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Symmetry transforms for ideal magnetohydrodynamics equilibria

Oleg I. Bogoyavlenskij
Department of Mathematics, Queen’s University, Kingston, Canada K7L 3N6
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A method for constructing ideal magnetohydrodynamics~MHD! equilibria is introduced. The method con-
sists of the application of symmetry transforms to any known MHD equilibrium@ O. I. Bogoyavlenskij, Phys.
Rev. E.62, 8616,~2000!#. The transforms break the geometrical symmetries of the field-aligned solutions and
produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also
allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fieldsB and
V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total
magnetic and kinetic energy of the jet is finite in any layerc1,z,c2 . The jet possesses current sheets and is
highly collimated in view of a rapid decrease of the magnetic fieldB in the transverse direction. The method
gives also the MHD equilibria that model ball lightning with dynamics of plasma inside the fireball.

DOI: 10.1103/PhysRevE.66.056410 PACS number~s!: 52.30.Cv
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I. INTRODUCTION

One of the possible approaches to the plasma confinem
problem@2–4# and to the astrophysical jets problem@5–7# is
to find and investigate the corresponding exact magneto
drodynamics~MHD! equilibria. There are several known e
act plasma equilibria@3,4#. However, until now there were
no methods to obtain new solutions, especially equilibria t
are bounded in the whole space. In the papers@8–11#, the
nonsymmetric plasma equilibria were derived that blow
asx21y2→`.

In this paper, we introduce a method for constructing id
MHD equilibria which is based on the recently discover
@1# continuous symmetries of the MHD equilibrium equ
tions. Applying these symmetries to any known equilibriu
we obtain continuous families of new MHD equilibria. Fo
example, by applying the method to the exact solutions
the papers@12,13# we get the MHD equilibria that model ba
lightning with dynamics of plasma inside the fireball.

The generic transforms@1# break the geometrical symme
tries of the field-aligned plasma equilibria. For the magne
analog of Hill’s spherical vortex@14#, the symmetry trans-
forms break the axial symmetry of this equilibrium and gi
a continuous family of nonsymmetric MHD equilibria wit
toroidal magnetic surfaces and closed magnetic field lin
Applying the method to the well-behaved axially and he
cally symmetric plasma equilibria@1,15#, we derive the non-
symmetric MHD equilibria which are bounded in the who
Euclidean spaceR3 and are rapidly decreasing asx21y2

→`.
The method is used also to construct exact MHD equi

ria with current sheets and contact~or tangential! disconti-
nuities. These solutions are obtained by applying to
smooth MHD equilibria the symmetry transforms@1# that are
discontinuous on some magnetic surfaces.

The method is different from the method of Backlun
transforms for the soliton equations such as
Korteweg–de Vries~KdV! equation@16#, the Kadomtsev-
Petviashvili~KP! equation@17#, the Sine-Gordon~SG! equa-
tion @18#, etc. The method of Backlund transforms is bas
on the resolution of certain auxillary differential equatio
1063-651X/2002/66~5!/056410~11!/$20.00 66 0564
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which usually cannot be solved explicitly. All soliton equ
tions depend only on a part of spatial variables~one for KdV
and SG and two for KP!. Unlike the Backlund transforms
the method of symmetry transforms produces new soluti
in explicit algebraic form and is applicable to the equatio
in all three spatial variablesx, y, z.

We apply the method of symmetry transforms to deve
a model of nonsymmetric astrophysical jets that are in
state of magnetohydrodynamics equilibrium. Such equilib
have to be global or have to satisfy the following necess
conditions in the cylindrical coordinatesr, z, f.

~a! The magnetic fieldB, the plasma velocityV, the pres-
sureP, and densityr are bounded inR3.

~b! The total kinetic and magnetic energy of plasma a
its total mass are finite in any layerc1,z,c2 . The pressure
P→p0 as r→`.

~c! All magnetic field lines are bounded in the radial va
able r.

The conditions~b! and~c! mean that the jet is localized in
thex andy directions. The asymptotic value of pressurep0 is
the average pressure of the ambient medium. We supp
that gravitational effects can be neglected or in the case
constant densityr the gravitational force2r grad C is in-
cluded in the pressure gradient.

We model the astrophysical jets outside of their accret
disks by the nonsymmetric global MHD equilibria that a
bounded in the whole Euclidean spaceR3, satisfy the physi-
cal conditions~a!, ~b!, ~c!, and have current sheets and ta
gential discontinuities. In Refs.@1#, @15#, I derived the exact
global plasma equilibria which do not have current she
and are axially and helically symmetric.

The system of magnetohydrodynamics equilibrium eq
tions has the form

r~V• grad!V1
1

m
B3curlB52gradP, ~1.1!

div~rV!50, divB50, curl~V3B!50, ~1.2!
©2002 The American Physical Society10-1
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whereB is the magnetic vector field,m is the constant mag
netic permeability,V is the plasma velocity vector field,r
5r(x) is its density, andP is the pressure.

We consider both the incompressible and compress
plasma flows. The condition of incompressibility divV50 is
widely used in the MHD literature@19–22#. For example, it
is applicable with a high accuracy for the subsonic plas
flows with Mach numberM!1, M25V2/(gP/r). Then the
continuity equation div(rV)50 implies V• gradr(x)50.
Hence the plasma densityr(x) is constant on the plasm
streamlines.

For the compressible plasma flows, we suppose
plasma satisfies the ideal gas equation of state

P5C0rg exp~S/CV!, V• gradS50, C05P0r0
2g ,

~1.3!

whereS(x) is the density of entropy,g.1 is the adiabatic
exponent, andCV is the heat capacity at constant volume. W
consider also the more general equations of stateP
5C0rg f (S).

II. THE SYMMETRY TRANSFORMS

For the noncollinear vector fieldsB andV, the third equa-
tion ~1.2! implies the existence of either magnetic surfaces
a magnetic foliation. Indeed, in any simply connected d
mainE,R3, x5(x,y,z), the equation curl(V3B)50 yields

V3B5gradc~x!, c~x!5E
x0

x
~V3B!•ds. ~2.1!

Hence the surfacesc(x)5const are magnetic surfaces, b
causeB• gradc50, V• gradc50 @19#. If the vector fields
B, V are defined only in some nonsimply connected dom
D ~for example, toroidal!, then the functionc(x) ~2.1! is
multivalued in general. However, the differential formdc is
well defined. Indeed, we have

dc„Y~x!…5@V~x!3B~x!#•Y~x! ~2.2!

for any tangent vectorY(x). The equationdc„Y(x)…50 de-
fines an integrable foliation in the domainD which is gener-
ated by the vector fieldsB andV.

For toroidal domainsD ~which are the most important fo
the tokamak applications! the functionc(x) is defined up to
05641
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a constantnI, wheren is an integer andI is the integral~2.1!
over the shortest noncontractable loop of the torus.

For the incompressible flows, we suppose that the plas
density r(x) is either constant or an arbitrary function o
c(x) ~2.1!, r5r(c).

Any given smooth non-field-aligned MHD equilibriumB,
V, r, P in R3 ~B andV are noncollinear! defines a distribu-
tion of magnetic surfacesc(x)5const inR3 @19#. Let Em be
the set of all incompressible equilibria that have the sa
magnetic surfaces as the given one. We introduce the tr
forms T: Em→Em that depend on arbitrary functionsa(x)
Þ0, b(x), c(x) that are constant on the magnetic surfac
c(x)5const. Thea(x), b(x), c(x), and r(x) are either
functions of c(x) or, more generally, satisfy some func
tional equations F„a(x),c(x)…50, G„b(x),c(x)…50,
H„c(x),c(x)…50, R„r(x),c(x)…50. For the MHD equilib-
ria in a toroidal domainD ~a tokamak!, functionsa5a(c),
b5b(c), c5c(c), andr~c! are periodic with periodI de-
fined above.

The transformsT are defined by the formulas

B15b~x!B1c~x!Amr~x!V,

V15
c~x!

a~x!Amr~x!
B1

b~x!

a~x!
V, ~2.3!

r1~x!5a2~x!r~x!, P15CP1~CB22B1
2!/~2m!,

b2~x!2c2~x!5C,

whereCÞ0 is a constant. Let us prove that transforms~2.3!
define new solutions to the equilibrium equations~1.1! and
~1.2!. Let h(x) be any function that is constant on the ma
netic surfaces, for example,a(x), b(x), c(x), or r(x).
Hence we have

B• gradh~x!50, V• gradh~x!50. ~2.4!

Applying the classical identityB3curlB52(B• grad)B
1grad(B2/2), we present Eq.~1.1! in the form

r~V• grad!V2~B• grad!B/m52grad„P1B2/~2m!….
~2.5!

Using formulas~2.3! and ~2.4!, we get
r1~V1• grad!V12~B1• grad! B1 /m1grad„P11B1
2/~2m!…

5@b2~x!2c2~x!#@r~V• grad!V2~B• grad!B/m1grad„P1B2/~2m!!] 50.

Thus the functionsr1 , B1 , V1 , P1 satisfy Eq.~2.5! and therefore Eq.~1.1!.
Equations div(r1V1)50 and divB150 easily follow from Eq.~2.4! and div(rV)50, divB50. Substituting Eq.~2.3!, we

obtain

curl~V13B1!5curlS C

a~x!
V3BD5grad

C

a~x!
3~V3B!1

C

a~x!
curl~V3B!.
0-2
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Applying Eqs.~2.4!, we find that vector field grad„C/a(x)…
is collinear with the vector field V3B; hence
grad„C/a(x)…3(V3B)50. Therefore the equation curl(V
3B)50 yields curl(V13B1)50. Hence formulas~2.3! for
CÞ0 define a new solution to Eqs.~1.1! and ~1.2!.

For CÞ0, the transform~2.3! is invertible,

CB5b~x!B12c~x!Amr1~x!V1 ,

CV5
2c~x!

a1~x!Amr1~x!
B11

b~x!

a1~x!
V1 , ~2.6!

where a1(x)51/a(x). We shall refer to the transformsT
~2.3! as the symmetries of the divergence-free MHD equil
rium equations~1.1! and ~1.2!.

For C50, or b(x)56c(x), the transform~2.3! is not
invertible and its range consists of the field-aligned solutio

B156Amr1~x!V1 , P11
1

2m
B1

25C05const ~2.7!

that are the known Chandrasekhar equipartition equilib
@20#.

Remark 1. The new vector fieldsB1 and V1 ~2.3! are
linearly dependent on the originalB andV. Hence the new
he

he
he
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MHD equilibrium B1 , V1 , r1 , P1 has the same magneti
surfaces as the original oneB, V, r, P. This property shows
that the symmetries~2.3! map the setEm into itself. In Sec.
IX, we apply the transforms~2.3! to obtain new MHD equi-
libria with noncollinear vector fieldsB andV.

III. THE GROUPS OF SYMMETRIES

We consider the setGm of all transforms~2.3! with C
Þ0 for which the smooth functionsa(x), b(x), andc(x) are
constant on the magnetic surfaces for a given MHD equi
rium. Each transform~2.3! corresponds to a triple of func
tions ~a,b,c! that satisfy the conditions

a~x!Þ0, b2~x!2c2~x!5const5CÞ0. ~3.1!

The domain Em for these transforms consists of a
divergence-free MHD equilibria that have the same magn
surfaces as the given one. Remark 1 and the invertibility
the transforms~2.3! for CÞ0 prove that the range of thes
transforms is the same as their domain,Em . Hence the com-
position of the transforms is well defined. Let us show th
the composition assigns on the setGm the structure of an
Abelian group. Indeed, the composition of the transfor
~2.3! is equivalent to the 333 matrix multiplication
S a2 0 0

0 b2 c2Amr1

0
c2

Amr2

b2Ar1

r2

D 3S a1 0 0

0 b1 c1Amr

0
c1

Amr1

b1A r

r1

D 5S a 0 0

0 b cAmr

0
c

Amr2

bA r

r2

D ,
ete

and

nce
e

where a5a2a1 , b5b2b11c2c1 , c5c2b11b2c1 . Hence
the multiplication of the triples has the form

~a2 ,b2 ,c2!~a1 ,b1 ,c1!5~a2a1 ,b2b11c2c1 ,c2b11b2c1!,
~3.2!

which impliesC5b22c25C2C1Þ0. The unit triple is~1, 1,
0!, the inverse transform~2.6! corresponds to the triple
(a,b,c)215(a21,C21b,2C21c). It is evident that the mul-
tiplication ~3.2! is commutative and associative. Hence t
transforms~2.3! form an Abelian groupGm .

The groupGm is infinite-dimensional and depends on t
topology of the distribution of magnetic surfaces for t
given MHD equilibrium because the functionsa(x), b(x),
c(x) are constant on them. In Sec. IX, we show on a concr
example that, in general, the action of the groupGm on the
setEm is not transitive.

To study the structure of the groupGm , we introduce the
parametrizationa(x)5t expa(x), wherea(x) is a smooth
function that is constant on the magnetic surfaces
t561. For C5sk2, s561, k.0, the second equation
~3.1! is resolved in the form:s51, b(x)5hk chb(x), c(x)
5hk shb(x); s521, b(x)5hk shb(x), c(x)
5hk chb(x), whereh561 andb(x) is an arbitrary smooth
function that is constant on the magnetic surfaces. He
each transform ~2.3! corresponds to a sextupl
@a(x),b(x),k,t,s,h#. In view of the known identities for
the hyperbolic functions cht and sht, the multiplication~3.2!
takes the simple form
@a1~x!,b1~x!,k1 ,t1 ,s1 ,h1#@a2~x!,b2~x!,k2 ,t2 ,s2 ,h2#5@a1~x!1a2~x!,b1~x!1b2~x!,k1k2 ,t1t2 ,s1s2 ,h1h2#.
0-3
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Hence the groupGm is the direct sum

Gm5Am% Am% R1
% Z2% Z2% Z2 . ~3.3!

Here R1 is the multiplicative group of positive numbersk
.0. TheAm is the additive Abelian group of smooth func
tions inR3 that are constant on the magnetic surfaces for
given MHD equilibrium. The groupAm is also a linear space
and an associative algebra with respect to the multiplica
of functions.

Remark 2. An additional algebraic structure. The group
Gm has an additional structure that does not exist for
groups of symmetries of the soliton equations@16–18#. The
Gm is a module over the associative algebraAm% Am with
the multiplication defined by the multiplication of function

@g~x!,z~x!#@a~x!,b~x!,k,t,s,h#

5@g~x!a~x!,z~x!b~x!,k,t,s,h#. ~3.4!

This operation results in the transform:a(x)→tua(x)ug(x),
b(x)5hk chb(x)→hkch„z(x)b(x)…, c(x)5hk shb(x)
→hksh„z(x)b(x)….

Remark 3. Subgroups of the groups Gm . The intersection
of all groupsGm for different MHD equilibria consists of the
transforms~2.3! with constant coefficientsa,b,c,

B15bB1cAmr~x!V, V15
c

aAmr~x!
B1

b

a
V,

~3.5!

r1~x!5a2r~x!, P15CP1~CB22B1
2!/~2m!,

b22c25CÞ0.

The transforms~3.5! are applicable to any MHD equilibria
and form the three-dimensional subgroup

G35ùGm5R% R% R1
% Z2% Z2% Z2 .

They correspond to the x-independent sextuple
(a,b,k,t,s,h) where a5t expa, C5sk2Þ0, and b
5hk chb, c5hk shb for s51, and b5hk shb, c
5hk chb for s521. Each groupGm ~3.3! has exactly eight
periodic elements that are defined by the sextuples~0, 0, 1,
61, 61, 61! and form the subgroupG85Z2% Z2
% Z2,G3,Gm ; all periodic transformsT have order 2,T2

5 id. The subgroupG8 represents the eight componen
Gm j , j 51,...,8, of the groupGm . The scale and reflection
symmetries form the two-dimensional subgroupG25R
% R1

% Z2% Z2% Z2,G3,Gm that consists of the sextuple
(a,0,k,t,s,h).

IV. THE SYMMETRY TRANSFORMS FOR THE
FIELD-ALIGNED MHD EQUILIBRIA

For any field-aligned MHD equilibrium, we have

V5
l~x!

Amr~x!
B, ~4.1!
05641
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wherel(x) is some smooth function inR3. Let E, be the set
of all divergence-free field-aligned MHD equilibria that hav
the same magnetic field lines as the given equilibrium~4.1!.
In this section, we introduce transformsT, : E,→E, that
depend on the arbitrary functionsa1(x)Þ0, b1(x), c1(x),
that are constant on the considered magnetic field lin
These functions are first integrals of the corresponding
namical system

ẋ5Bx~x,y,z!, ẏ5By~x,y,z!, ż5Bz~x,y,z!, ~4.2!

where Bx , By , Bz are the magnetic fieldB components.
Such first integrals exist always if the trajectories of syst
~4.2! lie on some two-dimensional~magnetic! surfaces. In
the paper@19#, Moffatt proved that all smooth steady MHD
equilibria possess magnetic surfaces. The only possible
ceptions are the ‘‘force-free’’ equilibria

V5c1B, r5c2 , curlB5c3B, P1rV2/25c4 ,
~4.3!

wherec1 , c2 , c3 , c4 are constants@19#.
Equations~1.2! and divV50 imply B• gradl(x)50 and

B• gradr(x)50. Hence the functionsl(x) andr(x) are first
integrals of the magnetic dynamical system~4.2!.

The transformsT, are defined by the formulas

r1~x!5a1
2~x!r~x!, B15b1~x!B, V15

c1~x!

a1~x!Amr~x!
B,

~4.4!

P15C1P1~C1B22B1
2!/~2m!,

b1
2~x!2c1

2~x!

12l2~x!
5C1 ,

whereC1Þ0 is a constant. Let us prove that theB1 , V1 , r1 ,
P1 ~4.4! represent a new MHD equilibrium. For the field
aligned solutions~4.1!, Eq. ~1.1!, Eq. ~2.5! takes the form

m21
„l2~x!21…~B• grad!B1grad„P1B2/~2m!…50.

~4.5!

Applying transform~4.4! and using formula~4.5!, we obtain

r1~V1• grad!V12~B1• grad!B1 /m1grad„P11B1
2/~2m!…

5m21
„c1

2~x!2b1
2~x!…~B• grad!B

1C1 grad„P1B2/~2m!…50.

Hence functionsr1 , B1 , V1 , andP1 ~4.4! satisfy Eq.~1.1!.
It is evident that functions~4.4! satisfy Eqs.~1.2!. Hence
transformsT, ~4.4! map the setE, into itself. Transforms
~4.4! are evidently invertible ifC1Þ0.

Transforms~4.4! are the restrictions of the transform
~2.3! onto the field-aligned equilibria. Formulas~4.4! imply
V15l1(x)B1 /Amr1(x) where l1(x)5c1(x)/b1(x). The
last formula ~4.4! yields l1

2(x)512C1b1
22(x)@12l2(x)#.

Hence forC1Þ0 we haveul1(x)u51 if and only if ul(x)u
51. Therefore the Chandrasekhar solutions~2.7!, ul(x)u
51, are invariant under transforms~4.4!.
0-4
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Remark 4. On the structure of the functions a1(x), b1(x),
c1(x). These functions are first integrals of the magne
dynamical system~4.2!. The following can occur in differen
invariant domainsD,R3 @2#.

~1! The magnetic field lines~4.2! are dense on som
closed magnetic surfaces defined by an equationf (x)
5const. Then these surfaces necessarily are toriT2 @2# and
first integralsa1(x)Þ0, b1(x), c1(x) are constant on them
Hence they are either smooth functions off or, more
generally, satisfy some equationsF„a1(x), f (x)…50,
G„b1(x), f (x)…50, H„c1(x), f (x)…50.

~2! All magnetic field lines either are closed curves or
to infinity—then the first integralsa1(x)Þ0, b1(x), c1(x)
are smooth functions of the two transversal variables. If fi
integralsl(x) andr1(x) are functionally independent, the
the a1 ,b1 ,c1 are smooth functions of them:a15a1(l,r),
b15b1(l,r), c15c1(l,r).

~3! The magnetic field lines do not lie on any two
dimensional surfaces. This can happen only for the force-
equilibria ~4.3! @19#. Then the functionsa1(x), b1(x), c1(x)
are constant.

Any field-aligned solution~4.1! for l(x)Þ1 can be trans-
formed by the symmetries~4.4! to a pure magnetic equilib
rium, B15b1(x)B, V150, c1(x)50, b1

2(x)5C1„1
2l2(x)…, and to a pure hydrodynamic equilibrium,B150,
V15c1(x)B/@a1(x)Amr(x)#, b1(x)50, c1

2(x)5C1„l
2(x)

21….
Remark 5. The exact field-aligned MHD equilibria~4.4!

with constanta1 , b1 , c1 were first derived in Ref.@23# from
the exact axially symmetric plasma equilibria found in R
@15#. Construction ~4.4! with arbitrary smooth functions
a1(x)Þ0, b1(x)Þ0 was first applied in Ref.@1# for the he-
lically symmetric plasma equilibria.

V. BALL LIGHTNING MODEL WITH DYNAMICS
OF PLASMA

In the papers@12,13#, a model of ball lightning is devel-
oped where a steady plasma with velocityV50 fills a spheri-
cal ball and the magnetic fieldB is axially symmetric inside
the ball and vanishes outside of it. The model is based on
exact solution of the paper@12# which is given in terms of
the spherical Bessel functions and the Legendre function
what follows, we generalize this model for the nonze
plasma velocityVÞ0.

In the cylindrical coordinatesr, z, f, the axially symmet-
ric magnetic fieldB has the form@2#

B5
cz

r
êr2

c r

r
êz1

I

r
êf , ~5.1!

wherec(r ,z) is a flux function,cz5]c/]z, c r5]c/]r , I
5I (r ,z) describes the electric current density, andêr ,êz ,êf
are the coordinate unit orts. For the axially symmetric so
tions ~5.1!, the plasma equilibrium equations curlB3B
5m gradP, div B50 are equivalent to the Grad-Shafran
equation c rr 2c r /r 1czz1I (c)I 8(c)1mr 2p8(c)50,
05641
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whereI 5I (c) andP5p(c) are arbitrary functions ofc and
prime means the derivative with respect toc. The authors of
Refs. @12#, @13# assumeI (c)5ac, p(c)5p02c0c and
construct a solutionc(r ,z) that satisfies the overdetermine
boundary conditionscu]V50, gradcu]V50 on a spherical
boundary ]V:R5a, R5Ar 21z2. Hence Bu]V50, Pu]V
5p0 and the solution is continued in the outer spaceR.a
by the trivial solutionB(x)50, P(x)5p0 @12,13#. The exact
solution of Ref.@12# can be represented in the form

c~r ,z!5mr2F11
32x1

2

cosx1

1

a2R2 S cos~aR!2
sin~aR!

aR D G ,
~5.2!

where m5c0m/a2, (32x1
2)/cosx1'234.8145, and 0<R

<a5x1 /a. Herex1'5.763 459 is the smallest positive roo
of the equation tanx53x/(32x2) where x5aR. Inside the
ball R<a, the generic magnetic surfacesc(r ,z)5const are
toroidal. The singular magnetic surfaces are the segmer
50, 2a<z<a and the magnetic axisr 5r 1 , z50, 0<f
<2p, which is defined by the conditionsc r50, cz50.

Let b~c! be an arbitrary smooth function ofc, b1

5chb(c), c15shb(c), C15b1
22c1

251, anda1(c)Þ0 be
another smooth function. Applying the corresponding sy
metry transform~4.4! to the equilibrium~5.1!, ~5.2! we get
new field-aligned sub-Alfvenic MHD equilibria

B15chb~c!B, V15
shb~c!

a1~c!Am
B,

P15p02c0c2
1

2m
sh2b~c!B2, ~5.3!

with the plasma densityr1(x)5a1
2
„c(r ,z)…. The MHD equi-

libria ~5.3! are defined inside the ballR<a and satisfy the
boundary conditionsB1u]V50, V1u]V50, P1u]V5p0 . Hence
the equilibria are continued in the outer spaceR.a by the
trivial solution B(x)50, V(x)50, P(x)5p05const,r1(x)
5a1

2(0)5const. The field-aligned equilibria~5.3! model ball
lightning with the variable plasma density and sub-Alfven
dynamics of plasma inside the fireball. These equilib
manifest also the neutral modes for the stability analysis@13#
of the ball lightning model@12,13#. Arguments of the papers
@24,25# concerning stability of the sub-Alfvenic MHD equi
libria are completely applicable to the solutions~5.3!.

VI. BREAKING OF THE GEOMETRICAL SYMMETRIES

The symmetry transforms~4.4! have important applica-
tions connected with the breaking of the geometrical symm
tries of the field-aligned MHD equilibria. Suppose that
field-aligned MHD equilibrium~4.1! possesses some ge
metrical symmetry—translational, axial, or helical—and th
all magnetic field lines in an invariant domainD either are
closed curves or go to infinity. Then the symmetries~4.4! are
defined by first integralsa1(x), b1(x), c1(x) of the dynami-
cal system~4.2!, which depend on the two transversal va
ables. These functions generically are not invariant with
0-5
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spect to the above geometrical symmetries. Hence the
equilibrium r1 ,B1 ,V1 ,P1 ~4.4! is nonsymmetric. This
means that the symmetry transforms~2.3!, ~4.4! break the
geometrical symmetry of the original field-aligned equili
rium r, B, V, P ~4.1!. In Sec. VIII, we present the globa
nonsymmetric MHD equilibria obtained by breaking of th
helical symmetry.

In this section, we give an example of the axial symme
breaking for a plasma equilibrium with toroidal magne
surfaces and closed magnetic field lines. We consider
magnetic analog@26# of Hill’s spherical vortex @14# for
which the magnetic fieldB is axially symmetric and pure
poloidal,

B5
cz

r
êr2

c r

r
êz . ~6.1!

The notations are the same as in Eq.~5.1!, I[0. Inside the
ball R<a, R5Ar 21z2, Hill’s solution has the flux function

c~r ,z!5c0mr 2~R22a2!/10, P~c!5p02c0c. ~6.2!

Outside of the ball,R.a, the flux function is

ĉ~r ,z!5Ar2~R232a23!, A52a5c0m/15, p~c!5p0 .
~6.3!

The formulas~6.1!–~6.3! imply B(x)5B̂(x) for uxu5a. In
the outer spaceR.a, the magnetic fieldB̂ ~6.1!, ~6.3! is
potential:B̂5grad@Az(R2312a23)#, and has a constant as
ymptotics B̂→2a23Aêz as R→`. The magnetic field lines
are shown in Fig. 2 of Shafranov’s paper@26#.

The magnetic field lines~6.1! have two first integrals: the
c(r ,z) and the anglef. Hence any smooth function
f „c(r ,z),f… also is their first integral. Inside the ballR
<a, the magnetic field lines are either closed curv
c(r ,z)5C1 , f5C2 or the separatrixr 50, 2a,z,a or
the rest points:r 5a/&, z50, 0<f<2p, wherec52,,
,5a4c0m/40.

Let a(c,f).0 andb~c, f! be any smooth functions o
the annulus2,<c<0, 0<f<2p such thata(0,f)51 and
b(0,f)50. Applying the symmetry transforms~4.4! with
functions a1(x)5a(c,f), b1(x)5chb(c,f), c1(x)
5shb(c,f), wherec5c(r ,z) ~6.2! andC151 to the Hill
solution ~6.1!, we obtain new sub-Alfvenic MHD equilibria

B15chb~c,f!B, V15
shb~c,f!

a~c,f!Am
B, ~6.4!

r1~x!5a2~c,f!r0 ,

P1~x!5p02c0c2sh2b~c,f!B2/~2m!

inside the ballR<a. On the sphereR5a, the equilibria
~6.4! coincide with Hill’s solution~6.1!, ~6.2! and hence are
continued in the outer spaceR.a by the same Hill’s plasma
equilibrium ~6.1!, ~6.3!. It is evident that the equilibria~6.4!
have toroidal magnetic surfacesc(r ,z)5const and closed
05641
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magnetic field lines and are nonsymmetric. Hence the s
metry transform~4.4! breaks the axial symmetry of Hill’s
solution.

VII. EXACT MHD EQUILIBRIA WITH CURRENT
SHEETS

~I! The symmetry transforms~2.3! can be used also to
construct exact MHD equilibria with current sheets. Suppo
that the initial non-field-aligned equilibriumr(x), B(x),
V(x), P(x) is smooth and that the functionsa(x), b(x),
c(x) ~2.3! are discontinuous at some magnetic surfaceS:
c(x)5c0 . Let them be equal toa1(x), b1(x), c1(x) and
a2(x), b2(x), c2(x) on the two sides ofS. Applying the
corresponding symmetry~2.3!, we obtain a MHD equilib-
rium with a contact~or tangential! discontinuity on the sur-
faceS. Indeed, the resulting vector fieldsB1 , V1 andB2 , V2
~2.3! are tangent to the surfaceS on the both sides. As is
known @27#, the only necessary condition at the surface
contact discontinuity is

P11B1
2/~2m!5P21B2

2/~2m!. ~7.1!

Using one of equations~2.3!, P15CP1(CB22B1
2)/(2m),

we obtain

P11B1
2/~2m!5C1„P1B2/~2m!…,

P21B2
2/~2m!5C2„P1B2/~2m!…,

whereCj5bj
2(x)2cj

2(x), j 51,2. Hence the necessary co
dition ~7.1! is satisfied ifC15C2 . Thus we see that the sym
metry transform~2.3! defines a new solution with a conta
discontinuity at the magnetic surfacec(x)5c0 if b1

2(x)
2c1

2(x)5b2
2(x)2c2

2(x).
Any surface of contact discontinuity carries an elect

current with the surface density@27# J(x)5m21n(x)
3@B2(x)2B1(x)#. Heren(x) is the unit normal vector field
to the surfaceS directed from the side 1 to side 2. For th
discontinuous symmetry transform~2.3!, we have

J~x!5m21n~x!3@~b22b1!B~x!1~c22c1!AmrV~x!#,
~7.2!

whereB(x), V(x), r(x) characterize the initial MHD equi-
librium. Hence for the noncollinear vector fieldsV andB, we
obtain

J~x!5Z21~x!@~b22b1!B•B1~c22c1!AmrV•B#V

2Z21~x!@~b22b1!V•B1~c22c1!AmrV•V#B,

~7.3!

whereZ(x)5mA(V•V)(B•B)2(V•B)2. Thus the magnetic
surfaceS is a current sheet with the surface current~7.3!.

For any functionF(x) having the limiting valuesF1(x)
andF2(x) at the two sides of a surfaceSwe denote the jump
in F acrossSas@F(x)#5F2(x)2F1(x). For the discontinu-
ous transform~2.3!, the plasma density and plasma veloc
have the jumps
0-6
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@r#5@a2~x!#r, @V#5F c~x!

a~x!G 1

Amr
B1Fb~x!

a~x!GV
~7.4!

at the surface of contact discontinuityS. For the stable stead
solutions with a nonzero plasma viscosity and plasma di
sion, the jumps~7.4! have to be zero. This condition implie

a2~x!52a1~x!, b2~x!52b1~x!, c2~x!52c1~x!.
~7.5!

For this case formulas~2.3! yield

r2~x!5r1~x!, B2~x!52B1~x!,

V2~x!5V1~x!, P2~x!5P1~x!. ~7.6!

Hence only the magnetic field has a jump and the surf
currentJ(x) ~7.2! is

J~x!522m21n~x!3@b1~x!B~x!1c1~x!Amr~x!V~x!#,
~7.7!

~II ! For the field-aligned solutions~4.1!, the contact dis-
continuity can occur on any surfaceS that is invariant with
respect to the magnetic dynamical system~4.2!. Formulas
~4.4! and the conditions@r#50, @V#50 imply on the surface
S,

a1.2~x!56a1.1~x!, b1.2~x!52b1.1~x!,

c1.2~x!56c1.1~x!. ~7.8!

The corresponding surface current~7.7! is

J~x!522m21b1.1~x!n~x!3B~x!. ~7.9!

VIII. ASTROPHYSICAL JETS AS THE NONSYMMETRIC
GLOBAL MHD EQUILIBRIA

~I! We start with the following helically symmetric@28#
magnetic fields:

Bh5
cu

r
êr1B1êz1B2êf , B15

agc2rc r

r 21g2 ,

B25
arc1gc r

r 21g2 , ~8.1!

where êr , êz , êf are the unit orts in the cylindrical coord
nates r, z, f and c5c(r ,u) is the flux function, u5z
2gf, a5const,g5const. In Ref.@1#, we obtained the ex-
act plasma equilibria~8.1!, curlB3B5m gradP, div B50,
that correspond to the flux functions

cNmn5e2br 2
$aNB0N~y!1r mBmn~y!@amn cos~mu/g!

1bmn sin~mu/g!#%, ~8.2!

where N,m,n are arbitrary integers> 0 satisfying the in-
equality 2N.2n1m, andy52br 2. The plasma pressure i
05641
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P5p022b2c2/m, and the plasma velocityV50. The poly-
nomialsBmn(y) have the form

Bmn~y!5
dm

dym Lm1n~y!2kmny
dm11

dym11 Lm1n~y!,

whereLp(y) are the Laguerre polynomials

Lp~y!5
1

p!
ey

dp

dyp ~ype2y!5 (
k50

p
~21!kp!

~k! !2~p2k!!
yk.

The simplest exact solution~8.2! is defined forN51, m
51, n50 and has the form

c110~r ,z,f!5e2br 2
@124br 21a1r cos~z/g2f!#.

~8.3!

~II ! Applying the symmetry transforms~4.4! to the exact
solutions ~8.1! and ~8.2! with V50, we obtain an infinite
family of new field-aligned MHD equilibria forC5k2,

B15k chf ~x!Bh , V15
k shf ~x!

Amr1~x!
Bh ,

P15k2P2
k2

2m
sh2f ~x!Bn

2. ~8.4!

Here f (x) and the plasma densityr1(x)5a1
2(x) are arbitrary

smooth functions that are constant on the magnetic field li
~8.1! which all go to infinity in the variablez @1#. Therefore
functionsf (x) anda1(x) depend on the two transversal var
ables and have no symmetry in general. Hence the gen
exact solutions~8.4! are nonsymmetric.

~III ! The nonsymmetric MHD equilibria~8.4! are sub-
Alfvenic because the ratio of the plasma kinetic and m
netic energies is

mr1V1
2/B1

25th2f ~x!,1. ~8.5!

This ratio is variable in the spaceR3 but is constant on the
magnetic field lines.

The exact solutions~8.4! with discontinuous functions
f (x) have current sheetsS that are invariant with respect t
the magnetic fieldBh lines. The generic invariant surfaceS
has no geometrical symmetries. The necessary condit
~7.8! at the contact discontinuity surfaceS imply f 2(x)
52 f 1(x), k252k1 . The surfaceS carries the electric cur-
rent ~7.9!:

J~x!522m21k1chf 1~x!n~x!3Bh~x!. ~8.6!

Using the known Galilean invariance@3,4# of the time-
dependent MHD equations, we obtain from Eq.~8.4! the
exact solutions

B~x,t !5B1~x,y,z2v0t !,

V~x,t !5V1~x,y,z2v0t !1v0êz , ~8.7!

r~x,t !5r1~x,y,z2v0t !, P~x,t !5P1~x,y,z2v0t !.
0-7
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These solutions describe a nonsymmetric astrophysica
that moves as a whole along thez axis with a constant spee
v0 . Indeed, for the solutions~8.4!, ~8.7! with f (x)
5c,c2,1q(x), r1(x)5b,c2,(x), ,.0, q>0, the plasma
magnetic and kinetic energies and its mass are finite in
layer c1<z<c2 becausecNmn(r ,u)'cNr 2N exp(2br2) at r
→`. All magnetic field lines and plasma streamlin
are bounded in the radial variabler because
the leading term of the flux functioncNmn(r ,u) ~8.2! is
bN(22br 2)N exp(2br2)/N! at r @1, bN5aN(11k0N). In
view of the rapid decreasing of the magnetic fieldBh(r ,u) as
r→`, the plasma magnetic and kinetic energies and its m
are concentrated near thez axis r 50. Hence we see tha
solutions ~8.4!, ~8.7! are global and satisfy the necessa
physical conditions~a!, ~b!, ~c! of Sec. I. Therefore the exac
nonsymmetric solutions~8.4!, ~8.7! model the astrophysica
jets outside of their accretion disks; for example, the jet
the elliptic galaxy Messier 87@5–7#. These nonsymmetric
exact solutions may have the current sheets with the sur
current density~8.6!.

Remark 7. On the stability of the MHD equilibria (8.4.
The main method to study the nonlinear stability of t
MHD equilibria is the energy variational method@2,29,30#.
In the papers@24,25#, it is shown that for the MHD equilibria
with noncollinear magnetic fieldB and plasma velocityV,
the second variation of energy,d2H, is indefinite. The same
is true for the aligned and super-Alfvenic flows. The on
MHD equilibria whose stability can be proved by the ener
variational method are the field-aligned and sub-Alfve
flows. The solutions~8.4! are exactly of this type: they ar
field aligned and sub-Alfvenic, see formula~8.5!.

Remark 8. On the preferable exact solutions. The class of
exact MHD equilibria~8.4! is large: the real parametersaN ,
amn , bmn , b.0, g and the integer parametersN,n,m, 2N
.2n1m are arbitrary, the two first integralsa1(x) and f (x)
of the magnetic dynamical system~4.2!, ~8.1! are also arbi-
trary. Hence a natural question arises: what values of th
parameters are preferable for the model of the real as
physical jets? The available observational data@5–7# are not
sufficient to answer this question completely. However, th
imply that the most preferable is the ground state solut
~8.3! with only two magnetic axes@1#. Thus the integer pa
rameters areN51, m51, n50. The preferable asymptotic
of the functionsa1(x) and f (x) as r→` are

a1~x!→0, f ~x!→0, f ~x!/a1~x!→0,

E E
R2

a1
2~x,y!dx dy,C0 .

For this case, the ratio~8.5! of the plasma kinetic and mag
netic energies th2 f (x)→0, uV1u!uBhu/m, r1(x)→0 as r
→`, and the total mass of plasma and its kinetic and m
netic energies are finite in any layerc1,z,c2 .

IX. MHD EQUILIBRIA WITH NONCOLLINEAR VECTOR
FIELDS B AND V

~I! The known Grad’s ‘‘transverse’’ flows@31# are cylin-
drically symmetric and describe the differential rotation o
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perfectly conducting ideal gas plasma around the axisz in
the vertical magnetic field,

B5H~r !êz , V5v~r !~2yêx1xêy!,

P~r !5F~r !2H2~r !/~2m!. ~9.1!

Here F(r )5*0
r tr(t)v2(t)dt1«2. The solutions~9.1! de-

pend on the three arbitrary functionsv(r ), H(r ), r(r )>0
and satisfy the ideal gas equation of state~1.3!. The density
of entropyS(r ) is defined from the Eqs.~1.3! and ~9.1! for
the arbitrary gas densityr(r ) and the adiabatic exponentg
.1.

Applying the symmetry transforms~2.3! to the solutions
~9.1!, we obtain the new exact MHD equilibria

r1~r !5a2~r !r~r !, B15cAmrV1bHêz ,

V15
b

a
V1

c

aAmr
Hêz , ~9.2!

where b2(r )2c2(r )5C5const andP15CF2b2H2/(2m)
2r(crv)2/2. For the equilibria~9.2!, the vector fieldsB1
and V1 are noncollinear. Exact solutions~9.2! satisfy the
ideal gas equation of state of the form~1.3! and depend on
four arbitrary functionsa(r ), b(r ), v(r ), andH(r ). Their
magnetic field lines and plasma streamlines are helices
lie on the cylindrical magnetic surfacesx21y25r 25const.

We consider solutions~9.2! inside a cylinder 0<r<r 1
provided thatc(r 1)50, v(r 1)50, H(r 1)50 and the in-
equalityH2(r ),2mF(r ) holds, thenP(r ).0. At the bound-
ary r 5r 1 , we have V1(r 1)50, B1(r 1)50, r1(r 1)5r0 ,
P1(r 1)5F(r 1)5p0 ; therefore the solution is continued i
the outer space by the trivial solutionV50, B50, r5r0 ,
P5p0 . Hence the solutions~9.2! describe the helical dy-
namics of plasma inside the cylinder.

Suppose that the functionsa(r ), b(r ), c(r ) have a
jump at r 5r 0 that satisfies the necessary conditions~7.5!.
Then solution ~9.2! has a contact discontinuity~7.6!
at the cylinder r 5r 0 . This surface is a current shee
with the current J defined by the equations~7.7!
and ~9.1!: mJ(x,y,z)5 22b1(r 0)H(r 0)(yêx2xêy)
2 2c1(r 0)Amr(r 0)v(r 0)êz . Hence we see that the currentJ
lines are helices. The solutions~9.2! can have an arbitrary
number of such cylindrical surfacesr 5r k of contact discon-
tinuities.

~II ! As is shown in Remark 1 of Sec. II, the symmet
transforms~2.3! convert a given MHD equilibrium into an
other equilibria with the same magnetic surfaces. Hence
following question arises:if u, u1 are two MHD equilibria
with the same magnetic surfaces, is there a symmetry tra
form ~2.3! bringing them into each other? We prove that, in
general, such transform does not exist. Indeed, let us c
sider another Grad’s ‘‘transverse’’ flow~9.1!,

B25H2~r !êz , V25v2~r !~2yêx1xêy!,

P2~r !5F2~r !2H2
2~r !/~2m!, ~9.3!
0-8
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with H2(r )/H(r )Þconst and r2(r ).0, F2(r )
5*0

r tr2(t)v2
2(t)dt. The two MHD equilibria~9.1! and~9.3!

have the same cylindrical magnetic surfacesr 5const. By
applying to Eq.~9.1! the symmetry transforms~2.3! with
b2(r )2c2(r )5C5const we obtain the equilibria~9.2!. If
c(r )Þ0 then all plasma streamlines are helices. Ifc(r )50
then b(r )5AC5const, B15ACH(r )êz , and therefore
H1(r )/H(r )5AC5const. Hence it follows that the equilib
rium ~9.1! cannot be transformed by the symmetries~2.3!
into the equilibrium~9.3! because for the latter all plasm
streamlines are closed curvesz5const, r 5const, and
H2(r )/H(r )Þconst.

As a corollary of the group structure ofGm ~see Sec. III!,
we find that no MHD equilibrium obtained from~9.3! by the
symmetries~2.3! can be transformed by these symmetr
into the equilibrium~9.2!. However, all these equilibria hav
the same cylindrical magnetic surfacesr 5const. Hence we
conclude that, in general, the action of the groups of sym
tries Gm ~3.3! on the setsEm is not transitive (Em is the set
of the MHD equilibria with the same magnetic surfaces!.

~III ! Let us show that any axially symmetric plasma eq
librium ~5.1!: Ba5@czêr2c r êz1I (c)êf#/r , V50, P
5P0(c) generates a family of MHD equilibria with nonco
linear vector fieldsB andV. Let f (c).0 be a smooth func-
tion of c. It is easy to verify that functions (r05const)

B5Ba , V5r f ~c!êf , P5P0~c!1r0r 2,

r52r0f 22~c! ~9.4!

define a new MHD equilibrium. Indeed, formulas~9.4! imply
r(V• grad)V52r0 gradr 2, hence Eq.~1.1! follows. The
Eqs. ~1.2! are true because divV5div(rV)50 and V3B
52 f (c)(c r êr1czêz), hence curl(V3B)50. For the equi-
librium ~9.4!, the magnetic surfaces are given by the eq
tion c(r ,z)5const. Applying the symmetry transforms~2.3!
to the equilibrium~9.4! we obtain a continuous family of th
axially symmetric MHD equilibria

B15b~x!Ba1mc~x!r êf ,

V15
f ~c!

a~x!
@m21c~x!Ba1b~x!r êf#,

where m5A2mr0, r1(x)52r0a2(x)/ f 2(c), b2(x)2c2(x)
5C, and P15C„P0(c)1r0r 2

…1(CBa
22B1

2)/(2m). The
vector fieldsB1 andV1 are noncollinear.

~IV ! Any helically symmetric plasma equilibriumBh
~8.1!, V50, P5P0(c) also generates a family of the MHD
equilibria with noncollinear vector fieldsB and V. Indeed,
we let

B5Bh , V5 f ~c!H, P5P0~c!1r0r 2,
05641
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r52r0f 22~c!, ~9.5!

whereH5gêz1r êf , c5c(r ,u) is the flux function for the
equilibrium ~8.1!, u5z2gf and f (c).0 is an arbitrary
smooth function. A calculation shows thatr(V• grad)V
52r0 gradr 2, hence Eq.~1.1! holds. Equations~1.2! are
satisfied because divV5div(rV)50 and V3B52 f (c)
3(c r êr1cuêz2gcuêf /r )52 f (c)gradc, hence curl(V
3B)50. The equationc(r ,u)5const defines the magneti
surfaces for the equilibrium~9.5!. By applying the symmetry
transforms~2.3! to the equilibrium~9.5! we get a family of
the helically symmetric MHD equilibria,

B15b~x!Bh1mc~x!H, V15
f ~c!

a~x!
@m21c~x!Bh1b~x!H#

with the noncollinear vector fieldsB1 and V1 . Here m
5A2mr0, r1(x)52r0a2(x)/ f 2(c), and P15C„P0(c)
1r0r 2

…1(CBh
22B1

2)/(2m).

X. THE SYMMETRY TRANSFORMS FOR THE
COMPRESSIBLE GAS PLASMA

For the ideal compressible gas plasma, Eqs.~1.1!–~1.3!
are invariant under the following symmetry transforms:

r1~x!5a2~x!r~x!, B15bB, V15
b

a~x!
V, ~10.1!

P15b2P, S15S12CV@ lnubu2g lnua~x!u#,

wherea(x)Þ0 is an arbitrary smooth function that is con
stant on the magnetic field lines and on the plasma stre
lines andb5constÞ0. Transforms~10.1! preserve the equa
tion of state~1.3!.

Suppose that for a smooth non-field-aligned MHD eq
librium with an equation of stateP5rg f (S) the magnetic
surfaces are closed in some domainD. Then for the generic
case the entropy densityS(x) is constant on the magneti
surfaces and there exists a symmetry~10.1! that transforms
the MHD equilibrium in the domainD into an isoentropic
equilibrium satisfying the equationP15b2r1

g .
Functiona(x) satisfies the equations

B• grada~x!50, V• grada~x!50. ~10.2!

The latter equation implies

r1~V1• grad!V15b2r~V• grad!V,

div~r1V1!5a~x!b div~rV!50.

Hence Eqs.~1.1!, ~1.3! and the first equation~1.2! are satis-
fied. The only nontrivial equation is the third equation of E
~1.2!. We have
curl~V13B1!5curlS b2

a~x!
V3BD5grad

b2

a~x!
3~V3B!1

b2

a~x!
curl~V3B!.
0-9
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The first two equations~10.2! imply grad„b2/a(x)…3(V
3B)50. Hence the equation curl(V13B1)50 follows.

If for the MHD equilibrium r, B, V, P the magnetic sur-
faces are closed in some domainD then they are toriT2 @2#.
In the Remark 9 below, we prove that the vector fieldsr21B
and V commute. Hence the magnetic field lines and
plasma streamlines are dense quasiperiodic trajectorie
the generic toriT2 @2#. Therefore any function that is con
stant along the plasma streamlines is constant on the torT2.
Hence equation@V• gradS(x)#50 ~1.3! implies that entropy
S(x) is constant on the magnetic surfaces.

Suppose that plasma satisfies an equationP5rg f (S).
The functiona(x)5 f 1/(2g)

„S(x)… is constant on the magneti
surfacesT2. The corresponding symmetry~10.1! transforms
the equation of stateP5rg f (S) into the isoentropic equation
P15b2r1

g .
The symmetry transforms~10.1! form the subgroupG0m

5Am% R1
% Z2% Z2,Gm , see Eq.~3.3!. Elements ofG0m

are the sextuples@a(x),0,k,t,1,h#. The subgroupG0m has
the additional structure of a module over the associative
gebraAm with multiplication induced by Eq.~3.4!.

Remark 9. Let us prove that for any variable plasma de
sity r(x) vector fieldsr21B andV commute, or their com-
mutator @r21B,V#50. Indeed, the known identity curl(X
3Y)5(div Y)X2(div X)Y1@Y,X# and the equation
curl(V3B)50 imply

curl~rV3r21B!5div~r21B!rV2div~rV!r21B

1@r21B,rV#50.

Substituting equation div(rV)50 we get

@r21B,rV#1r div~r12B!V50. ~10.3!

Equation divB50 implies div(rr21B)5r div(r21B)
1r21(B• gradr)50. This equation yields

r@r21B,V#5@r21B,rV#2r21~B• gradr!V5@r21B,rV#

1r div~r21B!V.

Hence, using Eq.~10.3! we obtain@r21B,V#50.

XI. INVARIANTS OF THE SYMMETRY TRANSFORMS

~I! The symmetry transforms~2.3! @and ~10.1!# have the
following physical meaning. The difference between t
plasma kinetic and magnetic energies is changed by a s
multiplication. Indeed, the transform~2.3! implies

1

2
r1V1

22
1

2m
B1

25CS 1

2
rV22

1

2m
B2D , ~11.1!

whereC5b2(x)2c2(x)5const @C5b2 for the symmetries
~10.1!#. Another consequence of transform~2.3! is the equa-
tion V13B15CV3B/a(x). Hence we obtainAr1V13B1

5CArV3B, or Ar1E15CArE. HereE52V3B/c0 is the
electric field for the plasma with a perfect electric condu
tivity; c0 is the speed of light. Hence the symmetries~2.3!
have the vector field invariant
05641
e
on

l-

-

lar

-

Ar1V13B1

r1V1
22B1

2/m
5

ArV3B

rV22B2/m
.

This invariant implies that the symmetry transforms~2.3!
preserve magnetic surfaces and the integrable foliation~2.2!:
dc„Y(x)…50.

Remark 10. An application of the Newcomb variation
principle. In his 1962 paper@32#, Newcomb proved that the
~time-dependent! MHD equations ~1.1! follow from the
variational principle,

dE
t1

t2
dtE L~B,V,r!d3x50, L~B,V,r!5

1

2
rV22

1

2m
B2,

~11.2!

provided that the~time-dependent! equations~1.2! are satis-
fied. The symmetry transforms~2.3! preserve the equation
~1.2! because the functionsa(x), b(x), andc(x) are constant
on the magnetic field lines and on the plasma streamlin
Equation~11.1! implies the following relation between th
Lagrangians:

L~B1 ,V1 ,r1!5CL~B,V,r!. ~11.3!

Equation ~11.3! means that the symmetry transforms~2.3!
preserve the Lagrangian of the Newcomb variational pr
ciple ~11.2! up to a constant factor. Hence any extremum
the principle ~11.2! is transformed into a new extremum
Thus we obtain the second proof of the fact that symmet
~2.3! @and ~10.1!# transform any solution of equations~1.1!
and ~1.2! into new solutions. The first proof of Sec. II i
straightforward and independent of Newcomb’s variatio
principle.

XII. SUMMARY

The method for constructing exact magnetohydrodyna
ics equilibria consists of the application of symmetry tran
forms ~2.3! and ~10.1! to any known equilibrium. The
method is applicable to the divergence-free flows of plas
and to the ideal gas plasma flows with divVÞ0. The sym-
metry transforms have form~2.3! for div V50 and depend
upon two arbitrary functionsa(x) andb(x) that are constan
on the magnetic field lines and on the plasma streamlin
For the ideal gas plasma flows with divVÞ0, the symmetries
have a simpler form~10.1! and depend upon one arbitrar
functiona(x) that is constant on the magnetic field lines a
on the plasma streamlines. For any physical solution to eq
tions ~1.1! and ~1.2!, the method of symmetry transform
~2.3! and~10.1! gives a continuous family of new solutions

The symmetry transforms~2.3! and~10.1! break the geo-
metrical symmetries of the field-aligned MHD equilibria
the domainsD where all magnetic field lines either ar
closed curves or go to infinity. By applying the symmet
transforms ~2.3!, ~4.4! to the magnetic analog of Hill’s
spherical vortex@14# we have obtained a continuous fami
of nonsymmetric MHD equilibria with toroidal magnetic su
faces and closed magnetic field lines. We have derived
exact MHD equilibria with current sheets by applying to t
0-10
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smooth MHD equilibria the symmetries~2.3! with discon-
tinuous functionsa(x), b(x), c(x) that satisfy the necessar
conditions~7.5!.

By applying the method of symmetry transforms~2.3!, we
have derived the exact solutions~5.3! that model ball light-
ning with dynamics of plasma inside the fireball and a la
family ~8.4! of global well-behaved nonsymmetric MHD
equilibria. These exact solutions satisfy all necessary ph
cal conditions~a!, ~b!, ~c! of Sec. I and model the astrophys
cal jets outside of their accretion disks, for example, the
in the elliptic galaxy Messier 87@5–7#. The total plasma
kinetic and magnetic energy and its mass are finite in
layer c1,z,c2 . The exact solutions may have the curre
sheets with the surface current density~8.6!.

The method of symmetry transforms~2.3! has the follow-
ing features that distinguish it from the method of Backlu
transforms for the soliton equations:
ra

05641
e

i-

t

y
t

~i! The method of symmetry transforms gives new so
tions in explicit algebraic form.

~ii ! The symmetry transforms~2.3! depend on all three
spatial variablesx5x,y,z.

~iii ! The generic transforms~2.3! break the geometrica
symmetries of the field-aligned equilibria.

~iv! The symmetries~2.3! form infinite-dimensional Abe-
lian groupsGm ~3.3! that depend on the topology of th
MHD equilibria.

~v! The groups of symmetriesGm ~3.3! have the addi-
tional structure~3.4! of modules over the associative alg
bras of functions.
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