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Stochastic diffusion of ions due to a finite set of lower hybrid waves
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In this paper we generalize the discussion on stochastic diffusion of energetic ions by lower hybrid waves by
considering a case where a set of waves with similar frequencies is present in the system. In the particular case
of a finite number of coherent waves, we show that the threshold for stochastic diffusion is reduced in
comparison with the threshold in the one-wave case, and that the ensuing particle diffusion in velocity space
occurs in periodic bursts along the time evolution. In the more general case of a set of waves with random
phases, we have obtained even more efficient long-term diffusion in velocity space, for the same number of
waves, although the initial diffusion rate can be smaller than in the case of coherent waves.
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[. INTRODUCTION In this paper, we investigate the transition between these
two situations, namely, the transition from the one-wave situ-

The possibility of stochastic ion diffusion by lower hybrid ation to the continuous wave spectra situation, and consider
(LH) waves has been proposed and explained over two ddhe appearance of stochasticity along this transition. This is
cades ago, when it was shown that the movement of an ion iaiccomplished through the generalization of Karney's ap-
a uniform magnetic field becomes stochastic in the presend@roach to the case in which a finite number of waves is
of a perpendicularly propagating coherent electrostatic wavePresent in the system. The generalization can be made for-
if the wave amplitude exceeds a threshfig?]. When the ~ mally quite straightforward by the assumption of a simplify-
stochasticity criteria is satisfied, the ions diffuse in velocityind hypothesis that the waves form a sufficiently narrow
space and it is possible to derive a diffusion equation tgvave packet irk space. Despite the relative simplicity of the
describe the time evolution of the ion distribution function. Hamiltonian obtained, the system dynamics is complicated
Such a diffusion mechanism may have important Conseand gives rise to interesting behaVior, which has not up to the
quences, as indicated by relatively recent experiments, whicRresent been widely studied in the literatygd, although
have obtained evidence of interaction between lower hybrig¢ome relatively recent papers can be mentioned as dealing
waves and energetic ions in large tokamp&g]. with different features of the subjef®,8,10.

In a previous approach to the subject of interaction be- The structure of the paper is the following. In Sec. II, we
tween energetic ions and LH waves in tokamak p|asmas’ W@Xplain the fundamental features of the system and derive the
studied the parametric dependence of the threshold condgduations of motion. In Sec. Ill, we present some numerical
tion, and we have shown that the threshold condition as obesults that illustrate the appearance of stochastic diffusion in
tained in Ref[1] may not be easily satisfied in present daythe system due to the presence of a set of lower hybrid
large tokamaks, but can be attained in small tokamaks witMvaves, considering both the particular case of coherent
relatively modest levels of wave powgs]. waves and the more general case of waves with random

In another approach, we studied the same kind of interadPhases. Finally, in Sec. IV, we summarize our findings and
tion using a numerical analysis based on a quasilinear focomment on the main results of the paper.
malism appropriate for the situation in which ion stochastic
diffusion occurs. The results obtained have shown significant Il. THE DESCRIPTION OF THE SYSTEM
wave-particle interaction taking place when a population of AND THE EQUATIONS OF MOTION
energetic ions is present in the plasma, in partial agreement
with the evidence from experimental results available in thete
literature[6]. Proceeding with the investigation of the sub-
ject, in Ref.[7] we considered a case where a spectrum of B=Bye,,
low-intensity LH waves is present in the plasma, granting the
use of quasilinear theory. The numerical implementation of
the formalism has been considerably modified relatively to E=2 Ei(wj)cogki(w)y—wit—¢;le,. (1)
the previous formulation. In particular, in R¢¥] the profile !

of energy deposition on the electron and ion distributions hage w; appearing in this expression are angular frequencies
been self-consistently evaluated for LH waves. In this invesy¢ the individual waves in a set of. waves theE, (w;) are
® ’ 1 1

tigation conducted in Refl.7], as well as in Ref[6], the 0 ampjitudes of these waves, and theare their phases.
energetic ion population was generated by a model term de- Assuming the Coulomb gauge

scribing ion cyclotron(IC) waves, which was not self-

Let us, therefore, consider the following magnetized sys-
m:

consistent. The spatial distribution of IC wave power has A=—Byye,,
been simply assumed as independent of the quasilinear evo-
lution of the distribution function. we can writeE=—V &, with
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E(w) ) Ne nw_l 1
d=—2 k_I =sinfki(wy)y— wit— ¢;ley . 2 D r2(coe)+2 >, D rere(cose; cose|)= <.
r ki(w) =1 i == 7T 2

(6)

After performing the time average, we obtajnoge;)

=0.5, and(cos¢; cose;)=0.0, and therefore, from E¢6),

The Hamiltonian for the system can be written as

PZ

h=ﬁ+q<b, 3
n

where 2 ré=1. (7)

€

Il
=

P?=pZ+pJ+0?Biy?—2qp,Byy,
Px Py T Q" B0y 24Py In the case in which thae,, waves of thek space packet

and wherey andm are the ion charge and mass, respectivelyhave the same amplitudeg=rg, for anyi),
and thep; are the Cartesian components of the particle mo-

mentum. We have usep,(t=0)=0, which impliesp,(t) re=(n,) "2 (8)
=0. _
For the sake of simplicity, we consider thaj is an odd We can also defing,, = w;/w, and consider that the wave

number, with waves equally spaced in frequency. We denotgpectrum is nonvanishing only between— dw and w
the amplitude, the angular frequency, and the phases of the 5, and therefore, spreads front, =1—A tor, =1

central wave a&, , and¢, respectively, and assume initial | '\ haren = 50/, Therefore, it is useful to introduce an

conditions such that the phase of the central wave is Zer%teger indexi ranging from —n; to n;, where @ +1

(;Zz 0). Using these definitions, we introduce the dimen-_p, * and write
sionless variables

ro=1+iA’", —n<isn,,

’ qBO N I
t'=Qt, Q=— y'=ky,

m whereA’ =A/n;.

o If the wave packet in thé& space is narrow, we may
.k . assume also for the sake of simplicity that for the waves in
Pi :mpi (i=xy), (4) the packet
wherek=k;(w;= o). Cov, )
As a consequence of these definitions, the Hamiltonian K

appears as ,
whereV is a constant. As a consequence,

Mg,
h':%[(p;ﬂLy/)z"’p;Z]_aZ Ksm(rkiy,_vit,_d’i)a ; :ﬂ:\/ki(wi):ki(wi):r ()
' (5) o V(o) k K
where and therefore
K Egk EyB o — —
a:@_:_o_: 00 A Y 1 Ry
k m202 BoQ  Q/k PRLE. Q
Ei(w;) Dropping the “primes,” for simplicity, we obtain as the
Ne,= E, system’s Hamiltonian,
— — _ 2 2
re =ki /K, v=w;/Q, andh’ =hm/(m@Q/k)?. The amplitude h=2[(pxty)*+py]
E, is obtained from the following normalization condition: ,
Ei . —
—a2 sinln(y= )~ dil. (10)

3 o3 ).

Following steps similar to those employed in REE], we
whereg;=(kiy — wit— ¢;), and the symbo{- - -) means the perform the following canonical transformation:
time average over a time interval sufficiently large in order to

be an integer multiple of the periods of all waves appearing (XY, Px:Py)=(X,Y,Py,Py), (11
in the k wave packet. The rate of amplitudes, therefore
satisfies the following constraint: F2(X,Y,Py,Py) = (Px—=vt)X+Py(y—vt+P,),
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Keht 22 b Sixt Py =h—oX
= 7— v(X y)— v,

resulting in
Y=y+px, X=x+py.
The new Hamiltonian is

K(X,Y,Py,Py)=3[Y2+P7]

— ¢i]—vX.
(12

I’Ei
—aEi) Fosinr (Y=Py)

Performing now a second canonical transformation,
(X1Y1PX1Py)2(|11w11|21w2)1

F1(X,Y,01,05)=3Y?col( w;) + Xy,

JF
p_Tr1_

X Y2

IF
—— =Y cotl w;)—Py=(21;)"?cog ),

Py= oy

JF 1
l,=— (9—w1= EYZ cosed(wy)—Y=(211)"?sin(w,),
1

&Fl

a(l)z

l,= ,

we arrive at the final form of the Hamiltonian, denoted-gs

Heks T2y
B a

The Hamiltonian is therefore

H=1,+l,

le.
— a3 SNt [Rsin(oy) ~ 0]~ 61,
| 13
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where we have used, =r,, and definecR= (2l Y2

The Hamiltonian equations are easily obtained as follows:

oH
wi:&_Ii’ li_

dH

8w,

. ) 1 .
W= 1—S|n(w1)§ aEi lg, Coirwi[R sin(wy) — wy]— i},

(:()2:1/
I1=cogwy)Ra re codr, [Rsin(wr)—wa] - ¢},

i,= _agi re, codr, [Rsin(w;) —wp]— ). (14)

The Hamiltonian can be cast in a different form, which is
more convenient for the ensuing analysis. We start again
from Eq. (13), user,, =1+iA’, and defined=Rsin(w,)
—w,, for simplicity,

e

——sin (1+iA")0— ¢;]

H=l,+vl,—a
v 2 (1+i A’)

e

=1, +vl,—a, ————[sin(6— ¢;)cogiA’6)

i (1+ iA")
+cog 60— ¢;)sin(iA’ 9)].

SinceA’ is a small quantity, we can, in principle, benefit
from the following expansions:

oo

= (—iA"),

(1+IA' j=0

_ - LA
cosilA’a)—E( 1) (201 6%,
o 'A/ 2k+1
sir(iA'a)=k§=)O (—1)k%02”1.

The expansions for the trigonometric functions can be
truncated only if the argument is sufficiently small. However,
sincew,= vt+ const, the argument is small only for times of
ordert=1/(vA). If, for instance,A=0.01 andv=230, that
meang <3. This is a very restrictive condition, which is not
useful in the context of the present investigation. Therefore,
we do not expand the trigonometric functions and write the
Hamiltonian as follows:

H=|1+ﬁz—a20 > rg(—iA")I[cogiA’ O)sin(6— ¢)
= i

+sin(iA’ 8)cog 6— o) ]. (15
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Regarding the equations of motion, these can be derived from the Hamiltonian given @5Eq.

(;)1=1—a(9—0 > 2 re(—iA)H{[cogiA f)cod 6 ¢y) —Sin(iA’ O)sin( 60— ;)]

dly =0

+(iA")[—sin(iA" 6)sin(6— ¢;) +cogiA’ 6)cog 0— ¢;) ]}

=1—a§ > re[cogiA’ 6)cog 6— ;) —sin(iA’ 6)sin(6— ¢i)]20 [(—iA") —(=iA")*1]
1 =

:1—a5702 re[CogiA’ B)cod 60— ¢) —sin(i A’ 0)sin(6— ¢b;)] 1+21(—iA')i—21(—iA')i ,
1 1 j= 1=

where we have usegd =j +1 in the last term, and then used
j’—]j, for simplicity. Therefore, aeff:azi: = (20)

. 1
w1=1—a§sin(wl)2 re[cogiA’ 6)cog 0 ¢y)
! Therefore we can conclude that fA<1, in the case of
—sin(iA’ 9)sin(6— )] (16) coherent waves, the threshold for the onset of stochastic dif-
fusion is reduced in the case of several waves, as compared

The other Hamiltonian equations can be easily obtainedo the one-wave case. Particularly, if all waves have the same
amplitude, using conditio8) we obtain

W=7,

: aesr=a(n,) . (22)
I;=aRcogw;) >, re[cogiA’f)cos 6 ;)
I
—sin(iA’ 0)sin(6— ¢;)], This result shows that the increase in the number of co-

herent waves, even with amplitudes restricted by the condi-
tion (E?)=E3, decreases the threshold for the occurrence of

I=— HZ relcogiA’ 6)cog 06— o) stochastic diffusion, since the value afnecessary to pro-
duce the same effect caused with one wave is decreased by
—sin(iA’" #)sin(6— ¢;)]. 170 the factorEirEi. In the limiting case of a continuous spec-

) ) trum of coherent waves, with an infinite number of waves,
Equations(16) and (17) are completely equivalent to those this result predicts that the threshold goes to zero and that the
appearing in Eqst14). _ _ _initial diffusion occurs even for vanishing value af

An interesting limiting case is obtained from the Hamil-  after the initial stages, the subsequent evolution is no
tonian (15) if Ag is a small quantity, as it may occur for |onger ruled by Eq(lg)' but rather by Eq(15), or Eq(l3)
initial times in the case of narrow wave spectrum. In thatThe pehavior of the system in that case, as well in the more
case, the trigonometric functions can be expanded, and byeneral case of incoherent waves, must therefore be the ob-

neglecting terms of ordeh ¢ and higher, the following ap- ject of a numerical analysis, with results presented in Sec.
proximated Hamiltonian is obtained: M.

H=1,+vl,—a, re sin(0—¢;). (18)
I ' I1l. SOME NUMERICAL RESULTS

Particularly, if all waves in the wave spectrum have the same For the numerical solution of the Hamiltonian equations,
phase(for simplicity the same phase as the central waye, W€ assume a given numbgr of particleg,( and a given
=0), the Hamiltonian is further simplified, number of wavesr{,) and givea and v as parameters. We
also assume a given value af and a distribution of wave
amplitudesrg, .

As loading procedure for the numerical calculation, we
initially consider the following case: We give parameté}s
which has the same form of the Hamiltonian used in Refsa,, and the initial HamiltoniarH, and attribute, for then,
[1,2], with an effectiveq, particles, regularly spaced valueslgf w4, andw,:

siné, (19

H=|l+ﬁ2—a(2 I‘Ei
I
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1 - - - - - - - - - X 102, Itis seen that the quantity is indeed smaller than
os | 1 unity for all particles, which means that the Hamiltonian
equation as given by E@18) approximately rules the initial
stages of the evolution of the system, in the particular case of
coherent waves.

With this choice of parameterl§ and a,, the spread of
perpendicular momenta of the particles is such that 50.0
<R<57.4, where, as we have se@¥ \/2l,. Assuming for

instancevy=30 and vanishing wave intensitye&0), the

quantity \21, therefore satisfies 49<7\/21,<50.0, having

limits slightly different from these values in the case of finite

o8} | «a, according to Eq(22). This range of parameters is similar

, , . , . , . , . to that utilized in previous studies of the one-wave case,

© 100 200 300 400 500 60D 700 800 900 1000 which we use for comparison when considering the case of
! several wave$l,2].

FIG. 1. Initial values ofA ¢ vs particle indexi, for n,=1000 According to these studies, for one wave and integer
particles, assuming;=1.25<10°, a;=400, andA=1.0x10"%  value of », and small wave amplitude, the phase space is
The initial conditions for the particles are attributed such that  dominated by large first-order islands. At intermediate wave
andaw, are between 0 and2andl , is betweeri] andif+ao, and  amplitudes, stochastic motion appears near the separatrixes
I, is evaluated uqder .the restriction that all particles have the samgetween the islands. For growing wave amplitude the size of
value of the HamiltonianH). the stochastic region increases, and the threshold for stochas-
ticity has been defined as the wave amplitude for which the

0.6 |

04

02 |

0

A6

-02 |

04

-0.6 |-

-1

=104 ia 104 Ea %% a fraction of phase space occupied by the islands has apprecia-
1 n, 01 Ny A A bly diminished in comparison with the size of stochastic re-
gions[1]. The limits of the stochastic region asedependent
1 2 and have been established approximately as the following
w1=277n—,277n—, ..., 2, [1]:
P p _ _
2 Rmin=v— \/21 Rmax:(4ay)2/3(2/77)1/3-
w2—27rn—p,27rn—p, 2, For a=2.0, the stochasticity therefore will fully occur in
the region 28.66R<33.2. Fora=4.0, in the region 28.0
I2:(H—I1+S)/7, (22) <R<43.5, and fore=6.0, in the region 278R<69.0.
Therefore, for our choice of parameters, in the one-wave
where case we may expect a small amount of stochasticityafor

=2.0, for instance, since the range 50R<57.4 is far
e, ) from the stochastic range, and an appreciable amount of sto-
S=a, —sin{r,[RsiN(w;) — wp] = i} chasticity fora=4.0, since the range 56(R<57.4 is close
b to the stochastic range. On the other hand, for a larger wave
amplitude, as in the case @f=6.0, for instance, one can
expect fully established stochasticity in the chosen range,
which will be completely immersed in the stochastic region.

In other words, the loading procedure assumes initial val
ues forl,, w4, andw,, and evaluates, in such a way that
all the particles have the same initial Hamiltoniad)( for
which we have arbitrarily assumed the valde=12+ v19.
Once we know the initial values @, w,, |11, andl,, itis
possible to evaluate the value of the prodid. We start by considering the one-wave case, the situation

When assuming the initial value dof for each particle, considered in Refd.1] and[2].
we are simply assuming the initial value of the perpendicular In order to illustrate the effect of the increase of the wave
canonical momentum of the particles, since reversing the cantensity, we present in Fig. 2 the quantity2l, vs

A. The one-wave case

nonical transformations one obtains w, (mod 277), for the case of three particles and one wave,
- with @=2.2, 3.0, 3.8, and 4.6, assumih=1.25x 10°, a,
1 k =400, andv=230.0. The sequence of panels illustrates the

Iy [p5+ (pe—aAY?],

gradual modification of particle trajectories caused by the
increase in the wave intensity. In Fig. 3 we present the same
wherep, andp, are thex- andy-dimensional components of quantity 21, vs w, (mod 277), for the case of 50 particles
the particle momentum, as used in E8), before the intro- anda=2.0, using the same parameters and initial conditions
duction of the dimensionless variables by E4). as for Fig. 2. We see the gradual appearance of the overlap of

In Fig. 1 we show the initial value oA ¢ for n,=1000 particle orbits which has been shown to correspond to sto-
particles, assuming,=1.25x10°, a,=400, andA=1.0 chastic diffusion in velocity spadé.,2].

) m20.2
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FIG. 2. y2I, as a function ofw,(mod 27) for three particles, FIG. 4. \2I, as a function ofw,(mod 27r) for three particles
one wave,r=30, and(@) a=2.2, (b) «a=3.0, (c) «=3.8, and(d) and coherent waves,= 2.0, v=30, A=1.0x 10" 2, and number of
a=4.6. waves(a) 1, (b) 3, (c) 5, and(d) 7.

B. The case of several waves with the same phase we present,/2l, vs w,(mod 27r) for the case of 50 particles

We now consider the presence of more than one waveanda=2.0, for several values of the number of ways3,
with different freq_uencies, all with the same phase factor of5 and 7. In this figure, we also use the same parameters and
the central wave ¢=0). For simplicity, we assume that all initial conditions used to obtain Fig. 4.
waves have the same amplitude such that (n,) Y2 This Looking for more information on the behavior of the sys-
simple limiting case displays some of the effects due to théem, we consider in Fig. 6 the case in which five waves are
increase in the number of waves, to be compared with th@resent in the system, considering several values of the wave
more general case of a set of incoherent waves discussed amnplitude @=0.25, 0.5, 1.0, and 2.0), and\=1.0
the end of the present section. X102, As in previous figures, Fig. 6 depicts2l, as a

For instance, Fig. 4 shows the case qRl, vs function of w,(mod27). The loading procedure and other
w,(mod 27), considering three particles aad=2.0 for sev- parameters are also the same as in previous figures. It has
eral values of the number of wavés, 3, 5, and ¥, using  confirmed the expectation that the presence of more than one
A=1.0x10"? and the same parameters and initial condi-wave is not sufficient to guarantee the occurrence of stochas-
tions as for Fig. 2. It is seen that the increase in the numbelic diffusion, but the threshold of wave intensity for the onset
of waves produces modifications in the particle trajectorie®f stochasticity is reduced as compared to the one-wave case,
which are reminiscent of the modifications caused by thewhich occurs fora=2.2. Visually, this onset appears to oc-
increase in the wave intensity, shown in Fig. 2. cur between the case @f=0.5, where the particle orbits

The effect of the increase in the number of coherenpbtained are similar to those appearing in the first panel of
waves on a larger number of particles is seen in Fig. 5, wher€ig. 5 (one wave case withw=2.0), and the case of

FIG. 3. y2I, as a function otw,(mod 2r), for 50 particles, one FIG. 5. \2I, as a function ofw,(mod 2z for 50 particles and
wave, v=30, and(a) a=2.2, (b) «=3.0, (c) «=3.8, and(d) « coherent wavesg=2.0, A=1.0x 102, and number of wave&)
=4.6. 1, (b) 3, (c) 5, and(d) 7.
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FIG. 6. \2I, as a function ofw,(mod 27) for 50 particles and FIG. 8. y2I, as a function ofw,(mod 27), for 50 particles and
coherent wavesA=1.0x102, n,=5, and (@ «=0.25, (b) « waves with random phases=2.0, A=1.0x 10 2, and number of
=0.5, (c) «=1.0, and(d) «=2.0. waves(a) 1, (b) 3, (c) 5, and(d) 7.

=1.0. This is in agreement with EqR1), which predictse  for the random phases, these are exactly the same conditions
= a1wae!(N,)Y? (Which in the present case is 2.2/¢8) used to generate Fig. 4. The modifications in the particle

=0.98). trajectories are similar but more impressive than those
caused by coherent waves, seen in Fig. 4.
C. The case of several waves with random phases The effect of the increase in the number of incoherent

waves on a larger number of particles is seen in Fig. 8, where

_We now consider the presence of more than one wavye nresent /21, vs w,(mod 2u) for the case of 50 particles
with different frequencies and random phases, with the phasg,  ,— o> 0, for several values of the number of wavis3,
of the central wave assumed to be zego<(0). The random 5 and 7. In this figure, we also use the same parameters
phases are obtained from a random number generator thaed to obtain Fig. 7. Figure 8 clearly shows that the pres-
starts from a numerical seed. All the results that follow, un-ence of the waves with random phases causes the complete
less explicitly stated otherwise, are generated using samgyreading of the particle orbits that are present in the case of
seed for the random number generator. Regarding the amplinly one wave, for the same value of
tudes in the set of \{\llzaves we assume that they are all equal, As in the case of coherent waves, with results shown in
such thatrg=(n,,) - Fig. 6, in Fig. 9 we show2I, as a function ofu,(mod 27)

For instance, Fig. 7 shows the case qRl; Vs for the case in which five waves are present in the system,
w,(mod 27r), considering three particles ané=2.0, for  considering several values of the wave amplitude (
several values of the number of wau@s 3, 5, and ¥, using  =0.25, 0.5, 1.0, and 2.0), anfi=1.0x 10”2, and waves
A=1.0x10"? and the other parameters as in Fig. 2. Excepiyith random phases. The loading procedure and other pa-

FIG. 7. V2, as a function ofw,(mod 2m) for three particles FIG. 9. /21, as a function ofw,(mod 27r) for 50 particles and
and waves with random phasess 2.0, =30, A=1.0X 1072, and waves with random phaseg)=1.0X 1072, n,=5, and () «
number of wavega) 1, (b) 3, (c) 5, and(d) 7. =0.25,(b) «=0.5, (c) «=1.0, and(d) «=2.0.
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FIG. 10. (81,), as a function of normalized time for,=1, 19 FIG. 11. (61,), as a function of normalized time for the case of

=1.25x 10%, a,=400, v=30.0, andae=2.0 (full line), 4.0(broken  coherent waves, fol9=1.25x10°, a,=400, »=30.0, and «
line), and 6.0(dotted ling. (a) Short-term evolution(b) long-term =2.0, forn,=1 (full line), 5 (broken ling, and 9(dotted ling. (a)
evolution. Short-term evolution(b) long-term evolution.

rameters are also the same as in previous figures. We obserggges of particles by the Poincasection. Figure 10 clearly
that the amount of stochastic diffusion, for the same numbegnhows that long-term diffusive behavior, measured by the
of iterations, gradually decreases when the wave energy isclination of the curve relative to thieaxis, is absent in the
reduced, but even in the case ®£0.25 the degree of sto- ¢ase ofa=2.0 but is already present in the caseaot 4.0,
chasticity is larger than that obtained in the one-wave casgnd is more impressive in the case®f 6.0[1,2].

anda=2.0, as seen in the first panel of Fig. 5 and in the first | Fig. 11 we show I,); as a function of normalized
panel of Fig. 8. However, while in the case of co_herenttime for 19=1.25x 1%, a,=400, »=30.0, anda=2.0, for
waves we can use E@21) in order to relate the amplitude n.=1, 5 and 9, for the case of coherent waves. Péael

requ!red for the onset_of stochast_lcny with the amplltudeShOWS the evolution up 120, while panelb) shows the
required to produce a similar effect in the one-wave case, we . .
. . evolution up tot=1200. Figure 11 also shows the progres-
have not developed an equivalent theoretical approach faor. . oY
. Sive appearing of diffusion in the system, but the curves that

the case of waves with random phases.

Figure 92) als0 shows a figher degree of stochasticin/z WY 2 BINEE Mo 00 IEE Sl SN m M R e
than Fig. Ga), with the only difference being that Fig(® 9 P 9

was obtained assuming waves with random phases, whiI%nda:Z'o’ appearing in Fig. 10. It is also noticeable the

Fig. 6(a) was obtained assuming all waves possess the San%temang:e c.)f regions yvhere the curve describirg, ),
phase (=0). In the analysis that appears in the following grows with time and regions where it is nearly constant and

. S arallel to the horizontal axis. Thi uence of st is not
section, we will similarly observe more pronounced Iong—p €l to the horizo axis S Sequence of Steps 1s no

term diffusive behavior in the case of waves with randomr'OtIceable in the one-wave case in Fig. 10.

phases than in the case of waves with the same phase. sub—m F|g.0 12 we show 81,), asa function of normalized
section time for 17=1.25x 10%, a;=400, »=30.0, anda= 2.0, for

n,=1, 5, and 9, for the case of waves with random phases.
As in Fig. 11, panela) shows the evolution up tb=120,
while panel(b) shows the evolution up tb=1200. Accord-
] ] ) ing to Fig. 12, the initial evolution ofdl,), displays smaller
The presence of stochastic behavior can also be investinclination toward the axis than in the corresponding cases
ga_lted by following the time behavior of the following quan- o, conerent waves appearing in Fig. 11. But the long-term
tities: evolution appearing in Fig. 18) shows continued diffusion,
1 ™ 172 without the conspicuous “steps” appearing in Fig. 11, in the
(81))= 2 [Ij(t)—lj(O)]Z , (23) case of coherent waves, resulting _that the q_uantﬂyj)(
n—1i=1 attains larger values in the case of Fig()2han in the case
appearing in Fig. 1(b). Another interesting feature appearing
wherej=1,2. In a plot of 1), vst, the inclination of ¢l ;). in Fig. 12b) is that the cases af,,5,c=5 andn,,,,.=9 with
relative to thet axis is a measure of the diffusion coefficient
in velocity spacd11]. 4
In Fig. 10 we show §l,); as a function of normalized il
time for the one-wave casen(=1), 19=1.25x1C, a, aol
=400, »=30.0, anda=2.0, 4.0, and 6.0. Pané&d) of Fig. el
10 shows the evolution up to normalizeéd 120, and panel 1k
(b) shows the extended evolution, up tte-1200. For this °-§ i

D. Comparative analysis of the one-wave case and the cases
with several waves, coherent and incoherent

Bl

ﬁgure' we have considereq!,=1000, which results in much 0 20 40 60 80 100 120 140 0 200 400 600 800 1000 1200 1400

better statistics than obtained with,=50. The Poincare ' !

plots presented in Figs. 2—8, on the other hand, were ob- FIG. 12. (§1,), as a function of normalized time for the case of
tained withn,= 50 because with a larger number of particleswaves with random phases, fof=1.25x 10°, a,=400, »=30.0,

it becomes very difficult to see any structure in the plots, dueind «=2.0, forn,=1 (full line), 5 (broken lind, and 9 (dotted

to the proximity of the dots that represent successive padine). (a) Short-term evolution(b) long-term evolution.
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FIG. 13. Early stages of the evolution afl), as a function of
normalized time fom,=1 and «=6.0 (full line), for n,=9 and
a=2.0, coherent wavegbroken ling, and forn,=9 anda=2.0, oSt
waves with random phasédotted ling, assuming‘l)zl.25>< 10°,

a,=400, andv=30.0.
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random phases exhibit similar long-term behavior &f,{; , t t
different from the behavior appearing in Fig. 11 for the case |G, 14. Left panels: the quanti as a function of normalized
of coherent waves. time, in the case of coherent waves, fe=2.0 and(a) n,=1, (b)

The very early stages of the time evolution are shown iy _5 and(c) n,=9, assuming?=1.25x 1%, a,=400, andv
Fig. 13 that displaysdl ), vs normalized time for the cases —30.0. Right panels: the quantift;],., as a function of normal-
n,=1 anda=6.0,n,=9 anda=2.0 for coherent waves, ized time for the same parameters as in the left parelsi, =1,
andn,=9 anda=2.0 for waves with random phases, as- (e) n,=5, and(f) n,=9.
suming19=1.25x 10°, a,=400, and»=30.0, andt up to
20. According to Eqgs(21), the two former cases should fea- the curves appearing in the corresponding right panels of
ture similar initial diffusion rates, a prediction which is cor- Fig. 14, where we plot the auxiliary quantity
roborated by the results shown in Fig. 13. Regarding the
results featured in the case of random waves, at least for the n
set of random phases utilized, the early inclination of the (£x)an= — — 2 o
curve for (81,); is smaller than in the case of the set of A n, =
coherent waves, although we observe continued and more

significant diffusion for long-time evolution according tothe ., . . . .
g 9 9 which is simply the average of the equation of motion that

comparison between Figs. 11 and 12. X . .
par W '9 é(vould rule the evolution of, if A@ could be considered

The results shown in Figs. 10, 11, and 13 show that th .2 : .
stochastic diffusion caused for several coherent waves intc"”Y small along all the time interval shown in the figure. In

deed starts at the wave level predicted by using(E), but that case, the stochasticity would occur as in the one-wave
proceeds at a smaller average pace than the correspondifigse: Withaeri=airg. _ _
case with only one wave. These results can be understood by The comparison between the corresponding left and right
considering some features of the equations of motion. Let uganels of Figs. 14 shows that the quanfit]a. is a fluc-
consider, for instance, the fourth equation of motion appeartuating quantity with a significant amplitude along the time

ing in Egs.(16) and(17), averaged for all particles, evolution, while¢, for coherent waves is a fluctuating quan-
tity that in the case of,>1 features a much smaller ampli-

1™ 1™ tude along most of the time span considered in the calcula-
= E j,=—— z z re[cogiA’ 0)cog 60— &) t|ons', with per|9d|c bursts of amplltude: The modulation of
Np =1 Npi=15 the time evolution of the quantit§,, which occurs due to
s the factors cosQ’#) appearing in the equation of motion,
—sin(iA")sin(6— )], (24 explains the smaller amount of diffusion in velocity space
when compared with the diffusion that would occur without
which can be taken as representative of the behavior of thihe presence of the modulation, for the same parameters.
system. In Fig. 14 we plo£, vs normalized time fora The maxima of the quantity,, which appear periodically
=2.0 andn,=1, 5, and 9, assuming coherent Wave%, in Fig. 14, may be easily explained as follows. The period-

in the left three panels of Fig. 14 should be compared withcase of equal amplitude waves may be written as

cog ), (25)

S

&=
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FIG. 15. Left panels: the quantit§s as a function of normalized FIG. 16. Left panels: the quantit§s as a function of normalized
time, in the case of waves with random phases,dfer2.0 and(a) time, in the case of waves with random phases,nfige=5 and a
n,=1, (b) n,=5, and(c) n,=9, assuminglJ=1.25x10%, a, =2.0, with three different sets of random phases, obtained with

=400, andv=30.0. Right panels: the quantity,]..,as a function  different seeds for the numerical evaluation of the phases, assuming

of normalized time for the same parameters as in the left pafkls. I2:1.25>< 10%, a,=400, andv=30.0. Right panels: the quantity

n,=1, (e) n,=5, and(f) n,=9. [&5]aux@s a function of normalized time for the same parameters as
in the left panels.

n; nj
> re COSiA"0)=rg >, cogiA’f) panels of Fig. 15 should be compared with the curves ap-
o o pearing in the corresponding right panels of Fig. 15, where
the auxiliary quantity] £,],.« IS plotted as a function of nor-
sin( 4 6) malized time.
_ n,—1 The comparison between the corresponding left and right
R T ae panels of Figs. 15 shows that the quanfitis] . is a fluc-
Sm(nw—l tuating quantity whose amplitude along the time evolution

depends on the phase of the waves composing the wave
The maxima of this quantity fon,>1 are located at packet in thek space. For the seed used in the generation of

|6] = (kmr/A)(n,— 1), wherek is a positive integer. Since  the random phases, we observe that the amplitudé gf.x
averaged for all particles ig= —ut, that means that the in the case Ofya,e=5 is smaller than in the case 0fa,e

. — =1 or 9, while &, is a fluctuating quantity that does not
maxima occur at=km(n,—1)/(vA). For our parameters, ghow the regular appearance of maxima and minima that we
the first maxima therefore occurs fo=40 andt=80, re-

' i : have seen in Fig. 14, in the case of coherent waves. The
spectively, fom,=5 and 9. The following maxima occur at gpsence of that regular modulation in the case of waves with

multiples of these values. These features are seen in Fig. ¥4ndom phases explains the absence of the diffusive steps
and explain the sequence of diffusive steps exhibited in Figinat occurs for coherent waves, and explains the relatively

11. A consequence of this bursty diffusive behavior is thatyegylar and continued diffusion caused for waves with ran-
although the threshold for the onset of stochastic diffusion igjom phases as seen in Fig.(a2

decreased by the presence of a set of coherent waves With The influence of the random phases in the case of a finite
close frequencies, if compared to the one-wave case, as prgymber of waves is illustrated in Fig. 16, which shows the
dicted by Eq/(21), the overall diffusion is limited by the time quantities¢, and[ £,]a,x for the case of,,.=5, with other
interval between the diffusive episodes, which becomes inparameters as in Fig. 15, and three different sets of random
creasingly large with the increase in the number of waves. phases, generated with three different numerical seeds for the
~ In Fig. 15, on the other hand, we plé vs normalized  yandom number generator. Paral of Fig. 16 corresponds
time for a=2.0 andn,,=1, 5, and 9, assuming waves With {5 the case of pandb) of Fig. 15. The right hand panels
random phase$2:1.25>< 10°, a;=400, andv=30.0. Asin  show different amplitudes for the quantify,].. Which

the case of Fig. 14, the curves appearing in the left thred@lustrate the dependence on the phases. The left hand panels,
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FIG. 17. Short-term evolution off ,); as a function of normal- FIG. 18. Initial values ofA & vs particle indexi for n,=1000

ized time, in the case of waves with random phasesnfer5 and particles, assumind;=1.25x10°, a,=400, andA=1.0x10 2.

a=2.0, with three different sets of random phases, obtained withThe initial conditions for the particles are randomly attributed, such

different seeds for the numerical evaluation of the phases, assumirat »; and o, are between 0 and2 and |, is betweenl{ and

19=1.25x 10°, ay=400, andv=30.0. 19+ a,, with I, evaluated un(_jer t_he restriction that all particles have
the same value of the Hamiltoniahl].

on the other hand, exhibit the difference but have in common

. i L - The randomness of the initial conditions in this case can
the irregular appearance of maxima and minima of similar . T I
be appreciated in Fig. 18, where we show the initial value of

amplitudes in all three cases shown. As a consequence, the - . o
diffusive behavior caused by the waves is roughly similar for%iogjr a?\%;iof%xpféyglezs ﬁ'\sslzl;;mqglit_iiizrffﬁaﬁhe

the three cases, as shown in Fig. 17, which displays the . - . .
short-term behavior ofdl ,),, for the three cases of different quantlt_yAa is indeed smaller than_ unity for "?‘l.l particles.
sets of random phases used to obtain Fig. 16. In spite of the In Fig. 19 we present for thesg |n|t|a_l conditions the quan-
obvious differences between the three curves obtained, tHEY (412). as afuonctlon of normalized time for the one-wave
inclination relative to the axis is approximately the same in ¢ase 0,=1), 17=1.25x10°, a;=400, »=30.0, anda
the three cases, indicating similar average diffusive behavior= 2.0, 4.0, and 6.0, considering,=1000. Pane{a) of Fig.
A more exhaustive investigation would require very inten-19 shows the evolution up to normalizee 120, and panel
sive use of numerical calculations, considering a large numtb) shows the extended evolution, uptte:1200. Similarly
ber of sets of random phases, which we believe will notto what we obtained in Fig. 10 for the case of the more
bring any significant modification to the general trend ex-regular set of initial conditions, Fig. 19 clearly shows that
posed in Fig. 17. It is expected that the average behavideng-term diffusive behavior is absent in the case «of
obtained with different sets of random phases would tend ta=2.0, but is already present in the caseaf4.0, and is
become more and more similar for increasing number ofnore impressive in the case af=6.0[1,2).
waves, so that in the limit of infinite wave number the dif- In Fig. 20, we show §l,); as a function of normalized
fusion caused by the waves would be independent of theime for 19=1.25x 10°, a;=400, v=30.0, anda=2.0, for
particular set of random phases utilized in the calculation. n =1, 5, and 9, for the case of coherent waves. Péael
shows the evolution up tb=120, while panelb) shows the

E. An example with different initial conditions . 18

@ o - 14
:

- 10
8

The regularity of the initial conditions utilized for the par-
ticles to obtain the results presented up to this point in the
present section has been useful in order to generate regul
Poincareplots as those appearing for instance in Figs),3
5(a), and &a). However, it is necessary to investigate

t
@l

(6]

L R - I}

whether results similar to those obtained up to this point may °o 2 e s 1o 1 o 0 200 400 600 800 1000 1200

be found also under different initial conditions or whether t t

they are peculiar to the conditions assumed at the beginning FiG. 19. (51,), as a function of normalized time for, =1, 12

of the section. We therefore consider here another example, 1.25< 10%, ag=400, »v=30.0, ande=2.0 (full line), 4.0 (broken
which assumes for the particlés values randomly distrib- line), and 6.0(dotted ling. (a) Short-term evolution(b) long-term
uted between? and| +a,, andw; andw, values randomly  eyolution. The initial conditions for the particles are randomly at-
distributed between 0 andm with the quantityl , evaluated tributed, such that; and w, are between 0 and72 and |, is
according to Eq(22), under the condition that the Hamil- betweenl? and19+a,, with I, evaluated under the restriction that
tonian value(H) is the same for all particles. all particles have the same value of the Hamiltonigt) .
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FIG. 20. (41,); as a function of normalized time, in the case of  FIG. 22. (6l,); as a function of normalized time in the case of
coherent waves, fon(l>=1_25>< 10°, ay=400, »=30.0, and & waves with random phases fof,=5 anda=2.0 with three differ-
=2.0, forn,=1 (full line), 5 (broken ling, and 9(dotted ling. (a) ent sets of random phases, obtained with different seeds for the
Short-term evolution(b) long-term evolution. The initial conditions numerical evaluation of the phases, assumiifig 1.25x< 10°, ag
for the particles are attributed as in Fig. 18. =400, andv=30.0. (a) Short-term evolution(b) long-term evolu-

tion. In panel(b), below the other three curves, the corresponding
evolution up tot=1200. Figure 20 also shows the progres-curve for the case of coherent waves is also seen. The initial con-
sive appearing of diffusion in the system, but the curves thatlitions for the particles are attributed as in Fig. 18.
display the growth of §l,); with time exhibit smaller aver-

age inclination than in the case corresponding to one wave Finally, Fig. 22a) displays the short-term evolution of the

?‘”dl‘“:z-oy apé)learing_ in Figr.] 19. -Lhe aItern;nce_gf regionsyyantity (81 ,),, for three different sets of random phases, for
is also noticeable, regions where the curve describifig)( P.=5, 19— 1.05¢ 16%, a,= 400, andv—=30.0. As in Fig. 17,

grows with time and regions where it is nearly constant an .
parallel to the horizontal axis. This sequence of steps is nat'© observe that, although there are dllfferences betwgen the
noticeable in the one-wave case in Fig. 19, three curves, the behavior is qualitatively the same in the

In Fig. 21, we show 6l,), as a function of normalized three cases. Figure @3 displays the Ipng_—ter_m evolution for

) o — the same set of parameters. The inclination of thé,);

time for 17=1.25¢<10°, a,=400, »=30.0, anda=2.0, for  cypve is similar in the three cases, indicating that they may
n,=1, 5, and 9, for the case of waves with random phasesye representative of the average behavior to be obtained if an
As in Fig. 20, panel(a) of Fig. 21 shows the evolution up to  ensemble average is made considering a large number of sets
t=120, while panetb) shows the evolution up t6=1200.  of initial phases. Figure 2B) also shows the curve obtained
According to Fig. 21, the initial evolution ofdl,); displays  for the case of five waves with the same phage=0),

ing cases for coherent waves appearing in Fig. 20. But thgyis and therefore indicates less pronounced long-term dif-
long-term evolution appearing in Fig. @) shows continued  fysjve behavior.

diffusion, without the conspicuous “steps” appearing in Fig.
20, in the case of coherent waves, resulting that the quantity
(61}); attains larger values in the case of Fig([9lthan in
the case appearing in Fig. @). Another interesting feature We have generalized the discussion on stochastic diffu-
appearing in Fig. 2b) is that the cases afi,,,.=5 and sion of energetic ions by lower hybrid waves by considering
Nwaye=9 With random phases exhibit similar long-term be-a case where a set of waves with similar frequencies is
havior of (61,);, different from the behavior appearing in present in the system. The task has been accomplished by
Fig. 20 for the case of coherent waves. generalizing the approach utilized in Ref4,2], restricting

The results appearing in Figs. 19-21 are qualitativelythe analysis to the case of sufficiently narrow spectra, such
very similar to those displayed in Figs. 10-12, indicatingthat the phase velocity of the waves present in the system can
that the results obtained in Sec. Il were not peculiar to thébe considered to be constant. The formulation utilized takes
particular set of initial conditions for the particle coordinatesinto account that each wave may have a random phase, with

IV. FINAL REMARKS

utilized in that section. the case of coherent waves as a particular case.

The theoretical analysis of the system has shown that the

4 o © — T =] initial stages of the time evolution in the case of coherent

' 7+ M”"/ 1 waves are ruled by a Hamiltonian similar to that appearing in

= 7—“22 o 1 Refs.[1,2], but with a threshold for stochastic behavior at the
S Bat i 1 initial stages of the evolution that is smaller than the corre-
: F‘“/‘M\" 1 sponding threshold obtained for the case of a single wave. In

i A ! L the limiting case of a continuous spectrum, with an infinite

0 2 40 60 80 100 120 140 © 200 400 600 800 1000 1200 number of coherent waves, our analysis has shown that the
' ‘ threshold goes to zero and that the stochastic behavior at the
FIG. 21. (51,), as a function of normalized time for the case of initial stages should occur for any value of wave intensity.
waves with random phases, fof=1.25x 10%, a,=400, v=30.0, When comparing the case with a single wave and the case
and «=2.0, forn,=1 (full line), 5 (broken ling, and 9(dotted ~ With a finite number of coherent waves, for similar initial
line). (a) Short-term evolution(b) long-term evolution. The initial ~ diffusion rate, we have shown that in the multiple-wave case
conditions for the particles are attributed as in Fig. 18. the diffusion occurs in periodic bursts, which reduce the
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overall efficiency of the diffusive process. diffusive behavior that can be the outcome of the wave-
When considering the more general situation in which theparticle interaction.

waves have random phases relative to each other, the long- Finally we remark that the reduction of the stochasticity

term diffusion obtained has been shown to be more signifithreshold with the increase in the number of waves, which is

cant than in the case of coherent waves for the same numbpredicted by the present analysis, has also been obtained for

of waves. While in the case of coherent waves the diffusivaifferent situations. For instance, for a case with two waves

behavior occurs in periodic bursts, the diffusive behavior obpropagating obliquely to the ambient magnetic figdd, or

tained in the case of random phases occurs continuousfpr a case in which a modulation occurs in the wave fre-

along the time evolution. This result is of particular interest,quency[12].

since the case of waves with random phases is more repre-

sentative from the point of view (_)f_lnve_sngatmg, with a finite ACKNOWLEDGMENTS
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