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Entropy and bifurcations in a chaotic laser
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We compute bounds on the topological entropy associated with a chaotic attractor of a semiconductor laser
with optical injection. We consider the Poincasturn map to a fixed plane, and are able to compute the stable
and unstable manifolds of periodic points globally, even though it is impossible to find a plane on which the
Poincaremap is globally smoothly defined. In this way, we obtain the information that forms the input of the
entropy calculations, and characterize the boundary crisis in which the chaotic attractor is destroyed. This
boundary crisis involves a periodic point with negative eigenvalues, and the entropy associated with the chaotic
attractor persists in a chaotic saddle after the bifurcation.
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[. INTRODUCTION dynamics in terms of the natural partition of phase space by
the computed manifolds, and of giving the existence of pe-

Many physical systems exhibit low-dimensional chaoticriodic, homoclinic and heteroclinic orbits. As far as we are
dynamics. Well-known examples include the Lorenz systenmaware, no other method for computing symbolic dynamics
[1] and various forced nonlinear oscillators; see R2fand  shares all these useful properties. While the aim is not nec-
further references therein. How can one show that a givemssarily to construct a generating partition as in R&f. we
system is chaotic, or better, determine how chaotic it isZan find the dynamics arbitrarily precisely by computing ar-
Established methods are the computation of Lyapunov expdsitrarily long pieces of manifold. We believe that combining
nents[3] and estimating the fractal dimension of a chaoticthe two methods may give an even more powerful approach
attractor[4]. Both methods are computationally expensiveto computing symbolic dynamics, but this is beyond the
and may be inaccurate. scope of the paper.

An alternative approach is to compute symbolic dynamics We can use the symbolic information obtained from the
relative to a partition of phase space. The symbolic dynamicgellis theory to find a lower bound for the topological en-
of the Heon map was described by finding the pruningtropy[15]. Topological entropy is a single number measuring
fronts [5], using approximate homoclinic tangencies to at-how chaotic a given system is, much like a Lyapunov expo-
tempt to construct a generating partitip—8]. However, nent.[There is indeed a deep mathematical connection be-
while this approach appears to yield good results in practiceween the two conceptsl6].] While Lyapunov exponents
only heuristic arguments are given as to why the computedheasure how chaotic an individual attractor is, topological
dynamics should indeed occur in the system under consideentropy is aglobal measuref chaos, and is associated with
ation. [In Ref. [7] the authors remark that the method “ap- homoclinic and heteroclinic tangles formed by the stable and
pears to be of general validity, although there is no rigorousinstable manifolds of saddle periodic orbits. For low-
proof that it is always applicable]'The dynamics associated dimensional systems, the topological entropy measures the
with so-called single-sided homoclinic tangles was studied irgrowth rate of the number of hyperbolic periodic orbits, an-
Ref. [9], but again the results are mathematically nonrigor-other natural measure of the complexity of the system; see
ous. More recently, some mathematically rigorous techniqueRef. [17] for a method to estimate this growth rate.
of constructing symbolic dynamics have emerged, such as To showcase the power of our method for practical appli-
topological approximation theory10] and Conley index cations we consider the technologically relevant example of
methodg 11,12 a semiconductor laser subject to external optical injection,

In this paper, we use the trellis theory developed in Refsintroduced in Sec. Il below. It is known that optical injection
[13,14. In this method, the symbolic dynamics is computedproduces an enormous variety of different dynamics, includ-
by a mathematically rigorous construction from a knowledgeing chao§18-23, and it was recently considered for chaotic
of finite pieces of stable and unstable manifolds of saddle&eommunication schemgg4,25. Its bifurcation(or stability)
points of the system. Since these manifolds can be computetlagram has been studied extensivgB2| and excellent
arbitrarily accurately, the method is a computationally fea-agreement was found with experimental measurements
sible approach to the construction of symbolic dynamics[21,26]. This revealed different routes to regions of chaos in
The method has the additional advantages of describing thihe system, and sudden bifurcations of chaotic attractors

[27,28.
In this paper, we consider one such transition, in which a
*Electronic address: pcollins@liv.ac.uk chaotic attractor is seen to disappear. This phenomenon is
"Electronic address: B.Krauskopf@bristol.ac.uk caused by a boundary crisis, which is a bifurcation in which
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a chaotic attractor is destroyed when it collides with its basin [l. SEMICONDUCTOR LASER WITH OPTICAL

boundary. Boundary crises have been extensively studied INJECTION

[29-31], and are especially well understood when they occur

at a homoclinic or heteroclinic tangency of stable and un- A semiconductor laser with optical injection is arguably
stable manifold$32]. Here we discuss the boundary crisis in the most accessible laser system showing chaotic dynamics,
terms of the unstable manifold of a saddle fixed point in theébeing modeled very well by the single-mode rate equations
chaotic attractor. Because the stable eigenvalue of this saddle 1

point is negative, the boundary crisis is not due to a tangency E= K+(—(1+ ia)N—iw
involving this unstable manifold, but instead occurs at the 2

first intersection of itxclosureand theclosureof the stable .

manifold of a different saddle point. We therefore call this n=—2Cn—(1+2Bn)(|E[*~1),
gygﬁcyfwzzugggg g;sgsffllgju;ﬁ dtaFnegue dn;yﬁ‘] %%Si:”;a;%r: Regor the complex electric fielE and the population inversion

[33] on quasiperiodically forced systems when they Iookeon [22]. The main parameters are the injected field strekgth

: : : and the detuning» of the injected field from the solitary
at the(unforced orientation-reversing Hen map. Here we | f Th tersB. andl’ . terial
give the first detailed account of this type of boundary crisig 2°€" Irequency. The parametersb, and Specify materia
in the orientation-preserving case, which is especially impor-F.)rOpe.rtles of the laser. In particulag, is t_he well-known .
tant since this is the case which occurs in the Poinaaap !lthldth enhancement factor.and for semiconductor Iase;rs it
of a flow. The disappearance of the chaotic attractor als $ in the ranger e[1,14). In §h|_s paper, we Sit the material
raises the interesting question of what happens to the entro ier parzlimeters fo the realistic valwes 2,B=0.015, and
during the bifurcation. =0.035; see Ref.22] for further details.

Our main tool is to consider a Poincasefirst return map
to a suitable sectiofi.e., a smooth codimension-one mani-
fold). For the much-studied periodically forced systems, the To study systentl), we consider the first Poincareturn
stroboscopic map of the forcing frequency is a Poincaap mapf to a section. This has the advantage of reducing the
with the extra property that the plane of fixed forcing trans-system to a two-dimensional iterated map, which is easier to
versely intersectall orbits of the vector fieldin autonomous visualize and is more amenable to many kinds of analysis. It
form). Therefore, this Poincareap is aglobally defined is usual to consider a Poincasection which is everywhere
diffeomorphism; for example, for the forced Van der Pol andtransverse to the flow and to which all trajectories return, in
Duffing oscillators[2] it is a globally defined planar map. which case the resulting map is globally defined, continuous
However, it is an important fact that this is a special propertyand invertible. Unfortunately, for the semiconductor laser,
of periodically forced systems. For a general flow it is notthere is no such global section, so instead we take a natural
possible to find a section that is transverse to all ofl3it§. section, for the system, namely the plafg={(E,n):n
This means that one is condemned to work with a section o 0}, and treat the resulting pathologies appropriately.
which the Poincardirst return map need not be invertible, If p, is a point on such that the trajectory through
may have discontinuities and may even (tecally) unde-  has a first return t& at a pointp,, and the flow is transverse
fined. This must be seen as the typical situation in applicato 3 at py and p,, then the first return mapis locally a
tions and is also the case for the laser system consideratiffeomorphism ap,. On these regiong,can be treated like
here. As a consequence, one encounters new features in thry other diffeomorphism and no special theory is required.
organization of the stable and unstable manifolds that do ndtiowever, some initial conditionp, may lie in the basin of
occur in the more familiar case of surface diffeomorphismsan attractor which does not intersé&t Indeed, it may even
such as the Heon [35] and lkedg36] maps. We stress that be that the trajectory through, never returns t&. In this
the difficulties caused by the discontinuities in the first Poin-case, the first return map is undefinedpgt For initial con-
carereturn mapcannotbe circumvented by a clever choice ditions approaching the boundary of the domain of definition
of section. of f, the return time typically tends to infinity.

Adapting the method in Ref37] to this more general Another serious problem is that the first return niayeed
setting allows us to compute suitably long pieces of stabléot be continuous. In all cases, a discontinuity of the return
and unstable manifolds. These are the input to the topologimap is due to a loss of transversality of the flow with the
cal algorithm of Ref[13] by which we establish rigorous section. Before discussing the various cases, we first examine
bounds for the topological entropy. This constitutes a proothe behavior of the flow of systei) on ..
that the semiconductor laser with optical injection does in- SinceZ is defined by the condition=0, the direction in
deed have chaotic dynamics. , which the flow crosse& is given by the sign of at n

This paper is organized as follows. In Sec. Il we introduce_ 5 From Eq.(1) we see that
the equations of an optically injected semiconductor laser
and discuss its Poincammap. Global bifurcations are ex- Nho=1—|EJ?, )
plained in detail in Sec. lll and the entropy bounds are the
topic of Sec. IV. We draw some conclusions and point toso n increases throughl when|E|<1 and decreases when
future work in Sec. V. The Appendix is a brief exposition in |E|>1. The flow is tangent t& precisely on the unit circle
the Hson map of a boundary crisis at a closure tangency. C given by|E|=1. For this system, the tangency set is in-

E, @

A. The Poincare map
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dependent of the parameter values. Even though this pararr

eter independence is not typical, we note that the tangenc D3
set is one dimensional, which is the generic case. /
On C we compute
Wu
d
gi([EI)=2KRe(E), 3
so the flow is directed toward the outside ©ffor Re(E)
>0 and inside for Ref)<O0.
Locally, C divides2, into two piecesy; andX,, which 41

we can choose so that the vector field is directed fdmo
3.,. Assuming further the generic case of a quadratic tan-
gency, we see that points b, return to the section i,
after a time interval which tends to 0 as the starting point
approache€, whereas points iX, have no local returns to
.. ThereforeC is a discontinuity curve of, with f(p)~p if
pisin X, and close tcC, but typically f(p) ¢ C for pe C.
Despite these discontinuities, the first return map is still \

invertible, since an inverse is given by reversing the flow we
direction. There are three generic types of discontinuity, cor-
responding to a flow line which is tangent to the seclioat

an initial, interior or final point, respectively. In two of these  FIG. 1. Stable and unstable manifolds of the four-periodic points
cases, a locally continuous map can be constructed by allowp,,p;,p,,ps}, which are in the same orbit under the Poiraaep

ing the number of returns to the section to vary. f, shown in the sectiofn=0} in this and all other figuresw

The easiest situation is that the tangency occurs at ar0.270 andK=0.290. On the circleC={|E|=1} the Poincare
interior point of the flow line joining two points. Changing map is discontinuous.
the number of intersections with the section by two allows a
smooth extension of the return map, as the flow is transverdess than 1, so both saddles atissipative that is, the at-
to the section at the initial and final points. Similarly, when tracting direction is stronger than the repelling one.
the tangency occurs at the initial point of the flow line, Both of these orbits cross the secti@nat four points,
changing the number of intersections with the section by ongvhich are, therefore, four-periodic points of the first return
allows a continuous extension of the return map, though thignapf. We label these poinpg,p1,P2,P3 andqg,d;,02,0s,
is not smooth. However, when the tangency occurs at thghere the convention is that the points map to each other in
final point of the flow line, there is no continuous extension.this order and back tp, or g, respectively. Figure 1 shows
It is possible to change the number of intersections by on¢he stable and unstable manifolds of the ordr
and obtain a return map which is close to the original one. ={Po.P1,P2,P3}

A continuous extension of the return map is known as a The stable and unstable manifolds of the, denoted
branch of the return map. These branches are best undeWS(pi) andW!(p;), respectively, consist of the intersection
stood by considering the set of the stable and unstable manifoldsPfvith the sectior..

) Since the stable manifold & is a smooth surface, its inter-
{(Po,P1,t) € X XX XR:Py(Po) = P4}, section with any section willgenerically consist of an im-
which gives all possible returns. A more detailed discussiof€rSéd collection of one-dimensional manifolds. However,
of nonglobally defined Poincarmaps, which must be re- the presence of discontinuities in the first return map means

arded typical in applications, is beyond the scope of thidhat the properties of the stable manifold may be very differ-
gaper. yp! N appiical ! 4 P ! ent from that of the stable manifold of a surface diffeomor-

phism. Indeed, we can see that the stable manifolds through

po andp; and those througp, andp, coincide. This would

be impossible for a diffeomorphism, but can occur here as
A great deal of information about the dynamics of thethe stable curve passes through the tangency cGrvin

system can be obtained by computing the stable and unstabédeldition, there are components of the stable manifold which

manifolds of its periodic saddle orbits. For the laser systentio not contain any of the poin{sy,p;,p2,Ps-

(1), with parameter valuel§ =0.290 andw=0.270, we con- The presence of discontinuities complicates the computa-

sider two periodic saddle orbi2 andQ, with periods 13.14 tion of the invariant manifolds. Most algorithms for comput-

and 13.19, respectively. The stable and unstable eigenvalu@sy one-dimensional invariant manifolds involve computing

of P are both positive, and those &f are negative, so the the invariant manifold in a neighborhood of the periodic or-

invariant manifolds ofQ are nonorientablg38]. We callP a  bit and growing it. Here we use an adaptation of the algo-

direct saddle orbit and aflip (or twisted saddle. The prod- rithm of Krauskopf and Osing87], which we combine with

uct of stable and unstable eigenvalues for bBtnd Q is  the observation that the computation of a continuous branch

B. Stable and unstable manifolds
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of the return map can be formulated as a family of boundary
value problems. In this way, stable and unstable manifolds
can be continued across discontinuities of the first return mag
by changing the number of iterates. At present we compute
the return map by shooting, but one could also use colloca:
tion techniques in combination with standard continuation
methods, such as is done in the packageo [39].

Ill. GLOBAL BIFURCATIONS

We now consider the bifurcations of the system as the
parameterw is increased from 0.260 to 0.280 keepiKg
fixed at 0.290. In this region, sudden bifurcations to chaos
have been found in numerically computed bifurcation dia-
grams[23], and later also in an experiment on an optically
injected distributed feedbac¢FB) laser[26]. Here we con-
sider this transition in much more detail, and this requires
looking in a small range fow. The periodic saddle orbit3
andQ which were computed fo®=0.270 can be continued
through this parameter range, and they remain direct and flif
saddles, respectively.

In this w range we encounter two important bifurcations
contributing to the disappearance of a chad$itange at- FIG. 2. Stable and unstable manifolds of the four-periodic point
tractorA, which is present forw=0.26. The first bifurcation Po (left column, of the four-periodic poing, (middle column, and
we encounter is &asin boundary metamorphodidl] atw  ©f bothpg andq (right column), before(row a), approximately at
= wppr~0.269 292, followed by @oundary crisis[29] at (row b) and after(row c) the destruction of a chaotic attractd;
= w,~0.269299. The basin boundary metamorphosis ig-©-290 and froma) to (c) »=0.2673, 0.269292, 0.270.
due to aninner tangency[{32] of the stable and unstable
manifolds of the direct saddIE. At this well-known bifur-  each continue to intersegt transversely at four points. The
cation the attractoA itself does not change, but the basin chaotic attractor A intersects >, in four components,
boundary undergoes a smooth to fractal transitias was A, A; A, As with eachA; containingg; and being invari-

observed, for example, in the"Hen map[31]) due to the  ant ynderf4. The componenk, is contained in the rectangle
creation of a chaotic saddle. The boundary crisis is caused lﬁz[—o.l —0.2]X[—0.65,0.35. Althoughf, and hencef

a closure tangencythe first intersection of the closure of
WHY(Q), which constitutes the attracté, and the closure of
W3(P), which contains the boundary of the basin of attrac-
tion. In fact, becaus® is a flip saddle, there cannot be a
parameter value at which a first tangency Wf(P) and
WY(Q) exists. After the boundary crisis the system jumps to
a periodic attractor.

A closure tangency has not been described in detail. It
was discussed briefly in Rf33] in the orientation-reversing For parameter values @b less thanwy,,, the geometry
case. In the Appendix we illustrate this global bifurcation of the stable and unstable manifoldspfandqg is as shown
and, in particular, the organization oY(Q), in the inFig. 2(row a. The closure of the unstable manifold of the
orientation-preserving Hen map. flip saddle go is a chaotic attractorA, with a positive

The inner tangency removes a topological obstruction folyapunov exponent and positive entropy. For many param-
the boundary crisis to occur. It is not unusual for a basireter values, this attractor may have smaller subattractors in-
boundary metamorphosis to be followed closely by a boundside it, including stable periodic orbif¢1], but the observ-
ary crisis. This occurs, for example, in the vicinity of a able behavior is that of a single strange attractor. One branch
double crisis point; see Rdf40]. However, entropy consid- of the unstable manifold gf, ends in a periodic attractop,
erations show that it is impossible for a first inner tangencyand the other branch intersects the stable manifold|f
to occur simultaneously with a boundary crisis of a chaoticHence, points negy, are either attracted t4g or torg. The
attractor, so a double crisis is not responsible for the closestable manifold ofpy does not intersect the unstable mani-
ness of these two bifurcations in our system. Instead, oufold of py, so there are no orbits homoclinic .
investigations suggest that the closeness is due to the fact The stable and unstable manifoldsgg at the inner tan-
that the stable eigenvalue Bfis very small &0.03 over the  gency bifurcation occurring fob = wyy,,, are shown in Fig.
entire rangew €[ 0.260,0.280). 2(b1). The attracto\, persists, but there is now a new basic

A description of the bifurcations can be obtained by con-set associated with the homoclinic orbits pg, also with
sidering the Poincaresturn map ta®. As w varies,P andQ  positive topological entropy. This leads to a change of the

are not globally continuous, the restriction ff to R is, so
the dynamics on this set is essentially that of a diffeomor-
phism, and is governed by the two periodic saddle pgigts
andqg and their stable and unstable manifolds.

A. Basin boundary metamorphosis at inner tangency
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basin ofAy, and this is why this inner tangency is in fact a
basin boundary metamorphosis. Since the direct sgujdis
dissipative, a result of Palis and Takddg] shows that there
must have been chaotic attractors present pgagven be-
fore this bifurcation, but these are small enough not to be
physically relevant. The significance of this bifurcation is
that now there are no topological obstructions for the stable
manifold of pg to intersect the unstable manifold qf.

FIG. 3. Initial branches of stable and unstable manifoldppf
from Fig. 2 form a trellis that does not force chaotic dynant@s
For a longer piece ofv3(p) the trellis bounds two regionk, and

The attractoiA is destroyed in the boundary crisis occur- Rg with positive entropy dynamicgh), while an even longer piece
rng at w=wp,, soon after the inner tangency. Fasr  of W5(p) reveals that the regions of chaotic dynamics are thin strips
<y, the stable manifold opy, W3(pg), and the unstable (c); K=0.290 andw=0.270.
manifold ofgy, WY(qo), are disjoint, and we have a chaotic
attractor consisting of the closure of the unstable manifold ofangles of the system, the entropy of the tangle under con-
4o, WY(Qp). For w>wy., the manifolds W8(p,) and  sideration is a lower bound for the topological entropy of the
WY(q,) intersect transversely, and we now have a heterosystem.
clinic tangle formed by the stable and unstable manifolds of Here, we estimate the topological entropy of the fourth
Po andq,. ThereforeW(q,) andW(p,) are the same, and return_ map of the semiconductor [aser using the methods
the closure of the unstable manifol¥(q,) is no longer a Qescrlbed in Refs[1_3,14] and also give a detaﬂgd descrip-
chaotic attractor. Instead, almost every point is attracted t§on of the system in terms of symbolic dynamics. For the
the periodic point . This bifurcation gives aliscontinuous remainder of this section, we shall uséo refer to the fourth
change in the closure &#"(qp). return mapf* of the laser system.

As o approachesw,. from above, there are infinitely The quality of the information obtained depends greatly
many parameter values at which heteroclinic tangencies afpon the length of stable and the unstable manifolds one
W5(po) andW(qe) occur, andwy, is a limit point of these computes. Consider the initial pieces of stable and unstable
values. Sincey, is a flip saddle, its unstable manifold limits manifold, called arellis, shown in Fig. 8a). The stable and
on itself from both sides, so it can never have tangenciegnstable manifolds are such that no information about the
with any stable manifold without also having transverseentropy can be obtained other than the standard result that it
crossings. Atwy., the manifoldsWs(p,) andW!(qo) must ~ must be strictly positive.
still be disjoint, but they do have common limit points. In Fig. 3(b), the trellis dividesS into a number of regions.
Therefore, the closures of the manifoldgyS(p,) and It can be shown that the regioi& and Rg must contain
WH(qo), intersect, and numerical evidence strongly suggestghaOt'C dynamics. Orbits that are entirely contained in these

. i be coded symbolically by assigning to each
that W3(pg) and WY(q,) are smoothly tangent at the bifur- two regions can . X
cation, justifying the nameclosure tangency Although orbit the sequence d&’'s andB’s such that the&kth element

WS(py) and W¥(q,) are disjoint, there may be periodic of the sequence gives the region containing ktte iterate.

saddle points iNVS(pg) andW¥(q,) whose unstable mani- Such a sequence is caIIedenerary of the ppmt. Using Qgr
folds do have a first tangency at,, in which case the crisis Methods, we can show thammust have orbits of every itin-

B. Boundary crisis at closure heteroclinic tangency

is as described in Ref29] erary except those which contain a word of the form
. 4n+k _ -9 i
The closure tangency can be seen as a bifurcation of @B A wherek=1 ork=2; see below for more details.
chaotic saddld3 associated with the homoclinic tangle ®f Increasing the length of computed stable and unstable

and the attractoA associated with the homoclinic tangle of Manifolds allows better estimates of the symbolic dynamics,
Q: see the Appendix. A natural consequence is that at thand better entropy bounds can be obtained. The unstable

bifurcation, the topological entropy associated witands ~ CUrve shown in Fig. @) is the iterate of that shown in Fig.
must be the same: see also Sec. IV. 3(b). We can now deduce that the chaotic saddle, which must

exist in regionsR, and Rg, must lie in the very thin strip
bounded by the indicated piece ¥f(py).

We now return to consider the trellis far=0.270 of Fig.

As mentioned in the introduction, topological entropy is a3(b) in more detail. The symbolic dynamics is found by con-
global measure of the degree of chaos of a dynamical systructing a graplc embedded in the complement of the un-
tem, and is associated with the growth rate of the number oftable manifold, and using the stable manifold to induce an
periodic points of a given period. There is also a notion ofactiong on this graph; see Fig. 4. The edges®éare of two
entropy applied to a homoclinic or heteroclinic tangle, whichtypes,control edgesshown in black, anéxpanding edges
is given in terms of the growth rate of the number of inter-shown in gray. The control edges are short edges crossing the
sections of initial branches of stable and unstable manifolégtable manifold. Their primary role is to capture the topologi-
under iteration of the latter. The entropy of a tangle is equatal and dynamical information contained in the stable mani-
to the growth rate of the periodic orbits associated with theold. The expanding edges connect the control edges without
tangle. Since some entropy may be associated with othearossing the trellis or introducing unnecessary loops. They

IV. TOPOLOGICAL ENTROPY
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FIG. 4. Initial branches of stable and unstable manifoldpf
from Fig. 3b), with a corresponding grapB capturing the topol-
ogy of the trellis;K=0.290 andw=0.270.

carry all the interesting dynamical information.

Performing the algorithm given in Reff13] we obtained
the graph in Fig. 4. The induced actignon the expanding
edges of the graph is given by

a—abyb,, by—b,, bo—>bs, by—by,, by—>ab,. (4)

We see that orbits of also have an itinerary given b&’s
andB’s, with the edgea corresponding t@, and the edges
b,, b,, bz, andb, corresponding td.

The most important property @fis that for any orbit of,
there is an orbit of with the same itinerary. The orbits gf
are said toforce orbits of f. Furthermore, for any periodic
orbit of g, there is a periodic orbit of with the same itiner-
ary and period. For example, the four-periodic orbigdhat
visits edges, b,, b, andb, forces a four-periodic orbit of
T with itinerary (ABBB)Z. We can also deduce information
about the orbits of that are homoclinic tgy: for any orbit
of g that has all but finitely many points & (and so whose
itinerary is homoclinic toA?), there is a corresponding orbit
of T which is homoclinic top.

PHYSICAL REVIEW B6, 056201 (2002

TABLE I. Lower estimates of the topological entropy of
=f4 K=0.290, andw is as indicated.

0.278 0.280 0.282

w

hiop(T)

wpe~0.269292

0.436 0.596 0.596 In20.693

We now study how the topological entropy changes with
the parametew; the resulting estimates for the entropy are
summarized in Table I. Fab<wy,, the topological entropy
of the attracto\, can be estimated by considering the trellis
formed by the stable and unstable manifoldgjgf Since the
stable manifold of, and the unstable manifold gf do not
intersect, the dynamics on the attractor can be considered
separately from that of the chaotic saddle associatedpyith
For the stable and unstable manifolds aqgf computed for
both v = wyp, and w= wy, the bound for the entropy of the
attractor is 0.346, though the actual entropy may increase
slightly. At o= wp,,, the entropy of the trellis associated
with pg is 0, and at the closure tangency, the entropy of the
trellises associated withy andq, must be equal, hence the
entropy of the trellis associated withy must be at least
0.346.

As w increases further, more intersections of stable and
unstable manifold are created. While some of the fine struc-
ture of the tangle may change fas between 0,272 and
0.280, there are no significant changes. dretween 0.280
and 0.282, there is a bifurcation sequence, illustrated in Fig.
5, which ends in the creation of a full Smale horseshoe. The
entropy bound for the chaotic saddle increases, and appears
to change continuously witk, though the bound computed
from given finite pieces of stable and unstable manifold
jumps at the homoclinic tangencies. For the trellises in Fig.
5, we compute entropy bounds of 0.596, 0.596, and In2
~0.693, respectively; see also Table I. However, this entropy
only measures the complexity of the transient orbits, and
would not be seen if the system was already locked to the
stable limit cycler,; see Sec. Il. It is a curious phenomenon
that the entropy of the chaotic set is increasing)dascreases
past the closure tangency. In other words, whiledbmaplex-
ity of the system as measured by the topological entropy is
increasing, thebservedoehavior becomes simpler, because
the chaotic set loses stability and omly remains as an at-
tractor.

The converse of these forcing results is not true; the orbits

of T do not force orbits of, and in many cases thenaustbe
orbits of f that have a different itinerary from any orbit gf

Therefore, all we can say is that the dynamicd afre more
complicated than those df. This is well reflected in the
topological entropy, which satisfies the inequality

hiop(T)=hiop(9). (5)

For this example otw=0.270, we findh,,(g)~In(1.544)

~0.434, giving a lower bound for the entropy of the system

as htop(f4)>o.434. This proves that the injection laser as
modeled by Eq(1) indeed has chaotic dynami¢tr these
particular parameter values

V. CONCLUSIONS

The method of analysis presented here can be extended to
any low-dimensional system. We have seen that invariant

\ (Po)

Do

we (Po)

()

FIG. 5. The emergence of a full horseshoe &f K =0.290 and
from (a) to (c) w=0.278, 0.280, 0.282.

056201-6



ENTROPY AND BIFURCATIONS IN A CHAOTIC LASER PHYSICAL REVIEW E66, 056201 (2002

w*(q) W(q)

FIG. 6. Before(row a and after(row b) a closure tangency in
the Henon map. Shown are the stable and unstable manifolgs of
andq (left column), just of p (middle column, and the stable mani-
fold of p and unstable manifold of (right column; b=0.5, and
a=2.4(row @ anda=2.5 (row bh).

curves of saddle points in a section can be computed even it

there is no globally defined, continuous, invertible first return  FIG. 7. The manifoldW!(p) changes little in the closure tan-
map (which is the typical situation From these manifolds, gency, sedal) and (b1), but W!(q) changes dramatically. Before
the structure of the large-scale attractors of the system can hiee closure tangency longer and longer pieceSW{q) in panels
computed, and bifurcations in which they are destroyed cafa2 and(a3) stay bounded, while after the closure tangency longer
also be found. and longer pieces o?W"(q) in panels(b2) to (b6) converge to

One can then compute rigorous lower bounds for the toW"(p). Close to the closure tangency one needs to compute very
pological entropy on attractors and chaotic nonattractingong pieces of\(q) to see its convergence W"(p); b=0.5, and
sets, and obtain a description of their internal dynamics it=2-4 (row & anda=2.5(rows b.
terms of the itineraries. }

For the laser system described, we find a basin boundanAPPENDIX: CLOSURE TANGENCY IN THE HE NON MAP
metamorphosis due to an inner tangency of a direct saddle
followed by the disappearance of a chaotic attractor at
boundary crisis. The chaotic attractor is the closure of th

unstable manifold of a flip saddle and this boundary crisis iﬁnclude all return maps of flows. We describe here in more

due to a closure tangency invalving this u_nstablle mf"m'fOIddetail what this bifurcation means in terms of the stable and
The phenomenon of a closure tangency is typical in two-

. : X . , . . d.mstable manifolds of the saddles involved, because this is
dimensional orientation-preserving diffeomorphisms an

th di ional fi d trated by identifvi guite spectacular and not in the literature on boundary crises.
ree-dimensional fiows, as was demonstrated by 1den Ifylnsf’ndeed, this bifurcation is responsible for the destruction of a
this type of boundary crisis in the lHen map. At the bound-

- ) . . _chaotic attractor in the H®n m
ary crisis the entropy associated with the chaotic attractor |§ aotic attractor in the Htwn map

positive, and it persists as the entropy associated with a cha-
otic saddle after the bifurcation. H(X,y) =Hap(X,y)=(a—x*~by,x) (A1)
Our computations of lower bounds on the entropy consti-
tute a proof that the injection laser indeed displays chaotign the orientation-preserving cabe-0; see Ref[40] for an
dynamics. Apart from an interest in the laser Community inexamp|e_ We fixo=0.5, soH is uniform|y dissipaﬁve, and
applications of chaotic dynamics, for example, in communi-yary the parametea.
cation schemes, this is also one of the first examples of a For sufficiently largea, H has two saddle fixed points, a
rigorous(computer assistegroof of chaos in a technologi- direct saddle and a is a flip saddlg, which means that we
cally relevant physical system. are in the same situation as discussed previously for the in-
jected laser. For>0.840 the manifold&\V"(p) and W3(p)
intersect transversely yielding homoclinic orbits o For
ACKNOWLEDGMENTS parameter valua=2.4, W(p) intersects bothAS(p) and
The authors thank Hinke Osinga for valuable input con-W*(q), but W!(q) does not intersectV*(p), as shown in
cerning the literature on crisis bifurcations and Sebastiaffrig. 6row a. The closure ofV"(q) is a chaotic attractoh,
Wieczorek for helpful discussions. The research of P.C. wagnd remains inside a region bounded by an a/éfp) and
financially supported by the Leverhulme Trust and that ofan arc ofW*(p). The boundary of the basin of attraction/of
B.K. by an EPSRC ARF grant. is W5(p).

The scenario described above, in which a closure tan-
ency is responsible for the destruction of a chaotic attractor,
s typical in orientation-preserving diffeomorphisms, which
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Fora=2.5, shown in Fig. Gow b), the situation is very
different. WY(q) now intersectdV(p). Since points which

PHYSICAL REVIEW B6, 056201 (2002

To illustrate this, in Fig. 7 we show hoW"(q) is build
up in successive iterates. In Fig€a? and 71b2), we have

lie to the left of W3(p) escape to infinity, there is an open set computedW'(q) to length 1; successive figures are com-

in WY(q) consisting of points which escape to infinity,

the set of points which escape is dense. The closure of the s
of points heteroclinic tg@ andq is now a chaotic saddle, and
gives only transient behavior of the map; all other points

escape to infinity.

OnceWs(p) and W'(q) intersect, they must do so arbi-

trarily close top, and, by the Lambda Lemni43], the clo-
sure of WY(p) containsW"(q). Hence,W"(p) and W"(q)

and Puted by iterating the unstable curve. Before the closure tan-

genciesW”(q) remains boundefFig. 7(a3)]. After the clo-
sure tangency notice how for the first few iterates the
unstable curve remains close to the former attragkig.
7(b2)—(b4)], but, as higher iterates are computed, there are
arcs that cros8vs(p) closer and close tp [Fig. 7(b5)—(b6)].
Although the topology of the unstable manifold changes dis-
continuously at the limit bifurcation, for parameter values
close to the induced boundary crisis, a very large number of

have the same closures. This means that the branches @drates of the initial segment of unstable manifold are

WY(q) now limits on the branch d#v*(U) which extends to

needed to cross a given arc\W(p). This must be the case,

infinity. Hence, this type of boundary crisis is a discontinuity since even though the topology of the manifold can change

point of W(q) (using the Hausdorff metric on segts

discontinuously, any fixed iterate must change continuously.
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