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Symmetry transforms for ideal magnetohydrodynamics equilibria
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A method for constructing ideal magnetohydrodynantM$&iD) equilibria is introduced. The method con-
sists of the application of symmetry transforms to any known MHD equilibfiu® I. Bogoyavlenskij, Phys.
Rev. E.62, 8616,(2000]. The transforms break the geometrical symmetries of the field-aligned solutions and
produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also
allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vectorBieldd
V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total
magnetic and kinetic energy of the jet is finite in any lage<z<c,. The jet possesses current sheets and is
highly collimated in view of a rapid decrease of the magnetic fielich the transverse direction. The method
gives also the MHD equilibria that model ball lightning with dynamics of plasma inside the fireball.
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[. INTRODUCTION which usually cannot be solved explicitly. All soliton equa-
tions depend only on a part of spatial variahlese for KdV

One of the possible approaches to the plasma confinemeand SG and two for KP Unlike the Backlund transforms,
problem[2—4] and to the astrophysical jets probl¢f-7] is the method of symmetry transforms produces new solutions
to find and investigate the corresponding exact magnetohyn explicit algebraic form and is applicable to the equations
drodynamic§MHD) equilibria. There are several known ex- in all three spatial variables, y, z
act plasma equilibrid3,4]. However, until now there were ~ We apply the method of symmetry transforms to develop
no methods to obtain new solutions, especially equilibria thag model of nonsymmetric astrophysical jets that are in the
are bounded in the whole space. In the pap8rsll], the state of magnetohydrodynamics equilibrium. Such equilibria
nonsymmetric plasma equilibria were derived that blow uphave to be global or have to satisfy the following necessary
asx?+y?—o, conditions in the cylindrical coordinate&sz, ¢.

In this paper, we introduce a method for constructing ideal
MHD equilibria which is based on the recently discovered
[1] continuous symmetries of the MHD equilibrium equa-
tions. Applying these symmetries to any known equilibrium,
we obtain continuous families of new MHD equilibria. For
?hX: ?;Ai'gblyzi%pwgetthtﬁ eml\jltjllgdeéziltig(rai aet)ﬁ;cttrsg(ljuéiobnjl ° (c) All magnetic field lines are bounded in the radial vari-
lightning with dynamics of plasma inside the fireball. abler

_ The generic transformid ] break the geometrical symme-  The conditiongb) and(c) mean that the jet is localized in
tries of the field-aligned plasma equilibria. For the magnetighe x andy directions. The asymptotic value of presspgis
analog of Hill's spherical vortex14], the symmetry trans- the average pressure of the ambient medium. We suppose
forms break the axial symmetry of this equilibrium and givethat gravitational effects can be neglected or in the case of
a continuous family of nonsymmetric MHD equilibria with constant density the gravitational force- p grad ¥ is in-
toroidal magnetic surfaces and closed magnetic field linesyged in the pressure gradient.

Applying the method to the well-behaved axially and heli- e model the astrophysical jets outside of their accretion
cally symmetric plasma equilibrid, 15, we derive the non-  gisks by the nonsymmetric global MHD equilibria that are
symmetric MHD e3qU|I|br|a which are bounded in the wzhole bounded in the whole Euclidean spat® satisfy the physi-
Euclidean spacét® and are rapidly decreasing a$+y®  caj conditions(a), (b), (c), and have current sheets and tan-
- gential discontinuities. In Ref§l], [15], | derived the exact

_ The method is used also to construct exact MHD equilibobal plasma equilibria which do not have current sheets
ria with current sheets and contaclr tangential disconti-  ang are axially and helically symmetric.

nuities. These solutions are obtained by applying to the The system of magnetohydrodynamics equilibrium equa-
smooth MHD equilibria the symmetry transforfld that are  tjons has the form
discontinuous on some magnetic surfaces.

The method is different from the method of Backlund

(a) The magnetic field, the plasma velocity/, the pres-
sureP, and densityp are bounded i3,

(b) The total kinetic and magnetic energy of plasma and
its total mass are finite in any layef<z<c,. The pressure
]P—>p0 asr—oo,

transforms for the soliton equations such as the 1

Korteweg—de VriesKdV) equation[16], the Kadomtsev- p(V- gradV+ ;BXCurIB:—gradP, (1.9
Petviashvili(KP) equation17], the Sine-GordoitSG) equa-

tion [18], etc. The method of Backlund transforms is based

on the resolution of certain auxillary differential equations div(pV)=0, divB=0, cur(VXB)=0, (1.2
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whereB is the magnetic vector fielgy is the constant mag- a constantl, wheren is an integer andl is the integral2.1)

netic permeabilityV is the plasma velocity vector fielgh ~ over the shortest noncontractable loop of the torus.

=p(X) is its density, and® is the pressure. For the incompressible flows, we suppose that the plasma
We consider both the incompressible and compressibldensity p(x) is either constant or an arbitrary function of

plasma flows. The condition of incompressibility 8v=0 is  #(X) (2.1, p=p(¥)).

widely used in the MHD literatur€19—-22. For example, it Any given smooth non-field-aligned MHD equilibriuB

is applicable with a high accuracy for the subsonic plasma/, p, P in R® (B andV are noncollineardefines a distribu-

flows with Mach numbeM <1, M2=V?/(yP/p). Then the tion of magnetic surfaceg(x)=const inR®[19]. Let E, be

continuity equation diyfV)=0 implies V- gradp(x)=0. the set of all incompressible equilibria that have the same

Hence the plasma densify(x) is constant on the plasma magnetic surfaces as the given one. We introduce the trans-

streamlines. forms T: E,—E,, that depend on arbitrary functiorsgx)
For the compressible plasma flows, we suppose that0, b(x), c(x) that are constant on the magnetic surfaces
plasma satisfies the ideal gas equation of state Y(X)=const. Thea(x), b(x), c(x), and p(x) are either
functions of ¥(x) or, more generally, satisfy some func-
P=Cop?exp(S/ICy), V-gradS=0, Cy=Pgp,”, tional equations F(a(x),#(x))=0, G(b(x),¥(x))=0,

(1.3 H(c(x),#(x))=0, R(p(x),#(x))=0. For the MHD equilib-
ria in a toroidal domairD (a tokamalk, functionsa=a(y),
where S(x) is the density of entropyy>1 is the adiabatic b=b(), c=c(v), andp(y) are periodic with period de-
exponent, an€y, is the heat capacity at constant volume. Wefined above.
consider also the more general equations of stBte The transformdT are defined by the formulas
=Cop”f(9).

B,=b(x)B+c(x)+/ X)V,
II. THE SYMMETRY TRANSFORMS ! () (X)Vpp(x)

For the noncollinear vector field andV, the third equa- c(x) b(x)

tion (1.2) implies the existence of either magnetic surfaces or Vl:a(X) Vup(X) Bt a(x) v, 23
a magnetic foliation. Indeed, in any simply connected do-

- 3 _ . _ .
mainEC R, x=(X,y,z), the equation curN X B) =0 yields p1(X)=a2(x)p(x), P,=CP+(CB2— Bi)/(z,u),

X 2 _ 2 _
VX B=gradi(x), ¢(x)=f (VXB)-ds. (2. b*(x) =) =C,
Xo

whereC+#0 is a constant. Let us prove that transforf2<3)
Hence the surfaceg(x)=const are magnetic surfaces, be- define new solutions to the equilibrium equatidasl) and
causeB- grady=0, V- grady=0 [19]. If the vector fields (1.2 Leth(x) be any function that is constant on the mag-
B, V are defined only in some nonsimply connected domaif'€tic surfaces, for examplea(x), b(x), c(x), or p(x).

D (for example, toroidal then the functiony(x) (2.1 is  Hence we have

multivalued in general. However, the differential fody’ is

well defined. Indeed, we have B- gradh(x)=0, V- gradh(x)=0. (2.9

dyr(Y (x))=[V(X)XB(x)]- Y(X) (2.2 Applying the classical identityBx curlB=—(B- grad)B

+ 2 1.0 i
for any tangent vectoY (x). The equatiord (Y (x))=0 de- grad(@*/2), we present Eq.1.1) in the form

fines an integrable foliation in the domahwhich is gener- p(V- gradV —(B- gradB/u=—gradP+B2/(2)).

ated by the vector fieldB andV. (2.5
For toroidal domain® (which are the most important for

the tokamak applicationghe functiony(x) is defined up to  Using formulas(2.3) and (2.4), we get

p1(V1- gradVy—(By- grad By/u+gradP;+Bi/(2u))
=[b%(x)—c2(x)][p(V- gradV — (B- gradB/u+ grad P+ B?/(2u))] =0.

Thus the functiong,, B4, V1, P, satisfy Eq.(2.5 and therefore Eq(1.1).
Equations divg,V,) =0 and divB;=0 easily follow from Eq.(2.4) and divpV)=0, divB=0. Substituting Eq(2.3), we
obtain

B C C
= gradﬁ X(VXB)+ ﬁcurl(Vx B).

C
curl(V,XBq)= curl( mvx B
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Applying Egs.(2.4), we find that vector field gra@€/a(x))
is collinear with the vector field VXB; hence
gradC/a(x))x (VX B)=0. Therefore the equation cu¥(
X B)=0 yields curl(V;XB;)=0. Hence formulag2.3) for
C+#0 define a new solution to Egél.1) and(1.2).

For C#0, the transform(2.3) is invertible,

CB=b(x)B;—c(X) Vup1(X)Vy,

Ve —c(Xx) B b(x)
a, () Vupy(x) — ax)

where a,(x)=1/a(x). We shall refer to the transforms

Vi, (2.6

(2.3 as the symmetries of the divergence-free MHD equilib-

rium equationg1.1) and(1.2).
For C=0, or b(x)=*c(x), the transform(2.3) is not

PH®ICAL REVIEW E 66, 056410 (2002

MHD equilibrium B4, V4, p;, Py has the same magnetic
surfaces as the original ori® V, p, P. This property shows
that the symmetrie€2.3) map the sek,, into itself. In Sec.
IX, we apply the transform&.3) to obtain new MHD equi-
libria with noncollinear vector field8 andV.

Ill. THE GROUPS OF SYMMETRIES

We consider the seB,, of all transforms(2.3) with C
# 0 for which the smooth functiore(x), b(x), andc(x) are
constant on the magnetic surfaces for a given MHD equilib-
rium. Each transform{2.3) corresponds to a triple of func-
tions (a,b,0 that satisfy the conditions

a(x)#0, b?(x)—c?(x)=constC+#0. (3.2

1
2 B2=C,=const (2.7)

Bi== Vup1(X)Vy,

P, +

divergence-free MHD equilibria that have the same magnetic
surfaces as the given one. Remark 1 and the invertibility of
the transformg2.3) for C+#0 prove that the range of these
transforms is the same as their domaty,. Hence the com-

that are the known Chandrasekhar equipartition equilibrigposition of the transforms is well defined. Let us show that

[20].
Remark 1 The new vector field8; and VvV, (2.3) are
linearly dependent on the origin8 andV. Hence the new

a, 0 0 a, 0
0 by covupy 0 b
X
C2 P1 C1
0 — b,\/= 0
VP2 P2 Vup

where a=aj,a;, b=byb;+cyc,, c=cyb;+byc,. Hence
the multiplication of the triples has the form

(az,by,cy)(as,by,cq)=(azay,bbs+c,cq,C0b, + bzcé) ,2)

which impliesC=b?—c?=C,C;#0. The unit triple is(1, 1,
0), the inverse transforn(2.6) corresponds to the triple
(a,b,c)"t=(a"1,C !b,—C ). Itis evident that the mul-

the composition assigns on the $&f, the structure of an
Abelian group. Indeed, the composition of the transforms
(2.3) is equivalent to the 3 matrix multiplication

NG
P2

c(x) are constant on them. In Sec. IX, we show on a concrete
example that, in general, the action of the grd@sig on the
setE,, is not transitive.

To study the structure of the gro@,,, we introduce the
parametrizatiora(x) = rexpa(x), where a(x) is a smooth
function that is constant on the magnetic surfaces and
r=+1. For C=0k? o==*1, k>0, the second equation
(3.1) is resolved in the formo= 1, b(x) = nk chB(x), c(x)
= 7k shB(x); o=-1,  b(x)=nkshB(x), c(x)
= yk chB(x), wheren= =1 andB(x) is an arbitrary smooth

tiplication (3.2) is commutative and associative. Hence thefunction that is constant on the magnetic surfaces. Hence

transforms(2.3) form an Abelian grougs,,.

each transform (2.3 corresponds to a sextuple

The groupG, is infinite-dimensional and depends on the[ a(x),3(x),k, 7,0, 7]. In view of the known identities for
topology of the distribution of magnetic surfaces for thethe hyperbolic functions ¢hand sh, the multiplication(3.2)

given MHD equilibrium because the functiomagx), b(x),

takes the simple form

[@1(X),B1(X),Ky, 71,01, 1] @2(X), B2(X) Kz, 72,02, ma] =[ @1(X) + a@a(X), B1(X) + B2(X) ,KiKa, 71 72,0102, 11772 ].
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Hence the grouis,, is the direct sum where (x) is some smooth function iR*. Let E, be the set
. of all divergence-free field-aligned MHD equilibria that have
Cn=An®An®R @Z,0Z,87Z,. (3.3 the same magnetic field lines as the given equilibridnd).

L L . In this section, we introduce transfornis: E,—E, that
HereR™ is the multlpllpgtwe group of positive numbeks depend on the arbitrary functiorss (x)+0, by(X), ¢1(X),
>0. TheA, is the additive Abelian group of smooth func- that are constant on the considered magnetic field lines.

. . 3 .
tions in* that are constant on the magnetic surfaces for thease functions are first integrals of the corresponding dy-
given MHD equilibrium. The group\y, is also a linear space o mical system

and an associative algebra with respect to the multiplication
of functions. y _ X=B,(x,y.2), Y=By(xy.2), 2=B,xy.2), (4.2
Remark 2. An additional algebraic structur€he group

Gp has an additional structure that does not exist for thavhere B,, B,, B, are the magnetic field® components.

groups of symmetries of the soliton equatigf§—-18. The  Such first integrals exist always if the trajectories of system

G,, is a module over the associative algelyg® A, with (4.2) lie on some two-dimensiondimagneti¢ surfaces. In

the multiplication defined by the multiplication of functions, the papef19], Moffatt proved that all smooth steady MHD
equilibria possess magnetic surfaces. The only possible ex-

[y(x), () [e(x), B(X) K, 7,0, 77] ceptions are the “force-free” equilibria

=[y(¥)a(x),{X)B(X).k 7.0,7]. (3.4 V=c,B, p=c,, curB=csB, P+pVZ2=c,,

This operation results in the transform(x)— 7|a(x)|?™, .3

b(x) = 7k chB(x) — nkeh(£(x) B(x)), c(x)=nkshB(X)  wherec,, c,, cs, ¢, are constantgld].

— kSR (X) B(X)). _ _ Equations(1.2) and divWw=0 imply B- grad\(x)=0 and
Remark 3. Subgroups of the groupg, GThe intersection g graq,(x) = 0. Hence the functions(x) andp(x) are first

of all groupsG,, fqr different MHD gqplllbrla consists of the integrals of the magnetic dynamical systé#n?).

transforms(2.3) with constant coefficienta,b,g The transformsT, are defined by the formulas

c b
B;=bB+cyup(x)V, V;=————=B+ -V, 2 B.=b.(X)B. V.= c1(X) B
a\/Mp(X) a (35) pl(x) al(X)P(X)a 1 ]_(X) ’ 1 al(x)m '
' (4.4
_ _ _R2
p1(x)=a%p(x), P,=CP+(CB? BD/(2w), L bi(x)—c'f(x)
P,=C,P+(CB°=B)/(2u), ——7-—=Cu,

b2—c2=C+0. 1-N?(x)
The transformg3.5) are applicable to any MHD equilibria whereC,;#0 is a constant. Let us prove that e, V,, py,
and form the three-dimensional subgroup P, (4.9 represent a new MHD equilibrium. For the field-

aligned solutiong4.1), Eq. (1.1), Eq. (2.5 takes the form

G3;=NG,=ROROR"©Z,06Z,0Z,.
w *(\4(x)—1)(B- gradB+gradP+B?/(2))=0.

They correspond to the x-independent sextuples (
(a,B.k,7,0,7) where a=rexpa, C=0k?®#0, and b
=nkchB, c=nksh3 for o=1, and b=gyksh3, c¢  Applying transform(4.4) and using formuld4.5), we obtain
= nk chg for o= — 1. Each groufs,, (3.3) has exactly eight
periodic elements that are defined by the sextufle®, 1,  p1(Vi- gradV,—(B;- gradB,/u+gradP;+B5/(2u))
+1, =1, ®£1) and form the subgroupl's=Z,®Z, 1,2 2
©Z,CG3CG,,; all periodic transformd have order 22 =p(C5(x) = bi(x))(B- grad B
=id. The subgroupl’g represents the eight components +C, gradP+B?/(2u))=0.
Gpj, 1=1,...,8, of the groupsy,. The scale and reflection
symmetries form the two-dimensional subgrodp=R Hence functiong,, B;, V;, andP, (4.4) satisfy Eq.(1.1).
R0 Z,®7Z,6Z,CG3C G, that consists of the sextuples It is evident that functiong4.4) satisfy Egs.(1.2). Hence

(a,0k,7,0,7). transformsT, (4.4 map the seE, into itself. Transforms
(4.4) are evidently invertible ifC,# 0.
IV. THE SYMMETRY TRANSFORMS FOR THE Transforms(4.4) are the restrictions of the transforms
FIELD-ALIGNED MHD EQUILIBRIA (2.3 onto the field-aligned equilibria. Formul#4.4) imply

Vi=N(X)Bi/Vupi(X) where Ni(X)=c1(X)/bs(X). The
last formula(4.4) yields N5(x)=1—C;b; 2(X)[1—A2(X)].
Hence forC,#0 we have|\(x)|=1 if and only if |\ (X)]

For any field-aligned MHD equilibrium, we have

V= AMX) B, (4.1 =1 Therefore the Chandrasekhar solutio@s?), |\(x)|
Vup(X) =1, are invariant under transfornis.4).
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Remark 4. On the structure of the functiong»d, b, (x), wherel =1 () andP=p(¢) are arbitrary functions oy and
c,(x). These functions are first integrals of the magneticprime means the derivative with respecttoThe authors of
dynamical systen4.2). The following can occur in different Refs. [12], [13] assumel ()= ay, p(¥)=po—Coy and
invariant domain® C R3 [2]. construct a solution(r,z) that satisfies the overdetermined

2

o , boundary conditions/|,,=0, grady|,,=0 on a spherical
(1) The magnetic field lineg4.2) are dense on some boundary 9V:R=a, R= JrZ+ 7. Hence B|,y=0, Pl
closed magnetic surfaces defined by an equati¢r)  _, “anq the solution is continued in the outer sp&cea
=const. Then these surfaces necessarily areTtofi2] and by the trivial solutionB(x) =0, P(X)=po [12,13. The exact
first integralsa, (x) # 0, by(x), ¢1(x) are constant on them. g4 ,ion of Ref[12] can be represented in the form
Hence they are either smooth functions bfor, more
generally, satisfy some equation$-(a;(x),f(x))=0, 3-x2 sin(aR)
G(b1(x),f(x))=0, H(c,(x),f(x))=0. ¢(r,z)=mr2[1+ cosx ;rRz(cos{aR)— R }
(2) Al magnetic field lines either are closed curves or go 1 5.2
to infinity—then the first integrals,(x) #0, b1(x), c1(X) '
are smooth functions of the two transversal variables. If firs(Nhere m=coul a? (3—x§)/cosx1~—34.8145 and &R
integralsi(x) andpa(x) are fun_ctionally independent, then <a=X;/a. Herex;~5.763 459 is the smallest positive root
the a;,b,,c; are smooth functions of then&i,=a;(A.p).  of the equation tar=3x/(3—x%) wherex=aR. Inside the
b1=3b1§|_?\h,P)a Cl:c%'()\,fp)l.d i d i swo. Dall R=<a, the generic magnetic surfacggr,z) = const are
. 3 'N€ magnetic Tield fines do not 1€ on any Wo- . iqa| The singular magnetic surfaces are the segment
dimensional surfaces. This can happen only for the force-free ;- __ .04 the magnetic axis=r,, z=0, 0=
equilibria(4.3) [19]. Then the functiong;(x), b1(x), c1(X) sz,w, which is defined by the conditions, i’o' %:’ 0.
are constant. Let B(¢) be an arbitrary smooth function ofy, b,
Any field-aligned solutior(4.1) for \(x) # 1 can be trans-  =CchB(¢), c1=shB(#), Clzbf—.cizl, anda,(4)#0 be
formed by the symmetrie@l.4) to a pure magnetic equilib- another smooth function. Applying the corresponding sym-
rium, B;=b;(X)B, V;=0, ci(x)=0, b3(x)=C,(1  metry transform(4.4) to the e_qU|I|br|um(5:1), _(5.2) we get
—\2(x)), and to a pure hydrodynamic equilibriuB;=0,  new field-aligned sub-Alfvenic MHD equilibria
Vi=c1(0)B/[ay(x)Vup(x)], bi(x)=0, c5(x)=Ci(\*(x)

-1). B _ shB(y)
Remark 5 The exact field-aligned MHD equilibriéd.4) B1=chB()B, Vl_al( lp)\/ﬁB’
with constanta;, by, c; were first derived in Ref.23] from
the exact axially symmetric plasma equilibria found in Ref. 1
[15]. Construction (4.4 with arbitrary smooth functions P,=po—Coth— 2—shz,8(¢,//)82, (5.3
a;(x)#0, b;(x)#0 was first applied in Ref.1] for the he- K
lically symmetric plasma equilibria. with the plasma density, (x) = a2(y(r,z)). The MHD equi-
libria (5.3) are defined inside the baR<a and satisfy the
V. BALL LIGHTNING MODEL WITH DYNAMICS boundary condition§1|,9\,:0, V1|(7V:0: P1|(9V: po. Hence
OF PLASMA the equilibria are continued in the outer spd&e a by the

. S _trivial solution B(x)=0, V(x)=0, P(x)=pe=const,p;(X)
In the papers12,13, a model of ball lightning is devel =a?(0)=const. The field-aligned equilibri&.3 model ball

oped where a steady plasma with velodity O fills a spheri- liahtni ith th iable ol densi d sub-Alfveni
cal ball and the magnetic fieB is axially symmetric inside '9 tnmg with the variablié piasma .ensny and sub-A venic
Qynamlcs of plasma inside the fireball. These equilibria

the ball and vanishes outside of it. The model is based on arP” < -
exact solution of the papdd.2] which is given in terms of manifest also the neutral modes for the stability analyss$

: ; : f the ball lightning mode[12,13. Arguments of the papers
the spherical Bessel functions and the Legendre functions. | . - ) ;
what follows, we generalize this model for the nonzerol.id'.’23 concernllnglstabllllty otf)lthe Sl;b'Alflve.mC ZIHD equi-
plasma velocityV/ # 0. ibria are completely applicable to the solutiofis3).

In the cylindrical coordinates z, ¢, the axially symmet-
ric magnetic fieldB has the form 2] VI. BREAKING OF THE GEOMETRICAL SYMMETRIES

" " | The symmetry transform&t.4) have important applica-
B= & — &+ ~2y, (5.1 tions connected with the breaking of the geometrical symme-
r r r tries of the field-aligned MHD equilibria. Suppose that a
field-aligned MHD equilibrium(4.1) possesses some geo-
where (r,z) is a flux function,y,=dyl dz, ,=dwlor, | metrical symmetry—translational, axial, or helical—and that
=1(r,z) describes the electric current density, &g, ,&, all magnetic field lines in an invariant domal either are
are the coordinate unit orts. For the axially symmetric soluclosed curves or go to infinity. Then the symmetiiésg)) are
tions (5.1), the plasma equilibrium equations dr¥ B  defined by first integrala;(x), b;,(x), c1(x) of the dynami-
=u gradP, divB=0 are equivalent to the Grad-Shafranov cal system(4.2), which depend on the two transversal vari-
equation e — U [0+t L (W) (W) + ur?p’ ()=0,  ables. These functions generically are not invariant with re-
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spect to the above geometrical symmetries. Hence the nemagnetic field lines and are nonsymmetric. Hence the sym-

equilibrium p4,B;,V1,P; (4.4 is nonsymmetric. This
means that the symmetry transfor%3), (4.4) break the

geometrical symmetry of the original field-aligned equilib-

rium p, B, V, P (4.1). In Sec. VIII, we present the global

nonsymmetric MHD equilibria obtained by breaking of the

helical symmetry.

In this section, we give an example of the axial symmetry

metry transform(4.4) breaks the axial symmetry of Hill's
solution.

VII. EXACT MHD EQUILIBRIA WITH CURRENT
SHEETS

(I) The symmetry transformg2.3) can be used also to

breaking for a plasma equilibrium with toroidal magnetic construct exact MHD equilibria with current sheets. Suppose
surfaces and closed magnetic field lines. We consider thiat the initial non-field-aligned equilibriunp(x), B(x),

magnetic analod26] of Hill's spherical vortex[14] for
which the magnetic fieldB is axially symmetric and pure
poloidal,

B:ﬁ“er——ez.

; ; (6.

The notations are the same as in Eg1), |1=0. Inside the
ball R<a, R=/r?+Z?, Hill's solution has the flux function

Y(r,2)=cour’(R?=a*)/10, P(y)=po—Coi. (6.2

Outside of the ballR>a, the flux function is

#(r,z)=Ar (R 3-a3), A=-adcou/l5 p()=po.
(6.3

The formulas(6.1)—(6.3) imply B(x)=B(x) for |x|=a. In
the outer spac&k>a, the magnetic fieldB (6.1), (6.3 is
potential:B=grad Az(R™+2a )], and has a constant as-
ymptotics BHZa‘3AéZ asR—o. The magnetic field lines
are shown in Fig. 2 of Shafranov’s pad@6].

The magnetic field line§s.1) have two first integrals: the
¢¥(r,z) and the angle¢. Hence any smooth function
f(y(r,2),¢) also is their first integral. Inside the baR

V(x), P(x) is smooth and that the functioreyx), b(x),
c(X) (2.3 are discontinuous at some magnetic surf&ce
P(X)=yy. Let them be equal t@a,(x), by(x), ci(x) and
a,(x), by(x), ca(x) on the two sides ofS. Applying the
corresponding symmetr{2.3), we obtain a MHD equilib-
rium with a contactor tangentigl discontinuity on the sur-
faceS Indeed, the resulting vector fielé , V, andB,, V,
(2.3 are tangent to the surfacgon the both sides. As is
known [27], the only necessary condition at the surface of
contact discontinuity is

P.+B%(2u)=P,+B3/(2u). (7.
Using one of equation§.3), P;=CP+ (CB?—B3)/(2u),
we obtain

P, +B%/(2u)=C,(P+B?(2u)),
P,+B3/(211)=C,(P+B?(2u)),

whereC;=b?(x) —c{(x), j=1,2. Hence the necessary con-
dition (7.1) is satisfied ifC;=C,. Thus we see that the sym-
metry transform(2.3) defines a new solution with a contact
discontinuity at the magnetic surfacg(x)= ¢y if bf(x)
—c3(x) =b3(x) — c5(%).

Any surface of contact discontinuity carries an electric

<a, the magnetic field lines are either closed curvescurrent with the surface density27] J(x)=u *n(X)

Y(r,z)=C,, ¢=C, or the separatrix =0, —a<z<a or
the rest pointsr =a/v2, z=0, 0< ¢<2m, Wherey=—¢,
€=adcyul/40.

Let a(y,¢)>0 andB(y, ¢) be any smooth functions on
the annulus- €< <0, 0< ¢<27 such that(0,¢)=1 and
B(0,¢0)=0. Applying the symmetry transform&t.4) with
functions a;(x)=a(y,¢), bi(X)=chB(¢,¢), ci(X)
=shB(y,¢), wherey=y(r,z) (6.2 andC,=1 to the Hill
solution (6.1), we obtain new sub-Alfvenic MHD equilibria

shB(4.¢) B

Bi1=chB(#,¢)B, Vlzm , (6.9

p1(X)=a(4, )po,
P1(X)=po—Coty—SIPB(1,¢)B? (2

inside the ballR=a. On the spherdR=a, the equilibria
(6.4) coincide with Hill's solution(6.1), (6.2) and hence are
continued in the outer spaé&>a by the same Hill's plasma
equilibrium (6.2), (6.3). It is evident that the equilibrig6.4)
have toroidal magnetic surfacegr,z)=const and closed

X[Bs(x) —B1(X)]. Heren(x) is the unit normal vector field
to the surfaces directed from the side 1 to side 2. For the
discontinuous symmetry transfor(@.3), we have

I =pIn(x) X[ (b,—by)B(x)+ (c,—Cy) Wvu)(]?, )

whereB(x), V(X), p(x) characterize the initial MHD equi-
librium. Hence for the noncollinear vector fieldsandB, we
obtain

J(X)=Z"Y(x)[(by—b;)B-B+(C—Cq)VupV-BIV

—Z7Y(X)[(by—b;)V-B+(c,—cy)VupV-V]B,
(7.3

whereZ(x)=pu(V-V)(B-B)—(V-B)?. Thus the magnetic
surfaceSis a current sheet with the surface curréns).

For any functionF(x) having the limiting values=(x)
andF,(x) at the two sides of a surfa@we denote the jump
in F acrossSas[F(x)]=F,(x)—F(x). For the discontinu-
ous transform2.3), the plasma density and plasma velocity
have the jumps
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c(x)

a(x)

b(x)

1
B+ 200

Jup

[p]l=[a*(x)]p, [V]=

(7.9

at the surface of contact discontinulByFor the stable steady

solutions with a nonzero plasma viscosity and plasma diffu-
sion, the jump<7.4) have to be zero. This condition implies

a(x)=—ay(x), ba(x)==by(x), Ca(x)==Cy(X).
(7.9
For this case formulag.3) yield
p2(X)=p1(X),  Ba(x)=—By(x),
Vo(X)=V1(X), Pay(x)=Py(X). (7.6)

PH®ICAL REVIEW E 66, 056410 (2002

P=po—2B%y% u, and the plasma velocity =0. The poly-
nomialsB,,,(y) have the form

m dm+1

Bmn(Y)= dy_m Lnen(Y)— kmnyw Linen(Y),

wherelL ((y) are the Laguerre polynomials

p
(—1)*p!
p(ype )= E myk

The simplest exact solutiof8.2) is defined forN=1, m
=1,n=0 and has the form

Y11d .2, )= e*3r2[1—4,8r2+ a;r codz/y—¢)].
(8.3

Lp(y)=

Hence only the magnetic field has a jump and the surface (j) Applying the symmetry transform@.4) to the exact

currentJ(x) (7.2 is

X) +C1(X) Vup(X V(X)] 5o

(I For the field-aligned solutiong}.1), the contact dis-
continuity can occur on any surfa&that is invariant with
respect to the magnetic dynamical systéf?). Formulas
(4.4) and the conditiongp]=0,[V]=0 imply on the surface
S

I =2~ n(x) X [b1(X)B(

ag(X)==Fag (X), by AX)=—Dby(X),

C1.AX)==ECq4(X). (7.9
The corresponding surface currdit?) is
I =—2p" 1 1(Xx)N(X) X B(X). (7.9

VIIl. ASTROPHYSICAL JETS AS THE NONSYMMETRIC
GLOBAL MHD EQUILIBRIA

(I) We start with the following helically symmetri28]
magnetic fields:

b, ~ A~ _a?’lﬁ—“ﬁr
Bh=""&+B1&+Bs&, Bl__r2+_y2_1
arg+yy
2=z 7 3 8.1

whereég, , &,, &, are the unit orts in the cylindrical coordi-
natesr, z, ¢ and ¢=y(r,u) is the flux function,u=z
—y¢, a=const,y=const. In Ref[1], we obtained the ex-
act plasma equilibrig8.1), curBXxB= w gradP, divB=0,
that correspond to the flux functions

Unmn=€ P {anBon(y) + ™Binr(y)[@mnCOSMU'y)
+ by sinimu/y) 13, (8.2

where N,m,n are arbitrary integers= 0 satisfying the in-
equality 2N>2n+m, andy=2pr2. The plasma pressure is

solutions(8.1) and (8.2) with V=0, we obtain an infinite
family of new field-aligned MHD equilibria fo€=k?,

Blzkchf(X)Bh, Vlszh,
Vup1(X)
2
P,=k?P— mshZf(x)Bﬁ. (8.4)

Heref(x) and the plasma densipy(x) =ai(x) are arbitrary
smooth functions that are constant on the magnetic field lines
(8.1) which all go to infinity in the variable [1]. Therefore
functionsf(x) anda;(x) depend on the two transversal vari-
ables and have no symmetry in general. Hence the generic
exact solution$8.4) are nonsymmetric.

(1) The nonsymmetric MHD equilibrig8.4) are sub-
Alfvenic because the ratio of the plasma kinetic and mag-
netic energies is

wp VHBE=th?f(x)<1. (8.5
This ratio is variable in the spadé® but is constant on the
magnetic field lines.

The exact solutiong8.4) with discontinuous functions
f(x) have current sheetSthat are invariant with respect to
the magnetic fieldBy, lines. The generic invariant surfa&
has no geometrical symmetries. The necessary conditions
(7.8 at the contact discontinuity surfac® imply f(x)
=—1f,(x), k,=—Kk;. The surfaces carries the electric cur-
rent(7.9):

J(x)=—2u "tk chf 1 (X)N(X) X Bp(X). (8.6)

Using the known Galilean invariand@®,4] of the time-
dependent MHD equations, we obtain from E§.4) the
exact solutions

B(x,t)=B(X,y,Zz—vot),
V(X,1)=V(X,Y,Z—vgt) +vo&;, (8.7

P(XJ):Pl(vaaZ_Uot)y P(Xat):Pl(vaaz_UOt)-
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These solutions describe a nonsymmetric astrophysical jgterfectly conducting ideal gas plasma around the axis
that moves as a whole along thexis with a constant speed the vertical magnetic field,
vo. Indeed, for the solutions(8.4), (8.7) with f(x)

=c,” M%), pi(X)=b,4?(x), €>0, q=0, the plasma B=H(rg,, V=o(r)(-yg+xg),
magnetic and kinetic energies and its mass are finite in any
layer c;<z=<c, becausayym,(r,u)~cyr?Nexp(pArd) atr P(r)=F(r)—H(r)/(2u). 9.9

—oo, All magnetic field lines and plasma streamlines

are bounded in the radial variabler because Here F(r)=/{tp(t)w?(t)dt+e2 The solutions(9.1) de-
the leading term of the flux functiomy,(r,u) (8.2 is  pend on the three arbitrary functioas(r), H(r), p(r)=0
bn(—2B8r2)Nexp(=Brd)/N! at r>1, by=an(1+key). In  and satisfy the ideal gas equation of stéite3). The density
view of the rapid decreasing of the magnetic fiBlg(r,u) as  of entropyS(r) is defined from the Eqg1.3) and(9.1) for
r—o, the plasma magnetic and kinetic energies and its mag§e arbitrary gas density(r) and the adiabatic exponent
are concentrated near tleaxis r=0. Hence we see that >1.

solutions (8.4), (8.7) are global and satisfy the necessary Applying the symmetry transform@.3) to the solutions
physical conditionga), (b), (c) of Sec. |. Therefore the exact (9.1), we obtain the new exact MHD equilibria
nonsymmetric solutiong3.4), (8.7) model the astrophysical

jets outside of their accretion disks; for example, the jet in pa(r)=a2(r)p(r), Bl=c\/ﬁv+bHéz,

the elliptic galaxy Messier 875—7]. These nonsymmetric

exact solutions may have the current sheets with the surface b c

current density8.6). V1=£V+ He,, (9.2
Remark 7. On the stability of the MHD equilibria (8.4) a\/r“_P

The main method to study the nonlinear stability of the
MHD equilibria is the energy variational meth¢d,29,30.
In the paper$24,25, it is shown that for the MHD equilibria
with noncollinear magnetic fiel® and plasma velocity,
the second variation of energ§?H, is indefinite. The same
is true for the aligned and super-Alfvenic flows. The only e i ‘ .
MHD equilibria whose stability can be proved by the energymagnetlc f|elq Ilqes and plar?‘ma streamlm;:*s azfe helices that
variational method are the field-aligned and sub-Alfvenic!i€ on the cylindrical magnetlc_su.rfacaéﬂty_ =r°=const.
flows. The solutiong8.4) are exactly of this type: they are W& consider solution£9.2) inside a cylinder &r=r,
field aligned and sub-Alfvenic, see formui@.5). provided ghatc(r1)=0, w(ry)=0, H(r;)=0 and the in-
Remark 8. On the preferable exact solutiofibe class of ~ €qualityH*(r)<2uF(r) holds, therP(r)>0. At the bound-
exact MHD equilibria(8.4) is large: the real parameteag, &7 =1, we haveVy(ry)=0, By(r;)=0, pi(ry)=po,
amn, bun, >0, ¥ and the integer parametetn,m 2N P.(ry)=F(ry)=po; therefore the ;olutlon is continued in
>2n+m are arbitrary, the two first integraig (x) andf(x)  the outer space by the trivial solutioh=0, B=0, p=p,,
of the magnetic dynamical syste@®.2), (8.1) are also arbi- P=p_0. Hence the_ so_lutlon$9.2)_ describe the helical dy-
trary. Hence a natural question arises: what values of thed@@mics of plasma inside the cylinder.
parameters are preferable for the model of the real astro- SuPpose that the functiona(r), b(r), c(r) have a
physical jets? The available observational d&ta7] are not JUmp atr=r, that satisfies the necessary conditidiis).
sufficient to answer this question completely. However, theyThen SO|U_tI0n (9.2 has a contact _dlscontan|t>(7_6)
imply that the most preferable is the ground state solutiorfit the cylinderr=r,. This surface is a current sheet
(8.3 with only two magnetic axefl]. Thus the integer pa- With the current J defined by the equations(7.7)
rameters arél=1, m=1, n=0. The preferable asymptotics ad  (9.1:  uJ(X,y,2)= —2b,(ro)H(ro)(y&—x&))

where b?(r) —c?(r)=C=const andP,;=CF—b?H?/(2u)
—p(crw)?/2. For the equilibria(9.2), the vector fieldsB,
and V; are noncollinear. Exact solution®.2) satisfy the
ideal gas equation of state of the foh3) and depend on
four arbitrary functionsa(r), b(r), o(r), andH(r). Their

of the functionsa;(x) andf(x) asr— are — 2¢y(ro) Vup(ro)w(ro)é,. Hence we see that the curreht
lines are helices. The solutior{9.2) can have an arbitrary
a;(x)—0, f(x)—0, f(x)/a;(x)—0, number of such cylindrical surfaces-r, of contact discon-
tinuities.
2 <Cn. (I) As is shown in Remark 1 of Sec. Il, the symmetry
f fRzal(X’y)dX dy=<Co transforms(2.3) convert a given MHD equilibrium into an-

, , o other equilibria with the same magnetic surfaces. Hence the
For_ this case, the rati8.5) of the plasma kinetic and mag- following question arisesf u, u, are two MHD equilibria
netic energies thf(x)—~0, [Va|<[Byl/x, pa(X) >0 asT  ith the same magnetic surfaces, is there a symmetry trans-
—0, and the total mass of plasma and its kinetic and magsorm (2.3) bringing them into each otheérwe prove that, in
netic energies are finite in any layer<z<c,. general, such transform does not exist. Indeed, let us con-

sider another Grad’s “transverse” floy®.1),
IX. MHD EQUILIBRIA WITH NONCOLLINEAR VECTOR

FIELDS B AND V Bo=Ha(r)&,, Vo=wy(r)(—y&+xg),
(I) The known Grad's “transverse” flowg31] are cylin- )
drically symmetric and describe the differential rotation of a Pa(r)=Fa(r)—H3(r)/(2u), 9.3
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with Ho(r)/H(r)#const and p,(r)>0, Fy(r) p=2pof “2(¢), (9.5

= [btp,(t) w3(t)dt. The two MHD equilibria(9.1) and(9.3) o _ ,

have the same cylindrical magnetic surfacesconst. By ~ WhereH=y&+r&,, ¢=y(r,u) is the flux function for the
applying to Eq.(9.1) the symmetry transform&.3) with ~ €quilibrium (8.1), u=z—y¢ and f(4)>0 is an arbitrary
b2(r)—c2(r)=C=const we obtain the equilibri§9.2). If smooth function. A calculation shows th@l(v- grad)V

c(r)#0 then all plasma streamlines are helicesc(fy=0 = —pogradr?, hence Eq.(1.1) holds. Equationg1.2) are
then b(r)=\C=const, B,=\CH(r)&,, and therefore satlsflAed beA:cause Ad\XIZdIV(pV)ZO and VXB=—f(¢)

H.(r)/H(r)=C=const. Hence it follows that the equilib- (& ¥u&— vih&/r)=—Tf(y)grady, hence curly

rium (9.1) cannot be transformed by the symmetrigsy ~ <B)=0. The equation)(r,u) =const defines the magnetic
into the equilibrium(9.3) because for the latter all plasma Surfaces for the equilibriur(®.5. By applying the symmetry

streamlines are closed curves=const, r=const, and transforms(2.3) to the equilibrium(9.5 we get a family of
H.(r)/H(r)+ const. the helically symmetric MHD equilibria,

As a corollary of the group structure &, (see Sec. I}, )
we find that no MHD equilibrium obtained froii®.3) by the _ _ 1
symmetries(2.3 can be transformed by these symmetries B1=b()By+mcOOH, Vl_a(x) [m™"c0By+b(x)H]
into the equilibrium(9.2). However, all these equilibria have . )
the same cylindrical magnetic surfaces const. Hence we With_the noncollinear VZeCtOI’Zer|d§1 and V;. Here m
conclude that, in general, the action of the groups of symme= V2P0, ~ P1(X)=2poa” (x)/(¢), and P1=C(Po(#)
tries G,, (3.3) on the sets,, is not transitive E,, is the set T por )+ (CBy—B1)/(2u).
of the MHD equilibria with the same magnetic surfaces

(Il1) Let us show that any axially symmetric plasma equi- X. THE SYMMETRY TRANSFORMS FOR THE
librium (5.0 Ba=[¢58— & +1(#)8,)r, V=0, P COMPRESSIBLE GAS PLASMA

=Py(#) generates a family of MHD equilibria with noncol- For the ideal compressible gas plasma, Hasl)—(1.3)

linear vector fielddB andV. Let f(4)>0 be a smooth func-  gre invariant under the following symmetry transforms:
tion of . It is easy to verify that functionsp= const)

b
pr(x)=a*(x)p(x), B;=bB, VitV (10.3

p=2pof 2() (9.9 P;=b?P, $;=S+2C\[In[b|—yInfa(x)|1,

B=B,, V=rf(4)&;, P=Po(¢)+per?

define a new MHD equilibrium. Indeed, formulég4) imply ~ Wherea(x)#0 is an arbitrary smooth function that is con-
p(V- gradV=—pygradr?, hence Eq.(1.1) follows. The Stanton the magnetic field lines and on the plasma stream-
Egs. (1.2) are true because diw=div(pV)=0 andVvxB lines andb=const0. Transformg10.1) preserve the equa-

= —f() (& + ,8), hence curly X B)=0. For the equi- tion of state(1.3).

librium (9.4), the magnetic surfaces are given by the equa- Suppose that for a smooth non-field-aligned MHD equi-
tion ¢(r,z) = const. Applying the symmetry transforr@.3)  librium with an equation of stat®=p”f(S) the magnetic

to the equilibrium(9.4) we obtain a continuous family of the surfaces are closed in some dom@inThen for the generic

axially symmetric MHD equilibria case the entropy densit§(x) is constant on the magnetic
surfaces and there exists a symmdit9.1) that transforms
B1=b(x)Ba+mc(x)ré,, the MHD equilibrium in the domairD into an isoentropic

equilibrium satisfying the equatioR,=b?%p] .
Functiona(x) satisfies the equations

()

T ax)

where m=124po, p1(X)=2p6a%(X)/TX(1), b?(X)—~C3(X) o
=C, and P1=C(Po(¢)+Porz)+(CB§—Bf)/(zﬂ)- The The latter equation implies

[m™1c(x)Ba+b(x)rey],
B- grada(x)=0, V- grada(x)=0. (10.2

vector fieldsB; andV, are noncollinear. V.- aradV.=b2p(V- gradV

(IV) Any helically symmetric plasma equilibriuni,, pi(V1- gradVy p(V-gradV,
(8.1)_,_V_= 0, _P= Po(4) _also generates a family of the MHD div(p,V;)=a(x)b div(pV)=0.
equilibria with noncollinear vector fieldB and V. Indeed, ] ) )
we let Hence Eqgs(1.1), (1.3 and the first equatiofil.2) are satis-

fied. The only nontrivial equation is the third equation of Eq.
B=B,, V=f(y)H, P=Py(¢)+por? (1.2). We have
b2 b2 b?
curl(V,XBq)= curl( mVx B|= gradm X(VXB)+ mcurl(Vx B).
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The first two equations(l_O.Z) imply gradb?/a(x))x (V Jp1V1X B, JoVxB
X B)=0. Hence the equation cu¥l¢ x B,)=0 follows. __\Vp
If for the MHD equilibrium p, B, V, P the magnetic sur- pVi—Bi/u pVi-Biu’
faces are closed in some domdrthen they are tori? [2]. o ) o
In the Remark 9 below, we prove that the vector figgddB ~ This invariant implies that the symmetry transforr&s3)
and V commute. Hence the magnetic field lines and thePreserve magnetic surfaces and the integrable folid&d?):
plasma streamlines are dense quasiperiodic trajectories ¢H/(Y(X))=0. o o
the generic toril? [2]. Therefore any function that is con- ~Remark 10. An application of the Newcomb variational
stant along the plasma streamlines is constant on théori  Principle. In his 1962 papef32], Newcomb proved that the
Hence equatiofiV - gradS(x)]=0 (1.3 implies that entropy (tlme-.depend.emt.MHD equations (1.1) follow from the
S(x) is constant on the magnetic surfaces. variational principle,
Suppose that plasma satisfies an equafap”f(S).

t
The functiona(x) = f¥(2")(S(x)) is constant on the magnetic 5f zdtf L(B,V,p)dx=0, L(B,V,p)= Epvz_ iBZ,
surfacesI?. The corresponding symmet(g0.1) transforms 1 2 2p
the equation of statB=p?f(S) into the isoentropic equation (11.2

P.=b%p].

The symmetry transform&l0.1) form the subgroupsy,
=A®R"®Z,Z,CG,,, see Eq.3.3. Elements ofGg,
are the sextuplega(x),0k,7,1,7]. The subgrougs,,, has
the additional structure of a module over the associative al
gebraA,,, with multiplication induced by Eq(3.4).

Remark 9Let us prove that for any variable plasma den-
sity p(x) vector fieldsp 1B andV commute, or their com- L(B;,V1,p1)=CL(B,V,p). (11.3
mutator [p~*B,V]=0. Indeed, the known identity cud(

XY)=(divY)X—(divX)Y+[Y,X] and the equation Equation(11.3 means that the symmetry transfori®3)

provided that thé€time-dependentequations(1.2) are satis-
fied. The symmetry transform®.3) preserve the equations
(1.2) because the functioregx), b(x), andc(x) are constant

on the magnetic field lines and on the plasma streamlines.
Equation(11.1 implies the following relation between the
Lagrangians:

curl(VXxB)=0 imply preserve the Lagrangian of the Newcomb variational prin-
. o ) . ciple (11.2 up to a constant factor. Hence any extremum of

curl(pVXp~"B)=div(p~"B)pV—div(pV)p "B the principle (11.2) is transformed into a new extremum.
+[p~'B,pV]=0. Thus we obtain the second proof of the fact that symmetries

' (2.3) [and (10.1)] transform any solution of equatiori&.1)

Substituting equation dipl{/) =0 we get and (1.2) into new solutions. The first proof of Sec. Il is

straightforward and independent of Newcomb’s variational
[p 1B,pV]+pdiv(pt B)V=0. (10.3  principle.

Equation divB=0 implies divpp B)=p div(p 1B)
+p (B gradp)=0. This equation yields Xll. SUMMARY
The method for constructing exact magnetohydrodynam-

plp 'B.VI=[p 'B,pV]—p *(B- gradp)V=[p 'B,pV]  ics equilibria consists of the application of symmetry trans-

+pdiv(p B)V. forms (2.3) and (10.1) to any known equilibrium. The
method is applicable to the divergence-free flows of plasma
Hence, using Eq(10.3 we obtain[p~1B,V]=0. and to the ideal gas plasma flows with & 0. The sym-
metry transforms have forr(2.3) for divV=0 and depend
XI. INVARIANTS OF THE SYMMETRY TRANSEFORMS upon two arbitrary functiona(x) andb(x) that are constant

on the magnetic field lines and on the plasma streamlines.
() The symmetry transform@.3) [and (10.1D] have the  For the ideal gas plasma flows with di#= 0, the symmetries
following physical meaning. The difference between thehave a simpler forn{10.1) and depend upon one arbitrary
plasma kinetic and magnetic energies is changed by a scalfunctiona(x) that is constant on the magnetic field lines and
multiplication. Indeed, the transfor2.3) implies on the plasma streamlines. For any physical solution to equa-
tions (1.1) and (1.2), the method of symmetry transforms
E V2 iBz) (1.1 (2.3 and(10.1) gives a continuous family of new solutions.
2F 2u ' ' The symmetry transform&.3) and(10.1) break the geo-
metrical symmetries of the field-aligned MHD equilibria in
where C=b?(x) — c?(x) =const[C=b? for the symmetries the domainsD where all magnetic field lines either are
(10.1)]. Another consequence of transfofd3) is the equa- closed curves or go to infinity. By applying the symmetry
tion V,;xB;=CVxB/a(x). Hence we obtain/p,V;XB; transforms (2.3), (4.4) to the magnetic analog of Hill's
=CpVXB, or Jp,E;=CpE. HereE=—VXB/cy isthe  spherical vorte14] we have obtained a continuous family
electric field for the plasma with a perfect electric conduc-of nonsymmetric MHD equilibria with toroidal magnetic sur-
tivity; cq is the speed of light. Hence the symmetri@s3)  faces and closed magnetic field lines. We have derived the
have the vector field invariant exact MHD equilibria with current sheets by applying to the

1 a1
§P1V1_ ﬂB]_:C
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smooth MHD equilibria the symmetrie®.3) with discon-

PH®ICAL REVIEW E 66, 056410 (2002

(i) The method of symmetry transforms gives new solu-

tinuous functionga(x), b(x), c(x) that satisfy the necessary tions in explicit algebraic form.

conditions(7.5).
By applying the method of symmetry transfor@s3), we
have derived the exact solutiofs.3) that model ball light-

(i) The symmetry transform&.3) depend on all three

spatial variablex=x,y,z.

(iiil) The generic transform&2.3) break the geometrical

ning with dynamics of plasma inside the fireball and a largesymmetries of the field-aligned equilibria.

family (8.4) of global well-behaved nonsymmetric MHD

(iv) The symmetrie$2.3) form infinite-dimensional Abe-

equilibria. These exact solutions satisfy all necessary physiian groupsG,, (3.3) that depend on the topology of the
cal conditionga), (b), (c) of Sec. | and model the astrophysi- MHD equilibria.

cal jets outside of their accretion disks, for example, the jet
in the elliptic galaxy Messier 875—7|. The total plasma

(v) The groups of symmetrie&,, (3.3) have the addi-

tional structure(3.4) of modules over the associative alge-

kinetic and magnetic energy and its mass are finite in anypras of functions.

layer c;<z<c,. The exact solutions may have the current

sheets with the surface current densidy6).
The method of symmetry transforni@.3) has the follow-
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