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Quantum chaos in optical systems: The annular billiard
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We study the dielectric annular billiard as a quantum chaotic model of a micro-optical resonator. It differs
from conventional billiards with hard-wall boundary conditions in that it is partially open and composed of two
dielectric media with different refractive indices. The interplay of reflection and transmission at the different
interfaces gives rise to rich dynamics of classical light rays and to a variety of wave phenomena. We study the
ray propagation in terms of Poincasarfaces of section and complement it with full numerical solutions of the
corresponding wave equations. We introduce and develdpraatrix approach to open optical cavities which
proves very suitable for the identification of resonances of intermediate width that will be most important in
future applications like optical communication devices. We show that the Husimi representation is a useful tool
in characterizing resonances and establish the ray-wave correspondence in real and phase space. While the
simple ray picture provides a good qualitative description of certain system classes, only the wave description
reveals the quantitative details.
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[. INTRODUCTION classical ray dynamics and correspondingly in the wave de-
scription of such systems.

Billiard systems of many kinds have proven to be very The model we study is the annular billiard shown in Fig.
fruitful model systems in the field of quantum chaos. Thel. It consists of a small disk of radiuR, placed inside a
methods of investigation are well established both for claslarger disk of radiuR; with a displacemen® of the disk
sical dynamics and for quantum-mechanical behavior, witlcenters. This system is well known from quantum and wave
semiclassical methods describing the transition from quanmechanical studies of the hard-wall configuratidib—17
tum to classical properties. With the growing interest inwith nonvanishing wave functions only in the annular region.
quantum chaos and in mesoscopic physics, new systeniscarries features of a ray-splitting systdd8| where each
have arrived on the stage, including systems exhibiting chaodisk is characterized by @tepwise constappotential (un-
of classical waves such ésacroscopigmicrowave billiards  like the situation we will discuss here; see Sec).IiBere we
[1,2], acoustic resonatof§], as well as deformed microcavi- consider disks characterized by indices of refractigrand
ties [4—10] which can operate as microlasdrkl,12. To  n,, respectively, with the index of the environment fixed at
describe theséwo-dimensionglsystems one can exploit the ny=1 [19]. We will study billiard materials witm;>1 such
analogy between the stationary Safiirmer equation and the that confinement by total internal reflection is possible. Then
Helmholtz equation fofclassical waves[13]. Quantum cha- methods well known from the description of classical dy-
otic experiments using microwave cavities or other classicahamical systems, such as the use of Poirsaserfaces of
waves(e.g., acoustic or water wavesre based on this math- section, can be employed to describe the ray dynamics. Note
ematical equivalence; s¢&4] for a review. Most of the in- that whispering gallery modes in the dielectric annular bil-
vestigated systems are hard-wall billiards. However, for thdiard with a metallic inner disk have been discussed in Ref.
class of optical, or dielectric, model systems the billiard[20]. A detailed study of periodic orbits in a specific hard-
boundary manifests itself by a change in the index of refracwall configuration, together with the expected consequences
tion, allowing for reflection and transmission of light. The for the electromagnetic scattering problem was performed in
limit of closed systems is approached as the difference in thRef. [21].
refractive indices reaches infinity. The above-mentioned correspondence between the Helm-

We emphasize that the openness of optical systems exwoltz and Schrdinger equation is established by means of an
tends the set of interesting questions with respect to those faffective potential22] that depends not only on position and
closed billiards. In this paper we suggest a further extensiothe respective index of refractiam but also on the energy.
of the class of open optical cavities by considering two re-Changes in the refractive index give rise to steps in the ef-
gions with different refractive indices inside the cavity, fective potential which allows for a quantum-mechanical in-
which leads to an additional refractive interface between theerpretation(e.g., quasibound states, tunneling esgajée
two dielectrics inside the resonator. The interplay betweenvill discuss this point in the next section when we contrast
refraction inside the billiard and partial reflection at the outeroptical systems governed by Maxwell's equation with
billiard boundary gives rise to a variety of phenomena in thequantum-mechanical problems obeying the Sdimger

equation. Also, we will see how the two possible polarization
directions affect the Maxwell-Schdinger correspondence
*Present address: Department of Physics, Duke University, Boand which quantity takes the role &f Maxwell's equations,
90305, Durham, NC 27708-0305. of course, do not take account of the existencé of
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FIG. 1. (a) Geometry and no-
tation for the dielectric annular
billiard. (b) Example of a resonant
wave function excited by a plane
wave with wave number k
=6.251 incident from the left
(R1=1R,=0.6,6=0.22n,;=3n,
=6). Dark regions denote high
electric field intensity.

The further outline of the paper is as follows. In Sec. Il wave vectors arising in ag&matrix approach on the other
we introduce the ray and wave optics notion for the simplehand.
system of a dielectric disk that arises from the annular sys-
tem upon removal of the inner obstacle;&En, or R, ) ) - ) ) .
=0). We describe the methods used for the study of theA- Ray optics: Classical billiards with total internal reflection
annular billiard in the subsequent sections; namely, the adap- Within ray optics, the zero-wavelength limit of wave op-
tation of the Poincarsurface of section method, well known tics, light is described by a ray that follows a straight line
from classical mechanics, to optical systems, the exact soluhrough a medium, very similar to the dynamics of a point
tion of the Maxwell equatiorfleading to an effective Schfo  mass. Let us assume a light ray, or plane wave, incident at an
dinger equatiop and theSmatrix approach. Whereas the angley; with respect to the normal of a dielectric boundary
first approach is based on the ray picture, the latter twauhere the refractive index changes fram to n,. At the

clearly fully include the wave nature of light. We employ interface, the ray igi) specularly reflected at an angie
these methods for the annular billiard in Sec. Ill, where we= ). =, with a polarization-depender{i24] probability
introduce methods to study the ray dynamics in optical COMRT™/TE [see Fig. P)]. The remaining partT™/TE=1
pound sy_stems and apply, fqr the.fi_rst time to our knowledge,- RTM/TE ' jg (i) transmitted into the other medium at an
an Smatrix formalism to optical billiards. The expected ray- gutput angle  given by Snell's law, sif=(n,/n,)siny
wave, or classical-quantum, correspondence is established in, siny. In the last identity we have employed the scaling
Sec. IV and investigated from various viewpoints, '”ClUd'”gproperties of the system, which allow one to fix one of the
both real space and phase space arguments. However, sevg@tactive indices(e.g., that of the environmento unity
features in the behavior of waves require improvements ofyithout loss of generality.

the simple ray model as we will illustrate and explain with  gnelrs law cannot be satisfied to yield real for any
typical examples. In our conclusion, Sec. V, we discuss thengle of incidence if n>1 (n,>n,). Total internal reflec-
possibility of an experimental realization of the annular sys+ion occurs if siny=siny.=1/n, where we introduced the
tem with the currently available dielectric materials. The suc—yitical anglex.. For angcles of incidence above the critical

cesses of the ray picture illuminated here and elsewhergnge jight is confined by total internal reflection with zero
[5,6,10,12,28suggest the ray-based design of micro-opticalyansmission and behaves like a classical point parffig.
cavities for, e.g., future communication technologies. 2(a)]. Therefore, real and phase space methods from classical
mechanics(such as ray tracing or the Poincasarface of
section technigueprove to be very useful if they are comple-
mented by the optical property of refraction: The Poincare
In this section we introduce the methods, techniques, andurface of sectiofSOS method works exactlyexcept for
notation used later in the discussion of the annular billiardthe exponentially small tunneling los3ess long as we are in
We present the ray and wave picture for the description ofthe regime of total internal reflection. However, ferl/n
optical (or dielectrig systems using the simple example of a <siny<1/n, light can escape so that the intensity remaining
dielectric disk, which provides all the ingredients to dealinside the disk diminishes. This fact has to be taken into
with the annular billiardapart from a coordinate transforma- account when discussing the Poinc&®S for optical sys-
tion; see below We start with the ray optics approach andtems. Figure 3 shows an example of a Poinc®@s for a
show how methods well established in classical dynamicéiard-wall annular system with slightly eccentric inner disk
can be adopted to optical systems. In the wave descriptiots=0.01). The critical value sig=1/n is marked by an ar-
we distinguish between approaches to the resonant states rafw.
the (naturally) open optical system by complex wave vectors  Probing the phase space structure of a rotational invariant
based on Maxwell's equations on the one hand, and by reaystem like a disk in terms of a Poinca®OS gives a uni-

II. THE DIELECTRIC DISK
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(a)siny = 1/n

FIG. 3. Poincaresurface of section for the annular billiard with
FIG. 2. Comparison of ray and wave picture for a dielectric diskr, =1 R,=0.6, ands=0.01. The horizontal axis is the polar angle
of refractive indexn. The upper panels illustrate the two possibili- ¢ the vertical axis, sily, is proportional to the angular momentum
ties of (a) total internal reflection, sig=sin x;=1/n, when the ray  in the z direction (perpendicular to the system planAlthough the
dynamics is equal to that of a classical point particle in a closedjjsplacement of the inner disk is rather small, it has a major impact
system, andb) ray refraction when, due to partial transmission, the on trajectories that explore the region giiR,+ 5. Other trajecto-
light intensity inside the disk decreases with time(¢hthe inten-  ries are not influenced and are identical to those of a single dielec-
sity of the electric field(see Sec. IIB, higher intensity in darker tric disk; see, e.g., the two uppermost examples on the right. The
regions for a quasibound statenkR=11.428-0.254) of the di-  jnjtial angular momentum of the trajectories shown is positive
electric disk fi=3) is shown. For comparison, an eigenstate of the(sinx>0). Nonetheless, regions where gir0 are explored, imply-
closed disk (kR=9.761, vanishing intensity outside the disk  jng a change in the sense of rotatioas, e.g., in the lowermost
given in the lower left sectdiboth are for transverse magnetic field, trajectory on the right. The critical angle for total internal reflection
TM polarization). is marked on the left, indicating that the two lowermost trajectories
are not confined.
form structure as shown in the upper part of Fig. 3. Although
this is a PoincareSOS for an annular systefi25] with a  tromagnetic field 26] is given, e.g., in Ref§4,22], and leads
slightly eccentric inner disksee Sec. 1V, it is identical to  to an equation for the electrignagneti¢ field that issimilar
that for a disk for trajectories that do not hit the inner disk,to the conventional Schdinger equation. The vector char-
i.e., Siny>R,+&(Ry=1). The straight horizontal lines di- acter of the fields implies, however, that one has to distin-
rectly express the conservation of angular momentum, thajuish two possible polarization directions with differing
is, conservation of sig, and the corresponding trajectories boundary conditions. The situation where the eledimag-
are referred to as whispering gallefyG) orbits. netio field is parallel to the cylindefz) axis is called TM
The reflection and transmission probabilitRE"/ ™ and  (TE) polarization, with the magneti¢electrid field being
T™/TE are provided by Fresnel's la&6]. A plane electro-  thus transverse. Using the rotational invariance of the sys-
magnetic wave incident on a planar dielectric interface withtem, separation in cylindrical variablésssuming ap depen-
angle of incidencey is reflected with the polarization- dencee'™¢ and az dependence’#?) eventually leads to an
dependent probabilities effective Schrdinger equatioi27] for the radial component
_ of the electric field,
RTM_ Sir’(x— 7) RTE_tanZ(X— 7)

sirf(x+ ) tarf(x+ 1) @

E(r)+Ver(rE(r)=K2E(r), (2

where TM(TE) denotes transverse polarization of the mag-
netic (electrig field at the interface, ang=arcsinfisiny) is  where we introduced the effective potential
the direction of the refracted beam according to Snell’'s law.
Veil(r)=k*(1—n?)+m?/r2+K3. )
B. Wave picture: From Maxwell to Schrodinger The first term reveals immediately that dielectric regions
Before we turn to the more complicated annular billiard inwith n>1 correspond to an attractive well in the quantum
Sec. lll, we assume an infinite dielectric cylinder of radius analogy, and that a potential structure is determined by the
and refractive indexr embedded in vacuum with refractive change of the refractive indices for different regions. Note,
indexny=1. We will call the wave number outside the cyl- however, theenergy-dependenprefactor—a far-reaching
inderk and, analogouslynk is the wave number inside. The difference in comparison to quantum mechanics. The other
solution of Maxwell's equations for the vortices of the elec-two terms in Eq.(3) arise from the conservation of the an-
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gular momentunicharacterized by the quantum numiey, Jn(NkRHW (kR) =PI/ (nkRHY(KR), (6)
and express the conservation of the linear momentum along
the cylinder axigacting as an offset in energyespectively. where P=n(1/n) for TM (TE) polarization(primes denote

In the following we will consider a dielectric disfthat is,  derivatives with respect to the full argument&r and kr,
we choose a particular cross sectional plane of the cylinder teespectively.
obtain an effective systemand sek, to zero corresponding One example of a quasibound state as solution of the op-
to a wave in thex-y plane. Approaching the disk from the tically open system is shown in Fig(@ and compared to a
outside ¢>R,ny=1) there is only the angular momentum solution for the closed disk. The shift in the wave patterns is
contribution to the effective potentidf, Eq. (3). At r clearly visible. Owing to the symmetry of the system we find
=R, there is a discontinuity iV that is proportional to a characteristi¢quantum-mechanicahode structure that is
1—n?, reflecting the noncontinuous change in the refractivedirectly related to the quantum numbers (there are &h
index. It reaches fronk2,_,=m?/R? to k2, =m?(n R)2. In-  azimuthal nodal poinis and p counting the radial nodes
side the disk the angular momentum contribution, now(hencem=3,0=2 in the example
shifted by k2_,—k?2,,, again determines the behavisee At this point a further discussion concerning the appear-
also Fig. 9 below at valuesR;>R,/R;). ance off in optical systems is convenient. Employing the

The form of the potential suggests an interpretation in thequantum-classical correspondence, one expeds be re-
spirit of quantum mechanics with metastable states in théated to the reciprocal wave number~1/k, becausef
potential well that decay by tunneling escape, and indeed this>0 in the classicalhere the raylimit k—cc. This relation
turns out to be the quantum-mechanical version of confineis indeed obtained when we compare E2), divided byk?
ment by total internal reflectiof4,22). To this end we em- (thereby removing the energy dependence of the effective
ploy a semiclassical quantization condition for theompo-  potentia), with Schralinger’s equation, and identify K ivith
nent of the quantum-mechanical and classical angulaf.
momentumm# =nARe(kR)siny. We find

C. S-matrix approach to the dielectric disk

m (4) The main idea when considering a scattering problem is

n Re(kR) to probe the response of the system to incontteg) waves,
and to extract system properties like resonance positions and
as the relation between the angle of incidence as a ray pictusgidths from thescatteredwave. Physically, this method is
guantity, and the wave number and angular momentum of grmulated for real wave vectors.
resonance. Here we want to investigate the scattering properties of
Another correspondence between ray and wave quantitiede dielectric disk for electromagnetic waves in the frame-
exists between thépolarization-dependentresnel reflec-  work of Smatrix theory[31—-33. One possible choice for
tion coefficientR™'TE and the imaginary part of the wave the incident test waves is, of course, plane waves. For our
number that describes the decay of a resonant state. In fagbtational invariant disk of finite dimension, however, inci-
one can deduce a reflection coefficigRj" ™= of the disk  dent waves that allow for angular momentum classification
[28], are much more convenient: Then we need to take into con-
sideration only waves with impact parameter of the order of
RIM/TE= ex] 4n Im(kR)cosy]. (5)  the system dimension or smaller. The Hankel functibi®
of the second kind possess the desired properties.
We wish to point out that there exist deviations between the Again, we consider a dielectric disk of radiésand re-
Fresnel valueR™™ and RTW™ when the wavelength be- fractive indexn and denote the vacuum wave numberkoy
comes comparable to the system size, in particular arounficcording to Maxwell’s equations and the discussion in the
the critical angle. This can be understood within a semiclasPrevious Sec. Il B we write the wave functioh;;** outside
sical picture based on the Goos#taen effec{29,30. that is excited by an incident wave of angular momentam
The general solutions of the radial Sctiimger equation as
(2) are Bessel and Neumann functiahg(kir) andY ,(kir)
of orderm, wherek; is the wave number in the respective
medium. Since physics requires a finite value of the wave
function at the disk center, the solution inside the disk can
consist of Bessel functions only. Outside the dielectric weHere, S, is the amplitude for an incident wavé!?) to be
assume an outgoing wave function, namely, a Hankel funcscattered intdd(*). The scattering amplitudes are comprised
tion H{ of the first kind, in accordance with our picture of in the S matrix. It follows from flux conservation tha has
a decaying state. The resonant states are obtained by matab-be unitary, a property that we will use subsequently. Start-
ing the wave field proportional td,(nkr)e'™? inside the ing with a general situation in whics can have entries ev-
disk atr =R to the wave field proportional tbl Enl)(kr)e"““’ erywhere, symmetry requirements will reduce the number of
outside the disk according to the polarization-dependenindependent matrix elements. For the dielectric disk, the
matching conditions deduced from Maxwell's equations. Thescattered wave has to obey angular momentum conservation
resonant states are solutions of and will, therefore, be a Hankel function of the same order

siny=

PEAkD =HD(kne™ + X, SyH{D(kne'?.
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as the incoming Hankel function. Hence the scattering matrixiz) R I
is diagonal. In the general case where angular momentum i ., [\ iy = 3 idish} B |
not conservedas, for example, for a deformed disk or the * pans
annular geometry that we will consider in all following sec- £ mu_ B 3
tions), scattering will occur intcall possible angular mo- =z | [
mental. gma:- ““t I i W s E
Employing the matching conditior(sf. Sec. 11 B for TM . ohtliadliol ]
polarization, we obtain from the requirement of continuity of 3 A y o .', : ﬂL.
the wave function(or the electric fieldl and its derivative o e o T i
eventually the matrix element,,y : Wave number k; T f
_ HE (kr) = n[I(nkn)/Im(nkn) JHE (kr) tb) 58
™ HW (kr) =3 (nkn)/I(nkn) THD (kr) T AN
(7) e @4
w ey
R ¥ o

The general idea for identifying resonances is that a probinc
wave with resonance energy will interalcinger with the
system than a wave with “nonfitting” energy. This can be
quantified in terms of th&Vigner delay timerV(E,) [34],
which is the derivative of the total phageof the determinant
of the S matrix, detS=e'?, with respect to energi,=k?,

FIG. 4. (a) Resonances in the concentric annular billiaR} (
=1R,=0.6n,=3), corresponding to the first family of whispering
gallery modes. The annular systems=2 (dotted and n,=
(dasheglare compared with the homogeneous disk 3. Note the
systematic deviation of the resonance position to lafgeralley

W do(Ey) wave numbers fon,=2 (n,=4) which decreases with increasing
T (Ep) = dE. - (8) angular momentum quantum numbmrsince the inner disk be-
K comes less important. In the inset, we compare the positions and
widths of the fourth resonancen=4) in the delay time with the
In the following, we will use the wave-number-based delayrespective complex wave numbers according to @). We find
time excellent agreement with the numerically exact valkgs 2.0108
—0.0041(n,=4), ky=2.0753-0.0063(n,=3), andk,=2.1035
— W2 —0.0075(n,=2). Note the existence of additional resonances for
r(k)=4mkr(k%) © =4, some of them marked by arrows from below and illustrated
in the ray and wave pictures {ib). They are due to the double-well
in order to identify resonances as depicted in Fi@) .4The  structure of the effective potential and referred to as “double
solid line shows the result for a dielectric disk with=3. WGMs” (see text
Families of whispering gallery mod€¥/GMs) are identified
upon increasing the wave number and can be labeled by the The area under the curvék) is proportional to the num-
quantum numbem that counts the azimuthal nodesni2.  ber of states with wave numbers smaller thai81,33. In
The decrease in peak width, accompanied by an increase the case ofstepwisepotentials such as are realized in ray-
height, that is observed with increasingcorresponds to an  splitting billiards, simple Weyl formulas for the smooth part
increase of the angle of incidence, E¢), and improved of the density of states were derived for a number of geom-
confinement by total internal reflection. etries[18]. The application of these results to optical systems

Note the relation between tlitotal) phased(E,) of theS  where ray splitting is realized by refraction and transmission
matrix and the so-called resonance counting functionat refractive index boundaries is tempting. However, here we
N(E) = 6(Ey)/2; cf. [31]. The idea is that a resonance is work with an energy-dependergffective potential, in con-
encountered whenever the phasef detS increases by 2 trast to the situation studied 18] where only a(stepwise
upon increasing the enerdsj, . spatial dependence of the potential was assumed. Conse-

In the following we will use the functionr(k) to deter- quently, a generalization of the formulas derived[i8]
mine the resonances. Isolated resonances appéap@nt-  would be required if one is interested in an analytical expres-
zian) peaks inr(k) [see Fig. 4a)] above a small background. sion for the smooth part of the density of states, which is,
Information about the imaginary part of the resonance is novhowever, not the subject of this work.
encoded in the height and width of the Lorentzian resonance
peaks[32]. We point out that the resolution of very broad Il ANNULAR BILLIARD IN THE RAY AND WAVE
and extremely narrow resonances might be difficult, because PICTURES
they are either included in the background or not captured
using a finite numerical grid interval. However, resonances In this section we adapt the ray and wave methods ex-
with a wide range of widths are easily identified; in particu- plained above to the general case of the dielectric annular
lar all resonances that are of interest for microlaser applicabilliard. We will denote the three different regions, namely,
tions are found within th&matrix approach35]. the environment(refractive indexng), the annular region
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(ny), and the inner diskr(;), by the indices 0, 1, and 2,
respectively. The corresponding wave numbers layg;,
andk,. Due to the scaling properties we fiy=1 and one
of the geometry parametelR,,R,,d5; we chooseR;=1.
Given a set of parameters©i=1,n,,n,), the same results
hold for the scaled setng,n;=n;ng,N,=n,ny) for wave
numbersk=k/n,, if the geometry is not changed. In turn,
fixing the dielectric constants, the parameter sel; (
=1R,,d) and R;,R,=R,R;,5=8R,) are equivalent when
k—k=k/R;.

A. Ray optics and refractive billiard

The rotational invariance of the circular billiard discussed
in Sec. Il can be broken either by deformati@s in[12]) or
by placing off-centered opaque obstacles inside the disk,
leading to the hard-wall annular billiard. Starting from the
concentric situation, the system stays close to integrable due FIG. 5. PoincareSOS taken at the outer boundary for the hard-
to the existence of adiabatic invariants for not too big eccenwall annular billiard R,=0.6,6=0.22). Trajectories are bounded
tricities (see Fig. 3. However, in general the phase space ofto the annular region; no optical properties of the system are yet
the annular billiard is mixed, with regular islands placed inincluded. Typical regular and chaotic trajectories are shown in both
the chaotic sea as shown in Fig. 5. real and phase space.

For optical systems, both the outer and inner boundaneﬁard, Fig. 5. For moderate, =3 (no=n,=1) as in Fig. 6

become permeable. Leakage at the outer boundary occurs fof L0
. . L . we are, however, away from this limit: most of the regular
—1/h<siny<l/n. In the simplest qualitative picture, start-

ing with the hard-wall system, we will assume those rays totrajectorles of the hard-wall system are gone and, in turn,

leave the cavity[thus simplifying Fresnel’s lawgl) to a new regular orbits passing through the inner disk appear.

stepwise functioh The corresponding trajectories are as- The situation changes_once more_lfx@r<n1 N2, bec_ause
then total internal reflection at the inner boundaryneer

sumed not to exist in an optical cavity. If one is interested in . ; . ) .
ossible (again, we base our discussion on rays entering

how the intensity of a certain trajectory decreases, Fresnel fom the annuls and all rays hitting the inner boundary

laws can easily be taken into account accurately, leading t9vi|| enter. Furthermore, they will leave the inner disk upon
the model of a Fresnel billiargb,23,34. :  they P

However, the description of the refractively operieder the next reflection according to the principle of reversibility

boundary turns out to be rather complicated. There, all rayfs)f the light path. Note, however, that confinement by total

S S : : internal reflection in thénner disk is well possible. From our
remain in the billiard, causing a tremendous increase of the. Lo . .

: . .. discussion in Sec. Il we know that these orbits will and can
number of rays upon partial reflection. Another crucial dif- nlv be whispering aallerv modes. To anticioate results of
ference s that now new trajectories arise, namely, thos eynext secti%n tk?oge mgdes do éxist and Iepave their signa-
crossing the inner disk. We model this situation by introduc—,[ure as ver sha,r caks in the delav time 9
ing the model of the “refractive billiard:” Whenever total y pp y '

internal reflection is violated at the inner boundary, the ray etl nastl)gthZragtreuxc?g:gliv?/gr:hetgqﬁ:ecigiceeI?ng!c\rllin};rr]:c\:l:il\r/]g
enters the inner disk according to Snell’'s law with full inten- Y 9 9

sity, such that now ray splitting occurs. Otherwise, the ray is'c';:jl'ciﬁé Fuor tgre (;ﬁgutlgrsc:jrrt)vlit\fes:\rc(gvr;isébth: (relr%ir:’ V\cl)(? quepect
specularly reflected and stays in the annulus. This corre(—)u,&;r boun%gr as lon In.=3 2p The I(E)wer grbit hits
sponds again to a stepwise simplification of Fresnel's laws y g agimy=s.2.

Note that the hard-wall billiard is in fact a realization of the fhg outer boundary perpendlcula)z:éO) at least at some
constant reflection coefficie®™TE=1. The real situation PONtS: and can therefore only be confined by hard walls.

is found in between the stepwise and constant approxima- _ ] _
tions and, depending on the refractive indices chosen, resulfs Wave picture: Maxwell's equations andS-matrix approach
from both limits are needed in order to understand the reso- Generalizing the wave picture approaches presented in
nant modes found in the wave pictuigee Sec. IV. Sec. |l for the dielectric disk to the annular billiard requires
We complete our refractive-billiard model by first assum-essentially consideration of another, off-centered circular
ing specular reflection at the outer boundary, and discussoundary at which the matching conditions resulting from
outer-boundary losses subsequently as outlined above. Rrtaxwell's equations have to be satisfied as well. An eccen-
sults are shown in Figs. 6 and 7 for the same geometry as iftic inclusion lowers the rotational symmetry of the system to
Fig. 5[37], and two different combinations of refractive in- axial reflection invariance about the symmetry axis of the
dices. In Fig. 6, the annular index is highest, allowing for  system. Consequently, angular momentum is not conserved,
total internal reflection at both boundaries. In the limit  and theSmatrix of the compound system cannot be diagonal
— oo we would recover the phase space of the hard-wall bilin the general case.
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=3 .
‘.;, 1 ﬂ.?5:-'. - FIG. 6. PoincareSOS taken at the outer
[ boundary for the refractive billiard withng
=1n,=3n,=1, and the same geometry as in
05 Fig. 5. The hard-wall condition of Fig. 5 is kept at
] the outer boundary, but replaced at the inner one
0.25 1 by the condition of total internal reflection. If it is
not satisfied the ray will penetrate the inner disk,
total internal reflection gl giving rise to a restructured phase space and new

at inner boundary regular orbits such as the one on the lower right.

Maxwell's equations can be solved analytically in the experience the change of the refractive index in the inner
concentric caseR,>0), and resonant states with complex disk as indicated by the shift of the resonance position. The
wave number are obtained as zeros of the expression direction of the shift is most easily seen when thinking in

) ) terms of aneffectiverefractive indexng,
nlJm(szz)HEnl) (koRl)[HEnz) (klRZ)H%)(klRl)

—H® (kRp)HP(kyRy) ]~ n23 (kR H P (KoRy ) 2n,. (11)

X[HE (kR HE (kaRp) —HE (ki R)HEY (kyRy) ] _ _ -

An inner disk of lower refractive impliesis<n; and a
larger spacing between the resonances. This is easily under-
stood when considering an eigenvala&=const of the
(closed dielectric disk. Obtaining the same constant value
for a smallem requires a highek. In contrast, an inner disk

of higher refractive index reduces the spacing between the
resonances. This effect is strongest for resonances of high
radial quantum numbep and small angular momentum

— 1,30 (R)HE (koRy)[HP (kyRp) H M (kyRy )

—H®(kRy)HP (k1Ry) 1+ nnpd) (KR H B (koR;)

X[H@P (ki R)HG (kqRy) — HO (ki R)HE) (KyRy) ]
(10)

for TM polarized light. Note that Eq10) reduces to Eq(6)
for ny=n, when the annular billiard is reduced to a disk.

guantum numbem, since they rather extend to the inner
regions of the disk or the annular billiardn terms of the ray

In order to investigate the eccentric case, we focus on thgicture, they correspond to smaller angles of incidence, lead-

S matrix method. The derivation of th®matrix for the ec-

ing to the same conclusigrAccordingly, the effect reduces

centric annular billiard is outlined in the Appendix. As dis- for increasingm and eventually vanishes if the inner disk is
cussed in Sec. Il the information on resonance position antiot seen any morg38]. In Fig. 4@ resonances are marked
width is contained both in the complex wave vector thatby arrows that exist only if the refractive index of the inner
solves the resonance equation deduced from Maxwell'slisk is highest. One corresponding wave pattern, together
equations and in the delay-time pletk). This is illustrated ~ With a ray analog, is shown in Fig(H). It reveals that the

in the inset of Fig. 4a) where the resonance positions and “double-WGM” structure results from a starlike trajectory.
widths found from(k) are compared with the numerically ~ In Fig. 8 we consider the same refractive indides.,
exact solutions of Eq(10) for concentric geometries. The N;=3,n,=4) and now shift the inner disk off center. The
delay-time plot in Fig. 4a) reveals a systematic deviation of double WGMs(again marked by arrowsare affected in a
the first few resonance positions to the righgft), if the  way different from the conventional WGMs. First of all, the
refractive index of the inner disk is loweéhighep than that  systematic shift of the latter can again be understood in terms

in the annulus. However, the deviation from the concentricof the effective refractive index. The impact of an off-
case is rather small. It suggests that the low-lying resonancegnteredinnen disk is enhanced because in the constricted
in the (concentri¢ annular geometry are very similar to the region it acts like a concentric disk with larger radig§"
WGMs of the dielectric disk and mainly localized at the >R,. Note that the resonances marked by arrows in Fig. 8
outer boundary. However, the resonant wave functoes

change their character from double WGMs in the concentric

FIG. 7. PoincareSOS for the
refractive billiard with np=1,n;
=3,n,=6 and the same geometry
as in Fig. 5. Rays in the annulus
that hit the inner boundary will
penetrate it. Note the existence of
whispering gallery modes in the
inner disk(confined by total inter-
nal reflection not visible in this
SOS.

refractive opening
of inner disk
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Wave number k, L = optical length / n, = 3
FIG. 8. Resonance peaks for increasing displaceréntcom- FIG. 10. (a) Fourier transform of the delay time(k,) for the

parison with the concentric cagdotted for n,>n,. Here, whis-  annular billiard geometryR,=0.6,6=0.22, and two refractive in-
pering gallery modes of the outer disk are shifted to the left due talex combinationsn,=n,=1, n;=3 (dashed lingandn; =6 (full

an increase of the effective refractive index. However, other mode#ine). The appearance of a new peak at larger geometric length is
are affected in a different way, such as, for example, the resonancetearly visible. A suitable(quasjperiodic orbit candidate together
marked by arrows. with a resonant state is shown (ib).

and slightly eccentric cases to generalized WGMs similar tdwo cases: In Fig. @), the refractive index in the annulus
the one shown in the right panel of Fig. 9 if the symmetryis highest, whereas in Fig(l9 the optical density increases
breaking caused by the off-centered inner disk becomes toi@ward the inner disk. Consequently, in the first case, Fig.

strong. 9(a), the potential well coincides with the annular region:
Rays between the two disks can be totally reflected at either
IV. RAY-WAVE CORRESPONDENCE FOR THE ANNULAR ~ Poundary as illustrated in the lower panels.
BILLIARD The situation is different when the refractive index of

the inner disk is highediFig. Ab)]. The well extends now
In the previous sections we already referred to the raybeyond the inner boundary to values:R, indicating that
wave correspondence in optical systems and gave severde inner disk may support annular WGMs in the constricted
examples which were mainly based on WG modes, and theegion (see the lower paneélsThis is consistent with the
concentric annular billiard. In this section, we first continueray-picture interpretation stating that each ray in the annulus
with WGMs and show how they can be specifically influ- that hits the inner boundary will enter the inner disk. How-
enced by choosing appropriate materials. However, ray-wavever, because of the double-well structure of the effective
correspondence holds for far more interesting trajectoriegpotential this case is even richer: There are modes that
and we will give illustrative examples of how closed-billiard mainly exist in one of the two wells, corresponding to
trajectories are recovered in tiopensystem using real and WGMs of the inner and outer disk, respectively. The height
phase space portraits. of the separating barriers depends on the wave number, the
quantum numbem, the geometry, and in particular the ratio
A. Classes of whispering gallery modes in annular systems  Of the refractive indices that can be used to tune the height of
the barrier(note that at the same time the depths of the

In Sec. Il we introduced the concept of the effective po—reninima are changed

tential as a wave-picture method when we established th
analogy between Helmholtz and Sctimger equations. The
generalization of this concept to the annular billiard is
straightforward andin the concentric cageessentially given Varying the refractive index of an optical system allows
by the superposition of two disks; see E8). The result is one to describe the transition between closed and open opti-
schematically shown in Fig. 9. Again, we have to distinguishcal, systems as mentioned earlier. To illustrate this fact we

B. Toward closed systems

(b) Np>n, > 1

FIG. 9. Effective potential for the annular bil-
| liard for two different sets of refractive indices
(ng=1). In the lower panels corresponding ex-
amples of ray trajectoriefleft) and wave func-
tions (right) are shown. The similarity of these
resonances to whispering gallery modes suggest
their classification as “generalized” WGMs.
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FIG. 11. (a) Delay timer(ky) for the annular
billiard geometry as in Figs. 5 and 10 amg
=3,n,=6. The structure is dominated by groups
of four resonances labeledl,B,C,D. The reso-
nance aky~6.251 is the one shown in Fig(d).
The four resonances of the second group (6.6
<ky<6.9) are shown inb) together with a ray
trajectory representative. In parfc), rays
(crossepsand wavegintensity plot, high intensity
in dark regiong are compared in phase space in
terms of their Poincarand Husimi representa-
tions.

=

A

H. o PR g I
0 2¢,4 6

increase the refractive index of the annular region which wen accordance with the picture of complete internal reflec-

assume to be embedded in vacuumg<€n,=1, wave vector tion. This explains the observed behavior and we present

ko=Kk,). The length spectrum, or Fourier transform, of themore examples of “sophisticated” ray-wave, or classical-

delay timer(ko) is shown in Fig. 1Qa) for refractive indices quantum, correspondence in the next section.

n,=3 andn;=6 (dashed and full lines, respectivelyThe

Fourier analysis is performed in the spirit of trace formulas C. Correspondence in real and phase space

that pro_vide a semiclassical interp_retation_ o_f quantum- Fig. 11(a) we show a typical delay-time plat(ko) for

mechamcal_ (esults In terms o.f c!assmal pe_nodlc orplts forthe annular billiard with the same geometry as before and

qguantum billiards. The quantitative extension of this ap- L B - X . .
refractive indicesn;=3,n,=6. We investigate low-lying

proach to optical systems will require further discussion. - )
Here, we are interested only in a qualitative interpretation. resonances that show a characteristic grouping of four reso-
! nancegmarked byA,B,C,D) over several periods. The cor-

We have divided theptical length that results from the X ) .
Fourier transformation by, in order to compare both spec- '€SPonding wave patterns, together with suggestions for ray

tra in terms ofgeometricallengthsL. The peaks in both 2analogs, are shown in Fig. @ for each resonance. We have

spectra are rather broad and correspond roughly to the cif@inly chosen regular orbits as candidates because of the
cumference of the bigger digknd higher harmonigsvhich ~ regular structure of the delay-time plot. Neighboring reso-
indeed is a typical trajectory length in this geometry not onlynances of the same kin@e., the same lettgindeed differ

for WGMs, but also for the trajectory examples shown Figsby 1 in the number of nodes9]. Note that the ray repre-

5 and 11(trajectory parts in the inner disk will contribute a sentatives stem from both the hard-wahd the refractive
length that has to be corrected by a faatgrn;). However, billiard simulations; see Figs. 5 and 7.

the length spectrum fon;=6 shows an additional peak In Fig. 11(c) we computed the Husimi functidi6,20,4Q
(marked by the arrow in Fig. 2@t higherL. A ray trajectory  for each of the wave functior{gl1], and marked the rays by

of suitable length is shown in Fig. {). The Poincardin-  crosses in the corresponding Poinc&@S such that we can
gerprint of this orbit(see Fig. $ possesses regular islands at directly compare the phase space presentations of waves and
siny=0, where in the simplest interpretation refractive es-rays. The coincidence between regular islands and high-
cape will occur, independent of the refractive index. Thatprobability regions(dark of the Husimi function appears
modes of this type are found for sufficiently large indi-  satisfying at first sight. However, closer inspection reveals
cates that we have to refine our interpretation. For examplalifferences in the details. For example, Husimi “islands” are
we can discuss the Fresnel reflection coeffici®ntat nor-  shifted away from regular islands as in the case of resonance
mal incidence,R, =(no—n;)%/(ny+n;)?, which increases D, with the corresponding real space modificatidisg.
asn, is increased, reaching the value 1 in the limjt— oo, 11(b)] clearly visible as well. One possible explanation might
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be provided by the Goos-Hahen effect, which causes a
lateral shift of the reflected ray for angles of incidence
around and greater than the critical an{®9,30, thereby
effectively changing the angle of incidence. Furthermore, we
point out that the ray trajectory for resonanbeis known {
from the hard-wall system. The qualitative similarity to the /6 .f"q}’ —h+y
corresponding resonant wave pattern is remarkable, and one L

might think of the differences as necessary in order to meet ]

the interference requirements caused by the optical opening
of the inner disk. This gives yet another example of the pre-

dictive power of the simple ray model when only theali- Optical cavities represent interesting model systems for

tative character of the resonances is of interest and imporgyantum-chaos motivated studies. We have successfully ap-
tance. On the other hand, It proves to be essential to Conslﬁ‘ied theS-matrix approach to gain Spectra' information, and

FIG. 12. Addition theorem for Bessel functions.

wave methods when one is interested in details. qualitatively discussed its periodic-orbit interpretatiats].
The development of quantitative semiclassical theories in the
V. CONCLUSIONS spirit of the Weyl and the trace formulas remains an open

To conclude, we have investigated the ray and wave pro subject, in particula_lr fon:_ompoundsystems ponsisting of
. P . . more than one region with fixed refractive index, like the
erties of composite optical systems by applying methods nnular billiard

known from the classical and quantum theories of mixed '
dynamical systems. Using the optical annular billiard as an
example, we have shown this concept to be very fruitful.
This means in particular that already the simple ray model e thank J. U. Nokel for an introduction to the subject
provides a good qualitative understanding of the systenaf optical cavities and acknowledge many useful discussions
properties, even for small wave numbers beloWR~30.  with T. Dittrich, S. Fishman, G. Hackenbroich, J. U’ ¢kel,
However, care must be taken when quantitative results arg. Schomerus, H. Schanz, R. Schubert, P. Schlagheck, U.
required, or the classicafay) phase space is directly trans- Smilansky, and J. Wiersig. M. H. thanks U. Smilansky for his
lated into expected wave patterns: We find regular orbits ashospitality at the Weizmann Institute.

sociated with regular islands in phase space to be the domi-

nant class of resonant wave patterns, and suppression OAPPENDIX: S MATRIX FOR THE ANNULAR BILLIARD

wave functions hosted by the chaotic part of the phase space.

The dependence of this behavior on the size of the wave We will generalize the ideas developed in Sec. Il C to the
number (i.e., 1k) remains an interesting topic for future dielectric annular billiard in order to determine tBematrix

work. for the eccentricannular billiard. This problem can be di-

One remark is due concerning the refractive indices emvided into the scattering problem at tbater boundary(be-
ployed in the calculations. The index=3 often used here is tween refractive indices, and n;) and that at theinner
higher than that of watef1.33 or glass(around 1.5 up to boundary(between indices; andn,). Although the scatter-
18) but is eas”y reached in semiconductor Compoundéng at a dielectric d|Sk was SO!Ved in Sec. Il (.:, the situation
where typicallyn=3.3. An indexn=6 seems to be presently We are confronted with here is more complicated: the two
out of reach, which, however, does not affect the conclusion§isks lie one inside the other, and their centers will in general
drawn here. not coincide.

Summarizing, ray-picture results may serve as a guide in We will begin with the scattering problem at the inner
the investigation of wave properties of optical systems, evepoundary and express timatrix S' of the dielectric disk
away from the ray limik—ce. For the annular billiard as an With respect to a coordinate system with origin displaced
example of a compound cavity system we demonstrated th&fom the center of the inner disk. This implies tfgtis not
the dominant resonant wave patterns can be seen as origingiagonal. From Sec. Il C we already know ttwagonal S
ing from the regular orbits of both the hard-wall and the matrix S¢ of the inner disk in primed coordinatésee Fig.
refractive billiards. This knowledge can be more generallyl), EQ. (7). We will now derive the relation betwees\® and
used, e.g., in the construction of microlasers with designe@'-
properties. Knowing the potential reflection points and high-  To this end we write the ansatz for the wave function in
intensity regions of modes from simple ray-based considerthe annulus in primed coordinates,=r — 8, with § being
ations allows one to design microcavities with customizedhe vector from the center of the large disk to the center of
properties. Predictions can be made concerning, e.g., the ehe smaller disk, as
fective coupling between and into cavities, or how to effi-
ciently pump lasing systems. In turn, one can think of cavity
shapes designed according to the technical requirements. The
application of the ray-wave correspondence in sophisticated
optical (compound systems therefore may provide a power- * _ o
ful tool for future optical communication technologies. + > Sfo,Z)(kﬂr— 3)el’?|, (A1)

|"'=—c
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where the coefficients| are to be chosen to yield the desired Il C. Accordingly, we start with an ansatz for the wave func-
kind of incident wave. We use the addition theorem fortion ¥° outside the annular systenir(>R;, using polar
Bessel function& e {Jm,Ym,H  HP)} [42] to relate the  coordinates of the form

argumentsvr towr’ (w is a constant factor, and we assume

R,> ) (see Fig. 12 \PO(F):MZ_ ‘I’Om(F)

Z(Wr)EMP= > I (W) Z iy (Wr)e (M2, ) )
k=—o B R . )
(AZ) :ME \I,M(kOr)+M§ SMM’q,Mr(kOr) s

=—o

Inserting this into Eq(A1), we obtain the expression . . .
9 q(AL) P where we have introduced the scattering maiof the

o o (compoundl system and the definitions
Tl= > > afH®Z (ki) +SFHD, (k)] . .
|~ = SR I+ k(R ‘I’r\](kor):H(N?)(kor)e'M(ﬁ, (A6)

X Jy(ky )€l e A3 - -

k1) (A3) W (ko) = H{P (kor )M ¢ (A7)
for the wave function in the annulus, now expressed wit
respect to the center of the larger disk, i.e., in unprime
coordinates. We specify the coefficiers§ by the require-
ment that the amplitude of an incident wave with angular,
momentumm will be normalized to 1 in unprimed coordi-
nates,

Efor incoming and outgoing waves outside the disk. Note that
we have used the freedom in fixing one of the amplitudes.
Similarly, we write for the wave functio®? in the annu-

lar region

W(F):IE a| vy (kn+ X si.,\lfr,(klr*)l,
“ L

2 2 afHEk(kan) (ki d)e T RI=HD kir)em. (A8)

== k=
] i with the amplitudes, ; the abbreviations are as in E48.6)
With !.LE| +k, and 2 (u—1Ik=0Om,, We find that yng (A7) andS' is from Eq.(A5).
choosing Now, we determineS from the matching conditions, in-
e troduce the notation of capital letters for functions of argu-
ar=Jm-i(k1) VI (Ad) mentkyr, and reserve lower-case characters for the argument
kqr. Given an incident wave of angular momentinwave
function matching for each angular momenturof the scat-
tered waves yields

provides a suitable set of coefficients for a givenAccord-
ingly, we write

—__— S - H@eMé s, + Sy HVelL?
\IIJ-: S H(Z) Kir el,u,qS M ML MLTTL

m_2m|ﬂlk2x[ muH (k) )

—a{{el e 3 oS hidels,
. . |=—o
+Jm(,uk)(klé)sl((;k)(,uk)Jk(k15)HELl)(k1r)elM¢]}
where the amplitudeaj("") are coefficients associated with an
o ] . incoming function of angular momentuM, namely,H(N?).
= > | H®)(k.r)em?+ > s'm”HE})(klr)eiW} Since this has to hold for aM, and at fixedM for all L, we
m=—c = write this as a matrix equation

where we have read off the scattering mahof the inner (MH)] +(SM|HD=(@M|(h@)+sh), (A9)
disk with respect to the center of the outer disk,
where S' is a matrix,h® and h® are diagonal matrices,
def ” _ h{?=h{*?s;;, and we adopt the bra notation for quantities
S = 2 Im— (1K1 S~y (u—tyI(K1d).  (A5)  that, at fixedM, are transposed vectors and gain matrix char-
k= acter onceM is varied. With this notation we immediately

The structure of this equation suggests a notation in terms gyrite the matching condition for the derivatives as

a transformation matrikJ, namely,S = U ~1S°U, which de-

scribes the change in the origin of the coordinate system. We

find Uy =Jp— andU,;=J, /. From Eq.(A9) we find after substitutingF=h®+Sh®
The scattering matri$ allows us to describe the scatter- that

ing at an off-centered disk, and we can now formulate the

scattering problem of the annular billiard in the spirit of Sec. (aM)|=((MH@)|+ (SMHOF-L,

Ko(( MH®@' [+ (SM[HW') = (aM)|k, (h®' + ShW)").
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Introducing, furthermore, F'=h’@+Sh’® and W  primed coordinates by applying the addition theoreh2)
=F !F’, we write theS-matrix solution of the problem as for Bessel functions. After straightforward algebra we find

0

V()= 3 alHP(kar )+ SPHO (ke )1e!

S=(k;H@W—koH’ @) (kgH' M) =k, HMw) L,

This last equation allows us to apply the Wigner-delay-time

approach to resonances ¢Bec. 110, and we used this where the coefficientsal are related to thea, by af

method to study resonances of the optical annular billiard cf= Eﬁ=7xa|/J|/,| .

(Secs. Il and V. Another remark is in order concerning the validity of the
We complete the discussion here with some comments oaddition-theorem-based expansion of the Bessel function

the wave functions. We have not yet given the wave functiorwhen changing between primed and unprimed coordinates.

in the inner disk. The ansatz is a sum over Bessel functiongxpansion of the annular wave function mimed coordi-

nates fails near the outer boundary whéFé|>R1—R2
— 4. Similarly, expanding the annular wave function in
unprimedcoordinates does not work near the inner boundary

where|r|<R,+ 8. The reason for this behavior is that angu-
where we adopted primed coordinates for convenience. Thiar momentum is not conserved in the eccentric annular bil-
coefficientsb;, are found from matching with the wave func- liard, and the expansion breaks down at radii where waves
tion in the annulus at théner boundary. To this end we explore this symmetry-breaking region because the corre-

[

W2(r)= 2 bfd(kyr')e"?,
|=—o

have to rewrite the annular wave functioA8) in terms of

sponding interface boundaries are hit.
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