller
than the radius of the beam pipe.

I1l. WAKE FUNCTIONS AND TUNE SHIFT
According to Egs.(1) and (13), we find thatE, for a

chamber with a finite thickness is that with an infinite thick-
ness multiplied by th& factor, becausél, does not depend
on the properties of wall materials. We obtain

@V2id/6_ o= 2]d/& Zo b2
7 Do

E.(x,y)=—ké(1+])

@V2]d/5 . o= 2]d/8 5 133
x2—y?
+D1XX1X+D1yy1y+D2xyT+"' !
(16)
S(1+]) eTW—e T 7,
FL(xy)= j 21415 1 o 2jdI5 5 3
e\ +e J 2b
Dlxxl> ( X
D, = ( +D +oe, 17
* { Diyyy:1 2\ —y

where 2 is a typical vertical size of the cross section of the
chamber; the analytic form of tHe's is given in the Appen-
dix for elliptic and rectangular cased ( is relevant to the
tune shift. D,,, Dy, and D,,, are equal todW,/dxs,
dW, 1dys, and dW,/dx,, in Fig. 8 of Ref.[2], respectively.
We should notice thaD,,, vanishes when the cross section
of the chamber is roung.
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FIG. 2. Thes dependence of the transverse wake funciién
where Wo=cZopo/(b3d)D, . —— corresponds to Eq(21), and
- - -to Eq.(22.

Here we take the inverse Fourier transformatior-ofto
obtain the transverse wake functi@v, per unit length,

Zy
27 2 h’

W, (s)= J’ dke'kS

5(1+j) ev“fj'd/a_ e~ V2jd/ 8
L) eVdlisy o V2idls”

(18

The integrand in Eq(18) does not have a cut, but simple
poles at

_pom(2n+1)?
J—

k=kn= 402

(n=0,1,2...). (19

By closing the contour by the upper semicircle ¥ 0,

cZ,
W, (s)= NG DMZ Residue(k=k,). (20)
Thus, we obtain
cZopo 1| < — (72pgsd2) (n+ 1/2)2
W, (s)=2 —ad 2 0 D,. (21

Since the summation over can be replaced by integration
for the casepys/d?<1 (i.e., <d), we can reproducf2],

cZovpo 1

o s

Comparing the asymptotic region sfin both Egs.(21) and
(22), we find that Eq(21) deviates from 1{s in the region

W, (s)= (22

s=2d?/(w?py), and the wake function becomes exponen-

tially damped(see Fig. 2 This is consistent with our other
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condition, 5<b (i.e., s<b?/2p,).

Here we divideW, (s) into the part proportional to the
coordinate of the source particle;( or y;) and the part
proportional to the coordinate of the witness partickeof
y), and write

Wiy (8)X1+Wo(S)X

We = W (s)y—Wa(s)y)

(23

W3, y(s) cause a coherent tune shift ang(s) an incoher-
ent tune shift. Since the equations of motion are

O

2
T kslo=3,

ds? mk
X Xm(s—kL)+W,((n—m

[W,((n—m+kN)cAt)

+kN)cAt)x,(s)], (24)

Q

SELLNPYRINER -

ds? ik
XYm(s—kL)=W,((n—m

[Wiy((n—m+KN)cAt)

+KkN)cAt)y ()], (25

where K, , are focusing forcesQ (C) is the charge per
bunch,E is the electror{or, positron energy(eV), cAt is the
distance between bunchésis the circumference of the ring
andN is the total number of bunches. The coherent tune shift
(v*) ) for uth mode and the incoherent tune shift

coh,x,y.
(6Vinc,x,y) are given by

L<B ,> - Q . (u)
5V((:lé)r1,x,y: - 4;y kgl Ewlx,y(kL)eJZWkAvx,y

sinrA (¥
XY qimAr(1-1N)

_mAVE)

SIHT

L(Bxy) Zolo CAt\/%D D 2\mpo
4 E W\/;bs by d

X

oo
« E e~ (m2pokL/d?) (n+1/2)*+ j27kA V(x"y)
n=0

sinmAv{# )
WAVXye]ﬂ'AVM(l l/N) (26)

X,y
Si N
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L{Bxy)
41

+

Vine,x,y—

> ng(kcAt)
=1 E

L{Bx.y) Zolo CAtpg
270 E d

+

[

X szynZO

1
el w2 poCAt/d?) (n+1/2)7 _ 1’

(27)

where Av{¥)=v,,—u, vy, are tunesl, (A) is the total
current,( B, ,) are average values @f functions around the
ring, and the upper (lower
OVincx (5Vinc,(y)-

SincerA v <1, m?poL/d*<1, andm?pocAt/d?<1 in
normal applications, Eq$26) and (27) become

s HBuw) Zolo  Lipo
coh,x,y At E W\/;ba\/i 1x,y

) 1
- (1) =
ngl \[k[ COﬁ{Zﬂ'Avx‘y k+ 2)
o 1
+jsin 27A vf{‘y) k+ g (28
_ L(Bxy) Zolo 1
S¥inexy=FDay—g £ —ad (29)

where we have replaced the summation avey an integral
in Eq. (26) and usedS;_,1/(n+1/2)°=#7%2 in Eq. (27).

Here we should notice that the coherent tune shift is auto-
matically finite even in the limid—< and does not depend
on d even if we use Eq(26). On the other hand, the inco-

herent tune shift is infinite fod—o. Thus, we usually cal-
culate the incoherent tune shift introducing a cutdif,( in
the number of bunches when we use E2g). The tune shift
is then written as

L(Byy) Zoloi§ [pocAt
A1 mj

E #bdi=1
(30

5Vinc,x,y: + D2><y

We can evaluate the effective cutoff. According to E@)
and(30), we obtain

2

aa
CAtNA:

TpOECTmax-

(31)

sign corresponds to
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IV. APPLICATION

Let us compare experimental results at KEKB electron
ring with our theory. In KEKB, parameters are given by
=44.514, v,=41.580, (B, ,)=11.0 m, L=3016 m, E=8
x10° eV, d=6x10"3%m, a=52x10"3m, and b=25
X103 m (a andb are defined in the Appendixin KEKB,
leiri measured the tune shift and gadv,/dlomeas
=0.026/A anddvy/dlg|meas= —0.037/A [7]. Recently, a
more precise measurement was dp8k The tune-shift de-
pendence was fitted by

Uyl meas= — 2.340% 1, +0.028 06<1 o+ 0.5195, (33)
vyl meas= — 17.76<1,—0.01383< 1o+ 0.6045, (34)

wherel, (A) is the bunch current. Following Zimmermann
[4], let us separate the tune shift into the coherent part and
the incoherent part as follows:

% -0 choh,r dVinc,x (35)
dlg meas dly dly ’

% -0 8d Veohr dVinc,y (36)
dly T dlg dlg

meas

Heredv,, /dlg is the coherent tune shift for a round cham-
ber. The numerical factors come from those for the resistive
wake (Fig. 8 of Ref.[2] for (a—b)/(a+b)=0.35). We ex-
pect a similar ratio with some uncertainties even if the rel-
evant wake is not of resistive wall type. From the data we
obtain

choh,r

dig

Vinc,x,y

d
~0.010 95/A,
dlg

~+0.02259/A. (37)

Using our theory,T,.,=1.9 ms. According to Eq9428)
and(29), the tune shift is given by

d d
Vcoh,x ~0.000 016/A, VCOh'y =0.000 148/A,
d IO d IO
dVinc,x,y +
. = 0.0060/A. (38)

We cannot explain the coherent tune shift by a resistive
wake. We should consider the other sources of impedances.
For the incoherent tune shift, our value is about four times
smaller than the datiEq. (37)]. This discrepancy is signifi-
cant even if we take into account the uncertainty of the co-
herent part. In our case, the effect of the radiation damping is
negligible, because the damping tir@6 m9 is much larger
thanT,ax. The reason of the discrepancy may (¢ other

Equation(31) can be interpreted in terms of the skin depth
i.e., one should gét,;, from

Vae-
Ed— 5(kmin),

and definec T, .= 1/Kmin -

'sources of impedancef?) the effects of materials outside
the chamber. Since the observation showed that the tune shift
is proportional to the total current rather than to the bunch
current, the responsible wake has to be a long range wake,
but does not seem to be of narrow resonance type. Further,
the nonround cross section must be related to this wake,
because the sign of the tune shift is oppositexfandy. We

(32
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think that casgl) is impossible, therefore, we should con- long time scale. By reducing the thickness of the chamber,
sider the possibility of2), because the fields leak out of the we can reduce the tune shift linearly.
chamber on a large time scale. The next step will be to con- In this paper, we also try to explain the incoherent tune
sider the effects of these components outside the chambershift which is observed in KEKB. Our value is four times
smaller than the experimental data. This situation suggests
V. SUMMARY that we have to consider the effect of components that exist

outside the chamber: for example, magnets. The next step

Resistive wall impedances with a finite thickness can b&yj| pe to consider the effects of these components to the
obtained by multiplying theG factor by impedances with {,ne shift.

infinite thickness under the approximation that the size of the
chamber is sufficiently larger than a skin depth. This trans-
verse wake function becomes exponentially dampedsfor
>2d?/ 7?p, rather than falling like 1/'s. The expression for
an incoherent tune shift is automatically finite by using this The authors thank Dr. T. leiri, Dr. R. Nagaoka, Dr. F.
impedance. Thus, there is no ambiguity to evaluate the tunéimmermann, Dr. K. Oide, Dr. T. Nakamura, and Dr. K. Sato
shift. The reason why the divergence of the tune shift isfor discussions. One of the auth@hS.) gives thanks for the
resolved, is that the physically important parameter is thdinancial support of Japan Society of the Promotion of Sci-
thickness of the beam pipe instead of the skin depth for @nce.

ACKNOWLEDGMENT

APPENDIX: D FUNCTIONS

Here, we denote the size of a cross section of a chamber as follows. The upper value holds for the case where the cross
section is elliptic, its major axis is& and minor axis is B; the lower value holds for the case where the cross section is
rectangular, its boundaries are given’oy =a andy= *b:

r

sinhug fzwd Q3(v)

Go(ug)= v —————— for elliptic case
o(Uo) 2w Jo Vsintfug+ sinfv P
Do=9 b 1 b 1
Fol=|=m E +— for rectangular case,
a m=To0dd mma a marb
costt —— cosif ——
L 2b 2a
( . 2
sinfPug (27 Qix(v) .
Gyy(ug)= —OJ dv,lx—_ for elliptic case,
47 Jo  sinfPug+sirfv
D1x={ b\ #° m? b3m?
Fil === _ > for rectangular case,
a 8 | m=Todd . M7ma  m=2even 4 marb
sinkf —— ascosif ——
L 2b 2a
e . 2
sinfPug 27 Q1y(v) .
Gay(Ug) = Of do——=t———  for elliptic case
47 Jo  sinfugy+sirfu
Day= by =° b3m? m?
Fylzl=5 _ E _— for rectangular case,
a 8 | m=Todd 3. o, MT&  m=Zeven mmb
assinf—— costt ——
L 2b 2a
[ sintPug (27 Qq(v)Qaxy(v) -
——— | dv——=——== for elliptic case
47 Jo  sinfPug+sirfv
Dowy=1 3 m? b3m? (A1)
— - for rectangular case,
8 m=Todd mma 3 mwb
cost—— adcosf——
L 2b 2a

where

056501-5



Y. SHOBUDA AND K. YOKOYA PHYSICAL REVIEW E 66, 056501 (2002

- - . COS 2y o~ - cog2m+1)v
Quv)=1+22, (~1)"oqares Qulv)=22 (~)M@m+1) s tea,
- . sin(2m+1)v < M’ cos 2mo
Qly(v)zzmzzl(_l) M+ 1) SarzmT Dug’ QZXV(U)__SmE:l(_l) cosh 2y, ’

a=fcoshuy, b=fsinhu, for elliptic case.

FunctionsGg 1 1y(Uo), Fox1y(N), andQq 1 1y(v) are calculated by GZZ1].
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