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Quantum chaos in optical systems: The annular billiard

Martina Hentschel1,* and Klaus Richter2
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~Received 27 May 2002; published 25 November 2002!

We study the dielectric annular billiard as a quantum chaotic model of a micro-optical resonator. It differs
from conventional billiards with hard-wall boundary conditions in that it is partially open and composed of two
dielectric media with different refractive indices. The interplay of reflection and transmission at the different
interfaces gives rise to rich dynamics of classical light rays and to a variety of wave phenomena. We study the
ray propagation in terms of Poincare´ surfaces of section and complement it with full numerical solutions of the
corresponding wave equations. We introduce and develop anS-matrix approach to open optical cavities which
proves very suitable for the identification of resonances of intermediate width that will be most important in
future applications like optical communication devices. We show that the Husimi representation is a useful tool
in characterizing resonances and establish the ray-wave correspondence in real and phase space. While the
simple ray picture provides a good qualitative description of certain system classes, only the wave description
reveals the quantitative details.
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I. INTRODUCTION

Billiard systems of many kinds have proven to be ve
fruitful model systems in the field of quantum chaos. T
methods of investigation are well established both for cl
sical dynamics and for quantum-mechanical behavior, w
semiclassical methods describing the transition from qu
tum to classical properties. With the growing interest
quantum chaos and in mesoscopic physics, new syst
have arrived on the stage, including systems exhibiting ch
of classical waves such as~macroscopic! microwave billiards
@1,2#, acoustic resonators@3#, as well as deformed microcav
ties @4–10# which can operate as microlasers@11,12#. To
describe these~two-dimensional! systems one can exploit th
analogy between the stationary Schro¨dinger equation and the
Helmholtz equation for~classical! waves@13#. Quantum cha-
otic experiments using microwave cavities or other class
waves~e.g., acoustic or water waves! are based on this math
ematical equivalence; see@14# for a review. Most of the in-
vestigated systems are hard-wall billiards. However, for
class of optical, or dielectric, model systems the billia
boundary manifests itself by a change in the index of refr
tion, allowing for reflection and transmission of light. Th
limit of closed systems is approached as the difference in
refractive indices reaches infinity.

We emphasize that the openness of optical systems
tends the set of interesting questions with respect to those
closed billiards. In this paper we suggest a further extens
of the class of open optical cavities by considering two
gions with different refractive indices inside the cavit
which leads to an additional refractive interface between
two dielectrics inside the resonator. The interplay betwe
refraction inside the billiard and partial reflection at the ou
billiard boundary gives rise to a variety of phenomena in
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classical ray dynamics and correspondingly in the wave
scription of such systems.

The model we study is the annular billiard shown in F
1. It consists of a small disk of radiusR2 placed inside a
larger disk of radiusR1 with a displacementd of the disk
centers. This system is well known from quantum and wa
mechanical studies of the hard-wall configuration@15–17#
with nonvanishing wave functions only in the annular regio
It carries features of a ray-splitting system@18# where each
disk is characterized by a~stepwise constant! potential~un-
like the situation we will discuss here; see Sec. I B!. Here we
consider disks characterized by indices of refractionn1 and
n2, respectively, with the index of the environment fixed
n051 @19#. We will study billiard materials withni.1 such
that confinement by total internal reflection is possible. Th
methods well known from the description of classical d
namical systems, such as the use of Poincare´’s surfaces of
section, can be employed to describe the ray dynamics. N
that whispering gallery modes in the dielectric annular b
liard with a metallic inner disk have been discussed in R
@20#. A detailed study of periodic orbits in a specific har
wall configuration, together with the expected consequen
for the electromagnetic scattering problem was performed
Ref. @21#.

The above-mentioned correspondence between the H
holtz and Schro¨dinger equation is established by means of
effective potential@22# that depends not only on position an
the respective index of refractionn, but also on the energy
Changes in the refractive index give rise to steps in the
fective potential which allows for a quantum-mechanical
terpretation~e.g., quasibound states, tunneling escape!. We
will discuss this point in the next section when we contr
optical systems governed by Maxwell’s equation w
quantum-mechanical problems obeying the Schro¨dinger
equation. Also, we will see how the two possible polarizati
directions affect the Maxwell-Schro¨dinger correspondenc
and which quantity takes the role of\: Maxwell’s equations,
of course, do not take account of the existence of\.
x
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FIG. 1. ~a! Geometry and no-
tation for the dielectric annular
billiard. ~b! Example of a resonan
wave function excited by a plane
wave with wave number k
56.251 incident from the left
(R151,R250.6,d50.22,n153,n2

56). Dark regions denote high
electric field intensity.
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The further outline of the paper is as follows. In Sec.
we introduce the ray and wave optics notion for the sim
system of a dielectric disk that arises from the annular s
tem upon removal of the inner obstacle (n15n2 or R2
50). We describe the methods used for the study of
annular billiard in the subsequent sections; namely, the ad
tation of the Poincare´ surface of section method, well know
from classical mechanics, to optical systems, the exact s
tion of the Maxwell equation~leading to an effective Schro¨-
dinger equation!, and theS-matrix approach. Whereas th
first approach is based on the ray picture, the latter
clearly fully include the wave nature of light. We emplo
these methods for the annular billiard in Sec. III, where
introduce methods to study the ray dynamics in optical co
pound systems and apply, for the first time to our knowled
anS-matrix formalism to optical billiards. The expected ra
wave, or classical-quantum, correspondence is establish
Sec. IV and investigated from various viewpoints, includi
both real space and phase space arguments. However, se
features in the behavior of waves require improvements
the simple ray model as we will illustrate and explain w
typical examples. In our conclusion, Sec. V, we discuss
possibility of an experimental realization of the annular s
tem with the currently available dielectric materials. The s
cesses of the ray picture illuminated here and elsewh
@5,6,10,12,23# suggest the ray-based design of micro-opti
cavities for, e.g., future communication technologies.

II. THE DIELECTRIC DISK

In this section we introduce the methods, techniques,
notation used later in the discussion of the annular billia
We present the ray and wave picture for the description
optical ~or dielectric! systems using the simple example of
dielectric disk, which provides all the ingredients to de
with the annular billiard~apart from a coordinate transforma
tion; see below!. We start with the ray optics approach an
show how methods well established in classical dynam
can be adopted to optical systems. In the wave descrip
we distinguish between approaches to the resonant stat
the ~naturally! open optical system by complex wave vecto
based on Maxwell’s equations on the one hand, and by
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wave vectors arising in anS-matrix approach on the othe
hand.

A. Ray optics: Classical billiards with total internal reflection

Within ray optics, the zero-wavelength limit of wave op
tics, light is described by a ray that follows a straight lin
through a medium, very similar to the dynamics of a po
mass. Let us assume a light ray, or plane wave, incident a
anglex1 with respect to the normal of a dielectric bounda
where the refractive index changes fromn1 to n2. At the
interface, the ray is~i! specularly reflected at an anglex2
5x1[x, with a polarization-dependent@24# probability
RTM /TE @see Fig. 2~b!#. The remaining part,TTM / TE51
2RTM / TE, is ~ii ! transmitted into the other medium at a
output angleh given by Snell’s law, sinh5(n1 /n2)sinx
[nsinx. In the last identity we have employed the scali
properties of the system, which allow one to fix one of t
refractive indices~e.g., that of the environment! to unity
without loss of generality.

Snell’s law cannot be satisfied to yield realh for any
angle of incidencex if n.1 (n1.n2). Total internal reflec-
tion occurs if sinx>sinxc[1/n, where we introduced the
critical anglexc . For angles of incidence above the critic
angle, light is confined by total internal reflection with ze
transmission and behaves like a classical point particle@Fig.
2~a!#. Therefore, real and phase space methods from clas
mechanics~such as ray tracing or the Poincare´ surface of
section technique! prove to be very useful if they are comple
mented by the optical property of refraction: The Poinca´
surface of section~SOS! method works exactly~except for
the exponentially small tunneling losses! as long as we are in
the regime of total internal reflection. However, for21/n
,sinx,1/n, light can escape so that the intensity remaini
inside the disk diminishes. This fact has to be taken i
account when discussing the Poincare´ SOS for optical sys-
tems. Figure 3 shows an example of a Poincare´ SOS for a
hard-wall annular system with slightly eccentric inner di
(d50.01). The critical value sinx51/n is marked by an ar-
row.

Probing the phase space structure of a rotational invar
system like a disk in terms of a Poincare´ SOS gives a uni-
7-2
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QUANTUM CHAOS IN OPTICAL SYSTEMS: THE . . . PHYSICAL REVIEW E 66, 056207 ~2002!
form structure as shown in the upper part of Fig. 3. Althou
this is a Poincare´ SOS for an annular system@25# with a
slightly eccentric inner disk~see Sec. IV!, it is identical to
that for a disk for trajectories that do not hit the inner dis
i.e., sinx.R21d (R151). The straight horizontal lines di
rectly express the conservation of angular momentum,
is, conservation of sinx, and the corresponding trajectorie
are referred to as whispering gallery~WG! orbits.

The reflection and transmission probabilitiesRTM / TE and
TTM / TE are provided by Fresnel’s laws@26#. A plane electro-
magnetic wave incident on a planar dielectric interface w
angle of incidencex is reflected with the polarization
dependent probabilities

RTM5
sin2~x2h!

sin2~x1h!
, RTE5

tan2~x2h!

tan2~x1h!
, ~1!

where TM ~TE! denotes transverse polarization of the ma
netic ~electric! field at the interface, andh5arcsin(nsinx) is
the direction of the refracted beam according to Snell’s l

B. Wave picture: From Maxwell to Schrödinger

Before we turn to the more complicated annular billiard
Sec. III, we assume an infinite dielectric cylinder of radiusR
and refractive indexn embedded in vacuum with refractiv
index n051. We will call the wave number outside the cy
inderk and, analogously,nk is the wave number inside. Th
solution of Maxwell’s equations for the vortices of the ele

FIG. 2. Comparison of ray and wave picture for a dielectric d
of refractive indexn. The upper panels illustrate the two possibi
ties of ~a! total internal reflection, sinx>sinxc51/n, when the ray
dynamics is equal to that of a classical point particle in a clo
system, and~b! ray refraction when, due to partial transmission, t
light intensity inside the disk decreases with time. In~c! the inten-
sity of the electric field~see Sec. II B, higher intensity in darke
regions! for a quasibound state (nkR511.42820.254i ) of the di-
electric disk (n53) is shown. For comparison, an eigenstate of
closed disk (nkR59.761, vanishing intensity outside the disk! is
given in the lower left sector~both are for transverse magnetic fiel
TM polarization!.
05620
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tromagnetic field@26# is given, e.g., in Refs.@4,22#, and leads
to an equation for the electric~magnetic! field that issimilar
to the conventional Schro¨dinger equation. The vector cha
acter of the fields implies, however, that one has to dis
guish two possible polarization directions with differin
boundary conditions. The situation where the electric~mag-
netic! field is parallel to the cylinder~z! axis is called TM
~TE! polarization, with the magnetic~electric! field being
thus transverse. Using the rotational invariance of the s
tem, separation in cylindrical variables~assuming af depen-
denceeimf and az dependenceeikzz) eventually leads to an
effective Schro¨dinger equation@27# for the radial componen
of the electric field,

2F d2

dr2
1

1

r

d

drGE~r !1Veff~r !E~r !5k2E~r !, ~2!

where we introduced the effective potential

Veff~r !5k2~12n2!1m2/r 21kz
2 . ~3!

The first term reveals immediately that dielectric regio
with n.1 correspond to an attractive well in the quantu
analogy, and that a potential structure is determined by
change of the refractive indices for different regions. No
however, theenergy-dependentprefactor—a far-reaching
difference in comparison to quantum mechanics. The ot
two terms in Eq.~3! arise from the conservation of the an

d

e

FIG. 3. Poincare´ surface of section for the annular billiard wit
R151,R250.6, andd50.01. The horizontal axis is the polar ang
f, the vertical axis, sinx, is proportional to the angular momentum
in the z direction~perpendicular to the system plane!. Although the
displacement of the inner disk is rather small, it has a major imp
on trajectories that explore the region sinx,R21d. Other trajecto-
ries are not influenced and are identical to those of a single die
tric disk; see, e.g., the two uppermost examples on the right.
initial angular momentum of the trajectories shown is posit
(sinx.0). Nonetheless, regions where sinx,0 are explored, imply-
ing a change in the sense of rotation, as, e.g., in the lowermos
trajectory on the right. The critical angle for total internal reflecti
is marked on the left, indicating that the two lowermost trajector
are not confined.
7-3
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M. HENTSCHEL AND K. RICHTER PHYSICAL REVIEW E66, 056207 ~2002!
gular momentum~characterized by the quantum numberm),
and express the conservation of the linear momentum a
the cylinder axis~acting as an offset in energy!, respectively.

In the following we will consider a dielectric disk~that is,
we choose a particular cross sectional plane of the cylinde
obtain an effective system!, and setkz to zero corresponding
to a wave in thex-y plane. Approaching the disk from th
outside (r .R,n051) there is only the angular momentu
contribution to the effective potentialVeff , Eq. ~3!. At r
5R, there is a discontinuity inVeff that is proportional to
12n2, reflecting the noncontinuous change in the refract
index. It reaches fromkmax

2 5m2/R2 to kmin
2 5m2/(n R)2. In-

side the disk the angular momentum contribution, n
shifted by kmax

2 2kmin
2 , again determines the behavior~see

also Fig. 9 below at valuesr /R1.R2 /R1).
The form of the potential suggests an interpretation in

spirit of quantum mechanics with metastable states in
potential well that decay by tunneling escape, and indeed
turns out to be the quantum-mechanical version of confi
ment by total internal reflection@4,22#. To this end we em-
ploy a semiclassical quantization condition for thez compo-
nent of the quantum-mechanical and classical ang
momentum,m\5n\Re(kR)sinx. We find

sinx5
m

n Re~kR!
~4!

as the relation between the angle of incidence as a ray pic
quantity, and the wave number and angular momentum
resonance.

Another correspondence between ray and wave quant
exists between the~polarization-dependent! Fresnel reflec-
tion coefficientRTM/TE and the imaginary part of the wav
number that describes the decay of a resonant state. In
one can deduce a reflection coefficientRd

TM/TE of the disk
@28#,

Rd
TM / TE5exp@4n Im~kR!cosx#. ~5!

We wish to point out that there exist deviations between
Fresnel valuesRTM/TE andRd

TM/TE when the wavelength be
comes comparable to the system size, in particular aro
the critical angle. This can be understood within a semic
sical picture based on the Goos-Ha¨nchen effect@29,30#.

The general solutions of the radial Schro¨dinger equation
~2! are Bessel and Neumann functionsJm(kir ) andYm(kir )
of order m, whereki is the wave number in the respectiv
medium. Since physics requires a finite value of the wa
function at the disk center, the solution inside the disk c
consist of Bessel functions only. Outside the dielectric
assume an outgoing wave function, namely, a Hankel fu
tion Hm

(1) of the first kind, in accordance with our picture o
a decaying state. The resonant states are obtained by m
ing the wave field proportional toJm(nkr)eimf inside the
disk at r 5R to the wave field proportional toHm

(1)(kr)eimf

outside the disk according to the polarization-depend
matching conditions deduced from Maxwell’s equations. T
resonant states are solutions of
05620
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Jm~nkR!Hm
(1)8~kR!5PJm8 ~nkR!Hm

(1)~kR!, ~6!

whereP5n(1/n) for TM ~TE! polarization~primes denote
derivatives with respect to the full argumentsnkr and kr,
respectively!.

One example of a quasibound state as solution of the
tically open system is shown in Fig. 2~c! and compared to a
solution for the closed disk. The shift in the wave patterns
clearly visible. Owing to the symmetry of the system we fi
a characteristic~quantum-mechanical! node structure that is
directly related to the quantum numbersm ~there are 2m
azimuthal nodal points!, and r counting the radial nodes
~hencem53,r52 in the example!.

At this point a further discussion concerning the appe
ance of\ in optical systems is convenient. Employing th
quantum-classical correspondence, one expects\ to be re-
lated to the reciprocal wave number,\;1/k, because\
→0 in the classical~here the ray! limit k→`. This relation
is indeed obtained when we compare Eq.~2!, divided byk2

~thereby removing the energy dependence of the effec
potential!, with Schrödinger’s equation, and identify 1/k with
\.

C. S-matrix approach to the dielectric disk

The main idea when considering a scattering problem
to probe the response of the system to incoming~test! waves,
and to extract system properties like resonance positions
widths from thescatteredwave. Physically, this method i
formulated for real wave vectors.

Here we want to investigate the scattering properties
the dielectric disk for electromagnetic waves in the fram
work of S-matrix theory@31–33#. One possible choice fo
the incident test waves is, of course, plane waves. For
rotational invariant disk of finite dimension, however, inc
dent waves that allow for angular momentum classificat
are much more convenient: Then we need to take into c
sideration only waves with impact parameter of the order
the system dimension or smaller. The Hankel functionsHm

(2)

of the second kind possess the desired properties.
Again, we consider a dielectric disk of radiusR and re-

fractive indexn and denote the vacuum wave number byk.
According to Maxwell’s equations and the discussion in t
previous Sec. II B we write the wave functionCm

scatt outside
that is excited by an incident wave of angular momentumm
as

Cm
scatt~kr !5Hm

(2)~kr !eimf1 (
l 52`

`

SmlHl
(1)~kr !eil f.

Here,Sml is the amplitude for an incident waveHm
(2) to be

scattered intoHl
(1) . The scattering amplitudes are compris

in the S matrix. It follows from flux conservation thatS has
to be unitary, a property that we will use subsequently. St
ing with a general situation in whichS can have entries ev
erywhere, symmetry requirements will reduce the numbe
independent matrix elements. For the dielectric disk,
scattered wave has to obey angular momentum conserva
and will, therefore, be a Hankel function of the same ordem
7-4
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as the incoming Hankel function. Hence the scattering ma
is diagonal. In the general case where angular momentu
not conserved~as, for example, for a deformed disk or th
annular geometry that we will consider in all following se
tions!, scattering will occur intoall possible angular mo
mental.

Employing the matching conditions~cf. Sec. II B! for TM
polarization, we obtain from the requirement of continuity
the wave function~or the electric field! and its derivative
eventually the matrix elementsSmm8 :

Smm852
Hm

(2)8~kr !2n@Jm8 ~nkr!/Jm~nkr!#Hm
(2)~kr !

Hm
(1)8~kr !2n@Jm8 ~nkr!/Jm~nkr!#Hm

(1)~kr !
dmm8 .

~7!

The general idea for identifying resonances is that a prob
wave with resonance energy will interactlonger with the
system than a wave with ‘‘nonfitting’’ energy. This can b
quantified in terms of theWigner delay timetW(Ek) @34#,
which is the derivative of the total phaseu of the determinant
of the S matrix, detS5eiu, with respect to energyEk5k2,

tW~Ek!5
du~Ek!

dEk
. ~8!

In the following, we will use the wave-number-based de
time

t~k![4pktW~k2! ~9!

in order to identify resonances as depicted in Fig. 4~a!. The
solid line shows the result for a dielectric disk withn53.
Families of whispering gallery modes~WGMs! are identified
upon increasing the wave number and can be labeled by
quantum numberm that counts the azimuthal nodes (2m).
The decrease in peak width, accompanied by an increas
height, that is observed with increasingm corresponds to an
increase of the angle of incidence, Eq.~4!, and improved
confinement by total internal reflection.

Note the relation between the~total! phaseu(Ek) of theS
matrix and the so-called resonance counting functi
N(Ek)5u(Ek)/2p; cf. @31#. The idea is that a resonance
encountered whenever the phaseu of detS increases by 2p
upon increasing the energyEk .

In the following we will use the functiont(k) to deter-
mine the resonances. Isolated resonances appear as~Lorent-
zian! peaks int(k) @see Fig. 4~a!# above a small background
Information about the imaginary part of the resonance is n
encoded in the height and width of the Lorentzian resona
peaks@32#. We point out that the resolution of very broa
and extremely narrow resonances might be difficult, beca
they are either included in the background or not captu
using a finite numerical grid interval. However, resonan
with a wide range of widths are easily identified; in partic
lar all resonances that are of interest for microlaser appl
tions are found within theS-matrix approach@35#.
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The area under the curvet(k) is proportional to the num-
ber of states with wave numbers smaller thank @31,33#. In
the case ofstepwisepotentials such as are realized in ra
splitting billiards, simple Weyl formulas for the smooth pa
of the density of states were derived for a number of geo
etries@18#. The application of these results to optical syste
where ray splitting is realized by refraction and transmiss
at refractive index boundaries is tempting. However, here
work with an energy-dependenteffective potential, in con-
trast to the situation studied in@18# where only a~stepwise!
spatial dependence of the potential was assumed. Co
quently, a generalization of the formulas derived in@18#
would be required if one is interested in an analytical expr
sion for the smooth part of the density of states, which
however, not the subject of this work.

III. ANNULAR BILLIARD IN THE RAY AND WAVE
PICTURES

In this section we adapt the ray and wave methods
plained above to the general case of the dielectric ann
billiard. We will denote the three different regions, name
the environment~refractive indexn0), the annular region

FIG. 4. ~a! Resonances in the concentric annular billiard (R1

51,R250.6,n153), corresponding to the first family of whisperin
gallery modes. The annular systemsn252 ~dotted! and n254
~dashed! are compared with the homogeneous diskn253. Note the
systematic deviation of the resonance position to larger~smaller!
wave numbers forn252 (n254) which decreases with increasin
angular momentum quantum numberm since the inner disk be-
comes less important. In the inset, we compare the positions
widths of the fourth resonance (m54) in the delay time with the
respective complex wave numbers according to Eq.~10!. We find
excellent agreement with the numerically exact valuesk052.0108
20.0041i (n254), k052.075320.0063i (n253), and k052.1035
20.0075i (n252). Note the existence of additional resonances
n254, some of them marked by arrows from below and illustra
in the ray and wave pictures in~b!. They are due to the double-we
structure of the effective potential and referred to as ‘‘dou
WGMs’’ ~see text!.
7-5
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M. HENTSCHEL AND K. RICHTER PHYSICAL REVIEW E66, 056207 ~2002!
(n1), and the inner disk (n2), by the indices 0, 1, and 2
respectively. The corresponding wave numbers arek0 ,k1,
andk2. Due to the scaling properties we fixn0[1 and one
of the geometry parametersR1 ,R2 ,d; we chooseR1[1.
Given a set of parameters (n0[1,n1 ,n2), the same results
hold for the scaled set (ñ0 ,ñ15n1ñ0 ,ñ25n2ñ0) for wave
numbersk̃5k/ñ0, if the geometry is not changed. In turn
fixing the dielectric constants, the parameter setsR1

[1,R2 ,d) and (R̃1 ,R̃25R2R̃1 ,d̃5dR̃1) are equivalent when
k→ k̃5k/R̃1.

A. Ray optics and refractive billiard

The rotational invariance of the circular billiard discuss
in Sec. II can be broken either by deformation~as in@12#! or
by placing off-centered opaque obstacles inside the d
leading to the hard-wall annular billiard. Starting from th
concentric situation, the system stays close to integrable
to the existence of adiabatic invariants for not too big ecc
tricities ~see Fig. 3!. However, in general the phase space
the annular billiard is mixed, with regular islands placed
the chaotic sea as shown in Fig. 5.

For optical systems, both the outer and inner bounda
become permeable. Leakage at the outer boundary occur
21/n,sinx,1/n. In the simplest qualitative picture, star
ing with the hard-wall system, we will assume those rays
leave the cavity@thus simplifying Fresnel’s laws~1! to a
stepwise function#. The corresponding trajectories are a
sumed not to exist in an optical cavity. If one is interested
how the intensity of a certain trajectory decreases, Fresn
laws can easily be taken into account accurately, leadin
the model of a Fresnel billiard@5,23,36#.

However, the description of the refractively openedinner
boundary turns out to be rather complicated. There, all r
remain in the billiard, causing a tremendous increase of
number of rays upon partial reflection. Another crucial d
ference is that now new trajectories arise, namely, th
crossing the inner disk. We model this situation by introdu
ing the model of the ‘‘refractive billiard:’’ Whenever tota
internal reflection is violated at the inner boundary, the
enters the inner disk according to Snell’s law with full inte
sity, such that now ray splitting occurs. Otherwise, the ray
specularly reflected and stays in the annulus. This co
sponds again to a stepwise simplification of Fresnel’s la
Note that the hard-wall billiard is in fact a realization of th
constant reflection coefficientRTM/TE51. The real situation
is found in between the stepwise and constant approxi
tions and, depending on the refractive indices chosen, re
from both limits are needed in order to understand the re
nant modes found in the wave picture~see Sec. IV!.

We complete our refractive-billiard model by first assu
ing specular reflection at the outer boundary, and disc
outer-boundary losses subsequently as outlined above.
sults are shown in Figs. 6 and 7 for the same geometry a
Fig. 5 @37#, and two different combinations of refractive in
dices. In Fig. 6, the annular indexn1 is highest, allowing for
total internal reflection at both boundaries. In the limitn1
→` we would recover the phase space of the hard-wall
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liard, Fig. 5. For moderaten153 (n05n251) as in Fig. 6
we are, however, away from this limit: most of the regu
trajectories of the hard-wall system are gone and, in tu
new regular orbits passing through the inner disk appear

The situation changes once more forn0,n1,n2, because
then total internal reflection at the inner boundary isnever
possible ~again, we base our discussion on rays enter
from the annulus!, and all rays hitting the inner boundar
will enter. Furthermore, they will leave the inner disk upo
the next reflection according to the principle of reversibil
of the light path. Note, however, that confinement by to
internal reflection in theinner disk is well possible. From our
discussion in Sec. II we know that these orbits will and c
only be whispering gallery modes. To anticipate results
the next section, those modes do exist and leave their si
ture as very sharp peaks in the delay time.

In Fig. 7 an example of the phase space is given, show
yet another structure owing to the change in the refrac
indices. For the regular orbits shown at the right, we exp
only the upper one to survive the~optical! opening of the
outer boundary as long asn0 /n1>3.2. The lower orbit hits
the outer boundary perpendicular (x50) at least at some
points, and can therefore only be confined by hard walls

B. Wave picture: Maxwell’s equations andS-matrix approach

Generalizing the wave picture approaches presente
Sec. II for the dielectric disk to the annular billiard requir
essentially consideration of another, off-centered circu
boundary at which the matching conditions resulting fro
Maxwell’s equations have to be satisfied as well. An ecc
tric inclusion lowers the rotational symmetry of the system
axial reflection invariance about the symmetry axis of t
system. Consequently, angular momentum is not conser
and theSmatrix of the compound system cannot be diago
in the general case.

FIG. 5. Poincare´ SOS taken at the outer boundary for the ha
wall annular billiard (R250.6,d50.22). Trajectories are bounde
to the annular region; no optical properties of the system are
included. Typical regular and chaotic trajectories are shown in b
real and phase space.
7-6
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FIG. 6. Poincare´ SOS taken at the oute
boundary for the refractive billiard withn0

51,n153,n251, and the same geometry as
Fig. 5. The hard-wall condition of Fig. 5 is kept a
the outer boundary, but replaced at the inner o
by the condition of total internal reflection. If it is
not satisfied the ray will penetrate the inner dis
giving rise to a restructured phase space and n
regular orbits such as the one on the lower rig
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tric
Maxwell’s equations can be solved analytically in t
concentric case (R2.0), and resonant states with comple
wave number are obtained as zeros of the expression

n1Jm~k2R2!Hm
(1)8~k0R1!@Hm

(2)8~k1R2!Hm
(1)~k1R1!

2Hm
(1)8~k1R2!Hm

(2)~k1R1!#2n1
2Jm~k2R2!Hm

(1)~k0R1!

3@Hm
(2)8~k1R2!Hm

(1)8~k1R1!2Hm
(1)8~k1R2!Hm

(2)8~k1R1!#

2n2Jm8 ~k2R2!Hm
(1)8~k0R1!@Hm

(2)~k1R2!Hm
(1)~k1R1!

2Hm
(1)~k1R2!Hm

(2)~k1R1!#1n1n2Jm8 ~k2R2!Hm
(1)~k0R1!

3@Hm
(2)~k1R2!Hm

(1)8~k1R1!2Hm
(1)~k1R2!Hm

(2)8~k1R1!#

~10!

for TM polarized light. Note that Eq.~10! reduces to Eq.~6!
for n15n2 when the annular billiard is reduced to a disk.

In order to investigate the eccentric case, we focus on
S matrix method. The derivation of theS-matrix for the ec-
centric annular billiard is outlined in the Appendix. As di
cussed in Sec. II the information on resonance position
width is contained both in the complex wave vector th
solves the resonance equation deduced from Maxw
equations and in the delay-time plott(k). This is illustrated
in the inset of Fig. 4~a! where the resonance positions a
widths found fromt(k) are compared with the numericall
exact solutions of Eq.~10! for concentric geometries. Th
delay-time plot in Fig. 4~a! reveals a systematic deviation o
the first few resonance positions to the right~left!, if the
refractive index of the inner disk is lower~higher! than that
in the annulus. However, the deviation from the concen
case is rather small. It suggests that the low-lying resonan
in the ~concentric! annular geometry are very similar to th
WGMs of the dielectric disk and mainly localized at th
outer boundary. However, the resonant wave functiondoes
05620
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experience the change of the refractive index in the in
disk as indicated by the shift of the resonance position. T
direction of the shift is most easily seen when thinking
terms of aneffectiverefractive indexneff ,

neff 5
def S 12

R2
2

R1
2D n11

R2
2

R1
2

n2 . ~11!

An inner disk of lower refractive impliesneff,n1 and a
larger spacing between the resonances. This is easily un
stood when considering an eigenvaluenk5const of the
~closed! dielectric disk. Obtaining the same constant val
for a smallern requires a higherk. In contrast, an inner disk
of higher refractive index reduces the spacing between
resonances. This effect is strongest for resonances of
radial quantum numberr and small angular momentum
quantum numberm, since they rather extend to the inn
regions of the disk or the annular billiard.~In terms of the ray
picture, they correspond to smaller angles of incidence, le
ing to the same conclusion.! Accordingly, the effect reduces
for increasingm and eventually vanishes if the inner disk
not seen any more@38#. In Fig. 4~a! resonances are marke
by arrows that exist only if the refractive index of the inn
disk is highest. One corresponding wave pattern, toge
with a ray analog, is shown in Fig. 4~b!. It reveals that the
‘‘double-WGM’’ structure results from a starlike trajectory

In Fig. 8 we consider the same refractive indices~i.e.,
n153,n254) and now shift the inner disk off center. Th
double WGMs~again marked by arrows! are affected in a
way different from the conventional WGMs. First of all, th
systematic shift of the latter can again be understood in te
of the effective refractive index. The impact of an of
centered~inner! disk is enhanced because in the constric
region it acts like a concentric disk with larger radiusR2

eff

.R2. Note that the resonances marked by arrows in Fig
change their character from double WGMs in the concen
y
s

f

FIG. 7. Poincare´ SOS for the
refractive billiard with n051,n1

53,n256 and the same geometr
as in Fig. 5. Rays in the annulu
that hit the inner boundary will
penetrate it. Note the existence o
whispering gallery modes in the
inner disk~confined by total inter-
nal reflection! not visible in this
SOS.
7-7
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M. HENTSCHEL AND K. RICHTER PHYSICAL REVIEW E66, 056207 ~2002!
and slightly eccentric cases to generalized WGMs simila
the one shown in the right panel of Fig. 9 if the symme
breaking caused by the off-centered inner disk becomes
strong.

IV. RAY-WAVE CORRESPONDENCE FOR THE ANNULAR
BILLIARD

In the previous sections we already referred to the r
wave correspondence in optical systems and gave se
examples which were mainly based on WG modes, and
concentric annular billiard. In this section, we first contin
with WGMs and show how they can be specifically infl
enced by choosing appropriate materials. However, ray-w
correspondence holds for far more interesting trajector
and we will give illustrative examples of how closed-billia
trajectories are recovered in theopensystem using real and
phase space portraits.

A. Classes of whispering gallery modes in annular systems

In Sec. II we introduced the concept of the effective p
tential as a wave-picture method when we established
analogy between Helmholtz and Schro¨dinger equations. The
generalization of this concept to the annular billiard
straightforward and~in the concentric case! essentially given
by the superposition of two disks; see Eq.~3!. The result is
schematically shown in Fig. 9. Again, we have to distingu

FIG. 8. Resonance peaks for increasing displacementd in com-
parison with the concentric case~dotted! for n2.n1. Here, whis-
pering gallery modes of the outer disk are shifted to the left due
an increase of the effective refractive index. However, other mo
are affected in a different way, such as, for example, the resona
marked by arrows.
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two cases: In Fig. 9~a!, the refractive indexn1 in the annulus
is highest, whereas in Fig. 9~b! the optical density increase
toward the inner disk. Consequently, in the first case, F
9~a!, the potential well coincides with the annular regio
Rays between the two disks can be totally reflected at ei
boundary as illustrated in the lower panels.

The situation is different when the refractive indexn2 of
the inner disk is highest@Fig. 9~b!#. The well extends now
beyond the inner boundary to valuesr ,R2 indicating that
the inner disk may support annular WGMs in the constric
region ~see the lower panels!. This is consistent with the
ray-picture interpretation stating that each ray in the annu
that hits the inner boundary will enter the inner disk. Ho
ever, because of the double-well structure of the effect
potential this case is even richer: There are modes
mainly exist in one of the two wells, corresponding
WGMs of the inner and outer disk, respectively. The heig
of the separating barriers depends on the wave number
quantum numberm, the geometry, and in particular the rat
of the refractive indices that can be used to tune the heigh
the barrier ~note that at the same time the depths of t
minima are changed!.

B. Toward closed systems

Varying the refractive index of an optical system allow
one to describe the transition between closed and open
cal, systems as mentioned earlier. To illustrate this fact

o
s
es

FIG. 10. ~a! Fourier transform of the delay timet(k0) for the
annular billiard geometryR250.6,d50.22, and two refractive in-
dex combinations,n05n251, n153 ~dashed line! andn156 ~full
line!. The appearance of a new peak at larger geometric leng
clearly visible. A suitable~quasi!periodic orbit candidate togethe
with a resonant state is shown in~b!.
-
s
x-

est
FIG. 9. Effective potential for the annular bil
liard for two different sets of refractive indice
(n051). In the lower panels corresponding e
amples of ray trajectories~left! and wave func-
tions ~right! are shown. The similarity of these
resonances to whispering gallery modes sugg
their classification as ‘‘generalized’’ WGMs.
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FIG. 11. ~a! Delay timet(k0) for the annular
billiard geometry as in Figs. 5 and 10 andn1

53,n256. The structure is dominated by group
of four resonances labeledA,B,C,D. The reso-
nance atk0'6.251 is the one shown in Fig. 1~b!.
The four resonances of the second group (6
,k0,6.9) are shown in~b! together with a ray
trajectory representative. In part~c!, rays
~crosses! and waves~intensity plot, high intensity
in dark regions! are compared in phase space
terms of their Poincare´ and Husimi representa
tions.
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increase the refractive index of the annular region which
assume to be embedded in vacuum (n05n251, wave vector
k05k2). The length spectrum, or Fourier transform, of t
delay timet(k0) is shown in Fig. 10~a! for refractive indices
n153 andn156 ~dashed and full lines, respectively!. The
Fourier analysis is performed in the spirit of trace formu
that provide a semiclassical interpretation of quantu
mechanical results in terms of classical periodic orbits
quantum billiards. The quantitative extension of this a
proach to optical systems will require further discussio
Here, we are interested only in a qualitative interpretatio

We have divided theoptical length that results from the
Fourier transformation byn1 in order to compare both spec
tra in terms ofgeometrical lengths L. The peaks in both
spectra are rather broad and correspond roughly to the
cumference of the bigger disk~and higher harmonics! which
indeed is a typical trajectory length in this geometry not o
for WGMs, but also for the trajectory examples shown Fi
5 and 11~trajectory parts in the inner disk will contribute
length that has to be corrected by a factorn2 /n1). However,
the length spectrum forn156 shows an additional pea
~marked by the arrow in Fig. 10! at higherL. A ray trajectory
of suitable length is shown in Fig. 10~b!. The Poincare´ fin-
gerprint of this orbit~see Fig. 5! possesses regular islands
sinx50, where in the simplest interpretation refractive e
cape will occur, independent of the refractive index. Th
modes of this type are found for sufficiently largen1 indi-
cates that we have to refine our interpretation. For exam
we can discuss the Fresnel reflection coefficientR' at nor-
mal incidence,R'5(n02n1)2/(n01n1)2, which increases
asn1 is increased, reaching the value 1 in the limitn1→`,
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in accordance with the picture of complete internal refle
tion. This explains the observed behavior and we pres
more examples of ‘‘sophisticated’’ ray-wave, or classic
quantum, correspondence in the next section.

C. Correspondence in real and phase space

In Fig. 11~a! we show a typical delay-time plott(k0) for
the annular billiard with the same geometry as before a
refractive indicesn153,n256. We investigate low-lying
resonances that show a characteristic grouping of four re
nances~marked byA,B,C,D) over several periods. The cor
responding wave patterns, together with suggestions for
analogs, are shown in Fig. 11~b! for each resonance. We hav
mainly chosen regular orbits as candidates because of
regular structure of the delay-time plot. Neighboring res
nances of the same kind~i.e., the same letter! indeed differ
by 1 in the number of nodes@39#. Note that the ray repre
sentatives stem from both the hard-walland the refractive
billiard simulations; see Figs. 5 and 7.

In Fig. 11~c! we computed the Husimi function@16,20,40#
for each of the wave functions@41#, and marked the rays by
crosses in the corresponding Poincare´ SOS such that we can
directly compare the phase space presentations of waves
rays. The coincidence between regular islands and h
probability regions~dark! of the Husimi function appears
satisfying at first sight. However, closer inspection reve
differences in the details. For example, Husimi ‘‘islands’’ a
shifted away from regular islands as in the case of resona
D, with the corresponding real space modifications@Fig.
11~b!# clearly visible as well. One possible explanation mig
7-9
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M. HENTSCHEL AND K. RICHTER PHYSICAL REVIEW E66, 056207 ~2002!
be provided by the Goos-Ha¨nchen effect, which causes
lateral shift of the reflected ray for angles of inciden
around and greater than the critical angle@29,30#, thereby
effectively changing the angle of incidence. Furthermore,
point out that the ray trajectory for resonanceD is known
from the hard-wall system. The qualitative similarity to th
corresponding resonant wave pattern is remarkable, and
might think of the differences as necessary in order to m
the interference requirements caused by the optical ope
of the inner disk. This gives yet another example of the p
dictive power of the simple ray model when only thequali-
tative character of the resonances is of interest and imp
tance. On the other hand, it proves to be essential to con
wave methods when one is interested in details.

V. CONCLUSIONS

To conclude, we have investigated the ray and wave pr
erties of composite optical systems by applying meth
known from the classical and quantum theories of mix
dynamical systems. Using the optical annular billiard as
example, we have shown this concept to be very fruit
This means in particular that already the simple ray mo
provides a good qualitative understanding of the sys
properties, even for small wave numbers belownkR'30.
However, care must be taken when quantitative results
required, or the classical~ray! phase space is directly tran
lated into expected wave patterns: We find regular orbits
sociated with regular islands in phase space to be the d
nant class of resonant wave patterns, and suppressio
wave functions hosted by the chaotic part of the phase sp
The dependence of this behavior on the size of the w
number ~i.e., 1/\) remains an interesting topic for futur
work.

One remark is due concerning the refractive indices e
ployed in the calculations. The indexn53 often used here is
higher than that of water~1.33! or glass~around 1.5 up to
1.8! but is easily reached in semiconductor compoun
where typicallyn53.3. An indexn56 seems to be presentl
out of reach, which, however, does not affect the conclusi
drawn here.

Summarizing, ray-picture results may serve as a guid
the investigation of wave properties of optical systems, e
away from the ray limitk→`. For the annular billiard as an
example of a compound cavity system we demonstrated
the dominant resonant wave patterns can be seen as orig
ing from the regular orbits of both the hard-wall and t
refractive billiards. This knowledge can be more genera
used, e.g., in the construction of microlasers with desig
properties. Knowing the potential reflection points and hig
intensity regions of modes from simple ray-based consid
ations allows one to design microcavities with customiz
properties. Predictions can be made concerning, e.g., th
fective coupling between and into cavities, or how to e
ciently pump lasing systems. In turn, one can think of cav
shapes designed according to the technical requirements
application of the ray-wave correspondence in sophistica
optical ~compound! systems therefore may provide a powe
ful tool for future optical communication technologies.
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Optical cavities represent interesting model systems
quantum-chaos motivated studies. We have successfully
plied theS-matrix approach to gain spectral information, a
qualitatively discussed its periodic-orbit interpretation@43#.
The development of quantitative semiclassical theories in
spirit of the Weyl and the trace formulas remains an op
subject, in particular forcompoundsystems consisting o
more than one region with fixed refractive index, like th
annular billiard.
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APPENDIX: S MATRIX FOR THE ANNULAR BILLIARD

We will generalize the ideas developed in Sec. II C to t
dielectric annular billiard in order to determine theS matrix
for the eccentricannular billiard. This problem can be d
vided into the scattering problem at theouter boundary~be-
tween refractive indicesn0 and n1) and that at theinner
boundary~between indicesn1 andn2). Although the scatter-
ing at a dielectric disk was solved in Sec. II C, the situati
we are confronted with here is more complicated: the t
disks lie one inside the other, and their centers will in gene
not coincide.

We will begin with the scattering problem at the inn
boundary and express theS-matrix Si of the dielectric disk
with respect to a coordinate system with origin displac
from the center of the inner disk. This implies thatSi is not
diagonal. From Sec. II C we already know the~diagonal! S
matrix Sic of the inner disk in primed coordinates~see Fig.
1!, Eq. ~7!. We will now derive the relation betweenSic and
Si .

To this end we write the ansatz for the wave function
the annulus in primed coordinates,rW85rW2dW , with dW being
the vector from the center of the large disk to the center
the smaller disk, as

C1c~rW2dW !5 (
l 52`

`

al
cFHl

(2)~k1urW2dW u!eil f

1 (
`

Sll
icHl 8

(2)
~k1urW2dW u!eil 8fG , ~A1!

FIG. 12. Addition theorem for Bessel functions.
l 852`
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QUANTUM CHAOS IN OPTICAL SYSTEMS: THE . . . PHYSICAL REVIEW E 66, 056207 ~2002!
where the coefficientsal
c are to be chosen to yield the desire

kind of incident wave. We use the addition theorem
Bessel functionsZmP$Jm ,Ym ,Hm

(1) ,Hm
(2)% @42# to relate the

argumentswr to wr8 (w is a constant factor, and we assum
R2.d) ~see Fig. 12!,

Zm~wr8!eimf5 (
k52`

`

Jk~wd!Zm1k~wr !ei (m1k)f.

~A2!

Inserting this into Eq.~A1!, we obtain the expression

C̃15 (
l 52`

`

(
k52`

`

al
c@Hl 1k

(2) ~k1r !1Sll
icHl 1k

(1) ~k1r !#

3Jk~k1d!ei ( l 1k)f ~A3!

for the wave function in the annulus, now expressed w
respect to the center of the larger disk, i.e., in unprim
coordinates. We specify the coefficientsal

c by the require-
ment that the amplitude of an incident wave with angu
momentumm will be normalized to 1 in unprimed coordi
nates,

(
l 52`

`

(
k52`

`

al
cHl 1k

(2) ~k1r !Jk~k1d!ei ( l 1k)f[Hm
(2)~k1r !eimf.

With m[ l 1k, and (kJm2(m2k)Jk5dmm , we find that
choosing

mal
c5Jm2 l~k1d! ; l ~A4!

provides a suitable set of coefficients for a givenm. Accord-
ingly, we write

C̃15 (
m52`

` H (
m,k52`

`

@dmmHm
(2)~k1r !eimf

1Jm2(m2k)~k1d!S(m2k)(m2k)
ic Jk~k1d!Hm

(1)~k1r !eimf#J
[ (

m52`

` H Hm
(2)~k1r !eimf1 (

m52`

`

Smm
i Hm

(1)~k1r !eimfJ
where we have read off the scattering matrixSi of the inner
disk with respect to the center of the outer disk,

Smm
i 5

def

(
k5`

`

Jm2(m2k)~k1d!S(m2k)(m2k)
ic Jk~k1d!. ~A5!

The structure of this equation suggests a notation in term
a transformation matrixU, namely,Si5U21SicU, which de-
scribes the change in the origin of the coordinate system.
find Ul 8 l5Jl 82 l andUl 8 l

21
5Jl 2 l 8 .

The scattering matrixSi allows us to describe the scatte
ing at an off-centered disk, and we can now formulate
scattering problem of the annular billiard in the spirit of Se
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II C. Accordingly, we start with an ansatz for the wave fun
tion C0 outside the annular system (urWu.R1, using polar
coordinates! of the form

C0~rW !5 (
M52`

`

CM
0 ~rW !

5 (
M52`

` FCM
2~k0rW !1 (

M852`

`

SMM8CM8
1

~k0rW !G ,

where we have introduced the scattering matrixS of the
~compound! system and the definitions

CM
2~k0rW !5HM

(2)~k0r !eiM f, ~A6!

CM
1~k0rW !5HM

(1)~k0r !eiM f ~A7!

for incoming and outgoing waves outside the disk. Note t
we have used the freedom in fixing one of the amplitude

Similarly, we write for the wave functionC1 in the annu-
lar region

C1~rW !5 (
l 52`

`

alFC l
2~k1rW !1 (

l 852`

`

Sll 8
i C l 8

1
~k1rW !G ,

~A8!

with the amplitudesal ; the abbreviations are as in Eqs.~A6!
and ~A7! andSi is from Eq.~A5!.

Now, we determineS from the matching conditions, in
troduce the notation of capital letters for functions of arg
mentk0r , and reserve lower-case characters for the argum
k1r . Given an incident wave of angular momentumM, wave
function matching for each angular momentumL of the scat-
tered waves yields

HM
(2)eiM fdML1SMLHL

(1)eiLf

5aL
(M )hL

(2)eiLf1 (
l 52`

`

al
(M )SlL

i hL
(1)eiLf,

where the amplitudesaj
(M ) are coefficients associated with a

incoming function of angular momentumM, namely,HM
(2) .

Since this has to hold for allM, and at fixedM for all L, we
write this as a matrix equation

^ (M )H (2)u1^S(M )uH (1)5^a(M )u~h(2)1Sih(1)!, ~A9!

where Si is a matrix, h(2) and h(1) are diagonal matrices
hl j

(1,2)5hl
(1,2)d l j , and we adopt the bra notation for quantiti

that, at fixedM, are transposed vectors and gain matrix ch
acter onceM is varied. With this notation we immediatel
write the matching condition for the derivatives as

k0~^ (M )H (2)8u1^S(M )uH (1)8!5^a(M )uk1~h(2)81Sih(1)8!.

From Eq. ~A9! we find after substitutingF[h(2)1Sih(1)

that

^a(M )u5~^ (M )H (2)u1^S(M )uH (1)!F21.
7-11



m

c

s o
io
n

T
-

e
tion
tes.

in
ary
u-
bil-
ves
rre-

M. HENTSCHEL AND K. RICHTER PHYSICAL REVIEW E66, 056207 ~2002!
Introducing, furthermore, F85h8(2)1Sih8(1) and W
5F21F8, we write theS-matrix solution of the problem as

S5~k1H (2)W2k0H8(2)!~k0H8(1)2k1H (1)W!21.

This last equation allows us to apply the Wigner-delay-ti
approach to resonances cf.~Sec. II C!, and we used this
method to study resonances of the optical annular billiard
~Secs. III and IV!.

We complete the discussion here with some comment
the wave functions. We have not yet given the wave funct
in the inner disk. The ansatz is a sum over Bessel functio

C2c~rW8!5 (
l 52`

`

bl
cJl~k2r 8!eil f8,

where we adopted primed coordinates for convenience.
coefficientsbl are found from matching with the wave func
tion in the annulus at theinner boundary. To this end we
have to rewrite the annular wave function~A8! in terms of
-

o
e

05620
e

f.

n
n
s,

he

primed coordinates by applying the addition theorem~A2!
for Bessel functions. After straightforward algebra we find

C1c~rW8!5 (
l 52`

`

al
c@Hl

(2)~k1r 8!1Sll
icHl

(1)~k1r 8!#eil f8,

where the coefficientsal
c are related to theal by al

c

5( l 852`
` al 8Jl 82 l .

Another remark is in order concerning the validity of th
addition-theorem-based expansion of the Bessel func
when changing between primed and unprimed coordina
Expansion of the annular wave function inprimed coordi-
nates fails near the outer boundary whereurW8u.R12R2
2d. Similarly, expanding the annular wave function
unprimedcoordinates does not work near the inner bound
whereurWu,R21d. The reason for this behavior is that ang
lar momentum is not conserved in the eccentric annular
liard, and the expansion breaks down at radii where wa
explore this symmetry-breaking region because the co
sponding interface boundaries are hit.
be-
the

5
he
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