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Entropy and bifurcations in a chaotic laser
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We compute bounds on the topological entropy associated with a chaotic attractor of a semiconductor laser
with optical injection. We consider the Poincare´ return map to a fixed plane, and are able to compute the stable
and unstable manifolds of periodic points globally, even though it is impossible to find a plane on which the
Poincare´ map is globally smoothly defined. In this way, we obtain the information that forms the input of the
entropy calculations, and characterize the boundary crisis in which the chaotic attractor is destroyed. This
boundary crisis involves a periodic point with negative eigenvalues, and the entropy associated with the chaotic
attractor persists in a chaotic saddle after the bifurcation.
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I. INTRODUCTION

Many physical systems exhibit low-dimensional chao
dynamics. Well-known examples include the Lorenz syst
@1# and various forced nonlinear oscillators; see Ref.@2# and
further references therein. How can one show that a gi
system is chaotic, or better, determine how chaotic it
Established methods are the computation of Lyapunov ex
nents@3# and estimating the fractal dimension of a chao
attractor @4#. Both methods are computationally expensi
and may be inaccurate.

An alternative approach is to compute symbolic dynam
relative to a partition of phase space. The symbolic dynam
of the Hénon map was described by finding the pruni
fronts @5#, using approximate homoclinic tangencies to
tempt to construct a generating partition@6–8#. However,
while this approach appears to yield good results in pract
only heuristic arguments are given as to why the compu
dynamics should indeed occur in the system under consi
ation. @In Ref. @7# the authors remark that the method ‘‘a
pears to be of general validity, although there is no rigoro
proof that it is always applicable.’’# The dynamics associate
with so-called single-sided homoclinic tangles was studied
Ref. @9#, but again the results are mathematically nonrig
ous. More recently, some mathematically rigorous techniq
of constructing symbolic dynamics have emerged, such
topological approximation theory@10# and Conley index
methods@11,12#.

In this paper, we use the trellis theory developed in Re
@13,14#. In this method, the symbolic dynamics is comput
by a mathematically rigorous construction from a knowled
of finite pieces of stable and unstable manifolds of sad
points of the system. Since these manifolds can be comp
arbitrarily accurately, the method is a computationally fe
sible approach to the construction of symbolic dynami
The method has the additional advantages of describing
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dynamics in terms of the natural partition of phase space
the computed manifolds, and of giving the existence of
riodic, homoclinic and heteroclinic orbits. As far as we a
aware, no other method for computing symbolic dynam
shares all these useful properties. While the aim is not n
essarily to construct a generating partition as in Ref.@8#, we
can find the dynamics arbitrarily precisely by computing
bitrarily long pieces of manifold. We believe that combinin
the two methods may give an even more powerful appro
to computing symbolic dynamics, but this is beyond t
scope of the paper.

We can use the symbolic information obtained from t
trellis theory to find a lower bound for the topological e
tropy @15#. Topological entropy is a single number measuri
how chaotic a given system is, much like a Lyapunov exp
nent. @There is indeed a deep mathematical connection
tween the two concepts@16#.# While Lyapunov exponents
measure how chaotic an individual attractor is, topologi
entropy is aglobal measureof chaos, and is associated wit
homoclinic and heteroclinic tangles formed by the stable a
unstable manifolds of saddle periodic orbits. For lo
dimensional systems, the topological entropy measures
growth rate of the number of hyperbolic periodic orbits, a
other natural measure of the complexity of the system;
Ref. @17# for a method to estimate this growth rate.

To showcase the power of our method for practical ap
cations we consider the technologically relevant example
a semiconductor laser subject to external optical injecti
introduced in Sec. II below. It is known that optical injectio
produces an enormous variety of different dynamics, incl
ing chaos@18–23#, and it was recently considered for chaot
communication schemes@24,25#. Its bifurcation~or stability!
diagram has been studied extensively@22# and excellent
agreement was found with experimental measureme
@21,26#. This revealed different routes to regions of chaos
the system, and sudden bifurcations of chaotic attrac
@27,28#.

In this paper, we consider one such transition, in whic
chaotic attractor is seen to disappear. This phenomeno
caused by a boundary crisis, which is a bifurcation in wh
©2002 The American Physical Society01-1
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a chaotic attractor is destroyed when it collides with its ba
boundary. Boundary crises have been extensively stu
@29–31#, and are especially well understood when they oc
at a homoclinic or heteroclinic tangency of stable and
stable manifolds@32#. Here we discuss the boundary crisis
terms of the unstable manifold of a saddle fixed point in
chaotic attractor. Because the stable eigenvalue of this sa
point is negative, the boundary crisis is not due to a tange
involving this unstable manifold, but instead occurs at
first intersection of itsclosureand theclosureof the stable
manifold of a different saddle point. We therefore call th
type of boundary crisis aclosure tangency. A closure tan-
gency was noted by Osinga and Feudel in their paper R
@33# on quasiperiodically forced systems when they look
at the~unforced! orientation-reversing He´non map. Here we
give the first detailed account of this type of boundary cri
in the orientation-preserving case, which is especially imp
tant since this is the case which occurs in the Poincare´ map
of a flow. The disappearance of the chaotic attractor a
raises the interesting question of what happens to the ent
during the bifurcation.

Our main tool is to consider a Poincare´ or first return map
to a suitable section~i.e., a smooth codimension-one man
fold!. For the much-studied periodically forced systems,
stroboscopic map of the forcing frequency is a Poincare´ map
with the extra property that the plane of fixed forcing tran
versely intersectsall orbits of the vector field~in autonomous
form!. Therefore, this Poincare´ map is aglobally defined
diffeomorphism; for example, for the forced Van der Pol a
Duffing oscillators@2# it is a globally defined planar map
However, it is an important fact that this is a special prope
of periodically forced systems. For a general flow it is n
possible to find a section that is transverse to all orbits@34#.
This means that one is condemned to work with a section
which the Poincare´ first return map need not be invertible
may have discontinuities and may even be~locally! unde-
fined. This must be seen as the typical situation in appl
tions and is also the case for the laser system consid
here. As a consequence, one encounters new features i
organization of the stable and unstable manifolds that do
occur in the more familiar case of surface diffeomorphis
such as the He´non @35# and Ikeda@36# maps. We stress tha
the difficulties caused by the discontinuities in the first Po
caréreturn mapcannotbe circumvented by a clever choic
of section.

Adapting the method in Ref.@37# to this more genera
setting allows us to compute suitably long pieces of sta
and unstable manifolds. These are the input to the topol
cal algorithm of Ref.@13# by which we establish rigorou
bounds for the topological entropy. This constitutes a pr
that the semiconductor laser with optical injection does
deed have chaotic dynamics.

This paper is organized as follows. In Sec. II we introdu
the equations of an optically injected semiconductor la
and discuss its Poincare´ map. Global bifurcations are ex
plained in detail in Sec. III and the entropy bounds are
topic of Sec. IV. We draw some conclusions and point
future work in Sec. V. The Appendix is a brief exposition
the Hénon map of a boundary crisis at a closure tangenc
05620
n
ed
r
-

e
dle
cy
e

f.
d

s
r-

o
py

e

-

y
t

n

-
ed
the
ot
s

-

le
i-

f
-

e
r

e

II. SEMICONDUCTOR LASER WITH OPTICAL
INJECTION

A semiconductor laser with optical injection is arguab
the most accessible laser system showing chaotic dynam
being modeled very well by the single-mode rate equatio

Ė5K1S 1

2
~11 ia!n2 iv DE, ~1!

ṅ522Gn2~112Bn!~ uEu221!,

for the complex electric fieldE and the population inversion
n @22#. The main parameters are the injected field strengtK
and the detuningv of the injected field from the solitary
laser frequency. The parametersa, B, andG specify material
properties of the laser. In particular,a is the well-known
linewidth enhancement factor and for semiconductor lase
is in the rangeaP@1,10#. In this paper, we set the materia
laser parameters to the realistic valuesa52, B50.015, and
G50.035; see Ref.@22# for further details.

A. The Poincarémap

To study system~1!, we consider the first Poincare´ return
map f to a section. This has the advantage of reducing
system to a two-dimensional iterated map, which is easie
visualize and is more amenable to many kinds of analysis
is usual to consider a Poincare´ section which is everywhere
transverse to the flow and to which all trajectories return,
which case the resulting map is globally defined, continuo
and invertible. Unfortunately, for the semiconductor las
there is no such global section, so instead we take a na
section S for the system, namely the planeS5$(E,n):n
50%, and treat the resulting pathologies appropriately.

If p0 is a point onS such that the trajectory throughp0
has a first return toS at a pointp1, and the flow is transverse
to S at p0 and p1, then the first return mapf is locally a
diffeomorphism atp0. On these regions,f can be treated like
any other diffeomorphism and no special theory is requir
However, some initial conditionsp0 may lie in the basin of
an attractor which does not intersectS. Indeed, it may even
be that the trajectory throughp0 never returns toS. In this
case, the first return map is undefined atp0. For initial con-
ditions approaching the boundary of the domain of definit
of f, the return time typically tends to infinity.

Another serious problem is that the first return mapf need
not be continuous. In all cases, a discontinuity of the ret
map is due to a loss of transversality of the flow with t
section. Before discussing the various cases, we first exam
the behavior of the flow of system~1! on S.

SinceS is defined by the conditionn50, the direction in
which the flow crossesS is given by the sign ofṅ at n
50. From Eq.~1! we see that

ṅun50512uEu2, ~2!

so n increases throughS when uEu,1 and decreases whe
uEu.1. The flow is tangent toS precisely on the unit circle
C given by uEu51. For this system, the tangency set is i
1-2
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dependent of the parameter values. Even though this pa
eter independence is not typical, we note that the tange
set is one dimensional, which is the generic case.

On C we compute

d

dt
~ uEu2!52KRe~E!, ~3!

so the flow is directed toward the outside ofC for Re(E)
.0 and inside for Re(E),0.

Locally, C dividesS into two pieces,S1 andS2, which
we can choose so that the vector field is directed fromS1 to
S2. Assuming further the generic case of a quadratic t
gency, we see that points inS1 return to the section inS2
after a time interval which tends to 0 as the starting po
approachesC, whereas points inS2 have no local returns to
S. Therefore,C is a discontinuity curve off, with f (p)'p if
p is in S1 and close toC, but typically f (p)P” C for pPC.

Despite these discontinuities, the first return map is s
invertible, since an inverse is given by reversing the fl
direction. There are three generic types of discontinuity, c
responding to a flow line which is tangent to the sectionS at
an initial, interior or final point, respectively. In two of thes
cases, a locally continuous map can be constructed by al
ing the number of returns to the section to vary.

The easiest situation is that the tangency occurs a
interior point of the flow line joining two points. Changin
the number of intersections with the section by two allow
smooth extension of the return map, as the flow is transv
to the section at the initial and final points. Similarly, wh
the tangency occurs at the initial point of the flow lin
changing the number of intersections with the section by
allows a continuous extension of the return map, though
is not smooth. However, when the tangency occurs at
final point of the flow line, there is no continuous extensio
It is possible to change the number of intersections by
and obtain a return map which is close to the original on

A continuous extension of the return map is known a
branch of the return map. These branches are best un
stood by considering the set

$~p0 ,p1 ,t !PS3S3R:F t~p0!5p1%,

which gives all possible returns. A more detailed discuss
of nonglobally defined Poincare´ maps, which must be re
garded typical in applications, is beyond the scope of t
paper.

B. Stable and unstable manifolds

A great deal of information about the dynamics of t
system can be obtained by computing the stable and uns
manifolds of its periodic saddle orbits. For the laser syst
~1!, with parameter valuesK50.290 andv50.270, we con-
sider two periodic saddle orbitsP andQ, with periods 13.14
and 13.19, respectively. The stable and unstable eigenva
of P are both positive, and those ofQ are negative, so the
invariant manifolds ofQ are nonorientable@38#. We callP a
direct saddle orbit andQ a flip ~or twisted! saddle. The prod-
uct of stable and unstable eigenvalues for bothP and Q is
05620
m-
cy

-

t

ll

r-

w-

n

a
se

e
is
e
.
e

a
r-

n

is

ble

es

less than 1, so both saddles aredissipative, that is, the at-
tracting direction is stronger than the repelling one.

Both of these orbits cross the sectionS at four points,
which are, therefore, four-periodic points of the first retu
map f. We label these pointp0 ,p1 ,p2 ,p3 andq0 ,q1 ,q2 ,q3,
where the convention is that the points map to each othe
this order and back top0 or q0, respectively. Figure 1 show
the stable and unstable manifolds of the orbitP
5$p0 ,p1 ,p2 ,p3%.

The stable and unstable manifolds of thepi , denoted
Ws(pi) andWu(pi), respectively, consist of the intersectio
of the stable and unstable manifolds ofP with the sectionS.
Since the stable manifold ofP is a smooth surface, its inter
section with any section will~generically! consist of an im-
mersed collection of one-dimensional manifolds. Howev
the presence of discontinuities in the first return map me
that the properties of the stable manifold may be very diff
ent from that of the stable manifold of a surface diffeomo
phism. Indeed, we can see that the stable manifolds thro
p0 andp3 and those throughp1 andp2 coincide. This would
be impossible for a diffeomorphism, but can occur here
the stable curve passes through the tangency curveC. In
addition, there are components of the stable manifold wh
do not contain any of the pointsp0 ,p1 ,p2 ,p3.

The presence of discontinuities complicates the comp
tion of the invariant manifolds. Most algorithms for compu
ing one-dimensional invariant manifolds involve computi
the invariant manifold in a neighborhood of the periodic o
bit and growing it. Here we use an adaptation of the alg
rithm of Krauskopf and Osinga@37#, which we combine with
the observation that the computation of a continuous bra

FIG. 1. Stable and unstable manifolds of the four-periodic poi
$p0 ,p1 ,p2 ,p3%, which are in the same orbit under the Poincare´ map
f, shown in the section$n50% in this and all other figures;v
50.270 andK50.290. On the circleC5$uEu51% the Poincare´
map is discontinuous.
1-3
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of the return map can be formulated as a family of bound
value problems. In this way, stable and unstable manifo
can be continued across discontinuities of the first return m
by changing the number of iterates. At present we comp
the return map by shooting, but one could also use collo
tion techniques in combination with standard continuat
methods, such as is done in the packageAUTO @39#.

III. GLOBAL BIFURCATIONS

We now consider the bifurcations of the system as
parameterv is increased from 0.260 to 0.280 keepingK
fixed at 0.290. In this region, sudden bifurcations to cha
have been found in numerically computed bifurcation d
grams@23#, and later also in an experiment on an optica
injected distributed feedback~DFB! laser@26#. Here we con-
sider this transition in much more detail, and this requi
looking in a small range forv. The periodic saddle orbitsP
andQ which were computed forv50.270 can be continued
through this parameter range, and they remain direct and
saddles, respectively.

In this v range we encounter two important bifurcatio
contributing to the disappearance of a chaotic~strange! at-
tractorA, which is present forv50.26. The first bifurcation
we encounter is abasin boundary metamorphosis@31# at v
5vbbm'0.269 292, followed by aboundary crisis@29# at
v5vbc'0.269 299. The basin boundary metamorphosis
due to aninner tangency@32# of the stable and unstabl
manifolds of the direct saddleP. At this well-known bifur-
cation the attractorA itself does not change, but the bas
boundary undergoes a smooth to fractal transition~as was
observed, for example, in the He´non map@31#! due to the
creation of a chaotic saddle. The boundary crisis is cause
a closure tangency: the first intersection of the closure o
Wu(Q), which constitutes the attractorA, and the closure of
Ws(P), which contains the boundary of the basin of attra
tion. In fact, becauseQ is a flip saddle, there cannot be
parameter value at which a first tangency ofWs(P) and
Wu(Q) exists. After the boundary crisis the system jumps
a periodic attractor.

A closure tangency has not been described in detai
was discussed briefly in Ref.@33# in the orientation-reversing
case. In the Appendix we illustrate this global bifurcati
and, in particular, the organization ofWu(Q), in the
orientation-preserving He´non map.

The inner tangency removes a topological obstruction
the boundary crisis to occur. It is not unusual for a ba
boundary metamorphosis to be followed closely by a bou
ary crisis. This occurs, for example, in the vicinity of
double crisis point; see Ref.@40#. However, entropy consid
erations show that it is impossible for a first inner tangen
to occur simultaneously with a boundary crisis of a chao
attractor, so a double crisis is not responsible for the clo
ness of these two bifurcations in our system. Instead,
investigations suggest that the closeness is due to the
that the stable eigenvalue ofP is very small ('0.03 over the
entire rangevP@0.260,0.280#).

A description of the bifurcations can be obtained by co
sidering the Poincare´ return map toS. As v varies,P andQ
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each continue to intersectS transversely at four points. Th
chaotic attractor A intersects S in four components,
A0 ,A1 ,A2 ,A3, with eachAi containingqi and being invari-
ant underf 4. The componentA0 is contained in the rectangl
R5@20.1,20.2#3@20.65,0.35#. Although f, and hencef 4

are not globally continuous, the restriction off 4 to R is, so
the dynamics on this set is essentially that of a diffeom
phism, and is governed by the two periodic saddle pointsp0

andq0 and their stable and unstable manifolds.

A. Basin boundary metamorphosis at inner tangency

For parameter values ofv less thanvbbm, the geometry
of the stable and unstable manifolds ofp0 andq0 is as shown
in Fig. 2 ~row a!. The closure of the unstable manifold of th
flip saddle q0 is a chaotic attractorA0 with a positive
Lyapunov exponent and positive entropy. For many para
eter values, this attractor may have smaller subattractors
side it, including stable periodic orbits@41#, but the observ-
able behavior is that of a single strange attractor. One bra
of the unstable manifold ofp0 ends in a periodic attractorr 0,
and the other branch intersects the stable manifold ofq0.
Hence, points nearp0 are either attracted toA0 or to r 0. The
stable manifold ofp0 does not intersect the unstable man
fold of p0, so there are no orbits homoclinic top0.

The stable and unstable manifolds top0 at the inner tan-
gency bifurcation occurring forv5vbbm, are shown in Fig.
2~b1!. The attractorA0 persists, but there is now a new bas
set associated with the homoclinic orbits top0, also with
positive topological entropy. This leads to a change of

FIG. 2. Stable and unstable manifolds of the four-periodic po
p0 ~left column!, of the four-periodic pointq0 ~middle column!, and
of both p0 andq0 ~right column!, before~row a!, approximately at
~row b! and after~row c! the destruction of a chaotic attractor;K
50.290 and from~a! to ~c! v50.2673, 0.269292, 0.270.
1-4
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basin ofA0, and this is why this inner tangency is in fact
basin boundary metamorphosis. Since the direct saddlep0 is
dissipative, a result of Palis and Takens@42# shows that there
must have been chaotic attractors present nearp0 even be-
fore this bifurcation, but these are small enough not to
physically relevant. The significance of this bifurcation
that now there are no topological obstructions for the sta
manifold of p0 to intersect the unstable manifold ofq0.

B. Boundary crisis at closure heteroclinic tangency

The attractorA is destroyed in the boundary crisis occu
ring at v5vbc, soon after the inner tangency. Forv
,vbc, the stable manifold ofp0 , Ws(p0), and the unstable
manifold ofq0 , Wu(q0), are disjoint, and we have a chaot
attractor consisting of the closure of the unstable manifold
q0 , Wu(q0). For v.vbc, the manifolds Ws(p0) and
Wu(q0) intersect transversely, and we now have a hete
clinic tangle formed by the stable and unstable manifolds
p0 andq0. ThereforeWu(q0) andWu(p0) are the same, and
the closure of the unstable manifoldWu(q0) is no longer a
chaotic attractor. Instead, almost every point is attracted
the periodic pointr 0. This bifurcation gives adiscontinuous
change in the closure ofWu(q0).

As v approachesvbc from above, there are infinitely
many parameter values at which heteroclinic tangencie
Ws(p0) andWu(q0) occur, andvbc is a limit point of these
values. Sinceq0 is a flip saddle, its unstable manifold limit
on itself from both sides, so it can never have tangenc
with any stable manifold without also having transver
crossings. Atvbc, the manifoldsWs(p0) and Wu(q0) must
still be disjoint, but they do have common limit point
Therefore, the closures of the manifolds,Ws(p0) and
Wu(q0), intersect, and numerical evidence strongly sugge
that Ws(p0) and Wu(q0) are smoothly tangent at the bifu
cation, justifying the nameclosure tangency. Although
Ws(p0) and Wu(q0) are disjoint, there may be periodi
saddle points inWs(p0) and Wu(q0) whose unstable mani
folds do have a first tangency atvbc, in which case the crisis
is as described in Ref.@29#.

The closure tangency can be seen as a bifurcation of
chaotic saddleB associated with the homoclinic tangle ofP
and the attractorA associated with the homoclinic tangle
Q; see the Appendix. A natural consequence is that at
bifurcation, the topological entropy associated withA andB
must be the same; see also Sec. IV.

IV. TOPOLOGICAL ENTROPY

As mentioned in the introduction, topological entropy is
global measure of the degree of chaos of a dynamical
tem, and is associated with the growth rate of the numbe
periodic points of a given period. There is also a notion
entropy applied to a homoclinic or heteroclinic tangle, whi
is given in terms of the growth rate of the number of inte
sections of initial branches of stable and unstable mani
under iteration of the latter. The entropy of a tangle is eq
to the growth rate of the periodic orbits associated with
tangle. Since some entropy may be associated with o
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tangles of the system, the entropy of the tangle under c
sideration is a lower bound for the topological entropy of t
system.

Here, we estimate the topological entropy of the fou
return map of the semiconductor laser using the meth
described in Refs.@13,14# and also give a detailed descrip
tion of the system in terms of symbolic dynamics. For t
remainder of this section, we shall usef̃ to refer to the fourth
return mapf 4 of the laser system.

The quality of the information obtained depends grea
upon the length of stable and the unstable manifolds
computes. Consider the initial pieces of stable and unsta
manifold, called atrellis, shown in Fig. 3~a!. The stable and
unstable manifolds are such that no information about
entropy can be obtained other than the standard result th
must be strictly positive.

In Fig. 3~b!, the trellis dividesS into a number of regions
It can be shown that the regionsRA and RB must contain
chaotic dynamics. Orbits that are entirely contained in th
two regions can be coded symbolically by assigning to e
orbit the sequence ofA’s andB’s such that thekth element
of the sequence gives the region containing thekth iterate.
Such a sequence is called anitinerary of the point. Using our
methods, we can show thatf̃ must have orbits of every itin-
erary except those which contain a word of the fo
AB4n1kA wherek51 or k52; see below for more details

Increasing the length of computed stable and unsta
manifolds allows better estimates of the symbolic dynam
and better entropy bounds can be obtained. The unst
curve shown in Fig. 3~c! is the iterate of that shown in Fig
3~b!. We can now deduce that the chaotic saddle, which m
exist in regionsRA and RB , must lie in the very thin strip
bounded by the indicated piece ofWu(p0).

We now return to consider the trellis forv50.270 of Fig.
3~b! in more detail. The symbolic dynamics is found by co
structing a graphG embedded in the complement of the u
stable manifold, and using the stable manifold to induce
actiong on this graph; see Fig. 4. The edges ofG are of two
types,control edges, shown in black, andexpanding edges,
shown in gray. The control edges are short edges crossing
stable manifold. Their primary role is to capture the topolo
cal and dynamical information contained in the stable ma
fold. The expanding edges connect the control edges with
crossing the trellis or introducing unnecessary loops. Th

FIG. 3. Initial branches of stable and unstable manifolds ofp0

from Fig. 2 form a trellis that does not force chaotic dynamics~a!.
For a longer piece ofWs(p) the trellis bounds two regionsRA and
RB with positive entropy dynamics~b!, while an even longer piece
of Ws(p) reveals that the regions of chaotic dynamics are thin st
~c!; K50.290 andv50.270.
1-5
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carry all the interesting dynamical information.
Performing the algorithm given in Ref.@13# we obtained

the graph in Fig. 4. The induced actiong on the expanding
edges of the graph is given by

a°ab1b̄2 , b1°b2 , b2°b3 , b3°b4 , b4°ab1 . ~4!

We see that orbits ofg also have an itinerary given byA’s
andB’s, with the edgea corresponding toA, and the edges
b1 , b2 , b3, andb4 corresponding toB.

The most important property ofg is that for any orbit ofg,
there is an orbit off̃ with the same itinerary. The orbits ofg

are said toforce orbits of f̃ . Furthermore, for any periodic
orbit of g, there is a periodic orbit off̃ with the same itiner-
ary and period. For example, the four-periodic orbit ofg that
visits edgesa, b2 , b3, andb4 forces a four-periodic orbit of
f̃ with itinerary (ABBB)Z. We can also deduce informatio
about the orbits off̃ that are homoclinic top0: for any orbit
of g that has all but finitely many points ina ~and so whose
itinerary is homoclinic toAZ), there is a corresponding orb
of f̃ which is homoclinic top0.

The converse of these forcing results is not true; the or
of f̃ do not force orbits ofg, and in many cases theremustbe
orbits of f̃ that have a different itinerary from any orbit ofg.
Therefore, all we can say is that the dynamics off̃ are more
complicated than those ofg. This is well reflected in the
topological entropy, which satisfies the inequality

htop~ f̃ !>htop~g!. ~5!

For this example ofv50.270, we findhtop(g)' ln(1.544)
'0.434, giving a lower bound for the entropy of the syste
as htop( f 4)>0.434. This proves that the injection laser
modeled by Eq.~1! indeed has chaotic dynamics~for these
particular parameter values!.

FIG. 4. Initial branches of stable and unstable manifolds ofp0

from Fig. 3~b!, with a corresponding graphG capturing the topol-
ogy of the trellis;K50.290 andv50.270.
05620
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We now study how the topological entropy changes w
the parameterv; the resulting estimates for the entropy a
summarized in Table I. Forv,vbc, the topological entropy
of the attractorA0 can be estimated by considering the trel
formed by the stable and unstable manifolds ofq0. Since the
stable manifold ofp0 and the unstable manifold ofq0 do not
intersect, the dynamics on the attractor can be conside
separately from that of the chaotic saddle associated withp0.
For the stable and unstable manifolds ofq0 computed for
bothv5vbbm andv5vbc, the bound for the entropy of the
attractor is 0.346, though the actual entropy may incre
slightly. At v5vbbm, the entropy of the trellis associate
with p0 is 0, and at the closure tangency, the entropy of
trellises associated withp0 andq0 must be equal, hence th
entropy of the trellis associated withp0 must be at least
0.346.

As v increases further, more intersections of stable a
unstable manifold are created. While some of the fine str
ture of the tangle may change forv between 0,272 and
0.280, there are no significant changes. Forv between 0.280
and 0.282, there is a bifurcation sequence, illustrated in
5, which ends in the creation of a full Smale horseshoe. T
entropy bound for the chaotic saddle increases, and app
to change continuously withv, though the bound compute
from given finite pieces of stable and unstable manifo
jumps at the homoclinic tangencies. For the trellises in F
5, we compute entropy bounds of 0.596, 0.596, and
'0.693, respectively; see also Table I. However, this entr
only measures the complexity of the transient orbits, a
would not be seen if the system was already locked to
stable limit cycler 0; see Sec. II. It is a curious phenomeno
that the entropy of the chaotic set is increasing asv increases
past the closure tangency. In other words, while thecomplex-
ity of the system as measured by the topological entrop
increasing, theobservedbehavior becomes simpler, becau
the chaotic set loses stability and onlyr 0 remains as an at
tractor.

V. CONCLUSIONS

The method of analysis presented here can be extende
any low-dimensional system. We have seen that invar

TABLE I. Lower estimates of the topological entropy off̃
5 f 4, K50.290, andv is as indicated.

v vbc'0.269292 0.278 0.280 0.282

htop( f̃ ) 0.436 0.596 0.596 ln 2'0.693

FIG. 5. The emergence of a full horseshoe off 4; K50.290 and
from ~a! to ~c! v50.278, 0.280, 0.282.
1-6
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curves of saddle points in a section can be computed eve
there is no globally defined, continuous, invertible first retu
map ~which is the typical situation!. From these manifolds
the structure of the large-scale attractors of the system ca
computed, and bifurcations in which they are destroyed
also be found.

One can then compute rigorous lower bounds for the
pological entropy on attractors and chaotic nonattract
sets, and obtain a description of their internal dynamics
terms of the itineraries.

For the laser system described, we find a basin bound
metamorphosis due to an inner tangency of a direct sa
followed by the disappearance of a chaotic attractor a
boundary crisis. The chaotic attractor is the closure of
unstable manifold of a flip saddle and this boundary crisis
due to a closure tangency involving this unstable manifo
The phenomenon of a closure tangency is typical in tw
dimensional orientation-preserving diffeomorphisms a
three-dimensional flows, as was demonstrated by identify
this type of boundary crisis in the He´non map. At the bound-
ary crisis the entropy associated with the chaotic attracto
positive, and it persists as the entropy associated with a
otic saddle after the bifurcation.

Our computations of lower bounds on the entropy con
tute a proof that the injection laser indeed displays cha
dynamics. Apart from an interest in the laser community
applications of chaotic dynamics, for example, in commu
cation schemes, this is also one of the first examples
rigorous~computer assisted! proof of chaos in a technologi
cally relevant physical system.
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FIG. 6. Before~row a! and after~row b! a closure tangency in
the Hénon map. Shown are the stable and unstable manifoldsp
andq ~left column!, just ofp ~middle column!, and the stable mani
fold of p and unstable manifold ofq ~right column!; b50.5, and
a52.4 ~row a! anda52.5 ~row b!.
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APPENDIX: CLOSURE TANGENCY IN THE HE´ NON MAP

The scenario described above, in which a closure t
gency is responsible for the destruction of a chaotic attrac
is typical in orientation-preserving diffeomorphisms, whic
include all return maps of flows. We describe here in mo
detail what this bifurcation means in terms of the stable a
unstable manifolds of the saddles involved, because thi
quite spectacular and not in the literature on boundary cri
Indeed, this bifurcation is responsible for the destruction o
chaotic attractor in the He´non map

H~x,y!5Ha,b~x,y!5~a2x22by,x! ~A1!

in the orientation-preserving caseb.0; see Ref.@40# for an
example. We fixb50.5, soH is uniformly dissipative, and
vary the parametera.

For sufficiently largea, H has two saddle fixed points,
direct saddlep and a is a flip saddleq, which means that we
are in the same situation as discussed previously for the
jected laser. Fora.0.840 the manifoldsWu(p) and Ws(p)
intersect transversely yielding homoclinic orbits top. For
parameter valuea52.4, Wu(p) intersects bothWs(p) and
Ws(q), but Wu(q) does not intersectWs(p), as shown in
Fig. 6~row a!. The closure ofWu(q) is a chaotic attractorA,
and remains inside a region bounded by an arc ofWu(p) and
an arc ofWs(p). The boundary of the basin of attraction ofA
is Ws(p).

FIG. 7. The manifoldWu(p) changes little in the closure tan
gency, see~a1! and ~b1!, but Wu(q) changes dramatically. Before
the closure tangency longer and longer pieces ofWu(q) in panels
~a2! and~a3! stay bounded, while after the closure tangency lon
and longer pieces ofWu(q) in panels ~b2! to ~b6! converge to
Wu(p). Close to the closure tangency one needs to compute
long pieces ofWu(q) to see its convergence toWu(p); b50.5, and
a52.4 ~row a! anda52.5 ~rows b!.
1-7



e
d

e
d
nt

i-

s

ity

-
tan-

he

are

is-
es
r of
re
,
nge
sly.

PIETER COLLINS AND BERND KRAUSKOPF PHYSICAL REVIEW E66, 056201 ~2002!
For a52.5, shown in Fig. 6~row b!, the situation is very
different. Wu(q) now intersectsWs(p). Since points which
lie to the left ofWs(p) escape to infinity, there is an open s
in Wu(q) consisting of points which escape to infinity, an
the set of points which escape is dense. The closure of th
of points heteroclinic top andq is now a chaotic saddle, an
gives only transient behavior of the map; all other poi
escape to infinity.

OnceWs(p) and Wu(q) intersect, they must do so arb
trarily close top, and, by the Lambda Lemma@43#, the clo-
sure ofWu(p) containsWu(q). Hence,Wu(p) and Wu(q)
have the same closures. This means that the branche
Wu(q) now limits on the branch ofWs(U) which extends to
infinity. Hence, this type of boundary crisis is a discontinu
point of Wu(q) ~using the Hausdorff metric on sets!.
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To illustrate this, in Fig. 7 we show howWu(q) is build
up in successive iterates. In Figs. 7~a2! and 7~b2!, we have
computedWu(q) to length 1; successive figures are com
puted by iterating the unstable curve. Before the closure
genciesWu(q) remains bounded@Fig. 7~a3!#. After the clo-
sure tangency notice how for the first few iterates t
unstable curve remains close to the former attractor@Fig.
7~b2!–~b4!#, but, as higher iterates are computed, there
arcs that crossWs(p) closer and close top @Fig. 7~b5!–~b6!#.
Although the topology of the unstable manifold changes d
continuously at the limit bifurcation, for parameter valu
close to the induced boundary crisis, a very large numbe
iterates of the initial segment of unstable manifold a
needed to cross a given arc inWs(p). This must be the case
since even though the topology of the manifold can cha
discontinuously, any fixed iterate must change continuou
. E
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