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Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially
extended bistable system in an oscillating field
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It has been well established that spatially extended, bistable systems that are driven by an oscillating field
exhibit a nonequilibrium dynamic phase transitid@PT). The DPT occurs when the field frequency is of the
order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a
static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs
to the same universality class as the equilibrium phase transition of the Ising model in zef&fi&drniss
et al, Phys. Rev. B63, 016120(200)); H. Fujisakaet al, Phys. Rev. B63, 036109(2001]. However, it has
previously been claimed that the DPT becomes discontinuous at temperatures below a tricriticiMpoint
Acharyya, Phys. Rev. B9, 218 (1999]. This claim was based on observations in dynamic Monte Carlo
simulations of a multipeaked probability density for the dynamic order parameter and negative values of the
fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we
use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic
Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in
this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous
DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the
infinite-system limit, the stochastic-resonance regime vanishes, and the continuous DPT should persist for all
nonzero temperatures.
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[. INTRODUCTION we therefore use magnetic language, in which the order pa-
rameter is the system magnetization and its conjugate
Metastability and hysteresis are exhibited by numeroudield is the external magnetic field. Analogous interpreta-
natural and artificial systems that are driven away from thertions, e.g., using the terms “polarization” and “electric
modynamic equilibrium by an external “field.” In the ab- field” for ferroelectric systems, “coverage” and “electro-
sence of such a field, and below some critical temperature dihemical potential” for adsorbate systems, etc., are straight-
analogous control parameter, a large class of such systerf%rward [1]. ) o ]
possess two equivalent, symmetry-broken ordered phases. The dynamlc response u_ryder an oscnlatlng_ external field
The external field selects one of these ordered phases as tia e viewed as a competition between two time scales: the
global, stable minimum in the multidimensional free-energy@/-periodty; of the external fieldproportional to the in-
landscape. The other ordered phase becomes metastab grse driving frequengyand thg average metastable lifetime
separated from the basin of attraction of the stable phase b ) of the system(the_ mean time spent in the_ metastable
) L . ell) after a sudden field reversal. For low driving frequen-
a free-energy barrier. If the system is initially prepared in the . . o .
. ies, the time-dependent magnetization oscillates about zero
metastable phase and thermal fluctuations are present, t

. : I synchrony with the external fieldsymmetric dynamic
system eventuallypossibly after an extremely long time phase. For high frequencies, however, the magnetization

escapes from the metastable free-energy well and approachgges not have time to switch sign during one half-period, and
stable equilibrium. In the present paper, we consider the r&; gscillates about one or the other of its two degenerate
sponse of apatially extendecbistable system driven by an zero-field valuegasymmetric dynamic phaseThis symme-
external field which is periodic in time. In particular, we {ry preaking and the corresponding dynamic phase transition
focus on thefinite-size effectf the periodic system re- (DPT) between the symmetric and the asymmetric limit
sponse. cycles of the system magnetization have attracted consider-
Ferromagnets are perhaps the most commonly known sysble attention over the last decade. It was first observed dur-
tems that exhibit metastability and hysteresis. In this papeing numerical integration of the mean-field equation of mo-
tion for the magnetization of a ferromagnet in an oscillating
field[2,3]. Since then it has been the focus of investigation in

*Electronic address: korniss@rpi.edu numerous Monte Carlo simulations of kinetic Ising systems
"Electronic address: rikvold@csit.fsu.edu [1,4-14 further mean-field studiekb,7,8,15,16, and most
*Electronic address: man40@ra.msstate.edu recently in analytic studies of a bistable time-dependent
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Ginzburg-LandauTDGL) model [17]. The DPT may also vations of analytic approximations for quantities of interest
have been experimentally observed in Co o{@Dd) ultra-  in the stochastic-resonance regime are given in Appendixes
thin magnetic filmg18—20, and recently in numerical stud- A and B.

ies of fully frustrated Josephson-junction arr&g4] and an-

|sotr_op|c Heisenberg mode]éZZ]. The _results .of these Il. METASTABLE DECAY MODES AND PERIODIC

studlgg agree that there exists a genuine contlnuous phgse RESPONSE IN EINITE SYSTEMS

transition between the symmetric and asymmetric dynamic

phases, at least in some region of the parameter space The appropriate dynamic order parameter in the presence
spanned by temperature, field, and half-period. Finite-siz€f an oscillating external field is the period-averaged magne-
scaling studies of data from dynamic Monte Carlo simula-tization,Q=(1/2t;)$m(t)dt [2]. It takes a nonzero value in
tions [1,12,14, as well as analytic argumenfd7], have the asymmetric dynamic phase, while it vanishes in the sym-
demonstrated that this far-from-equilibrium phase transitiodnetric phase. The transition occurs when the half-perjgd
belongs to the same universality class as the equilibriun@and the underlying metastable lifetin{e-(T,H)) become
Ising model in zero field. This result is consistent with pre-comparable. The metastable lifetime depends on the tem-
vious symmetry{23] and renormalization grouf24] argu-  peratureT and the field amplitudéd. For sufficiently large
ments[25]. systems(see quantitative statements bejpthe system es-

In their original paper on the DPT in a mean-field modelcapes from the metastable phase through the nucleation of
[2], Tome and de Oliveira reported that the continuousmany dropletdmultidroplet (MD) regime[29,30[]. Conse-
(second-ordér phase transition observed at high tempera-quently, the time-dependent system magnetization is self-
tures appeared to change at a tricritical poii€P) to a  averaging. If(7(T,H))<t,,,, the magnetization follows the
discontinuous(first-ordey transition for low temperatures. external field in each half-period. The system relaxes to a
Such a TCP was also reported in later mean-field wejk ~ Symmetric limit cycle, and the order-parameter probability
However, an analytical and numerical mean-field study bydensity P(Q) is sharply peaked abo@=0. On the other
Zimmer[16] makes a strong case that the claims for a TCFhand, for(r(T,H))>t,,, the magnetization does not have
in the mean-field case are based on a misinterpretation ghough time to switch within a single half-period, and it
effects of critical slowing-down at the DPT. Similar claims, relaxes to an asymmetric limit cycléwith occasional
that in some region of the dynamic phase diagrapatially ~ switches between the two equivalent asymmetric dynamic
extendedinetic Ising models exhibit a first-order transition phases ConsequentlyP(Q) becomes bimodal with sharp
and consequently have a TCP separating lines of secongeaks neaQ=*1. This breaking of the symmetry of the
order and first-order dynamic phase transitions, have alslimit cycle and the associated DPT have been carefully ana-
been made on the basis of dynamic Monte Carlo studielyzed[1,12,14 with finite-size scaling techniques, borrowed
[9,26,27. For recent reviews on the DPT, see R¢865,27].  from equilibrium critical phenomen83,34]. In terms of the

The purpose of the present paper is to clear up the remairdimensionless half-perio® =t,,,/(7(T,H)), the DPT oc-
ing confusion about the interpretation of simulation resultscurs at a critical value® .~O(1). The finite-size scaling
for the DPT in spatially extended kinetic Ising models, in analysis of the Monte Carlo data also indicates that this far-
particular in the low-temperature regime, where a first-ordefrom-equilibrium phase transition belongs to the same uni-
transition and a TCP have been claimed to ej#P6,27.  versality class as thequilibrium Ising model in zero field.
Those conclusions were essentially based on data for a sing®upporting these numerical studies, recent analytic results
system size, and we here demonstrate how proper considewithin a coarse-grained TDGL modgl7] indicate that the
ation of rather subtle finite-size effects leads to a differentehavior of the stochastic variab@is governed by the ef-
picture. The implication of our theoretical arguments andfective HamiltonianH.4=aQ?+ Q* where ax(0—0.).
Monte Carlo simulations presented in this paper is that in a\ccording to standard arguments from the theory of critical
infinitely largesystem a continuous DPT should persist downphenomena, this result leads directly to the conclusion that
to arbitrarily low temperatures. However, in afigite system  the DPT belongs to the universality class of the zero-field
for sufficiently low frequencies, the DPT gives way to a Ising model in equilibriun{35], in agreement with the simu-
transient regime o$tochastic resonancSR) [28] at a size-  lation results.
dependent temperature. It is this size-dependent crossover For any finite system, however, the metastable decay
temperature which has previously been misinterpreted as mode changes to the nucleation and growth eingledrop-
TCP. let at sufficiently low temperaturgsingle-droplet(SD) re-

The rest of this paper is organized as follows. In Sec. 11,gime[29,30]. Due to the stochastic nature of the nucleation
we summarize the theoretical framework needed to undemwf a single droplet, the corresponding response in the pres-
stand the underlying metastable decay mechanisms and the&nce of an oscillating field is different; the system exhibits
consequences for the DPT. This underscores again the impdi8,11,3] stochastic resonan¢a8].
tance of the interplay of various time and length scales in The crossover from the underlying MD to SD decay can
metastable systeni4,10,11,29-31 In Sec. lll, we extend be understood by using standard nucleation theory applied to
our preliminary numerical work32], supporting our theoret- the ferromagnetic kinetic Ising modéh general dimension
ical arguments by large-scale Monte Carlo simulations of a and with ferromagnetic coupling constait [29,30. Be-
two-dimensional kinetic Ising ferromagnet in an oscillating low the critical temperature, following a single, instanta-
field. Our conclusions are summarized in Sec. IV, and derineous field reversal, the average time between nucleation

056127-2



ABSENCE OF FIRST-ORDER TRANSITION AND . .. PHYSICAL REVIEW B6, 056127 (2002

events(the nucleation timein a system of linear sizé is  shape factofbetweens and 4 ford=2 and between #/3

obtained as and 8 ford=3) [30].
For t,<ty, manydroplets nucleate while those nucleated
t,=[LI(T,H)]7?, (1)  shortly after the field reversal are still growing. In this, the

MD regime, the lifetime is independent of the system size.
wherel (T,H) is the temperature- and field-dependent nucleAn order—of—magnitudt_e estimate of thg metastable Iifgtime
ation rate per unit volume. It can be expressed in terms of thé7(T,H)) can be obtained30] by equating the volum&,

free energyF(T,H) of the critical droplet as reached by a droplet that grows for this amount of tirﬁi&,
oc(u(r))d, with the volume inside which on average a single
I(T,H)=C(T,H) e F(LHIT 2 nucleation event occurs during the same timEg

«({7)1)" (R, can be regarded as the typical droplet sepa-
ration). The result is( 7)o (v 91) @+,
where F(T,H) and the prefactoC(T,H) can be obtained Fort,>t,, thefirst droplet to nucleate eventually fills the
from nucleation theory to various degrees of approximationgystem on its own. In this regime the lifetime depends

depending_ onl andH [30]. The temperaturd is giyen in strongly on the system size and approximately equdlEg.
energy units by setting Boltzmann’'s constéat=1 in Eq. D]

(2). The other characteristic time scale is the growth ttge _

It is defined as the time it takes for a supercritical droplet to  The above two decay modes characterize the MD and SD

grow to fill half the system volume. Assuming a time- regime, respectively. The crossover between the two regimes

independent radial growth velocit(T,H), defines the dynamic spinod@dDSP [30] and can be esti-
mated by equating, andty. (In terms of the underlying
length scales, this corresponds to the situation in which the

B L mean droplet separatioRy=v(7) becomes comparable to

- [ZQd(T)]l’dv(T,H)’ 3) the system sizé&.) This yields an implicit equation for the
temperature corresponding to the DSP as a functidnanid

where Q4(T) is a dimension- and temperature-dependentd,

tg(LvaH)

. F(TospH)
P (d+1)In L~ In{C(Tpsp H)[2Q24(Tosp) 1% (Tosp, H)}

(4)

For d=2, analytic approximationg36] are known for since the system is already locked into one of its symmetry-
v(T,H) [37], Q,(T), andC(T,H) [38,39. The correspond- broken dynamic phases, wheP€Q) is sharply peaked near
ing estimate foiTpgpas a function of. atH=2.0J [hereJis  *=1. From Fig. 1 it is clear that, in order to observe the DPT
the ferromagnetic coupling constant of the underlying Isingin a finite system for a given value btf,, one has to employ
model, defined in Eq(7) below], obtained by numerically a sufficiently large system[e.g., L=0O(10%) for ty,
solving Eq.(4), is shown as a dashed curve in Fig. 1. The=500 MCSS oi.=0(10?) for t;,=50 MCSS]. In general,
resulting curveTpsdL) turns out to be quite insensitive to the largert,, is, the larger systems one needs in order to
the precise values used in the approximati86]. In the  observe thé.— o behavior. This example illustrates that it is
large-system limit, Tpgp approaches zero logarithmically essential to keep in mind the finite-size implications of the
with increasingL. The existence of the DSP implies that in crossover between the MD and SD decay mechanisms.

the presence of an oscillating field, reducif@t fixed half- Upon reducing the temperature for smallgrthe cross-
periodt,,, and field amplituded results in drastically differ- over from the MD to the SD regime occurs at a temperature
ent behaviors for “small” and “large” systems. well above that at which the infinite-system DPT would oc-

Upon reducing the temperature for sufficiently latgehe  cur. In the SD regime the switching is stochag®@]. The
L-independent metastable lifetinfe(T,H)) becomes com- system will then exhibit stochastic resonance, and the order-
parable to the fixed half-periot},, at a temperature above parameter distributiorP(Q) will indeed possess multiple
the one at which the underlying decay mode would crospeaks, leading to a negative fourth-order cumul@ntLow-
over to the SD mode. The horizontal line in Fig. 1 corre-ering the temperature still further reduces the probability that
sponds to the temperature wherér(T,H))~ty, the magnetization switches during a finite number of periods,
=500 MCSS. Near this line, the system exhibits a continu-and the system becomes effectively “frozen.” The crossover
ous DPT[1,12,14. Further lowering the temperature has noto this frozen phase is approximately marked by the curve
effect on the behavior of the dynamic order param&er along which the probability that the magnetization does not
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switch during a half-period in which it is opposite to the Thus, the probability that the magnetization does not change
direction of the field is 1/2. This crossover curve can besign during a half-period in which it started off opposite to
estimated by noting that SD switching is brought about bythe field is

the nucleation of a single droplet, which is a Poisson process.

exp — [tipo—tg(L,T,H) J/ty(L,T, H)} for tg=tip,

Prolt12: L, T,H)= 5
not( 1/2 ) {1 for tg>t1/2. ( )

Setting P~ 1/2 leads again to an implicit equation for the corresponding crossover temperature,

Tx= LERLL : (6)

L
dinL+In tyo—
C(TX,H)InZ( Y2 1204(T) 1% (Ty H)

Estimates off . atH=2.0J for three different values df,,, parameter is indeed characterized by a multipeaked probabil-
obtained by numerically solving E@6) [36], are shown in ity density and a negative fourth-order cumul@®t. How-
Fig. 1 as solid curves. Since,.; changes rapidly between ever, the above theoretical arguments imply that the SR be-
zero and unity ag is reduced, the specific cutoff value of havior is a finite-size effect. We therefore conclude that the
P.o=1/2, used to defind « here, is not essential. For each otherwise sound simulation results that Acharyya obtained in
value ofty,,, the curves representintpgp and Ty form the  the stochastic regimg9], were misinterpreted by him as
border of a wedge-shaped region in which SR is observedigns of a first-order DPT.
(see Fig. L This is the regime where the dynamic order To summarize the periodic response for the ferromagnetic
Ising model, for an infinitdor sufficiently large system, the
0.8 system undergoes a continuous DPT when the the half-
period becomes comparable with the metastable lifetime.
K Crossing the dynamic phase bounddfg. 1) by changing
\ MD the temperaturefor fixed and low frequenciefong half-
06 r \ periods, the metastable lifetime becomes comparable to the
\ half-period at appropriately low temperatures, thus the DPT
\ occurs at a low temperatuftborizontal dotted line in Fig.)1
t =50 | For finite and too small systems, however, the underlying
112 decay mode crosses over to the SD regimeéorethe DPT
N occurs (crossing the dashed curve from above in Fig. 1
< t1/2=500 Then the system exhibits SR in the wedge-shaped region,
02 I T . until practically no switching occurs during any finite obser-
\ R SO vation time(frozen statg As we show next, careful analysis
““““““ of simulation results for systems of different sizes reveals
that the signatures attributed to a first-order DPT in Ref.
3 3 = = 6 indeed disappear in tHe— o limit, as predicted by the the-
L oretical arguments presented above.

T/J
X

FIG. 1. Metastable decay modes and crossovers in the dynamic
phase diagram for the two-dimensional kinetic Ising ferromagnet inlll. SIMULATION RESULTS AND FINITE-SIZE EFFECTS
a square-wave oscillating field with amplitudd=2.0J. The
dashed curve is the dynamic spinodBISP) Tpge(L), separating
the underlying multidroplefMD) from the single-dropletSD) re-

To model spatially extended bistable systems, we per-
formed dynamic Monte Carlo simulations of a two-

gime. The solid curves correspondTo (L) [Eq. (6)], the crossover dimensional kinetic Ising ferromagnet below its equilibrium
to the dynamically “frozen” state for various half-periodg,, in-  Critical temperature. This simple model has, for example,
dicated by arrow§in units of Monte Carlo steps per spifCSS].  Peen shown to be appropriate for describing magnetization
The horizontal dotted line indicates the temperaflire0.216), at ~ dynamics in highly anisotropic single-domain nanoparticles
which the dynamic phase transiticPT) occurs in thelarge ~ and uniaxial thin filmg18-20,40. Despite its simplicity, it
system-size limit fort;,=500 MCSS. Along this horizontal line, IS believed to capture the generic features of periodically
for L=O(10% the metastable lifetime is system-size independentdriven, spatially extended bistable systems. The system,
and its value is comparable to the fixed half-period. which is defined on a two-dimensional square lattice of lin-

056127-4



ABSENCE OF FIRST-ORDER TRANSITION AND . .. PHYSICAL REVIEW B6, 056127 (2002

1'”?:1;":"1:(3);

0.5 05

0.0 0.0

m(t), H(t)/H
m(t), H(t)H

m(t), H()/H

9000 9500 10000 9000 9500 16000 9000 9500 10000
t t

FIG. 2. Magnetization time serie®(t) (solid curve$ and normalized applied field(t)/H (dashed curvgswith H=2.0J andt,,,
=50 MCSS, shown for a “small” system with =16 at different temperature&) T=0.8], dynamically disordered phasg) T=0.4J,
stochastic resonancé) T=0.35], dynamically “frozen” state. Time is shown in units of MCSS.

ear sizel, is described by the Hamiltonian 1

Q=5— ¢ m(t)dt, 9
L2 2ty
Hz_J(iEj> Sisj_H(t)i:Ej_ S;, (7)

where m(t)=L"2Z;s;(t). The beginning of the period is
wheres;=*1 is the state of théth spin,J>0 is the ferro- chosen at a time WheH(t.) changes sign. In particular, we
magnetic coupling constant; ;, runs over all nearest- computebothtypes of period averages, staring at_the instant
neighbor pairs, andl(t) is an oécillating, spatially uniform yvhenH(t) changes from+H to —H, and allso startmg when
applied field. We use a square-wave field with amplititde !t changes from-H to + H.' Both obser_vatlons are mcluded'
This has obvious computational advantages over a sinusoid4] th? cir?er-parfan:]eter h|stogr§1ms. W'thff.equil twelgh(tj. This
field, while it does not change the universal characteristics of/MPESt Torm Of phase averaging 1S suflicient o produce a
the system respondd4]. The dynamic used is the single- symmetric distribution forQ, in particular in the stochastic
spin-flip Glauber algorithm with updates at randomly choser ©9'Me- . . L . .
sites[33,41]. At temperaturdT, each attempted spin flip from Large-scale simulations and finite-size scaling studies of
s to —si is accepted with p}obability the DPT have been recently performed with both sinusoidal
! : [1,12] and square-wavil4] fields. The results imply that the
system undergoes a continuous phase transition as the half-
period t;;, becomes comparable to the average metastable
lifetime ( 7(T,H)). Recall that the lifetime becomes indepen-
dent of the system size for large systems. The critical expo-

nents for the dynamic order parameter and its fluctuations at
where AE; is the energy change that would result from thethe DPT are consistent with those of the two-dimensional

accepted flip. We give the temperatdfén energy units by equilibrium Ising transitior1,12,14,17. In those studies, the

setting Boltzmann's constakg= 1 in Eq.(8). For the largest temperature and the field amplitude were held fixed, result-

system sizes (=1024), we implemented a scalable mas-ing in a fixed lifetime(+(T,H)). The DPT was approached

sively parallel version of this dynamjé2,43, first proposed by tuning the half-period,, of the oscillating field so that it

by Lubachevsky44]. became comparable {a(T,H)). An advantage of this ap-
The dynamic order parametf2] is the period-averaged proach is that if the smallest system is already in the MD

magnetization regime, all the larger ones are, as well. Thus, one does not

efAEi IT
W(Siﬂ—si):m, (8)

m(t), H(t)/H
m(t), H(t)/H
m(t), H(t)/H

9000 9500 10000 8000 9000
t

10000 9000 95[00 10000
FIG. 3. Magnetization time series(t) (solid curve$ and normalized applied fielt(t)/H (dashed curvgswith H=2.00 and t,,

=50 MCSS, shown for a “large” system with =180 at different temperature¢éa) T=0.5], dynamically disordered phasé) T
=0.375, near the DPT(c) T=0.34], dynamically ordered phase. Time is shown in units of MCSS.
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FIG. 4. Dependence of the system responseToend L for H=2.0] andt,,=50 MCSS. (a) Metastable dynamic phase diagram
analogous to Fig. 1. The values bfrange from 10 to 1§ and the different curves have the same interpretations as in that figure. The
horizontal line corresponds f6=0.349, where in the MD regime({7(T,H))~t,,=50 MCSS.(b) The dynamic order parametéiQ|),
shown vsT for L between 16 and 1024c) The fourth-order cumulant ratid, , shown vsT for L between 16 and 1024. Note that the dip
to negative values disappearslamcreases beyond 128.

have to deal with subtle crossovers corresponding to the diffhe lengths of the runs were 3€ull periods of the oscillat-
ferent underlying decay modéSD vs MD). In the present ing field fort,,=500 MCSS and 10full periods for all the
study, we keepiy, fixed and tune the metastable lifetime by other values ot;,,. Measuring the period-averaged magne-
varying the temperaturd. The motivation for this is to tizationQ after each half-period, we constructed averages of
closely parallel the study by Acharyy8], and to show that the norm of the order parameté{Q|), . We further calcu-

by ignoring the finite-size effects and the resulting crossdated the fourth-order cumulant ratio

overs, one can easily misinterpret the stochastic-resonance

behavior in the stochastic regime as indicating a first-order (Q%,
transition. U=1- >3 (10
Tracing the magnetization time seriext) already re- 3(Q9¢

flects the major qualitative differences between the responses
for “small” and “large” systems, as shown in Figs. 2 and 3, which typically provides a strong indication of the nature of
respectively. For sufficiently small, as the temperature is any underlying phase transitid83]. For a continuous tran-
reduced, the system enters the stochastic regime charactsition, U, changes monotonically from O to 2/3 as one tunes
ized by occasional random switchgsig. 2(b)], before be- the system from the symmetriqdisordered to the
coming completely “frozen”[Fig. 2(c)]. For largeL, the  symmetry-broker{ordered phase. On the other hand, for a
system undergoes a DPT characterized by the slow wandefirst-order transitionlJ, develops a minimum, whose loca-
ing of the period-averaged magnetizatidfig. 3(b)] on its  tion corresponds to the transition point. We also constructed
way to perform an asymmetric limit cycle in the dynamically histograms ofQ, representing the order-parameter distribu-
ordered phase at still lower temperatufegy. 3(c)]. tion P(Q). In the stochastic regime, we in addition measured
We performed simulations on system sizes ranging fronthe residence timeg and constructed their probability dis-
L=16 to 2048, choosing various field amplitudelsand tribution P,(t,), theresidence-time distributiofrtd). Heret,
half-periodst,, that were kept fixed while the temperatdre is defined as the time spent in one of the two “wells” of the
was varied. The time unit used is one Monte Carlo step peunderlying system free energy between two consecutive
spin (MCSS, i.e., one random “sweep” of the X L lattice. ~ switching events. It is measured as the time elapsed between

08 1.0 1.0

L ) Iy ©

\ oo L=64 | I

---0 L=128 ool
---a L=256
---e L=5]2 =
---a L=]024 R
---A L=2048 10

06 [\

T

--8L=64
--© L=128
--& L=256
--® L=5]2
--8 L=1024

> O I O O
o

0.2

»lo??m\*,
-0 AN

B SR G TR g - B --& L=2048
03 04 05 0.2 03 04 05

T Ty

FIG. 5. Dependence of the system responselamd L for H=2.00 andt,,=500 MCSS.(a) Metastable dynamic phase diagram
analogous to Fig. 1. The values bfrange from 10 to 1§ and the different curves have the same interpretations as in that figure. The
horizontal line corresponds f6=0.216), where in the MD regime(r(T,H))~t,,,=500 MCSS.(b) The dynamic order parametéiQ|},
shown vsT for L between 64 and 204&) The fourth-order cumulant ratid, , shown vsT for L between 64 and 2048. Note that the dip
to negative values gradually disappears with increaking
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FIG. 6. Dependence of the system responseToend L for H=1.8] andt;,=20 MCSS. (a) Metastable dynamic phase diagram
analogous to Fig. 1. The values bfrange from 10 to 1§ and the different curves have the same interpretations as in that figure. The
horizontal line corresponds f6=0.592), where in the MD regime({7(T,H))~t,,=20 MCSS.(b) The dynamic order parametéiQ|),
shown vsT for L between 16 and 1024c) The fourth-order cumulant ratid, , shown vsT for L between 16 and 1024. Note that the dip
to negative values disappearslasmcreases beyond 64.

two consecutive zero-crossingsmft). The residence times As the temperature is lowered benedikss(L), the un-
and their distribution are useful to characterize the system ilerlying decay mode crosses over to the SD regime, and the
the stochastic SD regime. magnetization switching becomes stochastic as shown in Fig.
KeepingH andt,, fixed, we performed simulations mea- 2(b). The order-parameter distribution then has three peaks:
suring(|Q[) andU, as functions off for a series of system two extremely narrow peaks ne@=+1 and a rather wide
sizes. Here we present the results for four different pairs opne centered a®=0 [see Figs. &) and &c)]. The peaks
values ofH andty,. Figures 4-7 show the results féf  near+1 represent the periods during which the magnetiza-
=2.00 andty;=50 MCSS,H=2.00 andt;,=500 MCSS,  {ion does not switch, while the peak centered at zero repre-
H=1.8) and t,,=20 MCSS, and forH=3.00 and t1,  gents the periods during which it switches at least once. The
=20 MCSS, respectively. As indicated by these figures, the;ge width of this central peak is the result of the square-
findings in aII'these.cases are qua]natwely the same. For the e shape of the applied field, which results in an exponen-
purpose of discussion, we use Fig. 4, correspondingt 0 o) probability density for the switching process. A sinu-
=2.00 andt;,=50 MCSS. soidal field would yield a distribution more sharply peaked
about zero, since in that case, the switching almost always
occurs when the external field assumes its maximum magni-
tude[9-11,31. The generic feature in the stochastic regime,
Even for relatively small systemd &16-128), at suffi- regardless of the shape of the driving field, is the multiple-
ciently high temperatures, the underlying metastable decageak structure. For the square-wave field used in this paper,
mode is MD, as illustrated in the phase diagram in Fig).4 one can obtairisee Appendix A an analytic approximation
Then the system magnetization(t) follows a symmetric for P(Q) in the regime where, >t [Fig. Aa)],
limit cycle [see Fig. 2a)]. Consequently, the order-parameter
distribution P(Q) is sharply peaked about zefBig. 8a)],
yielding (|Q|)_~0 up to finite-size effects, as shown in Fig.
4(b). Correspondingly, the fourth-order cumulast is close

A. Small systems

e © 4] Q) e ©
_ —a0Q L —
P(Q)——2 5(Q+1)+26 + 5 o(Q—1).

to 0, as shown in Fig. @). (11
0.4 1
G----0 L=16
. @) o oo =32
\ MD G----0 L=64
N\ a2 [=]28 -
AN A8 *--a-k [=256 e--
by . RAN - &L
She Ny S ¢ L=512 S leeL=32 Ty
e Vs a----a [=1024 Tl om0 L=64 &
TS oo L=128 N\
~~~~~~~~ 02l S xeee- L=256 i
SD . oo L=5]2
, , . A g g LA L=1024
10 10° 10° 10* 0.4 06 02 0.4 0.6

T

T

FIG. 7. Dependence of the system responseToand L for H=3.0J and t,;,=20 MCSS. (a) Metastable dynamic phase diagram
analogous to Fig. 1. The valueslofange from 10 to 1%) and the different curves have the same interpretations as in Fig. 1. The horizontal
line corresponds td=0.193), where in the MD regime{7(T,H))~t,,=20 MCSS.(b) The dynamic order parametédiQ|), shown vsT
for L between 16 and 1024c) The fourth-order cumulant ratid, , shown vsT for L between 16 and 1024. Note that the dip to negative
values disappears with increasihg
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ol T @ T=05257 ®) T=0.5] © T=037 @
2 2

P(Q)

=3

-1 -0.5 05 1

Qo

FIG. 8. Histograms representi®(Q) in a small systeml(=16 with H=2.0] andt,,=50 MCSS) for different temperature@ T
=1.0J, (b) T=0.525], (c) T=0.5J, and(d) T=0.3J.

Equation(11) for P(Q) is compared with simulation data in employed to build the histogram fd®. In the stochastic
Fig. 9b) for a system withL=32 at H=2.00 and T regime, the cumulariy | becomes negative, reaching a mini-
=0.341, for which {7(T,H)) =233 MCSS.(The subscript mum at some temperature, as shown for the smaller values of
Lin (7(T,H))_is included as a reminder that the metastablel in Fig. 4(c).

lifetime depends o in the SD regime.The half-period is A quantity often used to detect stochastic resonance is the
t1,=500 MCSS>ty. This comparison containgo fitting  rtd, P(t;) [11,28,31,45,4F the probability density for the
parameters: the average metastable lifetime of the underlyingesidence times, between zero-crossings of the magnetiza-
metastable decays(T,H)), , was measured in single field- tion. This quantity is shown in Fig. 10 for a system with
reversal simulations, and its value was used to determine the32 at H=2.0] and T=0.34J, for which (7(T,H))_
scaled half-period® =t,,,/(7). Instead of thes functions =233 MCSS. The half-period it;,=500 MCSS>ty. The

with amplitudee™®/2, the finite valuee™®/(2AQ) was used data are shown together with an analytic approximation
to make the correspondence with the finite bin si¥@, (ty2>14), which is derived in Appendix B

|

(12)

The analytic form contains as a parameter the average lifdi.e., at (h—1)t;;,, n=1,2, ... ],with exponentially decay-
time (7(T,H))_, which was measured in independent field-ing heights, as has also been observed in simulations with a
reversal simulations. Thus, as for the order-parameter distrsinusoidally varying field9,11,31. This behavior is charac-
bution above, no fitting parameters are involved in theteristic of systems undergoing stochastic resonance
comparison between the simulation data and the analytical8,45,44.

form. The generic feature of the rtd is the structure of the In the phase diagram shown in Figa) the weak-noise
peaks, which are centered at odd multiples of the half-periodtochastic-resonand¢@8] behavior described here occurs in

T M T T )

1
o5k o1 | |
- ol Vo [/

00

m(t), H(t)/H

RN RS RINERERERE]

" 1 L
84000 86000 88000 90000 92000 -1 05 Q 05 1
t

0

FIG. 9. Order-parameter statistics fbr=2.0], T=0.34], and L=32, which yield(+(T,H)) =233 MCSS, witht,;,=500 MCSS.
These are the same parameters as for Fig. 10. For these parameters, the system is in the stochastic regisneesgligible compared to
typ and({7(T,H))_. (&) A short segment of the magnetization time series. The interpretation of the line types is the same as in Fig. 2. Time
is shown in units of MCSS(b) Comparison of the simulatehistogram and the analyti¢solid curve, Eq(11)] order-parameter distribu-
tions.
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FIG. 10. Comparison of the simulated and the analjfq. (12)] residence-time distributionB,(t,) in the stochastic regime whetg
<ty,. Shown for a small system with =32 at H=2.01 and T=0.34), where (7(T,H)) =233 MCSS. The half-periodt,,
=500 MCSS, is much longer than the growth time. These are the same parameters as iGa-i8h8wn on a linear scaléb) The same
as(a), using a linear-log scale to emphasize the smaller peaks and the exponential dependence of the peak heights on

the wedge-shaped region between the two crossover curves,,, the system undergoes a genuine continuous phase tran-
TpsdL) and Ty (L), as already discussed in Sec. Il. Analo- sition, the DPT[1,12,14. The system magnetization per-
gous behavior was discussed in detail in R&fl] for the  forms a slow “wandering” motionFig. 3(b)], and the dis-
case of a sinusoidal driving field. tribution for Q widens significantly{Fig. 11(c)]. Below the

As T is lowered further for the small system, the averageransition, P(Q) becomes bimodalFig. 11(d)], (|Q|).
metastable lifetime quickly increases, and the probability of_ (1) [Fig. 4(b)], and U, approaches its ordered-phase
not switching during a half-periodPno(ty2;L, T,H), ap- yalue 2/3without exhibiting negative values or a minimum
proaches unity. As discussed in Sec. Il, the crossover tenYrig. 4(c)]. Also, U, for different large values of intersect
perature T, (L) corresponds toPno=1/2. Consequently, at the temperature corresponding to the DPiGs. 4¢), 5(c),
switching events become rare, and the central ped (@)  g(c), and 7c)], as expected for a continuous phase transition
essentially disappears, leaving only the two sharp peaks nept3). petailed finite-size-scaling analysis of Monte Carlo
+1 [see Fig. &)]. At the same timelJ, again becomes simuyjations for systems that are large enough that the under-
positive [see Fig. 4c)]. Significantly belowT, (L), switch-  |ying metastable decay mode is MD, are found in Refs.
ing will never be observed during a finite number of periods[1 12 14
and the system is completely “frozen” into one of its tWo =~ As T js reduced further, the underlying decay mode
metastable well§see Fig. 2c)]. This yields(|Q[)~1 and  crosses over to the SD regime Bpse(L). This leads to

U_~2/3, as shown in Figs.(8) and 4c), respectively. extremely large metastable average lifetimes, suchRhat
approaches unity. However, this has no effect on the observ-
B. Large systems ables: below the DPT, the system is already performing

B asymmetric limit cycles, confined to one of its metastable
For larger system§L=0(10%) for t;,=50 MCSS], at wells [Fig. 3()].

high temperatures the system is deeply in the MD regime
[Fig. 4(a)], where the lifetime is independent &f Here,
(7(T,H)) is significantly smaller thaty,,. The limit cycle of

the magnetization is symmetrj€ig. 3(a], and the fluctua- From the above discussion for small and large systems, it
tions in Q are Gaussian and centered about Z&igs. 11a) is clear that the qualitative behavior observed as the tempera-
and 11b)]. In this regime, botf{|Q|), ~0 andU, ~0, upto ture is varied depends strongly on the field amplitude, the
finite-size effectdFigs. 4b) and 4c)]. Upon lowering the half-period,and the system siz&or example, foH=2.0J
temperature, the underlying decay mode remains MD, buandt;,,=50 MCSS, one must employ=0(10?) in order

the lifetime increases and eventually becomes comparabler the underlying metastable decay mode to become MD, so
with the half-period. This happens well befolereaches that the DPT is observeldrig. 4(c)]. For the same field am-
TosHL). When(r(T,H)) becomes approximately equal to plitude and t,,=500 MCSS one need4=0(10°) to

C. Comparison

20 3 3 3
T=0.57 (@) T=04J (b} T=0.3757 (c) T=0357 @

05 1 -1 -0.5 05 1 -1 -0.5

o
o
Qo

FIG. 11. Histograms representii®(Q) in a large systeml(=180 withH=2.0J andt,,=50 MCSS) for different temperature@)
T=0.5J, (b) T=0.4J, (c) T=0.375J, and(d) T=0.35J.
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— m(1) (a) (b) (©) d ()
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2y 2t L I, 1, 2y, L 2ty T 1, 2t

t1 tIﬂ 12

FIG. 12. Schematic plots for constructing the probability derBityQ) when the driving field is negative in the first half-period. Dashed
and solid lines represent the driving field and the magnetization, respectively. The switching,tiamek,, possibly occurring in the first
and second half-periods, respectively, are measured from the beginning of their respective half-periods.

achieve the same effe¢Fig. 5(c)]. For larger and larger tion, Grant No. RI0761. This research used the resources of
half-periods, the “infinite-system” DPT (((T,H))~t/) the National Energy Research Scientific Computing Center,
occurs at lower and lower temperatures. However, at thesehich is supported by the Office of Science of the US De-
low temperatures, it takesxponentiallylarge systems to be partment of Energy under Contract No. DE-ACO03-
in the MD regime, as seen from E@}). By increasingt,», 76SF00098.

one therefore quickly reaches the limit of any available com-

putational resources. APPENDIX A: ANALYTIC APPROXIMATION
FOR THE ORDER-PARAMETER DISTRIBUTION
IV. SUMMARY AND CONCLUSION IN THE STOCHASTIC REGIME

We addressed the finite-size effects of the periodic re- In the stochastic regime, for largg,, we can neglect the
sponse of spatially extended bistable systems by studying thgrowth time after the nucleation of the critical droplet and
two-dimensional kinetic Ising model in an oscillating exter- approximate the switching process imgtantaneouswitch-
nal field. The intimate connection between the underlyinging of m(t) between+ 1 [Fig. 9a)]. Then, knowing that the
metastable decay modes and the periodic response of spadcleation of a critical droplet is a Poisson procéss, the
tially extended bistable systems has been stated and demagprobability density of the switching time is exponentiaith
strated several timeld,10—12,14,3]L On the other hand, it rate(7) !, we can calculate the probability density function
has been claimed repeated,26,27 that for large enough (pdf) for the dynamic order parametB(Q). It is important
periods (low-frequency regime the dynamic phase transi- to recall that in the definition of we includedbothtypes of
tion (DPT) becomes first-order. In the present study, we fo-averaging: averaging over a period when the driving field
cused explicitly on demonstrating that any signatures resenstarts with a negative value, and also when it starts with a
bling a first-order transition at lower temperatures are merelyositive value in the first half-period. Here we show the cal-
finite-size effects that disappearlass increased sufficiently. culation of the former casB_(Q). The calculation for the

First, we reviewed the basics of the well-known theory oflatter is identical and at the end one simply has to add them
homogeneous nucleation. Understanding the relevant timggether with weight 1/2, resembling the way the histogram
and length scales and the various decay méderstidroplet  was collectedP(Q)=[P_(Q)+ P, (Q)]/2.

(MD) and single-dropletSD)] in metastable decay, one can  When the driving field is negative in the first half-period,
estimate the important system-size-dependent crossovers ftfere are five distinct scenarios, as illustrated on the sche-
the periodic response. Next, we presented extensive simul@aatic plots in Figs. 1&—6. In Figs. 12a—0, the value of
tion results indicating that no first-order transition exists forthe magnetizatiom(t) is + 1 at the beginning of the period,
any frequency, and consequently, there can be no tricriticaihile in the cases of Figs. 1@ and 12e), it is — 1. Since
point separating lines of first-order and continuous dynamigye are interested in thetationarydistribution ofQ, first we
phase transitions. The behavior, correctly observed in Rehave to find the stationary probabilitigs’ (p.,) that the

[9] but misinterpreted as indicating the existence of a firstynagnetization has the valuel (—1) at the beginning of a
order DPT, is due to the stochastic nature of the underlyingyeriod. After a quick look at the five cases abd\gs.

single-droplet metastable decay. In this regime, the systempa—g], one can write down a set of discrete-time “time-
exhibits stochastic resonance. However, the stochastic resgyojution” equationsfrom one period to the next

nance doesot survive in the large-system limit with fixed
field amplitude. Pre1=le O+ (1-e ®)?Ip, +(1-e ®)p,,

ACKNOWLEDGMENTS Pri1=(1—e %)e ®p +e “p,, (A1)
G.K. and M.AN thank Z. Toroczkai for his hospitality for p, andp, , the probabilities that the magnetization is
and for use of the facilities at the CNLS, Los Alamos Na-+1 and—1 at the beginning of thath period, respectively.
tional Laboratory, where part of this paper was completedin Eq. (A1) we used the definitio® =t,,,/( ). From these
We acknowledge the support of NSF through Grant Nosequations one can easily obtain the stationary-d#ted-
DMR-9871455, DMR-9981815, DMR-0120310, and DMR- point) values p;=1/(1+e"®) and p.=e ®/(1+e 9).
0113049, and through the support of the Research Corpor&ow for each case in Figs. (@#-6, we consider the condi-
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tional probability density ofQ (conditional on the value of e ©
the magnetization at the beginning of the peyidd the case P, (Q)= —{e 98(Q-1)+H(Q)®e 9}
of Fig. 12a), Q=1 with probabilitye™®, i.e., the magneti- 1+e

zation does not switch in the first half-period, yieldingsa
function contributione ®5(Q—1) to the full pdf. In the

: 1) . , + {e’®5(Q+ 1)+H(Q)@e ©-1QD
case of Fig. 1&), the magnetization switches &t in the 1+e ©
first half-period and does not switch back in the second, re-
sulting in Q= (t;—t4;)/t1». The contribution to the pdf is +7(ef®\Q\_e*®(27|Q\))]_ (A4)
e*(é(Q—(tl—tl,z)/tl,z)%l, where (- - *), is an average

over the exponentially distributed switching timg In the = The symmetrized“phase-averaged’dynamic order param-
case of Fig. 1&), the magnetization switches twice,tatin ~ eter becomes considerably simpler and easier to compare
the first half-period and &t in the second one, resulting in with measured histograms
Q=(t;—ty)/t1,. The contribution to the pdf i§6(Q—(t; 1 e © ® ol
—t))/ty)), 1, Where(---); . is an average over the ex- (Q)=3[P(Q+P_(Q]=—-dQ+1)+7e
ponentially distributed switching times andt,, occurring
independently in the first and second half-peri¢aisd mea-
sured from the beginning of their respective half-perjotts
the case of Fig. 1@), the initial value of the magnetization
is —1, and it does not switch in the second half-period,
yielding e ®8(Q+1). In the case of Fig. 18) the magne-
tization switches once a4 in the second half-period result-
ing in Q= —t,/ty; and a contribution 5(Q +t,/ty5))¢, to In the stochastic-resonance limit, where is not much
the pdf. Combining the above conditional pdfs with the prob-smaller thart,,,, while both are much larger thag, we can
abilities of the corresponding initial values of the magnetiza-obtain an analytic form for the rtdP(t,). The derivation
tion, one obtains follows that given for a sinusoidally oscillating field in the
Appendix of Ref[31]. However, the present case is simpler
P_(Q)=pi{e ®8(Q-1)+e 8(Q— (ti—ty)tap))y, since the probability that a switching event has not occurred
within a timet after the field has changed its sign to become
F(AQ—=(ty =)ty 1 b+ p.{e ®8(Q+1) opposite to the magnetization directid®,,(t;L,T,H), is a
simple exponential, exp(t/(7(T,H)),) [see Eq.(5)]. As a
F((Q+1ta/ty))y,}- (A2)  consequence, all the integrals that have to be evaluated nu-
Carrying out the averages above using the exponential pd{“ erically in the sinusoidal case can here be tivially calcu-
for t. andt.. we arrive at 3ted analytically. Provided the magnetization switched in a
1 2 period (say periodn=1) at timet; (measured from the in-

e ©
+5-8(Q-1). (A5)

APPENDIX B: RESIDENCE-TIME DISTRIBUTION
AND ITS ANALYTIC APPROXIMATION
IN THE STOCHASTIC REGIME

stant the driving field changed sigrthe next magnetization
P_(Q)= _®[e®5(Q—1)+H(—Q)®e®(2Q) switching occurring in thenth period att, (also measured
1+e from the instant the driving field changed sjgesults in a
0 —0 residence time,=(2n—1)ty»,—t;+t,, wheret; andt, are
+— (e OlRl—g-0@-1Qhy} 4 exponentially distributed variables. The formal expression
2 1+e © for the rtd then can be written as
x{e ®5(Q+1)+H(—Q)@e 9l (A3) o e
! Pty =2, T oo (Ot (2= Ditipt i)y,
whereH(x) is the Heaviside step function. An identical cal- (B1)
culation for the pdf ofQ for periods starting with a positive Carrying out the averages above yields, after some rear-
value of the driving field yields rangement,
t .
sinr{—r—Z(n—l)(@} it 2(n—=1)ty,<t,<(2n—1)typ,
1 e*ﬂ@ <T>
P.(t)="— X (B2)
T ) 1-e7® t, _
sin 2n®—<7> if (2n—1)ty,,<t,<2nty,

wheren=1,2, ... .
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