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Implosion of multilayered cylindrical targets driven by intense heavy ion beams
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An analytical model for the implosion of a multilayered cylindrical target driven by an intense heavy ion
beam has been developed. The target is composed of a cylinder of frozen hydrogen or deuterium, which is
enclosed in a thick shell of solid lead. This target has been designed for future high-energy-density matter
experiments to be carried out at the GesellschafSithwerionenforschung, Darmstadt. The model describes
the implosion dynamics including the motion of the incident shock and the first reflected shock and allows for
calculation of the physical conditions of the hydrogen at stagnation. The model predicts that the conditions of
the compressed hydrogen are not sensitive to significant variations in target and beam parameters. These
predictions are confirmed by one-dimensional numerical simulations and thus allow for a robust target design.
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[. INTRODUCTION the HED matter. These simulations have been done using a
two-dimensional hydrodynamic modeic-2 [17]. In particu-
Study of hydrogen under extreme conditiassipersolid lar, it has been showfi3] that it may be possible to carry
astrophysics, planetary sciences, and inertial fusion. Anothdfroblem of hydrogen metallization. ,
very interesting aspect of this problem is the possibility of _ SS! 1 arlf,ohplann(;n? to cor;]struct anew sync_hLOtron ””hg
creating metallized hydrogen in laboratory by application ofS_|810Q' which will deliver a heavy 1on beam with a muci
extremely high pressures to small samples of hydroge igher intensity as co.mpared to fche upgraded 8!818 fa(_:|||ty.
[1-6]. Production of metallized hydrogen in reproducible he e_tva|latbll|_ty tﬂf t?lsidbefam W'ltl. mal;e tgggy |ntterc;a_st|ng
experiments will not only provide insight to the structure of experlljrln([e;lg]s in the Tield ot equation-ot-s 9 studies
the giant planets, but may also have significant impact on o O‘T’\IS' €l .I imulati tial tool to desi
daily lives as it is expected that the metallic state of hydro- umerical simuiations are an essential 100l to design a
gen has a number of potential industrial applicatiffis future experiment eff|_0|ently and economically. On t_he ot_her
During the past decades the high-pressure technology hg_nd, after the experiments are performed, numerical simu-
been significantly advanced by the development of diamon tion codes are needed to Interpret the vast amount of ex-
anvil cell, high power pulsed lasers, and gas guns. Moreove erlmental_ data. However, sophisticated S|mulgt|on models
high power explosives and nuclear explosive devices havére complicated and one needs to use analytic models to
also been employed to generate ultrahigh pressures. In ad(ﬂ_pderst_and the 'afg.e_ amount of numerical data _generateo! by
tion to that, beams of light ions have also been recognized a mulations. In addition to .that,. a gopd analytic model is
a powerful tool for the production of solid density, high- always very helpful to optimize simulations as the model can
pressure plasmds)] ' qualitatively suggest the region of the parameter space in
An additional tool that has also been available for someWhIICh odne should lstart the SImuIatlo_ns.I imulati bil
time to research this field is an intense heavy ion beam at thte h or Er to S(;Jpp Iemegt our nurln?rlca Z'HI“: atl?ndcatp;]a fi-
Gesellschaft fu SchwerionenforschungGS)), Darmstadt, H¢S: W€ nave developed an analytic model to study the im-
The GSI has a heavy ion synchrotron, SIS18 which deliver§’|0$'On of a multﬂz_ayered cylindrical target that is driven by
intense heavy ion beams of different ion species. Important n mtense hetavy 'O(T tt;]eam. In Sec. Iblwe presée?t thi beam-
experimental work has been done in the field of high-energy-arge geometry and the necessary beéam and target param-
density(HED) matter using these beams during the past desters, while _the details of the model are givenin Sec. Il '_I'he
cade[9—-13. This facility at present is being upgraded and it re_sults ob_tameq from the mode_l together_ with a comparison
is expected that after the completion of this upgrade thé’v'th the simulation results are discussed in Sec. IV, while the
beam intensity will increase significantly while the pulse conclusions drawn from this work are noted in Sec. V.
length will be substantially reducedo about 50 ng De-
tailed numerical simulations have shoji® —1§ that using
this future beam, one will be able to access much wider In this section, we present the beam-target geometry of an
regions of the parameter space of the physical conditions afxperiment that will be carried out at the future GSI accel-

Il. BEAM-TARGET PARAMETERS
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shock travels outward and is re-reflected by the payload. This
process of multiple shock reflection goes on while the pay-
load continues to move inwards, slowly compressing the hy-
drogen. This leads to a low entropy or “cold compression”
of the hydrogen layer. Numerical simulations have shown
[13,19 that using appropriate beam and target parameters,
one can easily achieve the theoretically predicted physical
conditions necessary for hydrogen metallization. These in-
clude a density of about 1 g/éa pressure of the order of 5
Mbars and a temperature of a few thousand Kelvin.

In this design, we consider the future SIS100 beam that
will be composed of uranium ions. A wide range of particle
energy, 400 MeMi to 2.7 GeVL, will be available and the
pulse duration corresponding to the above energy range will
be 90-20 ns. The maximum beam intensity is expected to be
2% 10' particles.

In these particular calculations we consider a particle en-
ergy of 2.7 GeMi which has a range of about 6 cm in solid
cold lead[20]. This allows us to take a very long targ&
cm) and still achieve a uniform deposition along the axial
direction. If one chooses to use a lower energy, the target
length should be decreased accordingly. The duration of the
pulse in the present case is 20 ns.

R, R, R, R, Although the final maximum expected beam intensity is
2% 10%, the intensity will increase gradually over time. We

FIG. 1. (a) Beam-target geometry: a cylinder of solid hydrogen therefore have used different cases with different beam in-
(H) enclosed in a shell of solid lea@b). (b) Sector of the layer- tensities including 5100 101 2x10Y 4x10Y 6
structured cylindrical targetr,, andRy,o are the density and radius x 1011’ 8% 1011, and 162 ions. These different beam inten-
of the solid hydrogeng,, and R, are the density and the outer sjties lead to very different values of specific energy deposi-
radius of the payloadz, andR; are the density and outer radius of tjon in |ead that in turn leads to different implosion condi-
the absorber an_QT andR, are the density and outer radius of the ti5ns in hydrogen. Therefore, use of different beam
tamper, respectively. intensities would allow one to access a wide range of physi-

cal conditions of cold, compressed, high-pressure hydrogen
erator facility. Figure a) shows the proposed configuration and one may study the EOS properties of these exotic states
and it is seen that the target is composed of a solid hydroge®f this most abundantly found element.
cylinder with radiusR;,q and densityp o, which is enclosed It is to be noted that we have used a hollow beam with an
in a thick shell of solid lead. The right face of the target isannular focal spot, and to generate such a beam is still a
irradiated with an ion beam that has an annular or a ringhallenging problem. In the following, we discuss two pos-
shaped focal spot. The inner radius of the focal riRg, is ~ Sible methods that may be used to generate such a beam.
assumed to be larger thay,,, which avoids direct heating
of the hydrogen. The outer radius of the focal spot riRg, ) .
is considered to be much less than the outer radius of the Generation of a hollow beam with an annular focal spot

lead shell,R.. The regionR,<r<R, acts as a tamper lim- It has been demonstrated that a beam geometry with an
iting the outward expansion of the absorption region. A crosannular focal spot can be achieved in principle using a
sectional view of the target is shown in Figbl plasma len$12]. However, producing a focal spot that pro-

It is assumed that the length of the target is much less thavides a highly symmetrical intensity with the parameters
the range of the projectile particles so that the energy depaised in these simulations requires a lot more research and
sition along the particle trajectory is fairly uniform. A shell developmental work.
of heated material with very high pressure is created in the Another proposal is to employ a high frequency wobbler
absorber region lying betwed®, andR, with massm, and that rotates the beam with a rotation frequency of the order
density ¢, while the region lying betweemR,, and R;  of gigahertz, which would lead to an annular focus. In this
forms a cold payload shell having mass; and densityo ;. case, it is very important to know the value of the rotation
The hydrogen mass is denoted with,. In practice, one frequency that will be needed for an acceptable symmniefry
always has the conditiomy,<m, fulfilled and in the cases the order of a few percenin the driving pressure, which is
of interest, one also has,<m,. important for the target stability. A simple estimation of the

The high pressure in the absorber generates a shock wavequired rotation frequency can be done as follows by con-
that travels through the payload and is then transmitted intsidering a box pulse of powdt and durationr,. In such a
the hydrogen. This shock travels along the radius of the hyease, a region in the absorber with size of the order of the
drogen cylinder and is reflected at the axis. The reflectedocal spotry is heated by the rotating beam during a time of
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the order oft,=r/[w(R,+ )], wherew=2mv is the an-  Where g, is the absorber density and we have assumed an
gular velocity of rotation and is the frequency. During this ideal gas equation of state for the absorber with an enthalpy
time the pressure increases in such a region Ay coefficienty, (which is equivalent to a Mie-Gruneisen EOS
«Pt./r&. On the other hand, the maximum pressure in thevith a constant Gruneisen coefficiefif=y,—1). Besides,
absorber ispxPr,/[(Ry+ 2r)2—R3]. Thus, the relative R is the instantaneous velocity of the interface payload ab-
pressure asymmetry iSp/p~4/(w7,), independent of the sorber and, is the speed of sound in the absorber.
target size. By requiring a pressure symmetry better than, for The pressurep, drives a shock wave in the payload,
instance, 4% and taking,~30 ns, it yieldsv=0.5 GHz ora  which travels with velocityUs:
rotation period of less than 2 ns. " 0
2 M0 1) B
IIl. IMPLOSION MODEL Us 20p0 (rp= 1) Po Ot D). @
In this section we describe in detail the analytic model forwhere Ypio 1S the enthalpy coefficient of the payloagl, is
the implosion of a multilayered cylindrical target driven by initial payload densitypg=By,/ v, (By, is the adiabatic bulk
an intense ion beam. We assume that during the implosiomodulus of the paylogdand we have takep,~po because
the payload and absorber masses are not changed by thernag@iring this stage the outer face of the payload moves rela-
conduction. In fact, even for the largest specific internal entively slowly. This shock arrives at the inner face of the
ergy of the absorber considered20 kJ/g, the thermal con-  payload att=t, and enters into the hydrogen. At this time,
ductivity « of the absorber remains very lowx{5  the pressure within the payload i (to)~p, and the den-
X 10 8 g/s cm) during the implosion time. Then, the thermalsity is 2,i(to) given by
wave penetrates a very short distarigeinto the payload

(1.<10" 7 cm) so that the heated payload mass that is incor- Ps
porated to the absorber can be neglected. (7p—1) a"'(?’pl"' iy
On the other hand, we can also neglect the hydrogen and Qpi(tg)~ Opio- 4
payload preheating produced by scattered absorber nuclei (Yot 1)E+(7p|— 1)
and by the secondary particles created when fast ions of the Po

beam interact with the absorber matefieectrons, photons,

and nuclear fission fragment®y following the analysis of The entropy greated by the shock places the payload on the
Ref. [21] we can see that for the beam deposition energieS€NTOPESy given by

considered here, this preheating is small in comparison with Do pait)

the shock preheating. Sy~ (oo(to)]7 = RO (5)

A. Absorber expansion and shock transmission in the payload  wherep,, is the mean value of the instantaneous pressure on
When the absorber is heated by the ion beam, its pressuf@€ payload surface and we have assumed that the entropy

increases considerably and it pushes the payload inward§reated by this shock is conserved up to the stagnation phase.

For simplicity, we assume that the energy deposition in the On the other hand, dt=t, the fluid velocityU, behind

radial direction is uniform. Since we are interested in thethe shock is given by

case in which the payload mass, is much less than the

2
absorber massy, (my<m,), the time taken by the rarefac- 2( 1— E)
tion created at the payload surface to cross the absorber is U2~ Po Po ®)
longer compared to the implosion time. Thus, the payload ol 0,i(to) Ps '
implosion is driven by a simple rarefaction wave, as it hap- (Yp—1) p—0+(7p|+ 1)

pens in the classical Lagrange ballistic problgzg]. If the

absorber is heated in a time much shorter than the character- since the payload entropy is assumed to be conserved for
istic hydrodynamic time required for its expansion, we Canimest,<t<t,, its internal energ§,, evolves isentropically
consider that the beam energy is deposited in the absorbgp, to the timet=t,, and it can be written as

instantaneously and thus one can assume that=at the

absorber has a specific internal eneegywhich is equal to My Ppi(t)
the total specific energy deposited by the ion beam. There- Ep(t)= =1 20’ tost<t,. (7)

. Yol Qpl( )
fore the instantaneous presspg(t) on the payload surface
can be calculated 422] At t=t, a strong shock is launched into hydrogen, which

o\ 274l (vaq) arrives at the axis dt=t; . It is then reflected, thereby com-
()= 1— Ya—1 ﬂ (1) pressing the hydrogen strongly. The reflected shock encoun-
Ppi Po 2 ¢ ' ters the imploding inner face of the payloadtatt, and the

stagnation phase starts. Rost,, shocks progressively be-
12 come weaker and they are reflected between the axis and the
Po=(7a—1)0 €0, 00:( 73p°> , ) pusher, leading to a nearly isentropic compression of the hy-
Ca drogen. This compression continues up to the instatt ,
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when total stagnation occurs and the payload kinetic energghock ¢(y,<t=<t;). During this stage, the payload motion is
is converted into internal energy of the payload and of thedescribed by Eq910) and (11) with p,(t) andp,(t) given
hydrogen. by Egs.(1) and(12), respectively. Therefore, in order to find
the payload trajectory and calculate the compression pro-
B. Payload implosion duced by the incident shock, we need to describe the shock

. . motion in hydrogen.
At t=t, the payload starts to move inwards. We are in- ydrog

terested in using a relatively thick pusher, therefore, the inner
and the outer pusher radii move with different velocities. We
then consider the implosion of a finite thickness shell, which  For the description of the incident shock we use a simple
is assumed to be incompressible. In principle, this assumpnodel which considers that a fixed mass of shocked material
tion may appear to be inconsistent with the previous onés compressed adiabatically by the motion of the pigtbe
regarding the isentropic evolution of the payload after inner face of the payload23,24. Such an assumption im-
=t,. However, for thick and heavy pushers, the motion is seplies that any change in the piston motion is immediately
slow that the pressure on the interface absorber-pushéransmitted to the shock front and, therefore, their dynamics
changes very little and both assumptions are practicalljare always coupled. This leads to

equivalent. For the opposite case of thin pushers, they move

with a practically uniform velocity and the incompressibility prVist=const, Vp=m(Ri—R2). (13
assumption becomes irrelevant. Thus the payload implosion

can be treated as incompressible without introducing signifiwhen the strong shock moves through a small distaiiRg

cant errors. In such a case the continuity and momenturihe fluid is compressed by a factoy; +1)/(yn—1). The

C. Incident shock (ty=<t=<t;)

conservation equations read as new material incorporated behind the front occupies only a
fraction (y,1—1)/(yn1+1) of the increment of the volume
1d(vr) _ ® 27RR;. Therefore, an extra volume that is a factor

rooar 2/(yn1+1) of such increment is available to the “old” mass
between the shock and the piston. Consequently, the incre-

) v 1 op ment of volumedV,,; of the “old” material turns out to be

AT ety ot ©
dVp,=27| RydR,— RAR; . 14
These equations are easily integrated and yield n Ry Y+l ® Re (19
RR Differentiating the first of Eqs(13), we get
=5 (10
n Rh d ph thl
+ Y Vi, =0. (15)
2/ =2 Pn h1
ppl(t) ph( ) . RR+R2 | n R 1
2(to) ( )In 2 R_§ ' Using Eqs(12) and(14) we obtain the equation of motion of
(11  the incident shock as
whereR;, andR;, are the instantaneous position and velocity . YniRs . 2
. . . . . Re=— =3—5| R\Rh\— ——RRs (16)
of the inner radius of the payload, respectivétyR, andR R —RS Yl

are the respective instantaneous position, velocity, and accel-
eration of the payload outer face. Algg(t) is the counter- Equations(10) and(11) [with Eq. (12)], and Eq.(16) repre-
pressure on the inner face produced by the material behingent & complete set of differential equations for the descrip-
the shock that was launched into the hydrogert-at,. tion of the payload and shock motion during the intertal
Since the hydrogen dens|g/h0 is much less than the pusher \t<t1, which must be solved with the fOlIOWIﬂg initial con-
density[2no<@p(to)], @ strong shock propagates into the ditions att=to:
hydrogen and the averaged value of the counterpressure in

1/2
the shocked region can be approximately calculated as R(to) = [ My +R R(to)— RhoUpi 17
Qp(tO) ’ R(to) ’
2 )
t)~ ———01oR2, tost<ty, 12 :

Pl = 1 @mRs Bo=t=h 12 Ro(to)=Reo.  Ru(to)~2Up, 18)
wherey, is the enthalpy coefficient of the shocked material yhl 1.
and R; is the instantaneous velocity of the shock launched Re(to)=Rno,  Ru(t)) = ———Ru(to), (19

into the hydrogen. For simplicity, we take constant values for

the enthalpy coefficient of the hydrogen in the differentwhereg(to) is given by Eq(4) andU,, is given by Eq(6).
phases of compression. Thyg; is the effective value for Besides this, in the first of Eq$17) we have taken into
the phase in which hydrogen is compressed by the inciderdaccount the shock compression in the payload, and in the
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second of Eqs(18) we have used the doubling rule for the tinuity of the fluid velocity and pressure in the region be-
velocity of a solid-vacuum interface when a shock emergesween the shock and the piston at the instant of reflection at

from the solid[25]. the axis. Besides this, the initial conditions for the piston at
t=t, are obtained from the final conditions of the previous
D. Reflected shock(t;<t<t,) phase of incident shoctSec. Il C.

o . . .. Equationg10) and(11) [now with Eq.(20)], and Eq.(24)

At t=ty, the incident shock is reflected at the. axis and Itprovide the trajectory of the reflected shock. The calculation
propagates outwards with an instantaneous veldifyintil s stopped at=t, when the shock hits the imploding piston.
t=t,, when the shock hits the imploding piston. As a simple|n, this way, we can determine the pressure and the density of
approximation, we adopt the expression corresponding to ge samplenp,= pr(t,) and o= n(t,), respectively. The
planar shock for the mean value of the counterprespyre pressure within the payload at this instant can be taken to be
produced by the sample material_ ahead of the reflectefpiform and is equal tp,,=py(tz). On the other hand, we
shocl§. The_n, thg pressure of the fluid between the shock arghtain the payload kinetic enerdg, and its internal energy
the piston is written af26] E,2 as well as the internal energy of the samflg, which

are given by the following expressions:
Ynitl

Pr) = = D (1) 21

Rgr! tyst<t,, (20

252 R,
Exo=m2p(to) R5R3 In R_) (26)
wherey,,, is the enthalpy coefficient of the hydrogen behind h2
the reflected shock. At=t,, the mean pressure behind the Mo Ppiz Ml

_ (Ypi= Dlvpicllvpl
shock can be expressed as Epp= — PP PIS 7P
pi2 ')’pl_l Cpl2 7pl_1 0

3Yhe—1 o1\ [27a(yp1= D/ vpl/ gl 72— D]
D= - ph(tz)- (21) ( ')’a_l |R|) YaYpl YplLYpi Ya
2 ¢o

Following the same arguments as for the incident shock, we (27)
consider that a fixed mass of material behind the shock is
adiabatically compressed but, now, we must take into ac- My Ph2
count the fact that also the material ahead of the shock front Bhno=——-—7, (28)
S ; : Yh2 On2
is isentropically compressed as the payload implodes. One
therefore writes where the subscript “2” denotes the values of the magni-

y 5 tudes att=t, and ¢, is obtained from Eq(5).

PhVps2=const, Vp,=mRy, (22) Fort=t, the stagnation of the implosion takes place and

. the kinetic energy is converted into internal energy of the
and the rate of change of volume for a fixed mass turns out tgayload and of the sample. This phase is assumed to be
be practically isentropic.

dv Rg—RY : ., - R i i
h2 —2aR,; st~ Th +27R Ry, Rﬂz Rh—h, 23) E. Isentropic stagnation phase(t,<t<t;)
dt Yh2 Rer

Since the implosion stagnation is assumed to be isentro-

whereR, is the instantaneous position of the reflected shockP!C: the following relationship exists between the pressure

and in writing the second of Eq€23) we have considered 2nd the density of the sample foy<t<t;:
the conservation of the mass flux in the annular region be- o | 73
tween the shock and the piston. The effects of the geometry Ph= phz(—) :
are also taken into account through E@2). Proceeding in On2
a S|_m|lar manner as fo_r the incident shock, we get the foly,hqre yns is the corresponding enthalpy coefficient of the
lowing equation of motion for the reflected shock: sample in this phase.
. Rer . . In order to obtain the valuepni=pn(t;) and ops
Re=—Rz[(7n2= DRhRy+ RsR/]. (24 =p(ty) for the hydrogen pressure and density at maximum
h compression, we consider that the kinetic endegy of the
This equation must be solved together with Etf) for the ~ Payload is completely converted into internal energy of the
motion of the piston with the counterpressyigt) given by ~ Sample and of the payload:
Eq. (20) using the following initial conditions at=t;: Eio=AE,+AEy, (30)

(29

(vn2—1)

Re(t;,)=0, Rylty,)= 2 R(t, ), (25 where AE,=Ey;— Eyp, and AE,=E;—Ep, (the subscript

Yhot1 “f” denotes values at=t;).

. For the calculation of the internal energy;, we need to
where Rg(t;_) is the velocity of the incident shock dt find the pressure and density profiles within the payl2i.
=t,. The last equation is applied in order to ensure the conFor this purpose, we use the well known self-similar solution
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for the homogeneous isentropic compression of a cylindrical TABLE I. Relevant target and beam parameters used in the
shell[28]. In such a model the momentum and mass consermodel.
vation equations are solved together with E5),

Specific energy deposition €y (kdlg 5
dep  @p (vr") Sample densityhydrogen Oho (glcn?)  0.0886
— t——7=0, (31)  Payload densitylead Qo0 (glcn®)  11.30
dt r'or P
Absorber densitylead 0, (glcnt) 11.30
do ap Hydrogen radius Rpo (cm) 0.04
Cprgp =~ _‘,", (32 Inner radius of the focal spot R, (cm) 0.06
t or Outer radius of the focal spot R, (cm) 0.16
. . Absorber enthalpy coefficient YVa 1.72
and the following ansatz are proposed: Payload bulk modulus By (Mba  0.45
. Payload enthalpy coefficient Yol 3.77
[ —
rr=rfi(®), v=ri(). (33 Hydrogen enthalpy coefficieriphase 1 Y 3.60
The previous equations lead to the following ordinary diﬁer-ﬂygiggg: Z:Iﬂz:py zgzg:zigpﬂzzg g Yh2 z'gg
ential equations: ydrog Py P Yh3 '
. 1
frem 1= —, (34)
T IV. RESULTS OF THE MODEL AND DISCUSSION
In order to apply the model to a particular case, we have
d ppl __ Qplr

-, (35 considered as a first step the target and beam parameters
dr T shown in Table I. The target consists of a thick cylindrical

shell of lead which is surrounding a sample of frozen hydro-
gen(Fig. 1.

The absorber enthalpy coefficien, is determined from
the simulations by looking at the value of the pressure just at
the end of the pulsépulse durationr,=20 ns), when the
absorber remains still at rest and has an initial dengjty
The payload enthalpy coefficient, and the adiabatic bulk
modulus B, are taken from Ref[29]. Since the enthalpy

where 7 is a characteristic time for the stagnation phase
Introducing Eq.(5) into Eqg. (32) and using the following
boundary conditions &t=t;:

Ppit(Rpif) =0, Ppis(Rns) = P, (36)

(Rpir is the outer radius of the payload at total stagnatioe
can integrate Eq(35) for obtaining the pressure and density

profiles att=t; which leads to coefficient of hydrogen depends on the compression factor,
we have taken an effective constant value for each stage
R2,—r2 | 7/~ which is fitted from the realistic equation of state. For the
Ppif(F) = Phi F\’prRz) , (37 largest compression factors <4/9,,<10), the value is
pif = Thf equal to that used by other authorg,4~3) [30], but it

becomes somewhat larger for smaller compression, as seen
Ph| V70 RGe—r2 | Mo Y by following an isentrope in the simulations
Qpr(r So Rzp,f—haf The results of the model have been compared with one-
dimensional simulations performed by using a one-
From the previous equations we can obtain the internal erdimensional mode of the two-dimensional hydrodynamic
ergy of the payload by performing the corresponding massodeBiG-2 [19]. In Fig. 2 we present the trajectories of the
and energy integrals for obtaining7] piston and of the incident and reflected shocks as given by
the model(lines) and by the simulation&lots. It is seen that
My Ypl the model reproduces the simulation results very well.
Ep”z(ypl—l)(zyp,— 1) Considering the target and beam parameters shown in
Table I, we have performed a parametric analysis by chang-

On the other hand, the internal energy of the sample at ing the payload mass, the hydrogen mass, and the specific

pmpI* 1)/7plsé/}’pl. (39)

=t, turns out to be energy'deposited by the peam.
In Fig. 3 we plot the final hydrogen pressupg; vs the
E = Mh  Pnf (40) payload mass for two different values of the specific energy,
M =1 pnr €0, namely, 5 and 10 kJ/g, respectively. It is seen that the

higher value ofe, leads to higher values of pressure, which
Substituting Eqs(26)—(28) and Eqgs.(39) and (40) into is an expected result. Itis also seen that for the values,pf
Eq. (30) for the energy balance, and taking into account thabetween 30 and 200 mg/cmp,; changes only slightly. We
the compression evolves isentropicallgg. (29)], we can can calculate the final pressure of the hydrogen at the limit of
calculate the final pressurp,; and densityp,; of the very large payload mass, even if the model becomes invalid
sample. at the limitmy~m, :
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. . - ) FIG. 4. Hydrogen densitg; at stagnation as a function of the
FIG. 2. Trajectories of the incident and first reflected shocks anq)ayload mass for a beam deposition energyof 5 kJ/g; the line

of the inner and outer faces of the p_ayload. Lines _repres_ent thF‘epresents the model results and dots are obtained by 1D simula-
results of the model and dots are obtained from 1D simulations. tions

then the maximum kinetic energy decreases with the mass.
At the limit, the final isentropic phase practically does not
exist and the maximum compression is reached close to the
For the case we are considering, it yields a minimum valudime t=t,, when the reflected shock encounters the implod-
of ph+=~0.6 Mbars. The same behavior is also observed iring piston. Therefore,s~py, and for the case under con-
simulations(dotg but for values of the pressures and densi-sideration we have,;~0.1 Mbars. Nevertheless, it is worth
ties somewhat different. noting that in practice the situation of zero payload mass will

In the opposite case of very small masses of the payloadiever occur. In fact, in the case where initially the payload
the final pressure decreases more abruptly. This is becauseuld be very small, the fast expansion of the absorber
the maximum velocity of the piston is limited to the value would create a region not directly heated by the beam that
2cqy/(y,—1), determined by the absorber rarefaction andwould act as an effective payload. Such a situation cannot

happen in our model because of the assumption of instanta-

4 — —_— — neous heating.

[ ] Figure 4 shows the corresponding final hydrogen density
values. It is seen that the density also shows an insensitivity
to changes iy, in a similar manner as the pressure. This is
a very important result as such an insensitivity would allow
one to use a practically arbitrary radial profile for the beam
energy deposition. This profile will determine the effective
payload mass without affecting the implosion dynamics.
However a suitable deposition profile can create a smooth
density profile between the payload and the absorber with a
characteristic scale length of the order of the absorber thick-
, ness, which is certainly of great importance for reducing the
1 a) g, =5kJlg; m =0.45mg/lcm instability growth rate during the implosion.

Z — model. W sim. In Fig. 5 we plot the final hydrogen pressure and density
o B e = 10kilg; m. = 0.45 mg/em VS €g; solid line represents the model predictions while the
' 4 TR squares are the simulation results. These results show that the

Po- (41)

2yp— 1) = D
Pri~| ————

Yol

p,, (Mbar) |

3k

0 b e L model predicts a variation ip,; according to the scaling law
0 50 100 150 200 given below
mpl(mg/cm)
FIG. 3. Hydrogen pressum, at stagnation as a function of the Ph¢ (Mban=~0.24 €, (kJ/g)]**78 (42)

payload massia) Beam deposition energgy=5 kJ/g; the line rep- ) ) ) o
resents the model results and dots are obtained by 1D simulation this case the simulation results and the model predictions
(b) Beam deposition energgy= 10 kJ/g. are in good agreement.
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FIG. 5. Hydrogen pressumg,; and densityo,,; at stagnation as m, (mg/em)
functions of the specific energyy deposited by the beam. Lines are FIG. 6. Hydrogen pressum,; and densityo,; at stagnation as
given by the model. Filled squares represent the pressure and hdlinctions of the hydrogen mass, for a beam deposition energy of
low squares represent the density given by simulations. €,=5 kJ/g. (@) Payload massn, =70 mg/cm, lines are calculated
with the model and square dots are given by simulatignsPay-

However, according to the model, the density is practi—load massny, =150 mg/cm, lines are calculated with the model and
cally independent of the beam specific energy depositioffi"cle dots are given by simulations.
while the simulations show that it increases with energy as

0.4 -
@ns> €y . Such a difference may be a consequence of théjnd reflected shocks, which determine the initial conditions

simple hydrogen equation of state used in the model but is g : . o
minor relevance for the application of the model in optimiz- for the stagnation phase. The final stagnation is treated as an
isentropic compression.

[ he simulations. In Fig. h Iso indi h . . . .
ing the simulations. In Fig. 5 we have also indicated the We have carried out analysis using a wide range of target

minimum value of the specific energy depositiog, . .
~13 kJ/g required to achieve the theoretically predicted con?md beam parameters. The target parameters including the

ditions necessary for hydrogen metallization,{=5 Mbar hyﬁlrogﬁ_r: n’ll(ass _and r:he pay_llf_)ad mass gre va_lr_|ed parametri-
ando=1 glen?). cally while keeping the specific energy deposition constant.

Another interesting result is shown in Fid. 6 where WeIn other cases we varied the specific energy deposition, keep-

9 g. . ing the target parameters fixed. This parameter study has
have presented the final pressure and density that is reachg, ' . . )
: . shown that the final physical conditions that can be achieved
in the hydrogen as a function of the hydrogen mass for twg

) . o in hydrogen are fairly insensitive to substantial variations in
different payload massd&eeping constant the specific en- .

: : . the target and beam parameters, which means a very robust
ergy eo=>5 kJ/g). Model and simulations show no changes in :
the final density and a slight reductigaround 20% in the target design. ,

. o Moreover, this allows one to use a larger hydrogen mass
final pressure when the hydrogen mass is increased from Ofgr

to 2 mg/cm. This result allows for the design of relativel the same driving energy. This will lead to the creation of
grem. . i gn ot Ya larger sample of compressed hydrogen at the end of the
large size targetsR,~1 mm), using a given specific energy

deposition that may represent an advantage for the ex eriir_nplosion, which is good for diagnostics purposes.
P y rep 9 P The model results have been compared with numerical

mental diagnostics, because of the large dimensions of théalmulations using a one-dimensional mode of the sophisti-

compressed sample. cated two-dimensional codeiG-2. The model predictions

. In summary this design can tolerate _substantlal variation how reasonably good agreement with the simulation results.
in the beam and target parameters, without any significan

changes in the final conditions of the hydrogen sample.

escribes the trajectories of the payload and of the incident
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V. CONCLUDING REMARKS

056403-8



IMPLOSION OF MULTILAYERED CYLINDRICAL . ..

[1] E. Wigner and H. B. Huntington, J. Chem. Ph$s764(1935.

[2] H. K. Mao and R. J. Hemley, Rev. Mod. Phy6, 671(1994).

[3] S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lét6,
1860(1996.

[4] W. J. Nellis, A. C. Mitchell, P. C. McCandles, D. J. Erskine,
and S. T. Weier, Phys. Rev. Le@8, 2937(1992.

[5] V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D.
N. Nicolaev, A. A. Pyalling, and A. S. Filiminov, JETP Lett.
69, 926 (1999.

[6] C. Narayan, H. Luo, J. Orlof, and A. L. Ruoff, Natu¢eon-
don) 393 46 (1998.

[7] N. W. Ashcraft, Phys. Rev. LetR1, 1784(1968.

[8] A. Ng and A. R. Piriz, Phys. Rev. A0, 1993(1988.

[9] D. H. H. Hoffmannet al, Phys. Rev. A42, 2313(1990.

[10] S. Stave et al, Nucl. Instrum. Methods Phys. Res4A5, 384
(1998.

[11] U. Funket al, Nucl. Instrum. Methods Phys. Res.445 68
(1998.

[12] U. Neuneret al, Phys. Rev. Lett85, 4518(2000.

[13] D. Varentsowet al., Nucl. Instrum. Methods Phys. Res.1B4,
215(2001).

[14] N. A. Tahir et al, Phys. Rev. B61, 1975(2000.

PHYSICAL REVIEW E 66, 056403 (2002

[15] N. A. Tahir et al, Phys. Rev. B62, 1224(2000.

[16] N. A. Tahir et al,, Phys. Rev. 63, 016402(2001).

[17] V. E. Fortovet al, Nucl. Sci. Eng.123 169(1996.

[18] D. H. H. Hoffmannet al, Phys. Plasma&o be published

[19] N. A. Tahir et al,, Contrib. Plasma Phygl1, 287 (2002).

[20] J. F. Ziegleret al, The Stopping and Ranges of lons in Solids
(Pergamon, New York, 1996

[21] M. M. Basko, Laser Part. Beani®, 189 (1995.

[22] K. P. Stanyukovich,Unsteady Motion of Continuous Media
(Pergamon, London, 1960

[23] D. Potter, Nucl. Fusiori8, 813(1978.

[24] A. R. Piriz, G. E. Giudice, and F. G. Tomasel, Phys. Fluids B
4, 693(1992.

[25] Ya. B. Zeldovich and Yu. P. RaizeBhysics of Shock Waves
and High-Temperature Hydrodynamic Phenoméheademic,
London, 1967, Vol. II.

[26] L. D. Landau and E. M. LifshitsFluid Mechanics 2nd ed.
(Pergamon, Oxford, 1987

[27] A. R. Piriz, Phys. Fluid®9, 578(1986.

[28] R. E. Kidder, Nucl. Fusiori6, 3 (1976.

[29] J. F. Barnes, Phys. Re¥53 269 (1967).

[30] S. I. Anisimov, JETP Lettl6, 404 (1972.

056403-9



