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Defect-induced perturbations of atomic monolayers on solid surfaces
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3Laboratoire de Physique de la Matie`re Condense´e, Collège de France, 11 Place M. Berthelot, 75252 Paris Cedex 05, France

~Received 7 June 2002; published 27 November 2002!

We study long-range morphological changes in atomic monolayers on solid substrates induced by different
types of defects; e.g., by monoatomic steps in the surface, or by the tip of an atomic force microscope~AFM!,
placed at some distance above the substrate. Representing the monolayer in terms of a suitably extended
Frenkel-Kontorova-type model, we calculate the defect-induced density profiles for several possible geom-
etries. In case of an AFM tip, we also determine the extra force exerted on the tip due to the tip-induced
dehomogenization of the monolayer.
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Equilibrium properties of monolayers adsorbed on ide
defect-free solid surfaces are by now reasonably well un
stood through a series of experimental and theoretical wo
@1#. However, most of naturally encountered surfaces or s
faces involved in technological processes cannot be con
ered as ideal and do contain different types of defects, s
as, e.g., chemisorbed or adsorbed species, or surface s
Experimentally, it has been well known that such defe
may have a profound effect, both on the adsorption kine
and on the equilibrium morphology of the resulting layers.
particular, point defects often constitute nucleation sites
the adsorbates and serve as seeds for island formation@2#.
On the other hand, in the presence of a monoatomic sur
step the adatoms on the lower terrace are generally attra
towards the step, which causes their redistribution within
layer, as observed, for instance, via intensity oscillations
thermal He scattering at grazing incidence in the form of
discrete row growth of Xe on stepped substrates@3,4#. Theo-
retically, the impact of the surface steps on the adatom
tribution was studied within the framework of two
dimensional ~2D! lattice-gas-type models@5,6#. These
models have been analyzed numerically and have reve
inhomogeneous density profiles with an enhanced den
close to the lower step edges. To the best of our knowled
however, the analytical solution of the problem is still lac
ing.

On the other hand, probing of the monolayer properties
different experimental techniques, such as, e.g., the scan
tunneling microscope~STM! or atomic force microscope
~AFM! measurements, may itself incur morphologic
changes into the adlayer. The interaction of the adatoms
the AFM tip might cause their displacement from the adso
tion sites. Such deformations have been predicted for s
surfaces themselves@7# and were indeed observed in molec
lar dynamics simulations@8#. The adatoms are, of cours
even more vulnerable to the presence of the AFM tip, si
they are not so strongly connected as the atoms of the s
Indeed, it has been demonstrated that the SFM tip can
used to ‘‘drag’’ single atoms or molecules on metal surfa
@9–12#. Moreover, it has been observed in recent exp
ments@13# that the apparent thickness of the prewetting fi
on a silicon wafer measured by the AFM is larger as t
1063-651X/2002/66~5!/056130~4!/$20.00 66 0561
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found by an x-ray reflectivity experiment. The authors th
concluded that the AFM tip distorts the film and induces
‘‘bump’’ in its surface. At sufficiently high temperatures
even stronger effects such as the formation of a neck
tween the adsorbate and the tip have been observed@14#.
Usually, such a distortion of adlayers is unaccounted
while interpretating the experimental data, although its eff
might be not negligible — ‘‘condensation’’ of the adlaye
particles in the vicinity of the tip would increase the forc
exerted by the monolayer on the AFM tip. Thus, the quest
arises of how to interpret the AFM measurements adequa
and how to extract, in a reliable fashion, the pertinent para
eters ~say, the Hamaker constants! in the case when som
adsorbate is present on the solid surface.

In this paper, we study perturbations of atomic monola
ers on solid substrates induced byimmobiledefects of differ-
ent types. The monolayer is described using a 2D versio
the Frenkel-Kontorova~FK! model, i.e., we view it as a 2D
network of particles connected by harmonic springs in a s
tially periodic potential. Note that the original FK model~a
harmonic chain in a spatially periodic potential! was intro-
duced more than 60 ago in order to describe the motion
dislocation in a crystal@15#. In the meantime, variants of thi
model were applied to many different problems includi
charge density waves@16#, sliding friction @17,18#, ionic con-
ductors@19,20#, and chains of coupled Josephson junctio
@16,21#. A 2D version of the FK model has been introduc
by Uhler and Schilling to study glassy properties of an a
sorbed atomic layer@22#.

We consider first the case of a surface with a monoato
step focusing on two opposite limits:~a! monolayers with
strong intralayer coupling and negligible interactions w
the substrate~smooth structureless surface! and~b! monolay-
ers in which coupling to the substrate dominates the parti
particle interactions. As a second example, we calculate
perturbation of a monolayer induced by an immobile AF
tip and demonstrate how it modifies the force exerted on
tip.

Note that considering the simplified case with an imm
bile AFM tip allows us to determine explicitly inhomoge
neous density profiles as well as to elucidate the phy
behind this effect. In ‘‘real stuff’’ experiments the tip, o
©2002 The American Physical Society30-1
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course, moves and the situation is fairly more complex si
the density profiles are nonstationary. One expects that
moderate tip velocities the ‘‘condensed’’ region in the mon
layer would travel together with the tip exerting some fr
tional force on it. For larger velocities, such a condens
region would not have enough time to be formed and
monolayer should remain homogeneous. One expects h
the existence of a threshold tip velocity below which t
monolayer has time to reorganize itself leading to an ex
force and above which this effect disappears, a type of fo
velocity relation that is somewhat reminiscent of ‘‘solid fri
tion’’ behavior. A qualitatively similar behavior has been pr
dicted by Raphael and de Gennes@23# for a system involving
a charged particle moving at a constant speed a small
tance above the surface of an infinitely deep liquid. The s
ation with a stationary moving AFM tip will be discusse
elsewhere@24#.

We constrain ourselves here to the limit of the localiz
adsorption@1# and suppose that the adatoms always rem
in close contact to the surface, such that their defect-indu
displacements in the vertical direction~perpendicular to the
surface! are negligibly small. For simplicity, we assume th
the adatoms form a regular square lattice. Each particl
labeled by two integers (n,m) with n,m50,61,62, . . . . For
small perturbations of the monolayer the interaction betw
a given atom (n,m) and its four neighbors (n21,m), (n
11,m), (n,m21), and (n,m11) can be represented b
Hookean springs that connect each atom to its neighb
The value of the effective spring constantK follows from the
expansion of the interaction potential between atoms nea
equilibrium distance and is typically of the order of a fe
tenths of eV/Å2 @18#. In the absence of any external pertu
bation the position of atom (n,m) is given by the two-
dimensional vectorrnm5(xnm ,ynm)5(bn,bm) with b being
the equilibrium distance between atoms. In the following,
calculate the defect-induced displacementsanm5(jnm ,hnm)
of the adatoms.

First we consider the equilibrium properties of a mon
layer near a steplike defect~Fig. 1!. The substrate has th
height z50 for x.0 andz5h for x<0. We focus on the
monolayer on the lower terrace (x.0). A given small vol-
ume elementdV of the substrate is assumed to exert a fo
df52adVr2(a11)r̂ on a particle in the monolayer at a di
tancer apart; herea is a constant,a11 is an arbitrary posi-
tive number, andr̂ is the unit vector in ther direction. In the
absence of a step,h50, the interaction of any atom with th
substrate is isotropic with respect to rotations around thZ
axis. Hence, by summing over all forces between a gi

FIG. 1. Atomic monolayer at a steplike defect of heighth. The
particles are attracted towards the step and the monolayer is
turbed accordingly~see text for details!.
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atom and the substrate one finds only a force perpendic
to the surface but no tangential component. In this case
monolayer is unperturbed. On the other hand, a step
heighth.0 results in net forces to the left for atoms to th
right of the step. Consider an atom atr5(x,y,z)5(D
.0,y,0). The net force follows from integration over th
additional slab of material:

f (step)~D !5aE dV
x

~x21y21z2!a/211
.2Ca

ah

Da21

~1!

with Ca5ApG@(a11)/2#/@(a21)G(11a/2)#, where
G(z) is the Gamma function. The right hand side of Eq.~1!
holds for a.1 andh!D. The first condition is needed to
insure thatf (step) remains finite. The second condition is fu
filled for small step heights~e.g., monoatomic steps,h
;b).

The positions of the atoms obey the force balance eq
tion xn11,m22xnm1xn21,m52K21f (step)(xn,m) that can be
rewritten using continuous variablesn and m as: ]2xn /]n2

5(Caah/Kxn
a21). We drop here them dependence since th

problem is apparently symmetric in theY direction; xn (n
51,2, . . . ) denotes thex position of thenth row of atoms in
the monolayer. We denote byjn5xn2bn the displacement
of the nth row. Assuming in the following a weak perturba
tion of the monolayer,jn!b, we are led to

]2jn

]n2
.

Caah

Kba21

1

na21
, ~2!

which yields

jn.
Caah

a~a11!Kba21

1

na11
1B5

l

na11
1B, ~3!

where l has the dimension of length. The exact position
the first row~and therefore the value of the constantB) de-
pends on its specific interaction with the step. One may,
simplicity, assumej150 and thusB52 l . Note that due to
the ‘‘coupling’’ of the different rows the displacementjn
increases withn approaching the limiting valueB52 l . For
a56 ~van der Waals interaction!, we find from Eq.~3! jn
.(p/480)(ah/Kb5)(n2721).

The density of adatoms followsrn5b21]n/]xn.b22(1
2b21]jn /]n), which leads to

rn.b22S 11
Caah

aKba

1

naD , ~4!

i.e., a long-range algebraic relaxation to the unperturbed d
sity. For a56, we find rn.b22

„11(pah)/@96K(bn)6#….
The density has its maximal value at the step and decre
with increasingn.

Up to now, we assumed only an intralayer interaction b
tween atoms in the monolayer. The role of the support
substrate was only to restrict the motion of the atoms in
XY plane. Now we study the case ofstrong coupling to the

er-
0-2
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substrate. We assume next that each particle in the mo
layer is attached to the substrate via a spring with the sp
constant K̃ at the equilibrium positionrnm5(xnm ,ynm)
5(b̃n,b̃m) (b̃ might be considered to be the lattice consta
of the substrate!. We neglect interactions between neighb
ing beads, i.e., we setK50. Then the displacement of th
particle rows is obtained directly from the force balan
equationK̃jn. f (step)(b̃n). We find then

rn.b̃22S 12
Caah

~a21!K̃b̃a

1

na22D . ~5!

The perturbation of a monolayer with strong intralay
coupling ~and negligible coupling to the substrate! is funda-
mentally different from the case of strong coupling to t
substrate. In the first case — due to the connectivity of
rows — the displacement of each row adds up and the lar
displacement,l ~in negativeX direction!, is approached for
largen-values, i.e., far from the step@cf. Eq.~3!#. In the latter
case the displacement is directly proportional to the exe
force which decays algebraically with increasing distan
and jn→0 for n→`. This is also reflected in the densit
profile. The density of the monolayer with intralayer co
pling, Eq. ~4!, has its largest value close to the step a
decays towards the unperturbed valueb22 for largen. On the
other hand, monolayers coupled to the substrate sho
slight depletion (rn,b̃22) close to the step, cf. Eq.~5!. Only
very close to the step~first row of atoms! the density is
enhanced accordingly. The general case with nonvanishinK

and K̃ is highly nontrivial ~e.g., in view of possible
commensurate-incommensurate transitions! and is beyond
the scope of the present paper.

We study next the perturbation of the monolayer by
AFM tip located at heightH above the ‘‘central’’ atomn
5m50. We assume that the interaction energy between
tip and a particle at distanced apart is of the formw(d)5
2Ad2a, which yields

fnm
(AFMtip)52

Ar̂nm

dnm
a11

, ~6!

where dnm5u(xnm ,ynm ,H)u and r̂nm is the 2D unit vector
(xn ,yn)/u(xnm ,ynm)u.

The calculation of the elastic force in a monolayer w
intralayer coupling is nontrivial, since the equilibrium di
tance of each spring has a nonvanishing valueb.0. For b
50 the elastic force is simply given by the Laplacia
fnm
(spring)5K(]2/]2n1]2/]2m)rnm . For b.0 theX andY di-

rection are coupled in a nontrivial way. However, the elas
response to small perturbationsanm5(jnm ,hnm) with uanmu
!b decouples in theX andY directions:

fnm
(spring).KS ]2jnm

]n2
,
]2hnm

]m2 D . ~7!
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The particle positions follow from the balance between
tip-monolayer interaction, Eq.~6!, and the elastic force, Eq
~7!, which gives

]2jnm

]n2
.

A

Kba11

n

~n21m21g2!a/211
, ~8!

where we have introduced the dimensionless parameteg
5H/b. Further on, the displacementjnm has to be calculated
for eacha separately. Fora56 ~van der Waals forces!, for
instance, one finds

jnm.
2A

48Kb7 Fn
3n215~m21g2!

~m21g2!2~n21m21g2!2

1arctanS n

~m21g2!1/2D 3

Am21g25/2G . ~9!

Note that anm is not radial-symmetric around (n50,m
50) even though it is induced by a radial-symmetric forc
Eq. ~6!. In fact, for largen jnm}n0 for m[0 (X direction!
andjnm}n25 for m5n ~diagonal direction!. Such a nonisot-
ropy appears due to the symmetry of the underlying latt
~see Fig. 2!.

For small deformations the density profile of the mon
layer is given by

rnm.
1

b2 S 12
2A

aKba12

1

~n21m21g2!a/2D . ~10!

Note that here, however, despite the asymmetry ofanm , the
resulting density profile, Eq.~10!, recovers the symmetry o
the force exerted by the tip.

We calculate next the forceF that the monolayer exerts o
the AFM tip. Due to the symmetry this force is pointed in
the negativeZ direction. A particle at (x,y) contributes to
this force byf Z

(AFMtip)(x,y)52A/Hda12. The total forceF
from the monolayer follows by summing up over all atom
F5F01DF, where F0 is the force that an unperturbe
monolayer would exert on the AFM tip, F0
522pA/ab2Ha21, while DF denotes the contribution du
to the self-induced perturbation by the monolayerDF

FIG. 2. View from above on a monolayer close to an AFM ti
The tip is located at the heightH above the central atom (n5m
50); see text for details.
0-3
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522pA2/a2Kb4H2a21. Note thatDF/F052F0/2pKH, i.e.,
the induced additional force is important for soft monolay
~small K) and strong tip-sample interactions. For the ca
a56 the two contributions to the force are given byF0.
2(p/3)(A/b2H5) andDF.2(p/18)(A2/Kb4H11).

We consider now the effect of small surface corrugatio
of the form U (sur f)(x,y)5«U0cos(kx)cos(ky) on the posi-
tions of the atoms in the monolayer as well as on the force
the AFM tip. Herek denotes the wave vector of the period
substrate and« is a small number,«!1. From the
potential follows the force that acts on a particle
(x,y): FX

(sur f)(x,y)52]U (sur f)(x,y)/]x. We calculate the
additional displacement due to the corrugations using
ansatz jnm5jnm

(0)1«jnm
(1) . This leads to ]2jnm

(1)/]n2

.2FX
(sur f)(bn,bm)/K. Hence,

«jnm
(1).

«U0

b2kK
sin~kbn!cos~kbm!. ~11!
v.
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As a result of this additional perturbation the force on t
AFM tip will be modified, F5F (0)1«F (1) with F (0)5F0
1DF given above. We give here explicitly the asympto
forms of F (1) for the casea56:

F (1).5
p

3

AU0

b4KH5
for kH!1

p1/2

21/412

AU0k5/2

b4KH5/2
e2A2kH for kH@1.

~12!

It can be seen from Eq.~12! that the contribution from sur-
face corrugations is ‘‘screened’’when the heightH of the
AFM tip exceeds the wavelengthk21 of the corrugations.
We dispense with giving a discussion of the case of stro
coupling to the substrate which can be calculated straight
wardly.
. P.
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