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Effect of the electron gas polarizability on the specific heat of phonons in Coulomb crystals
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The effect of the background polarizability on the thermodynamic properties of a Coulomb crystal of ions is
studied. The response of electrons is treated using the Thomas-FAéfn@nd random phase approximations
(RPA). For the case of ions fixed at their lattice sites, the energy of bcc and fcc crystals is calculated to first
order in the screening parametetrfa)? (1 is the TF wave number analis the ion sphere radilslt is
shown that in the RPA there exist domains of parametaess density and charge numbet) where energy
of fcc crystal is lower than that of bce. The effect of ion vibrations is studied using harmonic lattice approxi-
mation. It is shown that phonon modes are nearly identical in the RPA and in the TF approximation. The latter
allows one to apply the Ewald technique to the construction of the dynamical matrix, which speeds up all
calculations considerably. The main thermodynamic quantities of phonons are calculated as functions of the
quantum parametelr, /T (whereT is the ion plasma temperatyrand the screening parameter. The electron
polarizability leads to a moderate increase of the phonon thermodynamic quantities as compared to the case of
one-component plasma with rigid backgrouiby ~30% atxtza=0.8). Zero-point motion of ions modifies
the aforementioned domains where fcc has lower energy than bcc for static ions. The effect is profound at small
Z but leaves the domains unaltered at largefhe thermal vibrations of ions at= T, eliminate completely
the domains where fcc is thermodynamically preferabl=a0. The related model of Yukawa-Wigner solid is
briefly studied. It is shown that neither bcc nor fcc crystal structures are stable in this model.
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[. INTRODUCTION longitudinal dielectric function at energy transter0, and
g is the momentum transfer. The RPA static longitudinal di-
It is well known that the model of one-component plasmaelectric function behaves astlk2-/q? at smallq.
(OCBP of ions is not entirely appropriate for the description  The aim of the present paper is to give some new results
of matter in the deep, fully ionized layers of white dwarf on the YWS, to make a connection between the two ap-
cores or neutron star crusts. In fact, the electron gas, formingroaches to the treatment of the screening, to check the ex-
the background that compensates the electric charge of iontent to which the results on the YWS are appropriate for
possesses finite polarizability and therefore screens pumatter in the interior layers of the degenerate stars, and to
Coulomb potential of ions. Obviously, this modifies variouspresent new calculations of thermodynamic propertes
properties of the system as compared to the case of OCP. ergy, specific heat, efcof Coulomb crystals with the polar-
The effect of the electron gas polarizability has been studizable electron background in the linear response framework.
ied in a number of works for solid and liquid plasma of ions

within the framework of the Iinear response formaliseng., Il. STATIC LATTICE ENERGY
Refs.[1-4], and references therginhe linear response for-
malism assumes that the screening parametga<l1, Consider Coulomb plasma of ions with charge number

where k¢ is the Thomas-Ferm{TF) wave numberto be  and polarizable background of nearly free degenerate elec-
defined later, while a=(3/4mwn)'? is the ion sphere radius trons compensating the total charge. In the linear response
(n is the number density of ionsGenerally, the response of formalism, the energy per iok, for a system oN ions fixed
electrons is described by the dielectric function evaluatedt some spatial pointX in a volumeV at temperaturer
using the random phase approximati®PA). =0 reads(e.g., Ref[2])

In parallel to the above work, a series of papers has ap-
peared(e.g., Ref[5], and references thereidevoted to the E=EotU, 1)
study of the so-called Yukawa-Wigner Soli{d@WS). The
YWS is a crystal of point charges immersed into the com- U{X}) 1 .
pensating charged background distributed as =
(x*/4m)e “IR="l/|R—r| around each lattice poiR, x be-
ing the inverse screening length. The normalization coeffi- 1 .
cient is chosen in such a way that the overall charge of the +— —_
background associated with given point charge compensates 2V 470 g
fully the point charge. The results reported in R&] are
valid for an arbitrary value of the screening parametar  whereE, is the kinetic energy of the ideal degenerate elec-
The same distribution of background charges occurs if onéron gas andJ({X}) is the correction due to Coulomb inter-
takes the OCP as the undisturbed systegstem of “exter-  action. The thermodynamic limiN—c is implicitly as-
nal” charge$ and setse(q) =1+ «?/q?, wheree(q) is the  sumed for all intensive quantities. If ions form a lattice, and
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are fixed at their lattice site¥=R (the static lattice cage E 1 24 ,
Eq. (2) can be considerably simplified: —=— —erfc] — | —e AC—
22 2 2%® R 2\/_ G G2 2\ A
) U({R
R (R} —2mnA. (7)
Z%e®>  7%?
- Let us remind the values of=U,,/(Z%e?/a) for body-
B 1., f dq 4me' centered-cubi¢bcc and face-centered-cubicc) crystals:
2 3 42
"7 2mT aTeq) Loe= — 0.895 929 255 682,
1 dg 4n[ 1
+ —f -1 {iee= —0.895873 615 195. (8
(2m)3 q o2 Le(a)
. In the next order in2¢, we getUre—Uy=U et . ..
n dq 4meldr with TF getUre—Un=VUa1tr
—— f dr f . (3)
2 (2m)° g’e(q)
Uyre 1 R A,
Here, the sum goes over all lattice vect®sexcluding the > KTe 2 ; Rerfc] —= \/— e Revan
R=0. U includes the electrostatidMadelung energy of the Z%e 2

OCP[which corresponds te(q)=1] and the first-order cor- 1 o AG? 1
rection due to electron polarization. Formally, sirde) is o A2— —\/:_ZWHE At —
in the denominator, we have all powers of the quantity G2 G2/ |’

e(q)—1, but only the lowest-order term is described cor-
rectly [Eq. (2) itself is valid only within the linear formalism (©)
frameworK. Notice that we neglect exchange and correlation
energy of electrons. However, as explained in the end of thi¥Vrting U re=
section, Eq.(3) includes change of electron kinetic energy
due to Coulomb interactions with ions. Mpee= —0.103 732333707,

To begin with, consider the TF form of the dielectric func-
tion which is a useful approximation in various problems and Nice= —0.103 795 687 531. (10
which describes also the screening in the YWS. In this case
we have These numbers are in good agreement with the correspond-

ing coefficient ;4= —0.1032(e.g., Ref.[2]) in the expan-
K-2|—F [ €? sion of the energy of the strongly coupled Coulomb liquid;
— . Kkr=2Kg who (4) the latter is obtained by numerical integration using accurate
F liquid structure factor in the TF model.

The correction to the Madelung energy for an arbitrary

c]dielectric functione(q) reads

n(ktea)?Z%€e%/a, we have

err(q)=1+

wherekg andvg are the Fermi momentum and velocity of
electrons. In this approximation, one can apply the Ewal
technique to the lattice sum in E(B), with the result

u, 1 f dg 4me'dR[ 1 1}
U 27n 22 2 3 2 |eq)
il 2 E++E + > T e AGPHRED Z%e R (2m)° q (a)
e 5 Gl dq 4med’[ 1
-5 ~1
27Tn e AKTF KT J f (277 q2 e(q) :|

- etk A). )
K%F Zm 2 (KTF

In this caseG is a reciprocal lattice vector, whilé is an
arbitrary constant chosen to optimize bdthrect and recip- (11
rocal lattice sums;

2mn

=2 —

G

1 , 27N
<G 4%_%“ 2 [e(G)—1].
In this case,

(6) _€G)-1

g et (12)
) (Ga)*(krra)
and en‘cé<)=1—(2/\/;)f)5dte‘I for any realx. From Eq.
(5) we recover the well-known expression for the Madelung According to Jancovidi6], the RPA dielectric function of
energy in the limitk;g=0: the relativisitc electron gas a=0 is

R
E.=e" "TFRerfc< m = xkeVA |
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FIG. 1. Quantityn, Eq.(12), for bce lattice as a function of FIG. 2. Energy differencéin units of Z2e?/a) between fcc and
for ten values of«rra, indicated near the curves. bec lattices versugga; AU+g (solid line), A(Uy+U11p) (dash-
dotted ling, and potential energy difference for YW8ots.
q’le(@)—1] 2 2xy? - . _
——————=———-—In(x+E) It is interesting to compare the static energy of two lat-
(k)2 3 3 E tices, bcc and fce, calculated to first order ikrfa)?, Uy
+Uj;. In the rigid electron background, bcc is known to be

1+y| more tightly bound than fcdJ y pee<Uw fcc, Cf. EQ.(8). The

2 2,,2
X+ 1—3X
n y

6y x> n 1-y| same holds true if we use the weak-screening expansion of
the TF model, Eq(9), unlesskrra=~1 (dash-dotted curve in
(2x%y2—1) V1+x2y? |yE+\1+x2y? Fig. 2). Formally, fcc has lower energy than bcc at larger
+ 6y X2 E In yE— \/szyz ' kyg@ Where the linear response formalism becomes invalid.

The full TF model, Eq(5), also predicts the structural tran-
(13)  sition from bce to fee atcrra~1 (solid line in Fig. 2.

Our calculations show that in the case of realistic RPA
wherex=nke/mc is the electron relativity parameter deter- screenind Egs. (11) and (13)], the situation is more sophis-
mined by the electron number densityr plasma mass den- ticated. For mildly relativistic electron gax{1), the re-
sity), E=1+x%, y=q/2kg, andm is the electron mass. gions appear in the-xy-a plane where the energy of fcc is
Note that the singularity at=1 is actually absent since both lower. In Fig. 3, these regions are encircled by the solid lines
the second and the third logarithms are singular and cancehlculated using the above RPA formalism. The dashed lines
out. Direct summation in Eq12) gives the values ofy asa show the same contours but are obtained including the ef-
function of x shown in Fig. 1 for ten values ofyra distrib-  fects of zero point ion vibrations as explained in Sec. IV.
uted uniformly in the logarithmic scale between 0.1 and 0.8Dots show lines of fixed charge numbetsvarying from 1
At larger x1ga, the linear response approach fails. At largerto 26. Therefore if we compress matter with given chemical
X, 7 becomes constant since the screening in the ultrarelaticomposition(givenZ) moving along a dotted line from right
istic electron gas is determined by the only parameter, the ioto left, we can encounter the structural transition. It is re-
charge numbeZ. The latter can be expressed throughta  markable that the transitions occur for selected group& of

andx via electroneutrality condition as (1; 3, 4; 6, 7; 11-15; 24—-26and do not occur for othéef.
Figures 4 and 5 elucidate the appearance of structural

4 (xqea)d | mwhox 32 transitions showing oscillations of the differenceUM

Z= 9. 8 > (149  +Uptee— (UntUyg)pe (dash-dotted lingas a function ofk
™ e’E for k;pa=0.504 and 0.8. The dense dotted lines display the

difference of Madelung energies, which is always positive. It
ThereforeZ is independent ok at largex (sinceExx) and s important that the absolute value of the energy difference
fixed xtra. We note that due to a complex structure of Eq.in polarizable electron background can be significantly larger
(13), 7 is no longer a constant as in H40). Comparing Fig.  than in the rigid backround OCP.
1 with Eq.(10) one concludes that the TF model at this stage Let us turn to the energy of YWS. Thaotential energy
is rather poor and largely overestimates the effect of the eleger ionU,, for a charge distribution described by a dielectric
tron screening. function e(q) can be calculated exactly as
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FIG. 5. Difference in free energyin units of Z%e%/a) for
rxtra=0.8. Short-dashed and dash-dot-spaced lines correspond to

encircling the domains where fcc lattice has lower energy than bc@ =T, the ion plasma temperature, in the approximation of clas-
at T=0. Solid lines represent static lattice energy and the dashedical ions(Sec. I1\). Other curves show the same quantities as in

lines represent the effect of zero-point ion motifor ion mass
numbersA=2Z). Dots show lines of fixed charge numhbe&from

Z=1 to Z=26 (from left to righy.

2:10
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0.1

FIG. 4. Difference in energyin units of Z2e?/a) of fcc and bcc
lattices versus the density parameteat kra=0.504 andT=0.
Dense dots show the difference of Madelung energies. Dash-dotted
line is the difference of the linear response RPA enerbigs-U;

X

Fig. 4 (T=0). Short dashes show the difference of fcc and bcc
crystal entropies divided by the ion coupling paramdterDash-
dot-spaced line is the difference of free energies of classical fcc and
bcc crystals. Zero-point vibrations do not alter significantly the do-
mains obtained for static-lattice iongf. solid and dash-dotted
lines). However, heating the crystal to classical temperatufies (
=Tp) completely eliminates the lattice-type transitions and makes
bcc lattice thermodynamically preferable at allThe vertical line
approximately corresponds to melting of classical OCP.

U, =E2'j dg 4me'dR

z%* 2R ) (2m)® g (a)
1 dq 4n 1
A daer, 1)
2] @2m® g’ €a)

For e=ere, EQ. (4), which is the case of YWS, one can
again use the Ewald transformation with the result

U 1 K
pYWS rl = j _
iz~ % |ar(E+TET 5 (Es E)}
e AG2+ k5D
+2mnY, —————[G?— AkZ(G?+ k2p)
= (GZ+K-|2—F)2[ TF )]

A2
e AKTF 3 KTE

- 2~ m7A 4

erf(kreVA). (16)

for static ions. Spaced dots show difference of zero-point energied Nis formula reproduces Eq7) in the limit xrz—0. Also

(Z being uniquely determined byand «tga, A=2Z). Solid line is

the energy differenca& U ,y\ys between bcc and fcc lattices

the total energy difference including zero-point vibrations. Comparindicates two lattice-type transitions: from bcc to fcc and
ing the solid and dash-dotted lines one sees how the zero-poidtom fcc to bee atkrra~1 andxrra~3, respectively(Fig.
vibrations eliminate two of the three domains where fcc is energeti2). The dependencAU ,yws(«rra) closely resembles that
cally preferable for static-lattice ions.

obtained by Hal[5].
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On the other hand, Eq(l5 possesses one important matrix of this form is the so-called dynamical matrix. Gen-
drawback that precludes its use for a real system. It does nefrally, the dynamical matrix can be written in momentum
include the change in the electron kinetic energy caused bgpace a$1]
the Coulomb interaction with ions. For this reason if we
expand Eq(16) in terms of (xrga)?, the first-order term will 72?2 42
be 2U,1¢. By contrast, the linear response formula, ), D*f(q)= ™M X X
includes the change of the electron kinetic energy, which ah
appears to be- 1/2 of the change in the electrostatic energy
for terms of order krra)?. Xe‘k'(Rx)(l—e‘q'R)}

, J dk 4
R (27)° k%e(k)

X=0
I1l. DYNAMICAL MATRIX

2
e

E ion(2) gi h f the Coulomb ith (G7ran(Girah  Grer
uation ives the energy of the Coulomb system wit =w -
pola?izable bac?kground for agr’gitrary fixed positio):’]s of ions, (G+)’e(G+a)  G*(G)
which are not necessarily lattice sites. In the crystal phase, (17)

we can take into account the ion motion near lattice sites in

the harmonic lattice model. For this purpose, we expand Edn the case of TF screening, one can use the Ewald transfor-
(2) in powers of ion displacements from the lattice positionsmation to derive a formula that speeds up considerably the
R and restrict ourselves to the second-order term. This termalculation of the dynamical matrix as compared to direct
is a bhilinear form with respect to ion displacements. Thesummation in Eq(17):

o a B B ar B
(G +q")(GF +0) _yoqe iy GG e_A<Gz+K¢F>]

M
DE(q) = =4mn
) 722 = (G+q)2+ k2 G2+ k%

1 , 2R )
+§; [1_C05(Q'R)]I (kreR=1)E; = (kreR+1E_— ——e AT RMA]

mA
5 3R*RF R 2 2 RRA
—_—— +| k2B, + K2 E_+ e AxTe RT4A (18)
R® R T AmA R®
In the limit x1.— 0, this equation reproduces the well-known expression for the dynamical matrix of the OCP:
M G*+q%)(GP+gP) , G*GP
D) i —dmn| S T T e werat 3 2 gnet
Z%e G (G+q) G G
11 4q-R)] f R n R roua 5F  3ReRP| e RU4A RoRs 19
- —coq(Q- erfc) —= | + — — - .
z a 2JA]  JmA R3 R® AJmA 2R?

Using the dynamical matrix, one can solve the secular equation and find the frequencies of the phonon modes in the
Coulomb crystal with polarizable background. For the case of TF screening18qgprovides a very convenient way to
calculate the dynamical matrix. In the general case, one has to sefasatefrom Eq. (17), and then perform direct
summation over the reciprocal lattice vectors, which is very time consuming. However, surprisingly, the phonon modes appear
to be virtually the same in the cases of TF and RPA screening for all wave vectdtss is illustrated in Figs. 6 and 7. The
lines are drawn using the TF dynamical matf®8). The various symbols show the phonon frequencies calculated using the
dynamical matrix(17) with the full RPA dielectric function for three values of electron relativity paramete0.1,1, and 10.

The agreement is very good.

Let us turn to the case of YWS. Taking the energy as a function of ion coordinates as(itBEqve can again calculate
the second derivative and obtain the Hamiltonian describing the ion motion in the harmonic lattice approximation. In the
general case,

z%e? &P

B — ——|
D=~ ax.ax,,

(27)°% k?€%(k)

z,f dk Am eik.(Rx)(l_eiq-R)l
R

X=0

2
pG

(G*+q")(GP+gh) GG’
(G+a)?€*(G+q)  G?€*(G)

. (20
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Furthermore, adopting the TF dielectric function, we can apply the Ewald procedure to the dynamical matrix with the
following result:

M Ge+q%)(GP+qP
D\of\ﬁ/s(Q)—z 2=47rn2 |( g )(2 2q )e—A[(G+q)2+K$F]
Z%e G (G+Q)+ K5e
2 2
K GeG* K
(G+a)*+kTe] G kT G2+ ke
1 2R -
= >, [1-cogq-R R—1)E, — (krpR+1)E_ — ——e AxTe R74A
5 > [1-codq >][ (erfR=DE. ~ (kreR+DE- ~ ——
5aﬁ 3R“RB R 2 5 RaRB
R + K2 E +K2 E_+ e—AKTF—R 14A
( R3 R5 TF=+ TF A f_’]TA R3
2 Q’B a ﬁ @ B @ ,B
Kre( [ 077 SRTRT 2 RR” 2 _gasa, KTER'R
2 || R TR JETEDT JaA R C T (BB (2D

In the limit k1g—0, the matrixDyws reproduced ocp. bcec and fec lattice structures of the YWS are unstable, and
If we expandD s in powers of (rra)?, the term propor- the question which of them has lower static energy is purely

tional to (xrga)? will be twice the corresponding term in the of academic interest. o _

expansion oD This coefficient has the same origin as the ~ This point is illustrated in Fig. 8. Shown is the absolute
factor 2 in the linear term of the expansionf,,s. How-  value of the trace of the dynamical matrix of YWSolid

ever, the matrixDyys, Eg. (21), unlike D and D¢, Egs. lines) and the trace oD ¢ (dotted line$. Let us remlnd_ that
(17) and (18), is not positively definite for whatever small the trace gives the sum of squared e|genfrequen0|es of all
values ofxrea for both bee and fec. This indicates that the gggpef’;sig;a?gggeti- ;r?r:g ‘JVF;\I/‘; ?/g\c,:vngrt'lhﬁe“?eensgtcr?ri:]eaﬂﬁgd to
phonon modes have imaginary frequencies. Accordingly, th % \3/a is indicated foDyys and is the same fdbe. The
direction ofq in the reciprocal lattice i$111) (as in Fig. 6.

The sharp dips of the solid curves indicate the points where
the trace of the dynamical matrix changes sign. One can see

1.0

1.0 .

FIG. 6. Eigenfrequencies in a Coulomb crystal with polarizable
background krra=0.1 and }, calculated using the TF model for
the dynamical matrixlines) and the dynamical matrix with the RPA
dielectric function(symbolg atx=0.1, 1, and 10. The wave vector
direction in the fcc lattice(which is reciprocal to bocis (111).
Because of the high symmetry of this direction, two low-frequency FIG. 7. Same as in Fig. 6, but the direction of the phonon wave
modes have the same dispersion at both values;gd. vector does not correspond to any symmetry axis of fcc.

056405-6



EFFECT OF THE ELECTRON GAS POLARIZABILITY ... PHYSICAL REVIEW 66, 056405 (2002

aund

bcc

sl soved ovomd voumd sreed roved svveed vound 2ol o

sood soved voved il soned o

0.01 0.1 10 100
Krra T,/T

FIG. 8. Absolute values of the trace of dynamic matixyg
(solid lineg and the trace oDy (dashed linesin units ofwﬁ for
wave vector lengths indicated near the solid curves in units o

J3/a. Dips correspond to sign reversal of Ifws) -

FIG. 9. The ratio of the phonon thermodynamic potential per ion
Fo its value in OCP versus, /T for several values of the screening
parametencrea. The ranged,/T>1 andT,/T<1 correspond to
the quantum and classical crystals.

that with k;.—0, the wavevector at which the instability

occurs tends to the center of the Brillouin zoiBZ). of the phonon thermodynamic properties due to electron po-

larizability is seen to be quite moderate 80%).
Figure 12 shows various contributions to the total specific
heat of carbon plasma at density=10° gcm 3 (x

After diagonalization of the dynamical matrix and quan- =0-801xr2=0.425) as a function of the Coulomb cou-
tization of the ion motion, we can describe the states of th@ling parameted”=Z?e?/aT. These conditions are typical
ion system by numbers of phonons with a certain wave vecfor the cores of white dwarfs and envelopes of neutron stars.
tor q and polarization index. In the harmonic approxima- 1he dashed curve is the specific heat of degenerate electrons,
tion, the phonons do not interact and we deal with the therthe curves marked i show the phonon specific heat for
modynamics of ideal Bose gas of phonons. OCP (dotg and for crystal with polarizable background
All the thermodynamic quantitieger ion are expressed (S0lid ling). The curves marked€+i” show the total spe-
as derivatives of the thermodynamic potential. The latter cagific heat. The correction due to the polarizable background
be written as a sunfactually an integralover the phonon
wave vectorg) lying in the first Brillouin zone: T o T

bcc

IV. SPECIFIC HEAT

Qo= —T% In(1—e "@as'T), (22) 13-

For instance, the energy and specific heat are given by

Q)

Eph:Q_T

aT),u,V_ a5 eﬁqu/Tfl,

g

hwgs l'-f'
>

paf"

9’Q

) !
1 hlwgs 1.1
JT?

=—> ——— (23

Co=—T .
Ph 4T2 G sinf(fiwgd/2T)

w,V

The integration over the Brillouin zone can be done by the
method outlined in Ref[7]. The ratios of the calculated 1.0 o e, 0 1
guantities to their values in OCfaccording to Refs[1,8]) 1 10
are shown in Figs. 9-11 as functionsBf/T (whereT,, is TP/T
the ion plasma temperatyrdor the same values of the

screening parameter as in Fig. 1. Generally, the modification FIG. 10. Same as in Fig. 9 but for phonon thermal energy.
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1.3

ratios

1.0 f ——=—= el .1 0.1 ]

10
T,/T
; -1 -1
FIG. 11. Same as in Figs. 9 and 10 but for phonon specific hea, FIG. 13. Ratios ofi_z, U_1, U1 %, U, , {In(w/wp))pn for the bee

attice, and ofuy fec— Uy poc @Nd {IN(w/@p))ph, 1o { IN(@/ @p))ph, e TO

. -, . . the values of these quantities for OCP versus the screening param-
is seen to be positive and is very small. It is clear thateter

phonons give the dominant contribution to the specific heat
in the broad range of physical parameters.

Actually, the phonon energl,, (and the thermodynamic
potentia) must be complemented by the terrggy,
=1.5wpuy, responsible for zero-point ion vibrations, where
uy is thekth moment of the phonon spectrum:

We have calculated several principal momemgsin the
polarizable electron background. It is convenient to intro-
duce the ratios /uocp. We have also calculated the ratios
of Uy fee— U1 bec @N <|n(w/wp)>ph,fcc_ <|n(w/wp)>ph,bcc to the
values of these quantities in OCP. These ratios are shown in
Fig. 13. The moments_, andu_, determine the classical

U= {(@qgs/ @p) ) pn i
astmps /phe and quantum asymptotes of the ensemble average rms ion
displacements from the lattice positions;=1 for OCP
1 1 (Kohn sum rulg, but deviates from this value in the polariz-
<f(wq5)>ph=ﬁ % f(qu)_3(27T)3n ZS fBquf(qu)- able background{In(w/wy)),n is important for classical as-

(24)  ymptote of the crystal entropy. The differences betwegs
and(In(w/wp))pn's for fcc and bee are important for compar-
l 7T ing the free energies of these lattices in the quantum and
classical regimes, respectivelgee below
With high precision(maximum error<0.05% for xra
=<0.8), all these ratios can be fitted as

p=10% g cm-3

A=12 7Z=6 ) 4 5
1+ pi(rrea)“+ po( k)™ + pa(ked)”. (25

III LI | 1T T

/

The OCP values and fit parameters are given in Table I.

Let us note that the solid contours in Fig. 3 and the dash-
dotted lines in Figs. 4 and 5 were calculated by neglecting
displacements of ions from their lattice sites. Actually, the
ions are smeared around their positions in the static lattice
due to thermal and zero-point vibrations. The vibrations are
different for bcc and fcc, which affect the position of struc-
tural transitiongcontours in Fig. Bbetween these lattices. In
the quantumT =0 limit, the transitions are determined by
zeros of the energy difference. To include the ion vibrations
in this case, we have added the difference in zero-point en-
ergy 1.iw,Au; to the differenceA(Uy+U,). The zero-
point energy difference is shown in Figs. 4 and 5 by spaced

FIG. 12. Various contributions to the specific heat of carbondots, assuming the ion mass numBer 2Z, while Z is de-
plasma atp=10° gcm 2 as a function of the Coulomb coupling termined uniquely byrra andx. The total zero-temperature
parametef. energy difference is shown by solid line. It is seen that at
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TABLE |. Moments for zero screening and values of the fitting parameters.

ktra=0 P1 P2 P3

u_, 12.973 0.2789217 0.03209666 0

u_q 2.7986 0.1548433 0.001007932 0

1uy 1/0.5113875 0.2290487 -0.06287747 0.04113361
1/u, 3 0.5406582 -0.1802477 0.1639836
(In(w/ wp))on —0.831298 0.2236195 —0.03940911 0.01198610
Auy 0.0018065 0.1325671 —0.05446109 0.02705265
A(In(w/ wp))pn 0.01339 0.2503483 —0.02134253 0.01733280

ktra=0.504, the zero-point energy difference eliminatesanharmonic terms. Although it is unexpected that the anhar-
two of the three domains where fcc is preferable for statignonic terms(with or without polarization correctionscan
lattice. By contrast, aktra= 0.8, the zero-point energy dif- account for the dominant contribution to the thermodynamic
ference leads only to minor shifts of the structural transitionduantities at low temperatures, this point deserves an addi-
positions. In Fig. 3, the positions of the structural transitionsiona! investigation.
with account of zero-point energy are shown by dashes. The
domains shrink a little at high, while at lowZ the domains V. CONCLUSIONS
change significantly, indicating the importance of zero-point We have studied the properties of Coulomb solids with
vibrations for lighter ions. realistic polarizable electron background. The TF approxima-
In the classical limitT>T, the structural transition is tion for electron screening is shown to overestimate signifi-
determined by the zeros of the free enefgy E— TS, where  cantly the correction to the static lattice energy due to back-
Sis the entropy. fT<Tg, whereT is the Fermi tempera- ground polarizability as compared to more realistic RPA
ture of electrons, then the static lattice partfofs the same ~description of screeninFig. 1). Once the polarizability of
as atT=0. The phonon energy in the classical limit is iden- the background is taken into account, the fcc lattice appears
tical for both lattices being equal toT3 the zero-point terms {0 be thermodynamically preferable to bce at low tempera-
cancel out. The difference in classical entropy reagdures (both for static lattice and with zero-point ion motion
—3A<|n(w/wp)>ph. Thus the position of the structural transi- included, Flg.s.. 3 and)4&or moderately relativistic electrong
tions is determined by zeros of A[Uy+U; x=<1 at specific values of the charge number. In the classical
+3T(In(w/wy))pn )/ TT. The differences in-AS/T and in regimeT>T,, this effect disappears and bcc lattice is pref-

AF/TT between fcc and bee are shown in Fig. 5 by short€rable in the entire range of physical parametgs. 5. The

dashes and dash-dot-spaced line, respectively. The tempef@D motion in the solid phase is studied using harmonic lat-
ture is set equal td, and the classical limit o8 is assumed. tice approximation. It is shown that the dispersion of phonon

The vertical line, =181, represents approximately the modes is described very accurately in the TF approximation

phase transition from liquid to solid in the classical OCP. we(Figs. 6 and . The latter allows one to use the Ewald

see that heating matter =T, completely eliminates the method for calculation of the dynamical matrix, which
domains where fcc is thermodynamically preferable allspeeds up considerably calculfatlons that involve |ntegrat|o_n
T=0 over the phonon modes. Various phonon thermodynamic

our conclusion about the smallness of the polarizatiorﬂuf"‘,mities are calculated. It is: shown that electron polariz-
corrections to various phonon thermodynamic quantities in gb'“ty [eads to gnly moderate increase of the phonon thrmo-
Coulomb solid in a broad range of temperatures and densitie%y_nam'C quantitiegFigs. 9-1) as compared to the case of
contradicts that obtained by Potekhin and Chabjrdgr(cf. r|g|(_j t_)ack_ground. The reIaFed model of Yukawa—W|gner
Fig. 8 and Sec. 6 in Ref4]). The reason for the discrepancy Solid is brl_e_ﬂy fanalyzed. This modgl dpes not take into ac-
can be twofold. First, the thermodynamic quantities werecount mod|f|ca.t|on.c_)f the electron kinetic energy due to glec-
evaluated in Ref[4] using the perturbation theory, whereas uron gas polarizability. As a result, both b.CC qnd f.CC lattices
the results presented in this work are based on the accurag@pPear to be unstablphonon modes acquire imaginary fre-
calculation of the phonon spectrum of a Coulomb solid Withquenue};
compressible electron background. The authors of RAf. ACKNOWLEDGMENTS
realized that their perturbation analysis might have been in-
valid in the quantum regime of low temperatures, i.e., The author is grateful to D. G. Yakovlev, who suggested
T,/T>1, where the largest discrepancy with our results octhe topic of this research, expressed constant interest in this
curs. Second, the present calculations are based purely on therk, proposed numerous improvements to the paper, and
harmonic lattice theory, while the results of Ref] by con-  obtained the fitting expressig@5). The author thanks A. Y.

struction contain somébut not all even in the lowest order Potekhin for interesting discussions.
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