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Random K-satisfiability problem: From an analytic solution to an efficient algorithm
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We study the problem of satisfiability of randomly chosen clauses, each withK Boolean variables. Using the
cavity method at zero temperature, we find the phase diagram for theK53 case. We show the existence of an
intermediate phase in the satisfiable region, where the proliferation of metastable states is at the origin of the
slowdown of search algorithms. The fundamental order parameter introduced in the cavity method, which
consists of surveys of local magnetic fields in the various possible states of the system, can be computed for
one given sample. These surveys can be used to invent new types of algorithms for solving hard combinatorial
optimizations problems. One such algorithm is shown here for theK53 satisfiability problem, with very good
performances.
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I. INTRODUCTION

The K-satisfiability (K-SAT) problem deals with an en
semble ofN Boolean variables, submitted toM constraints.
Each constraint is in the form of anOR function of K vari-
ables in the ensemble~or their negations!, and the problem is
to know whether there exists one configuration of the va
ables~among the 2N possible ones! which satisfies all con-
straints. TheK-SAT problem forK>3 is a central problem
in combinatorial optimization: it was the first problem to b
shown NP-complete @1,2#, and an efficient algorithm for
solving theK-SAT problem in its worst-case instances wou
immediately lead to other algorithms for solving efficient
thousands of different hard combinatorial problems.

At the core of the statistical physics of disordered syste
is the spin-glass problem~SG!, which also deals with Bool-
ean variables~spins!, interacting with random exchange co
plings @3#. Each pair of interacting spins can be seen a
constraint, and finding the state of minimal energy in a sp
glass amounts to minimizing the number of violated co
straints. Although the precise form of the constraints in
andK-SAT differ, there exist deep similarities@4,5#; in both
cases the difficulty comes from the existence of ‘‘frustratio
@3#, which forbids to find the global optimal state by a pure
local optimization procedure. Links between combinator
optimization and statistical physics have been known
long @3#. Two main categories of questions can be addres
One type is algorithmic, for instance finding an algorith
which decides whether an instance is satisfiable or not.
other is more theoretical, and deals with large random
stances, for which one wants to predict the typical behav
Examples of use of statistical physics in each category
the simulated annealing algorithm@6# and the solution of the
random assignment problem@7,8#, or the direct mapping of
certain graph partitioning problems to spin glasses@9#. Here
we address the two types of questions in theK53 satisfi-
ability ~3-SAT! problem.

The study of randomK-SAT problems, where the clause
are chosen randomly, is also interesting from the viewpo
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of optimization. In practice, algorithms that are used to so
real-world NP-complete problems display a huge variabi
of running times, ranging from linear to exponential, wh
the parameters~e.g., the number of clauses! are changed. A
theory for the typical-case behavior of algorithms, on clas
of random instances chosen from a given probability dis
bution, is therefore the natural complement to the worst-c
analysis@10–15#.

In random 3-SAT, numerical simulations have shown t
existence of a phase transition when one varies the ratia
5M /N of the number of clauses to the number of variabl
For a,ac the generic problem is satisfiable~SAT!, for a
.ac the generic problem is not satisfiable~UNSAT! @16#.
Using the cavity method, first developed in spin-glass theo
we shall show the existence of this threshold and comp
ac.4.267. We also find an intermediate region, the ha
SAT phasead53.921,a,ac , where the generic problem
is still SAT but the proliferation of metastable states make
difficult for algorithms to find a solution. This proliferation i
similar to the effect found in the theories of structural glas
using spin-glass models with multispin interactions@17#,
where it is known to lead to a dramatic slowdown of t
relaxation. In this sense the difficulty to solve the 3-SA
problem in the intermediate regionad,a,ac is similar to
the difficulty in equilibrating structural glasses.

This theoretical analysis is done using the cavity meth
at a level equivalent to what is called one-step replica sy
metry breaking in the replica language. This means tha
assumes the existence of many states, but cannot han
nontrivial correlation pattern between them. There are so
arguments which point towards the correctness of this s
tion, although an exact proof looks somewhat remote
present.

In this cavity method with many states, the order para
eter consists in the surveys of local magnetic fields acting
each spin. While for the theoretical analysis one avera
over the random graph structure of the problem, it turns
that this order parameter can also be computed for one g
sample, using a reasonably simple message passing p
©2002 The American Physical Society26-1



hi
tio
e
s
h
n
la

se
i-
th
e

th
e
ce
th

u

s
br
b-
ra
th

en
ich
ar
e

tim
ph
h
le
w

tiv
os
f
o
a
r
u
th
to
e

vi
-

m
in
d

fo
IX
d

tio
B
e

ri-
of

ep-
ll
ing

,

in
can

n-

nd
n-

the

we

ite
ex-

ge

er-
error

con-
ed

all
bi-

are
e

ll
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dure which takes into account the multiplicity of states. T
procedure provides a generalization of the belief propaga
used in statistical inference@18#; it is shown here to converg
in some difficult situation with many equilibrium state
where ordinary belief propagation does not converge. T
resulting surveys provide an interesting description of o
given sample, where the various variables are found to p
very different roles. This single sample analysis is very u
ful in order to find new algorithms for solving hard optim
zation problems. Here we show one such algorithm for
random 3-SAT problem, where the surveys are used to id
tify one spin and fix it. The problem is thus reduced and
surveys are computed again on the new system. This d
mation procedure is shown to have very good performan
comparable to, or better than, the state of the art in
problem.

The paper presents a number of concepts and techniq
both analytical and numerical, which can be applied to
rather large class of combinatorial optimization problem
We have presented these concepts and techniques in a
framework, in order to allow for future use on different pro
lems. The concrete implementation is then done on the
dom 3-SAT problem. Some of the results discussed in
paper have been recently announced in Ref.@19#.

The paper is organized as follows: in Sec. II we pres
the generic structure of the optimization problems in wh
we are interested. These can be represented as bip
graphs called factor graphs. Section III recalls a general m
sage passing procedure which can be used to study op
zation or inference problems defined on these factor gra
The basic ingredients of this procedure are messages w
we call cavity biases which play a crucial role in the who
paper. Section IV defines the set of random graphs which
study, which are random hypergraphs with a fixed connec
ity. Section V provides some background on the decomp
tion of the configuration space into states. It consists o
short introduction for nonphysicists, a specific definition
zero-temperature states for the random 3-SAT problem,
the definition of thecomplexitywhich is a crucial concept fo
a system with many states. Section VI provides an introd
tion to the zero-temperature cavity method, presented in
general setting of combinatorial problems on random fac
graphs. This section summarizes, and puts in a more gen
context, some recent work which has developed the ca
method for finite connectivity problems, first at finite tem
perature@20#, then at zero temperature@21#. It provides the
whole formalism for the analytic study of the phase diagra
This formalism is applied to the random 3-SAT problem
Sec. VII, where all the results on the phase diagram are
rived. We explain the survey propagation algorithm on
given sample in Sec. VIII, and the decimation algorithm
solving large random 3-SAT problems is presented in
Section X contains some concluding remarks. The Appen
A contains some technical details relative to the computa
of the phase diagram done in Sec. VII. The Appendix
explains the computation of the free energy for one giv
sample.
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II. FACTOR GRAPH REPRESENTATION

The models we are interested in involve Boolean va
ables which interact in groups, the energy being the sum
energies of all groups. We shall adopt the factor graph r
resentation@22# familiar in computer science, but we sha
keep to the representation of Boolean variables as Is
spins, more familiar to statistical physicists.

We consider a set ofN Ising spinss iP$61% and we
suppose that we haveM groups of interacting variables
which are called function nodes. Each function nodea in-
volves a set ofna spins. We denote byVa the set of all these
spins. The interaction is an arbitrary function of the spins
Va , which depends on the problem one considers, and
also involve hidden variables.

The total energy of a configurations1 , . . . ,sN is

E5 (
a51

M

Ea , ~1!

and the goal in combinatorial optimization is to find a co
figuration of spins which minimizesE. A generalization of
this problem, natural from the point of view of physics, a
which connects with problems in statistical inference, co
sists in introducing an additional parameterb, an ‘‘inverse
temperature’’ in the physics language, and in studying
Boltzmann probability distribution

P~s1 , . . . ,sN!5
1

Z
exp~2bE!, ~2!

whereZ is a normalization constant. As usual in physics,
shall denote bŷ O& the expectation of an observableO
~which can be any function of thes i) with respect to this
measure. In the largeb ~low-temperature! limit this measure
concentrates onto the lowest energy configurations. At fin
b one may be interested in computing for instance the
pectation value of one spin variables1 with the Boltzmann
probability. Because we work with binary spins, this avera
determines the full marginal probability law ofs1: this is
precisely the quantity that one typically seeks in many inf
ence problems, such as e.g., decoding procedures for
correcting codes.

The general problem can be represented by a graph
sisting of two types of vertices, ‘‘variable nodes’’ associat
with each spin, and ‘‘function nodes.’’ A function nodea is
connected by edges to all the variable nodes involved inSa .
Therefore, each variable node has connections towards
the function nodes in which it appears, and the graph is
partite~see Fig. 1!. Each spins i is connected toni function
nodes, we denote this set of function nodes byVi . We callni
the connectivity of spini , na the connectivity of function
nodea. Throughout this paper, the variable nodes indices
taken in i , j ,k, . . . , while the function nodes indices ar
taken ina,b,c, etc.

Let us give here a few standard examples.
Spin glasses. All the interactions involve two spins, so a

na are equal to 2; the energy of an interaction nodea involv-
ing spinss i ands j is given by
6-2
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RANDOM K-SATISFIABILITY PROBLEM: FROM AN . . . PHYSICAL REVIEW E66, 056126 ~2002!
Ea52Ji j s is j , ~3!

where the numberJi j is called the coupling constant. Gene
alized spin glasses withp-spin interactions,

Ea52Ji 1••• i p
s i 1

•••s i p
, ~4!

have also been studied a lot in statistical physics as mo
of structural glasses. They are the closest physical analo
of the satisfiability problems which we study here@23#.

K-SAT: All interactions involveK spins, and the energ
of an interaction nodea involving spins s i 1

, . . . ,s i K
is

given by

Ea52)
r 51

K ~11Ja
r s i r

!

2
. ~5!

It depends on a set ofK coupling constants Ja
5(Ja

1 , . . . ,Ja
K) which take values61. This interaction node

has a simple interpretation as a clause: the energyEa is zero
as soon as at least one of the spinss i r

is opposite to the

corresponding couplingJa
r . If all spins are equal to thei

couplings, the energy is equal to 2. The more conventio
description ofK-SAT uses Boolean variables: let us intr
ducexi which is TRUE if and only if s i51. The energyEa
depends on theOR of theK variablesyi 1

, . . . ,yi K
, whereyi r

is the originalxi r
when Ja

r 521 and is its negation when

Ja
r 511. The energy vanishes ifyi 1

~•••~yi K
is true ~the

clause is then said to be satisfied!, otherwise it is equal to 2
and the clause is unsatisfied. This arbitrary factor of 2
introduced for future convenience.

One can also consider graphs involving mixtures of fu
tion nodes of different types, e.g., mixtures ofK52 clauses
and K53 clauses@5,24#. These are some examples of co
straints satisfaction problems, but of course there exist m
other instances of problems, much studied in computer
ence, which can be represented by such factor graphs.

In general, an instance of the problem~also called a
sample in physics language! is given by a graph and the se
of couplings needed to define each function node. In phy
~e.g., spin glasses! one is interested in the configurations

FIG. 1. An example of a factor graph with five variable nod
i 51, . . . ,5 andthree function nodesa51,2,3. In this case, eac
function node has connectivity 3, as in the 3-SAT problem. T
connectivities of the five variable nodes are, respectively, 2,2,1,
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low energy. In the SAT problem, one wants to know wheth
there exists a configuration of zero energy~in which case the
instance is called SAT!, or not ~in which case the instance i
UNSAT!.

III. THE SUM-PRODUCT ALGORITHM

A popular method for studying the inference, i.e., t
probability measure~2!, is a message passing procedu
called the ‘‘sum-product’’ algorithm@22,18#. When used at
b→`, the corresponding ‘‘min-sum’’ algorithm can also b
used to get some information on the lowest energy confi
rations. This procedure is exact and fast on treelike grap
In our case the sum-product algorithm amounts to send
some messages along the edges of the graph. We call ca
field, and denote byhi→a , the message passed from a va
able nodei to a function nodea. We call cavity-bias, and
denote byua→ i , the message passed from a function noda
to a variable nodei.

The cavity-fieldhi→a is given by the sum of cavity-biase
converging toi from all function nodesb distinct froma:

hi→a5 (
bPV( i )/a

ub→ i . ~6!

The operation performed by a function node to comp
the cavity-biases which it will send to its neighboring va
able nodes is a partial summation: it computes the marg
probability law for that variable to which it sends the me
sage. More precisely, let us consider a function nodea of
connectivityK and let us suppose, for notational simplicit
that it is connected to variabless1 , . . . ,sK . The cavity-bias
ua→1 sent from the function nodea to the variable nodei
51 is a function of the cavity fieldshj→a sent from all other
variables nodesj P$2, . . . ,K% towards nodea. One consid-
ers the function of s1 defined by (s2 , . . . ,sK

exp

@2bEa(s1,s2, . . . ,sK)1b(h2→as21•••1hK→asK)#. As
s1561, this function can be written for instance as t
exponential of a linear form ins1. The cavity-biasua→1 sent
from a to 1 is defined from

(
s2 , . . . ,sK

exp@2bEa~s1 ,s2 , . . . ,sK!

1b~h2→as21•••1hK→asK!#

5exp@b~wa→11s1ua→1!#. ~7!

Besides the cavity-biasua→1, this equation also defines
‘‘free-energy shift’’ wa→1 which is not used in the sum
product algorithm but will become very important in ou
generalization later on. In physics words,hi→a is the mag-
netic field on spin numberi whenever the interactiona is
turned off, andua→ i is the contribution to the magnetic fiel
on spin numberi from the interactiona. Equation~6! indi-
cates that the probability law of spins i due to the interac-
tions a52, . . . ,K is a product of independent laws due
each interaction, while the marginalization operation~7! is a

e
3.
6-3
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M. MÉZARD AND R. ZECCHINA PHYSICAL REVIEW E66, 056126 ~2002!
partial summation, hence the name sum-product. The a
rithm is easily generalized to variables which are more co
plicated than Boolean.

The iteration of the above message passing algorit
starting from a generic random initial condition, is known
converge whenever the underlying factor graph is a tree.
tually it converges in one sweep if one first computes
messages from the leaves of the tree. The resulting se
messages can be used to compute the probability distribu
of one spin~or more generally of some subset of spins!. One
just needs to compute the local fieldHi on spins i :

Hi5 (
aPV( i )

ua→ i , ~8!

and the probability distribution ofs i is

P~s i !5
exp~bHis i !

2 cosh~bHi !
. ~9!

One way to prove this result, using the physics language
to show that the message passing algorithm minimizes
Bethe free energy of the spin system@18#. As the Bethe free
energy is exact for treelike graphs, this provides the proo
one is interested in the optimization problem (b→`), one
can show that the configurations i5sgnHi is the lowest
energy configuration if there is a unique such configurati
If there are several lowest energy configurations, taking
b→` limit of ^s i& with the measure~9! gives the average o
the spins i over all these configurations~but one needs to
make this detour through the finiteb problem in order to get
this result!.

In this work we shall mainly be interested in the optim
zation problem. Working directly atb5` then simplifies the
algorithm. The cavity-fields are generated as before by s
of cavity biases. For computing a cavity-bias, one perform
partial minimization, and the formula~7! simplifies to

min
s2 , . . . ,sk

@Ea~s1 ,s2 , . . . ,sk!2~h2→as21•••1hk→ask!#

52~wa→11s1ua→1!. ~10!

This equation defines the output messagesw andu as func-
tions of the input messageshj→a . In general, we shall write

wa→15ŵJa
~h2→a , . . . ,hK→a!,

ua→15ûJa
~h2→a , . . . ,hK→a!, ~11!

which defines the functionsŵJa
and ûJa

@the labelJa is here

to explicitly remind that a given function node energyEa
will in general depend on some set of couplings—see E
~4! and ~5!—which we denote collectively asJa].
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IV. RANDOM GRAPHS AND THERMODYNAMIC LIMIT

A. Definition of random graphs

In the rest of this paper we shall consider the rand
K-SAT problem, which is defined on some ensemble of r
dom graphs which we now describe. To lighten the notati
we concentrate on theK53 cases for which all the function
nodes have connectivityna53, and we generate the rando
graphs as follows: For each tripleti , j ,k of variable nodes,
a function node connecting them is present with a probab
6a/N2, and it is absent with probability 126a/N2. The
average number of function nodes is thenM5aN. The
graph model used is analogous to theG(N,p) model of ran-
dom graph theory@see, e.g., Ref.@25##, with p56a/N2.

For the problem which we consider, the energyEa asso-
ciated with a function nodea also depends on some couplin
constantsJa @see for instance Eq.~5!#, which may be drawn
randomly and independently for each function node fro
some probability distribution. For instance in random 3-SA
each numberJa

1 ,Ja
2 ,Ja

3 takes values61 with probability 1/2.
In general we shall denote byEJO the average of any quan
tity O over all the choices of the random graphs~with fixed
N and M ), and over the choices of couplings. In such
probabilistic setting, one is interested for instance in comp
ing the average ‘‘ground state energy:’’ For each sample,
optimal configuration~one with minimal energy!, is called
the ground state, its energy isE0, and one would like to
computeEJE0.

B. Thermodynamic limit

We shall be interested in the ‘‘thermodynamic limit’’
whereM and N go to `, keeping the ratioa5M /N fixed.
The connectivities of variable nodes become independ
identically distributed~iid! random variables with a Poisso
distribution f 3a(k) of mean 3a, since the probability of hav-
ing k edges connected to a variable node is

lim
N→`

S ~N21!~N22!/2

k D ~6a/N2!k

3~126a/N2!(N21)(N22)/22k

5
~3a!k

k!
exp~23a![ f 3a~k!. ~12!

The structure of the random graphs generated by this
cess for largeN is interesting. Locally such a graph is tre
like: the typical size of a loop in the graph scales like ln(N)
for large N. On the other hand loops are definitely prese
and they can induce frustration in the sense of having co
peting constraints@it has been argued that similar rando
graphs with a local treelike structure provide a natural sett
for discussing the ‘‘Bethe approximation’’ of frustrated sy
tems @26##. The structure of the graph has one importa
consequence: consider one given function node, connecte
three variable nodes~spins!. If one deletes this function
node, the typical distance between any two of these th
spins ~measured as the length of the shortest path on
6-4
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RANDOM K-SATISFIABILITY PROBLEM: FROM AN . . . PHYSICAL REVIEW E66, 056126 ~2002!
graph which connects them! is of order lnN, and thus di-
verges in the thermodynamic limit: the spins are far ap
This property will be crucial in understanding the type
correlations existing between the spins, and in solving
model. Notice that the limit whereM ,N→` is also the one
that is interesting from a computational complexity point
view.

For problems defined on random graphs with givenN,M ,
the ground state energy fluctuates from sample to sampl
is often true, but it may be difficult to show, that the dist
bution of the ground state ‘‘energy density’’E0 /N becomes
more and more peaked whenN increases, so that, in th
thermodynamic limit, almost all samples have the same
ergy density, which can be computed as

e05 lim
N→`

EJE0 /N. ~13!

For the randomK-SAT problem it can be proved that th
above condition holds@27#.

One of our aims is to compute this limiting valuee0 for a
fixed value ofa5M /N. For theK-SAT problem it turns out
that this value is equal to zero below a certain thresholdac ,
and becomes.0 for a.ac . In statistical physics it is very
difficult to go beyond the estimate of the energy density
one can computee0, one knows thatE0;e0N is the leading
behavior of the energy for largeN, but in general one canno
control the subleading part, and in principle it could be p
sible for instance that also in the smalla phase ofK-SAT
wheree050, some finite contribution toE0 ~finite whenN
→`) could make the problem typically UNSAT. Numeric
simulations tend to show that this is not the case. Know
e0 will then allow to get the phase diagram of the proble
But one is also interested in other properties of the gen
samples in the thermodynamic limit, like the decomposit
of the space of accessible configurations at a given energ
which we now turn.

V. STATES AND CLUSTERING PROPERTY

A. A simple example of pure states: The ferromagnet

One of the main aims of statistical physics is to und
stand the building up of correlations between distant v
ables, when the basic interactions between them are s
range. This is precisely the type of question that we nee
address here: variables interact locally~the only direct inter-
actions involve spins connected to the same function no!.
But we also need to control the correlations established
tween two spins belonging to the same function node, du
their indirect coupling through other nodes. As we saw,
geometry is such that this indirect interaction builds
through very long„O(ln N)… paths.

Usually, in the statistical physics of systems with sh
range interactions, the correlation between distant varia
displays a relatively simple variety of behaviors. The si
plest one is when there is only one pure state in the sys
~typically a ‘‘paramagnetic phase’’!: then there exists a finite
correlation length and the connected correlation function
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tween two distant spinss i ,s j decays exponentially with the
distancedi j at large distances

u^s is j&2^s i&^s j&u.C exp~2di j /j!, ~14!

where j is the correlation length (C can be a constant, o
involve power law corrections in the distance!. This is called
the clustering property. On the other hand, some systems
also have phase transitions, and display a low-temper
phase with several pure state.

The archetypical case which we briefly describe here a
pedagogical example is the ferromagneticp52 spin system
with energy given by Eq.~4! with Ji j 51: at low temperature
the spins polarize in one of two pure states, related to e
other by the global symmetry changing alls i to 2s i . Let us
call a configuration one assignment of theN spins,
s1 , . . . ,sN . The pure states are probability measures on
configuration space obtained using a slightly modified Bo
zmann measure where one adds an external ‘‘symm
breaking’’ magnetic field~in the present language one adds
function node of connectivity one connected to each va
able node i, with energy 2Bs i). One computes
limB→06limN→`^s i&, which defines the expectation valu
^s i&6 of spin i in each of the two states1 and 2. It is a
well known fact that the connected correlation functio
within each state have the clustering property

u^s is j&62^s i&6^s j&6u.C exp~2di j /j!. ~15!

This means that when the spins collectively polarize in the1
state, the correlations between distant spins vanishes. It is
true for the full Boltzmann measure: if one does not add
small symmetry breaking fieldB, but keeps to the Boltzmann
measure~2!, one gets for any observablêO&51/2(^O&1

1^O&2) ~the fact that the two states enter with equal weig
1/2 is a consequence of the global symmetry of the origi
problem!, and one easily shows that the corresponding c
relations do not vanish at large distances.

The lesson we learn from statistical physics is that cor
lations decay at large distance within each pure state
problems more complicated than the ferromagnet it may
difficult to identify the various pure states, especially wh
we do not have at hand a simple breaking of a symmetry
large part of the work on spin glasses has been devote
this problem and we shall not try to reproduce it here@see
Ref. @3# for a review#, nor to give a general definition o
states at finite temperature in our problems.

B. States at zero temperature

Instead we shall focus on the zero-temperature limitb
→`), where the situation is simpler. A state is defined in t
thermodynamic limit as a cluster of configurations, all
equal energy, related to each other by single spin flip mov
and which are locally stable, in the sense that the ene
cannot be decreased by any flip of a finite number of sp
In the random 3-SAT problem one can use an even sim
definition which allows to generalize the definition of stat
also to finiteN problems: the condition of local stability ca
be substituted by a condition of stability with respect to a
6-5
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sequence of one spin flips. The reason for this simplificat
specific to theK-SAT problem, is that in this case the stab
ity with respect to sequences of single spin flips insures
bility with respect to collective flips of finite sets of spins.

C. Many states: Definition of the complexity

Experience with disordered and frustrated systems
glasses shows that there can exist many states, and the
ber of states typically grows exponentially with the numb
of variables. The number of statesN(E) with energyE is
written as

N~E!5exp@NS~a,e!#, ~16!

where the quantityS(a,e) is called the complexity. It is a
function of a5M /N ande5E/N, and the form~16! is de-
rived from the basic assumption that lnN(E) is extensive. In
general, whenever a problem has a nonzero complexity,
may expect that simple local algorithms will have great d
ficulty in finding the ground state, simply because the sta
proliferate ~for large N) and the algorithm will easily ge
trapped into one state with energy above that of the gro
state. We shall see in the next sections how the ca
method can handle such a situation.

VI. A PRIMER ON THE CAVITY METHOD
AT ZERO TEMPERATURE

The cavity method was originally introduced in Ref.@28#
to study spin glasses, but it gives a general framework
computing statistical properties of various frustrated syste
and is ideally adapted to systems with a locally treel
structure. It is always in principle equivalent to the repli
method, which is a more compact and very appealing
malism; however, it possesses two advantages. On one h
it proceeds through a standard probabilistic analysis,
makes explicit all the hypotheses involved in it. Rough
speaking, the cavity method assumes some properties a
the correlations between variables in a system withN spins,
and shows that these are self-consistently reproduced f
system withN11 spin system. The problem in turning
into a rigorous methods is that these hypotheses only ho
the largeN limit, not for N small. If one is able to have a
good control of the correlations as a function ofN, then the
cavity method becomes also a choice method for rigor
probabilistic studies of frustrated systems@29#. On the other
hand, in the cavity method, one considers explicitly the s
dependence of the order parameter, and the averaging
‘‘disorder’’ is performed at the end~this is in contrast with
the replica approach where the disorder average is m
from the very beginning!. As we shall see here, this aspe
allows to define some algorithm, inspired from the cav
method, which computes the order parameter on each sit
one given sample.

In what follows we shall be interested in the zer
temperature version of the cavity method. As discussed
detail in Ref.@21#, the formalism simplifies a lot in this limit
Here we shall mainly outline for completeness the basic
pects of the method, applied to the 3-SAT model where
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function nodes involve exactly three spins~the generalization
to more general problems is totally straightforward b
would make the notation more cumbersome!. We refer the
interested reader to Ref.@21# for more details. We shall firs
present the method in its simple replica symmetric~RS! ver-
sion where it assumes the presence of a single state, an
shall then turn to the more involved case in which ma
states exist but are uncorrelated, a situation called one-
replica symmetry breaking~1RSB! in the replica jargon.

A. The cavity method with one single state„RS case…

1. Adding one spin

Consider aN spin systems1 , . . . ,sN and its interaction
graph, and add to it a new spins0. Then generate the new
function nodes involving this new spin as follows: for ea
pair 1< i , j <N, the function node (0,i , j ) is present with
probability 6a/N2. Therefore, we have addedk new function
nodes which we label bya51, . . . ,k, wherek is a random
variable with probability distributionf 3a(k). Let us consider
all the new function nodes which involves, besidess0 , 2k
other spins which we callsa

1 and sa
2 ~see Fig. 2!. Generi-

cally, on the original graph~i.e., before addings0), these
spins are far apart from each other. If there exists only o
state, the clustering property implies that the correlations
tween these spins, before addings0, vanish. Using the fact
that sa

1 and sa
2 are binary variables, this decorrelation im

plies that the minimal energy of the original graph, for fixe
values of the 2k spinssa

1 andsa
2 , can be written as

E~$sa
1 ,sa

2%!5A2 (
a51

k

~gasa
11hasa

2!, ~17!

where the 2k local fieldsga andha are nothing but cavity-
fields passed from each spin to the function nodea, andA is
a constant~independent of the local fields!.

Looking at the function nodea in the full graph including
spin s0, we need to minimize the functionEa(s0 ,sa

1 ,sa
2)

2(gasa
11hasa

2) with respect tosa
1 ,sa

2 . This is precisely
what one does in the message passing procedure of Sec

FIG. 2. When a new spins0 is added to the system, it get
connected throughk new function nodes to 2k other spins,sa

1 and
sa

2 . The cavity field onsa
1 is denoted byga , the one onsa

2 is
denoted byha .
6-6
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and one can thus use Eq.~10! to get the minimal energy o
the new graph withN11 spins, for a given value ofs0:

E~s0!5A2 (
a51

k

ŵJa
~ga ,ha!2s0(

a51

k

ûJa
~ga ,ha!, ~18!

where E05A2(a51
k (uha

1u1uha
2u) is the minimal energy of

the N-spin system.
Equation~18! shows that the cavity field on the new sp

s0 ~the coefficient of2s0) can be written as

h05 (
a51

k

ûJa
~ga ,ha!. ~19!

As we shall see, its is often useful to decompose this ca
field as a sum of cavity biases

h05 (
a51

k

ua ; ua5ûJa
~ga ,ha!. ~20!

2. Self-consistency equation: The order parameter

Whenever one adds a new spins0, one picks up a value
of k, and a set of 2k fields ga ,ha , which are iid variables
taken from a probability distributionP(h). The cavity
method assumes the existence of a thermodynamic limN
→` where the energy densityE/N and the distribution of
local fieldsP(h) have well defined limits. This means th
the distribution ofh0 is the same as that of the 2k fields.
Calling Q(u) the probability distribution of theu variables,
this stability condition of the iteration~20! implies that

Q~u!5E dgdhP~g!P~h!EJd@u2ûJ~g,h!#,

P~h!5 (
k50

`

f 3a~k!E du1•••dukQ~u1!•••Q~uk!

3dS h2 (
a51

k

uaD , ~21!

whereEJ means an expectation value with respect to all
couplingsJ.

3. Computing the energy

One can easily compute the average shift in the gro
state energy when adding one new spin. Looking at the
dition process defined in Sec. VI A 1, we see that the ene
of the original graph withN spins isA2(a51

k (ugau1uhau),
while that of theN11 spin system isA2(a51

k ŵJ(ga ,ha)

2u(a51
k ûJ(ga ,ha)u. Therefore, the shift in energy when ad

ing the new spins0 is
05612
ty

e

d
d-
y

DE1
(0)5 (

a51

k

~2ŵJa
~ga ,ha!1ugau1uhau!

2U(
a51

k

ûJa
~ga ,ha!U. ~22!

Equation~21! gives an integral equation for the order p
rameter which is the probability distributionP(h) @or alter-
natively Q(u)]. Let us now suppose that this equation h
been solved~we shall see below how this can be done
each specific example!, and show how the energy density ca
be deduced from this order parameter. We must compute
average of the energy shift for adding one spin~averaged
over the choice ofk and of the corresponding cavity fields!:

DE15 (
k50

`

f 3a~k!EJE )
a51

k

@dgaP~ga!dhaP~ha!#

3S (
a51

k

@2ŵJa
~ga ,ha!1ugau1uhau#

2U(
a51

k

ûJa
~ga ,ha!U D . ~23!

One might believe that, as the energy grows linearly inN at
largeN, this average energy shift would be equal to the e
ergy density; however, there is a correction term due to
change in the number of function nodes per variable in
iterationN→N11. Indeed in theN11 spin system we are
generating function nodes with probability 6a/N2 in a sys-
tem with N11 vertices and therefore we are slightly ove
generating function nodes. We need to cancel a fractio
2N2/(N11)2.2/N of them at random: the probability o
deletingk8 function nodes is

S aN

k8
D ~2/N!k8~122/N!aN2k8.~2a!k8 exp~22a!/k8!

5 f 2a~k8! ~24!

and the average number of deleted function nodes isa.
Each deleted function node contributes to the average en
change with a correction term

DE25EJE dh1 dh2 dh3 P~h1!P~h2!P~h3!

3$ min
s1 ,s2 ,s3

@E~s1 ,s2 ,s3!2h1s12h2s22h3s3#

1uh1u1uh2u1uh3u%. ~25!

The ground state energy density is finally given by

e05DE122aDE2 . ~26!
6-7
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B. The cavity method with many states„one-step RSB…

1. Iteration within one state

Let us now see how the cavity method can be used
handle a situation in which there exist many states. As fa
the clustering condition holds within each state, the iterat
method can still be applied to each state. The problem is
the iteration induces some crossings of the energies of
states, and one needs to take this effect into account prop
We proceed as in the previous section by adding the n
spins0 connected to the 2k spins$sa

1 ,sa
2%. In each statea,

one can reproduce the previous arguments: due to the
ishing of correlations, the energy of the statea, for fixed
values of the 2k spins$sa

1% and$sa
2%, can be written as

Ea~$sa
1 ,sa

2%!5Aa2 (
a51

k

~ga
asa

11ha
asa

2!. ~27!

We now have, for each statea, 2k local fields.
Within each statea, the optimization procedure on the 2k

spinssa
1 ,sa

2 proceeds as before. The minimal energy of t
new graph withN11 spins, for a given value ofs0, is

Ea~s0!5Aa2 (
a51

k

ŵJa
~ga

a ,ha
a!2s0(

a51

k

ûJa
~ga

a ,ha
a!.

~28!

This shows that the local field on the new spins0 in statea
can be written as

h0
a5 (

a51

k

ûJa
~ga

a ,ha
a!, ~29!

and the shift in energy of this state is@see Eq.~22!#

DEa5 (
a51

k

~2ŵJa
~ga

a ,ha
a!1uga

au1uha
au!

2U(
a51

k

ûJa
~ga

a ,ha
a!U. ~30!

2. Hypotheses on the states: u surveys

We suppose the existence of many states, with a comp
ity function S(a,E/N) defined as in Eq.~16! which is an
increasing convex function. Let us consider all the statea
with a given energy densityE/N5e. We suppose that all the
local fieldshj→a

a on a given edgej→a are iid, taken from a
probability distribution Pj→a

e (h) called anh survey. This
probability distribution fluctuates from one edge to the ne
so that the full order parameter, obtained by averaging o
edges, is the functional probability distributions of theseh
surveys. The same hypotheses hold for the distribution of
cavity biases: all theua→0 on a given link are iid taken from
a probability distributionQa→0

e (u) called au survey. Notice
that the previous RS solution corresponds to having de
ministic messages on each edgePj→a

e (h)5d(h2hj→a) and
Qa→0

e (u)5d(u2ua→0). In the many state hypothesis, w
05612
to
s

e
at
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e
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have to generalize the messages, and the important quan
are the probability distributions~over the many states havin
a fixed energy density! of the cavity-biases going through
given link.

3. Iteration: level crossings and reweighting

One iteration step of the cavity procedure leads to
equation relating the probability distributions, before any a
eraging over the graph. In our iteration procedure, theh sur-
vey on the new site,P0

e(h), is related to theh surveys on the
other 2k spinssa

1 ,sa
2 computed in the absence ofs0. Let us

denote by Pa
e(ga) the h survey incoming ontosa

1 and
Pa

e8(ha) the h-survey incoming ontosa
2 . The h survey

P0
e(h) is given by

P0
e~h!5CE )

a51

k

@Pa
e~ga!dgaPa

e8~ha!dha#

3dFh2 (
a51

k

ûJa
~ga ,ha!G

3expF y(
a51

k

~ŵJa
~ga ,ha!2ugau2uhau!

1yU(
a51

k

ûJa
~ga ,ha!UG , ~31!

whereC is a normalization constant insuring thatP0
e(h) is a

normalized probability distribution. This equation provid
the generalization to the RSB case of the simple iterat
~20! of the previous section. Two complications have a
peared: the simple messages~cavity fields and cavity biases!
have becomeh surveys, i.e., probability distributions o
simple messages, and a new term has appeared which i
exponential reweighting term. In this term, the parametery is
a number equal to the derivative of the complexity with r
spect to the energy:

y5
]S

]e
. ~32!

Let us now explain the origin of this new and crucial term
For a given statea, we add one new spin to the system a
want to compute the newh survey. In this process, we hav
seen in Eq.~30! that there is an energy shiftDEa which
depends on the state, and is correlated to the value of

cavity-field h5(a51
k ûJ(ga

a ,ha
a). Let us call S0(h,DE) the

joint probability ~when looking at all states! of the cavity
bias and the free-energy shift, for this function node.

When we computeP0
e(u) at a fixed energy densitye

5E/N, we get a contribution from all states with energi
before iteration equal toE2DE. Therefore,
6-8
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P0
e~h!5CE d~DE!S0~h,DE!expFNSS E2DE

N D G
.C8E d~DE!S0~h,DE!exp~2yDE!. ~33!

The reweighting term in exp(2yDE) is due to the level cross
ing, and the fact that the complexityS(a,e) is not constant,
but increasing: states with a negative value of the ene
shift are thus favored.

It is useful, as before, to decompose the iteration pro
dure~31! into two steps and introduce theu surveys. On any
function node a, we merge twoh surveys Pa

e(ga) and
Pa

e8(ha) in order to build au survey:

Qa
e~u!5E dg dh Pa

e~g!Pa
e8~h!d„u2ûJa

~g,h!…

3exp$y@ŵJa
~g,h!2ugu2uhu#%. ~34!

Then we can combine all theu surveys incoming onto the
new spin in order to build itsh survey

P0
e~h!5E du1 , . . . ,duk Q1

e~u1!, . . . ,Qk
e~uk!

3expS yU(
a51

k

uaU D dS h2 (
a51

k

uaD . ~35!

Note that there is some degree of arbitrariness in the way
distributes the reweighting between the two iteration ste
different choices amount to different definitions ofu surveys.
The above one is the most natural one, and this is what
shall adopt from now on.

4. Order parameter and self-consistency: Population dynamic

Equations~34! and~35! are the main result giving the wa
to compute the messages sent along to a new added site
assumed existence of a thermodynamic limit allows in pr
ciple to write a self-consistency of the iteration in a w
similar to Eq.~21!. In the present case, this is an equation
the functionalP@P(h)# giving the probability, when one
picks up an edgei→a at random, to observe on this edge
h surveyPi→a(h) equal toP(h). Alternatively, one can use
the functionalQ@Q(u)# giving the probability, when one
picks up an edgea→ j at random, to observe on this edge
u surveyQa→ j (u) equal toQ(u). In the following we shall
rather work with theu surveys which turn out to have
simpler structure in practice, but obviously a fully equivale
description can be obtained working withh surveys.

These functional equations are the generalization to
RSB case of the Eqs.~21! for the RS case. One could writ
them explicitly, but they are not particularly illuminating
and we prefer to work directly with the iteration equatio
~34! and ~35!. These define a stochastic process; at each
eration, one performs the following operations.

~1! Pick up at random a number of neighborsk, with the
probability f 3a(k).
05612
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~2! Pick up at random k surveys of u,
Q1(u1), . . . ,Qk(uk) from the distributionQ@Q(u)#.

~3! Compute ah surveyP1(g) as the reweighted convo
lution

P1~g!5C1E du1 , . . . ,duk Q1~u1!, . . . ,Qk~uk!

3expS yU(
a51

k

uaU D dS g2 (
a51

k

uaD . ~36!

~4! Pick up at random a number of neighborsk8, with the
probability f 3a(k8).

~5! Pick up at random k8 surveys of u,
Qk11(u1), . . . ,Qk1k8(uk8) from the distributionQ@Q(u)#;

~6! Compute ah surveyP2(h) as the convolution

P2~h!5C2E du1 , . . . ,duk Qk11~u1!, . . . ,Qk1k8~uk8!

3expS yU(
a51

k8

uaU D dS h2 (
a51

k8

uaD . ~37!

~7! Pick up at random a set of couplingsJ characterizing
a new function node, from thea priori distribution of cou-
plings.

~8! Compute a newu survey,Q0(u) as

Q0~u!5C0E dg dh P1~g!P2~h!d~u2ûJ~g,h!!

3exp$y@ŵJ~g,h!2ugu2uhu#%, ~38!

whereC0 is a normalization constant insuring thatQ(u) has
an integral equal to one.

This iteration defines a stochastic process in the spaceu
surveys, which in turn defines a flow forQ@Q(u)#, of which
we would like to compute the fix point. Following Ref.@20#,
this is done in practice by a population dynamics algorith
one uses a representative population ofN u surveys from
which the variousQ,(u), ,P$1, . . . ,k1k8% used in the it-
eration are extracted. AfterQ0(u) has been computed, one o
the u surveys in the population, chosen randomly, is era
and substituted byQ0(u). After some transient, this popula
tion dynamics algorithm generates sets ofu surveys which
are sampled with a frequency proportional to the see
Q@Q(u)#.

The point of this stochastic process approach is to av
trying to write explicitly the complicated functional equatio
satisfied byQ@Q(u)#. This is one crucial place where th
cavity method turns out to be superior to the replica meth
with replicas one performs the average over disorder fr
the beginning, and one is forced to work directly with th
functional Q@Q(u)# @30#. As this is very difficult, people
have thus been constrained to look for approximate soluti
of Q@Q(u)# where the functional is taken in a simple su
space, allowing for some explicit computations to be don
6-9
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5. Computing the energy and the complexity

Here we show how to generalize the computation of
energy of Sec. VI A 3 to the 1RSB case.

When adding one site 0, connected throughk function
nodes to 2k sites the energy shift in one given state is

dE5 (
,51

k

@2ŵJø
~h, ,g,!1uh,u1ug,u#2U(

,51

k

ûJø
~h, ,g,!U,

~39!

whereh, ,g, are the incoming fields onto the function nod
number,. Let us callP,(h,) andP,8(g,) the corresponding
field distributions~the h surveys!. They induce a probability
distributionP0(dE) of the energy change~39!

P0~dE!5E )
,51

k

@dh, dg, P,~h,!P,8~g,!#

3dS dE1 (
,51

k

@ŵJø
~h, ,g,!2uh,u2ug,#

1U(
,51

k

ûJø
~h, ,g,!U D . ~40!

Let us look at the corresponding change in complexity. T
new system hasN11 variables andM1k function nodes,
and its number of states at energyE, exp@(N11)S(@M
1k#/@N11#,@E/N11#)# is given by

expF ~N11!SS M1k

N11
,

E

N11D G
5E d~dE!P0~dE!expFNSS M

N
,
E2dE

N D G . ~41!

This expression depends on the precise spin which has
added through the choice of the distributionsP, andP,8 , and
of couplingsJø, which appear in Eq.~39!. As one expects
S(a,e) to be self-averaging, one must average the logarit
of the expressions in Eq.~41! over the iteration of population
dynamics algorithm. We denote this averaging by an ov
line. As dE is finite, one can expand indE/N in the thermo-
dynamic limit, to get ~calling as alwaysa5M /N and e
5E/N)

S~a,e!2e
]S

]e
12a

]S

]a

5 lnS E d~dE!P0~dE!exp@2ydE# D , ~42!

where we used the fact thatk̄53a. As in the RS case of Eq
~25!, the derivative]S/]a can be computed by adding on
function node to the system. For a generic function noda
connected to the sites 1,2,3 and with interaction couplingJ,
the probability distributionPa(dE) of the energy change is
05612
e

e

en

m

r-

Pa~dE!5E dh1dh2dh3P1~h1!P2~h2!P3~h3!

3d@dE2 min
s1 ,s2 ,s3

$2h1s12h2s22h3s3

1eJ~s1 ,s2 ,s3!%2~ uh1u1uh2u1uh3u!#. ~43!

Let us look at the corresponding change in complexity. T
new system hasN variables andM11 function nodes, so
that

expFNSS M11

N
,
E

ND G
5E d~dE!Pa~dE!expFNSS M

N
,
E2dE

N D G .
~44!

After averaging over the iterations, this gives

]S

]a
5 lnS E d~dE!Pa~dE!exp@2ydE# D . ~45!

Combining the two expressions~42! and ~45!, it turns out
that the quantity which is computed naturally in this sche
is the Legendre transformF(y), with respect to the energy
densitye, of the complexity functionS(a,e) @31,32#. This
‘‘zero-temperature free energy’’ is defined precisely as

S~a,e!2ye52yF~y!; y[
dS

de
~46!

and it can be computed from the population dynamics as

F~y!5F1~y!22aF2~y!, ~47!

F1~y!52
1

y
lnS E d~dE!P0~dE!exp@2ydE# D ,

F2~y!52
1

y
lnS E d~dE!Pa~dE!exp@2ydE# D , ~48!

whereP0 andPa are given in Eqs.~40! and ~43!.
Technically, it turns out thatF1(y) is more easily com-

puted through the normalization of theu surveys. When we
compute au surveyQ0(u) as in Eq.~38!, we can memorize
the corresponding normalization constantC0. Picking upk
u surveysQ, at random in the population, and callingC, the
corresponding normalizations, one gets

F1~y!52
1

y
lnS E )

,51

k Fdu,

Q,~u,!

C,
GexpF yU(

,51

k

u,UG D .

~49!
6-10
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VII. THE CAVITY METHOD APPLIED TO THE RANDOM
3-SAT PROBLEM

A. Known results on the phase diagram

Considering the random 3-SAT problem where the gra
is generated at random and the various couplings take va
61 with probability 1/2, numerical experiments have pr
vided a detailed study of the probabilityPN(a,K) that a
given F including M5aN clauses be satisfiable. For larg
sizes, there appears a remarkable behavior:P seems to reach
unity for a,ac(K) and vanishes fora.ac(K) @13#. Such
an abrupt threshold behavior, separating a SAT phase f
an UNSAT one, has indeed been rigorously confirmed
2-SAT, which is inP, with ac(2)51 @33–35#. For largerK
>3, K-SAT is NP-complete and much less is known. T
existence of a sharp transition has not been rigorously pro
yet but estimates of the thresholds have been found.
present best numerical estimate forac at K53 is 4.26@36#,
and the rigorous bounds are@37–40# 3.26,ac,4.506, while
previous statistical mechanics analysis using the rep
method, has foundac(3);4.48 @41# andac(3);4.396@42#
in the framework of variational approximations.

The interest in randomK-SAT arises from the fact that i
has been observed numerically that hard random insta
are generated when the problems are critically constrain
i.e., close to the SAT/UNSAT phase boundary@13,24#. The
study of such hard instances represent a theoretical chall
towards a concrete understanding of complexity and
analysis of algorithms@15#. Moreover, hard random in
stances are also a testbed for the optimization of heur
~incomplete! search procedures, which are widely used
practice.

B. The cavity analysis with one state

In the 3-SAT problem, the energy of a function node,
given by Eq.~5!, is

Ea5~11J1
as1!~11J2

as2!~11J3
as3!/4

and leads to

ŵJa
~h2 ,h3!5uh2u1uh3u2u~J2

ah2!u~J3
ah3!,

ûJa
~h2 ,h3!52J1

au~J2
ah2!u~J3

ah3!, ~50!

where the functionu(x) is defined as

u~x!51 if x.0; u~x!50 if x<0. ~51!

Let us consider the cavity iteration scheme, within t
hypothesis of there being a single state. We thus use
general formalism presented in Sec. VI A. In the case
3-SAT, Eq.~50! shows that the cavity bias on a given ed
ua→ j takes values either in 0,1 if the corresponding coupl
is negative, otherwise it takes values in21,0. Therefore, the
cavity fields are integers.@This is the reason for using th
unusual factor 2 for each violated clause in the definition~5!

of the energy#. Because the functionûJa
is an odd function of
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one of the couplings inJa, and these couplings are rando
variables taking values61 with probability 1/2, the distri-
bution Q(u) of cavity biases must be of the form

Q~u!5c0d~u!1
~12c0!

2
@d~u21!1d~u11!#. ~52!

Plugging this expression into the self-consistency equati
~21! leads to a relation betweenc0 and the weightp0[P(h
50)

p05(
k

f 3a~k! (
q50

[k/2] S k

2qD c0
k22qS 12c0

2 D 2qS 2q

q D
5exp@23a~12c0!#I 0„3a~12c0!…, ~53!

whereI 0 is the Bessel function and@k/2# is the integer part
of k/2. Let us now computec0. From Eq.~50! we find that a
cavity-bias vanishes whenever at least one of the incom
fields (h2 or h3) is zero or has a sign opposite to the corr
sponding coupling. This shows that

c0512Prob@~h,0!ù~g,0!#512S 12p0

2 D 2

. ~54!

We obtain a closed set of Eqs.~54! and~53! which is easily
solved. The distributionP(h) of cavity fields is then given
by P(h)5( rprd(h2r ), where the weightspr are equal to

pr[P~h5r !5P~h52r !5(
k5r

`

f 3a~k! (
q50

[ ~k2r !/2] S k

2q1r D
3c0

k22q2r S 12c0

2 D 2q1r S 2q1r

q D ~55!

and the energy is computed from Eqs.~23! and ~25!.
A nontrivial solution exists fora.4.667, with a ground

state energy that becomes positive ata55.18. The predic-
tion of this hypothesis assuming a single state is a param
netic SAT phase withc05p051, and energyE050 for a
,5.18, and a frozen UNSAT glassy phase withc0,1 and
E0.0 for a.5.18. It is known@4,5# that this solution is
wrong both quantitatively~the location of the transition
point! and qualitatively~the structure of the order param
eter!.

The true transition is much more sophisticated, and
many state formalism corresponding to 1RSB is needed
unveil its structure.

C. The cavity analysis with many states

We introduce as before theh surveys andu surveys, and
we use the population dynamics algorithm defined in S
VI B 4. It turns out to be more convenient to work only i
terms ofu surveys. The algorithm computes at each iterat
a new u survey Q0(u) by taking k1k8 u surveys
Q1(u), . . . ,Qk1k8(u) in the population through
6-11
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M. MÉZARD AND R. ZECCHINA PHYSICAL REVIEW E66, 056126 ~2002!
Q0~u!5C0E E du1 Q1~u1! . . . dukQk~uk!

3dv1 Qk11~v1! . . . dvk8 Qk1k8~vk8!,

d„u2ûJ~u11•••1uk ,v11•••1vk8!…

3exp@yŵJ~u11•••1uk ,v11•••1vk8!#. ~56!

Here,k andk8 are two iid random numbers taken from th
Poisson distributionf 3a(k) defined in Eq.~12!, and J de-
notes a set of three iid random numbersJ1 ,J2 ,J3, each being
equal to61 with probability 1/2.

The functionsû andŵ are defined in Eq.~50!. A u survey
always takes the simple formQ0(u)5(12c)d(u)1cd(u
1J1); it is thus a probability distribution which can be cha
acterized by a single numberc, and therefore the iteration o
the population dynamics is easily done numerically.

D. Solution of the self-consistency equations

Apart from the RS solution withy50 andQj (u)5d(u
2uj ), where theuj are iid taken from a distributionQ(u),
the numerical solution finds one other solution in the reg
a.;4. Generically, theu surveys found can be of thre
types:

Qi~u!5H d~u! ~ trivial or type a!

~12h ie
2y!d~u!1h ie

2yd~u21! ~ type b1!

~12h ie
2y!d~u!1h ie

2yd~u11! ~ type b2!.
~57!

The arbitrary factore2y has been introduced for convenien
because numerical simulations show that the weight inu5
61 of the nontrivialu-surveys scale proportionally toe2y at
largey.

The statistical symmetry of the problem due to the f
that the couplings take values61 with probability 1/2 im-
plies that the probability of finding in the population a ‘‘b1’’
message is equal to that of finding a ‘‘b2’’ message. We call
(12t)/2 these probabilities, andt the probability of finding a
type a message. Nontrivial messages are fully characteri
by the distributionr(h) of the h i variables. For anyy, the
full solution of the problem is given by the value oft and of
the functionr(h). It can be obtained numerically by ave
aging over many iterations of the population dynamics.
shall now show how one can get some analytic control in
largey limit.

1. Existence of nontrivial u surveys

Looking at the iteration equation~56!, the only way one
can obtain a trivialu survey Q0(u)5d(u) is when either
J2( i 51

k ui<0 in the whole integration domain, o

J3( j 51
k8 v j<0 in the whole integration domain, or both. Th

probability to haveJ2( i 51
k ui<0 in the whole integration

domain is
05612
n

t

d

e
e

ProbFJ2(
i 51

k

ui<0G5 (
k50

`

f 3a~k!F tk1
1

2

~12t !

2
tk212

12
1

2 S 12t

2 D 2

tk22S k

2D 1•••G
5expF23a

12t

2 G . ~58!

The first termtk corresponds to allQi(u), i P$1, . . . ,k%,
being of typea. The second term corresponds to@one of the
Qi(u) of type b1 , all the other ones of typea, and J25
21] or @one of theQi(u) of type b2 , all the other ones of
typea, andJ2511]. The rest of the series is easily obtaine
similarly.

The probabilityt of having a trivialu survey is thus

t512S 12ProbFJ2(
i 51

k

ui<0G D S 12ProbF J3(
j 51

k8

v j<0G D
512S 12expF23a

12t

2 G D 2

. ~59!

For a small the only solution is the paramagnetic onet
51. A solution different from t51 appears abovea0
51.636 94~which corresponds tot50.048 83).~In fact there
appears a pair of nontrivial solutions, the relevant one is
one with lowestt, as can be seen from its behavior at lar
a, and also checked in the population dynamics algorith!.
It is interesting to observe that this threshold coincides w
the point where the so called ‘‘unit clause literal’’@27# algo-
rithm ceases to converge. At large values ofa, the fraction
of u surveys of type a becomes very small, e.g.,t
50.0051,0.0011,0.00025, ata54,5,6, respectively.

2. Expansion at large y: Location of the phase transition

Here we shall show that, at largey, the scaling ine2y of
the weights atu561 for nontrivialu surveys is indeed con
sistent with the iteration of the population dynamics~56!,
and we deduce from this iteration a self-consistent equa
for r(h).

Let us study one given iteration of Eq.~56!. The probabil-
ity of having k cavity biasesQ1 , . . . ,Qk , among whichm
are of typeb1 , n of type b2 andk2m2n of type a is

Ck,m,n5 f 3a~k!
k!

m!n! ~k2m2n!!
tk2m2nS 12t

2 D m1n

.

~60!

Without loss of generality, we can assume that them1n
nontrivial u surveys areQ1 , . . . ,Qm1n , and the couplings
are J15J25J351 for this iteration. We denote byh
the vector of weightsh5(h1 , . . . ,hm1n). SinceûJ(u11•

••1uk ,v11•••1vk8)51 if and only if (J1( iui.0) and
(J2( jv j.0), the newu surveyQ0(u) depends only on the
probabilities

f q
(m,n)~h![Prob@u11•••1uk5q# ~61!
6-12
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and is given by

Q0~u!5C0H d~u21!F (
q51

k

(
q851

k8

f q
(m,n)~h! f q8

(m8,n8)
~h8!

3ey(uqu1uq8u21)G
1d~u!F S (

q51

k

(
q852k

0

1 (
q52k

0

(
q851

k8

1 (
q52k

0

(
q852k

0 D
3 f q

(m,n)~h! f q8
(m8,n8)

~h8!ey(uqu1uq8u)G J
[C0$d~u21!A0e2y1d~u!B0%. ~62!

Iterating the population dynamics, one finds thatr(h)
satisfies the equation

r~h0!5
1

12t (
k50

`

(
m51

k21

(
n50

k2m

Ck,m,n (
k850

`

(
m851

k821

(
n850

k82m8

3Ck8,m8,n8E )
,51

m1n

@dh, r~h,!#

3 )
,851

m81n8

@dh,8r~h,8!#dS h02
A0

A0e2y1B0
D .

~63!

This is an exact self-consistent equation for the distribut
r(h). It can be simplified at largey, and we show in Appen-
dix A how to write a more tractable self-consistent equat
in this limit. This equation is best written in terms of th
probability distribution functionS(f) of the variablef
5 ln(11h). One finds thatS(f) satisfies

S~f!5E dx1 dx2 dx18 dx28 A~x1!B~x2!A~x18 !B~x28 !

~64!

dS f2 lnF11
~ex121!~ex221!

~ex121!ex28 1~ex18 21!ex21ex2ex28
G D ,

~65!

where A(x) and B(x) are two probability distributions re
lated to S(f) through its Fourier transformŜ(q)
[*df exp(iqf)S(f),

A~x![
1

e3a(12t)/221
E dq

2p
e2 iqxS expF3a

2
~12t !Ŝ~q!G21D ,
05612
n

n

B~x![
1

e3a(12t)/2E dq

2p
e2 iqx

3expF3aS t211
1

2
~12t !Ŝ~q! D G . ~66!

Equations~65! and ~66! are simple enough to be solved n
merically to high accuracy.

OnceS(f) @and thereforer(h)] is known, one can de-
duce the value of the zero-temperature free-energyF(y). To
leading order at largey, we show in Appendix A thatF(y)
5C/y, with

C52E dx dz B~x!B~z!ln~ex1ez21!

23aE )
i 51

2

dxi dyi B~xi !B~zi !

3 lnF)
i 51

2

~exi1ezi21!2)
i 51

2

~exi21!G
12aE )

i 51

3

dxi dyi B~xi !B~zi !

3 lnF)
i 51

3

~exi1ezi21!2)
i 51

3

~exi21!G . ~67!

In order to compute theS(f),A(x),B(x) functions, solu-
tions of Eqs.~65! and~66!, we have used the fact that thes
functions are probability distributions, and we have dev
oped a population dynamics algorithm which follows
population ofN variablesf1 , . . . ,fN , for a given value
of a.

~1! Compute t, the solution of t512@12exp@3a(t
21)/2##2.

~2! Initialize thef j as iid random positive variables, fo
instance with an exponential distribution of width 1. Initia
ize the ‘‘time variable’’t51.

~3! Upgrade the timet→t11.
~4! Generate an integerk>1 with the distribution

gk/k!1/@exp(g)21#, whereg53a(12t)/2. Pick upk inte-
gers i 1 , . . . ,i k at random in$1, . . . ,N%, and compute the
sum f i 1

1•••1f i k
. The distribution of the variablex1(t)

5f i 1
1•••1f i k

is A(x1), related toS(f) through Eq.~66!.

~5! Generate a random variablex2(t), which will be dis-
tributed according toB(x2), as follows: with proba-
bility exp(2g), one takesx2(t)50; with probability 1
2exp(2g), one repeats the procedure of~4! and calls the
outputx2(t)5f i 1

1•••1f i k
.

~6! Repeat the steps~4! and ~5! to generate two othe
variablesx18 (t) andx28 (t).

~7! Compute x(t)5ex2(t)/(ex1(t)21), x8(t)

5ex28 (t)/(ex18 (t)21), and f0(t)5 ln@111/„x(t)1x8(t)
1x(t)x8(t)…#.

~8! Replace one randomly chosen variable in the popu
tion, f, , by the new valuef0(t).
6-13
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M. MÉZARD AND R. ZECCHINA PHYSICAL REVIEW E66, 056126 ~2002!
Steps~3!–~8! must be repeated a large number of tim
sayT. One can compute the average of any function off as

E df S~f! f ~f!5
4

3T (
t5T /411

T
f „f0~t!… . ~68!

~One forgets the firstT /4 iterations in order to reach a sta
tionary regime!. The integrals involving a variablex distrib-
uted according toB(x) can be estimated by summing fun
tions of x2 . For instance, the first term in the zer
temperature free-energy Eq.~67! is evaluated as

2E dx dz B~x!B~z!ln~ex1ez21!

5
4

3T (
t5T /411

T
ln~ex2(t)1ex82(t)21!, ~69!

and the two other terms are computed similarly, using
x2 ,x28 values from two~respectively three! successive time
steps.

In practice, we used values ofN;106 and T;1000N,
which was enough to achieve the precision given below
the results.

For a,ad53.921, the algorithm converges towards t
solutionf15•••5fN50. This is the paramagnetic solutio
where all theu surveys are trivial.

For a.ad53.921, we find a new solution with a non
trivial distribution S(f). Computing the leading largey be-
havior of the zero-temperature free-energy function,F(y)
;C/y, on this solution using Eq.~67!, we find thatC is
negative fora,ac54.267, while it is positive fora.ac
@Ref. @19# reportedac54.256,which was 3% too low be-
cause of some correlations in the random number gene
used in solving Eqs.~65!,~66!#.

E. Phase diagram of the random 3-SAT problem

The previous largey analysis is in agreement with th
direct numerical iteration of the population dynamics of S
VI B 4, but it allows one to get a much more precise det
mination of the thresholds. The results of this section h
been obtained through the combined use of the nume
and analytical methods.

For a,ad , the system is in the SAT phase, the solution
paramagnetic, it is easy to find a solution. Note that, altho
the t equation~59! in principle allows for the existence o
nontrivial knowledge abovea.1.64, we have not found
such a solution and the only one which remains is the p
magnetic one witht51.

For ad,a,ac , we find a monotonically increasin
F(y) function, which reaches its maximumF→0 at y→`
~see Fig. 3!.

Fitting F(y) by a function (,51
p n, exp(2y,)/y with

pP$1,2,3% gives a good and stable fit, from which the Le
endre transform~46! is easily done. This allows one to re
construct the complexity curveS(a,e) ~see Fig. 4!. It is
05612
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found to be finite down toe50. This implies that there is an
exponentially large~in N) number of states with zero energ
density.

The complexity of these ground states is plotted in Fig
We call this phase the hard-SAT phase~HSP!, since in this
regime the typical sample is SAT, but the proliferation
states~most of which have strictly positive energy! makes it
difficult to find a solution.

For ac,a, the functionF(y) has a maximum at a finite
value y* , and F(y* ).0. The complexity curveS(a,e)
starts at a positive energy densitye05F(y* ) ~see Fig. 4!.
This energy densitye0 is the minimal number of violated
clauses per variable which will be found in almost a
samples at largeN. It is plotted in Fig. 5. We are in the
UNSAT phase.

This figure also shows the value ofe where the complex-
ity curve S(a,e) is maximum gives the energy where the
exists the largest number of states. This is the ‘‘thresho
energy densityeth where a simple zero-temperature metrop
lis algorithm ~ZTMA ! will be trapped. This implies tha
ZTMA should find satisfying assignments only fora,aD ,
in agreement with the numerical results of@43#. These pre-
dictions can be tested most clearly through their general
tion to single instances which we discuss in the followi
section.

FIG. 3. Free energyF(y) versus the reweighting parametery
for the random 3-SAT problem ata54.2

FIG. 4. ComplexityS versus the fraction of violated clause
e85e/2 for the random 3-SAT problem ata54.2, obtained from
the Legendre transform of Fig. 3.
6-14
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RANDOM K-SATISFIABILITY PROBLEM: FROM AN . . . PHYSICAL REVIEW E66, 056126 ~2002!
Previous statistical mechanics attempts at finding
phase diagram culminated in powerful variational appro
mations using the replica method; see Ref.@41# for the first
results and Ref.@42#, which predicted approximate values fo
the SAT/UNSAT threshold—ac;4.48 in the case of Ref
@41# andac;4.39 in Ref.@42#—with an intermediate phas
appearing aboveas.3.96 @41# and ad.3.94 with the An-
satz of Ref.@42#.

The difference between the variational results and
cavity result is both quantitative and qualitative: in Ref.@41#
the predicted nature of the intermediate phase is diffe
with respect to ours while in Ref.@42# the structure of the
order parameter is oversimplified. In the present approach~as
well as in Ref.@42#! we work directly at zero temperatur
(T50), which has the advantage that we do not need
study the subtle question of the limitT→0. The reason why
this limit is subtle is due to the fact that some of the loc
fields, at low temperatures, vanish linearly inT, and thus
contribute to the local magnetizationm5tanh(bH); we call
these fields evanescent fields. The local magnetizationT
50 is zero for a zero field, it is equal to 1 for a finite fiel
and it takes an intermediate valuemP] 21,1@ for an evanes-
cent field. The variational approach of Ref.@41# focuses onto
evanescent fields, and finds acontinuousphase transition a
as.3.96 where the evanescent fields in different states s
to cluster. However, as these are all evanescent fields,
means that the corresponding local magnetizations, i
given state, are not frozen to61 but take some intermediat
value, even in theT→0 limit. In our T50 cavity approach
~as well as in Ref.@42#!, the HSP corresponds to adiscon-
tinuoustransition at zero temperature, involving fields whi
are not evanescent, but are of order one@44#. This means
that, in a given state, a finite number of local fields are n
zero integers, giving rise to magnetizations61, as one could
expect at zero temperature. This phenomenology canno
found by considering evanescent fields. Its study with re

FIG. 5. The phase diagram of the random 3-SAT problem. P
ted ise085e0/2 ~full line!, the number of violated clauses per va
able, versus the control parametera which is the number of clause
per variable. The SAT-UNSAT transition occurs ata5ac;4.267.
The dashed line ise th8 5e th/2, the threshold energy~divided by two!
per variable, where local algorithms get trapped. The dotted lin
the complexityS of satisfiable states, equal to 1/N times the natural
logarithm of their number.
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cas would require using a more complicated Ansatz.
Note that our approach working directly atT50 also has

its limitations, for instance we are unable to determine p
cisely the self overlap~or the typical radius! of a state, or its
internal entropy, precisely because we do not control the e
nescent fields. We leave for future work the delicate study
the smallT region of the phase diagram. Let us just noti
here that a population dynamics study of this region with
1RSB finite temperature Ansatz of Ref.@20# shows that the
distributions of local fields tend to peak on integers when
temperature goes to zero in the HSP@45#. This is a strong
argument in favor of the exactness of this 1RSB solut
~i.e., the fact that we do not need to go to higher-order RS!,
as argued in Ref.@21#.

VIII. SURVEY PROPAGATION: CONFIGURATION SPACE
ANALYSIS ON A SINGLE INSTANCE

The analysis of the iterative equations for the probabi
distributions of messages of the previous sections was d
by using a population dynamics algorithm, which perform
an average over the underlying random factor graphs.
each step of the iteration, a random choice of coupling c
stants, as well as neighboring nodes is performed with
proper probability distribution. While such an averaging st
is central if one wants to estimate typical properties, the
erative equations make perfect sense on a single specifi
stance. The order parameters arising from the cavity eq
tions, namely theu surveys, are histograms of probabilit
distributions of cavity biases. They determine the bias
each spin in all metastable states of a given energy den
for a given instance of the underlying factor graph. This i
very important piece of information which can be exploit
to study specific problems and to invent new algorithms.

In the largeN limit, we expect that the cavity assumption
hold for locally treelike factor graphs and we may u
u-survey propagation to have access to the properties of
timal states of minimum energy. Here we shall develop o
such application for random 3-SAT which is a concre
world-wide benchmark for search algorithms. However,
idea of exploiting the information on optimal states carri
by the functional order parameter is rather general and
expect algorithmic applications in different fields.

Whenever the factor graph representing the problem d
not lead to clustering within states, in practice whene
loops are short enough, one should think to the present
proach as a first step of a sequence of possible approx
tions.

As is well known, the so called Cluster Variation Metho
@46# provides a systematic scheme that can be adopte
improve the approximate results given by the cavity a
proach@47#. The latter corresponds to the so called Bet
approximation which is the first step in the cluster variati
scheme. Our present approach deals with the Bethe app
mation in a frustrated case. While a great deal of work h
been done concerning higher order cluster approximati
for simple models, the corresponding analysis for frustra
systems such as spin-glasses or hard-combinatorial prob
over nonlocally treelike graphs is largely unexplored.

t-
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M. MÉZARD AND R. ZECCHINA PHYSICAL REVIEW E66, 056126 ~2002!
A. The survey propagation „SP… algorithm

In the ordinary sum-product algorithms@22# as described
in Sec. III, the messages arriving at a node are added up
then sent to a function node. Next, the function node tra
forms all input signals into a new message which is sen
the descendant variable node. At each time step, on the
of the factor graph there are signals traveling, just like in
communication network. SP works with the same princip
but now the messages traveling along the links of the fa
graph areu surveys of usual messages over the various p
sible states of the system at a given value of the energy~or
rather, in practice, at a given value of the reweighting para
eter y). Of course this higher level of description is usef
only when there are many states, which will be typically t
case in hard optimization problems. Onea priori drawback
of the approach is that the messages are complicated, b
functional probability distributions: a cavity bias is already
parametrization of a probability distribution~which turns out
to be parametrized by a single variable in our case of bin
spins, but could be more complicated in general!; Here theu
surveys are probability distribution functions of these cav
biases. In cases likeK-SAT at T50 in which the standard
messages can take only few values~say r ), a u survey is
given by the probabilities of these values, i.e., byr 21 real
numbers and the SP can be implemented easily. This is
big advantage of working directly atT50, but we believe
that the SP method could also be used more generall
finite temperature or with continuous variables, by using w
adapted parametrizations of the cavity biases.

SP is defined for one given value of the reweighting p
rametery and one given instance, withN variable nodes and
M function nodes. Its basic ingredients are theu surveys.
Each edgea→ j from a function node to a variable nodej
carries au survey Qa→ j (u). The algorithm finds theseu
surveys by a message passing procedure detailed below
finds simultaneously all theh surveysPi→a(h). Once these
are known, one can compute the so called local field dis
butions and the zero-temperature free energy for this
stance. The local field distributionPi(H) on a variable node
i is the distribution, over all states selected by the reweig
ing parametery, of the total local fieldH acting on spins i
@see Eq.~8!#. It is given by

Pi~H !5CiE )
aPV( i )

dua Qa→ i~ua!d

3S H2 (
aPV( i )

uaDexpS yU (
aPV( i )

uaU D ~70!

Ci being the normalization constant.
We show in the Appendix B that the zero-temperatu

free-energyF(y) density ofthis samplecan be computed a
a sum of contributionsFa

f (y) for each function nodea, cor-
rected by the contributionsF i

v(y) from each variable nodei,
weighted by a factorni21, whereni is the connectivity of
variable nodei:
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F~y!5
1

N S (
a51

M

Fa
f ~y!2(

i 51

N

F i
v~y!~ni21!D , ~71!

where

Fa
f ~y!52

1

y
lnH E )

i PV(a)
F )

bPV( i )2a
Qb→ i~ub→ i !dub→ i G

3expF2y min
$s i ,i PV(a)%

S Ea

2 (
i PV(a)

F (
bPV( i )2a

ub→ i Gs i D G J ,

F i
v~y!52

1

y
lnH E )

aPV( i )
dua Qa→ i~ua!expS yU (

aPV( i )
uaU D J

52
1

y
ln~Ci !. ~72!

The form ~71! is the familiar one for the free energy in th
Bethe approximation@18#, and indeed one gets back th
usual result using Eq.~72! in the y→0 limit. The generali-
zation toy5” 0 given in Eq.~72! adds the effect of the re
weighting terms due to level crossings. The origin of the
terms is exactly the same as in Sec. VI.

Let us now explain how SP works. We start with a gene
presentation of the algorithm, which applies to any optim
zation problem involving binary variables, characterized b
given factor graph. Some details of the implementation
the 3-SAT problem will be given below.

~1! All the u surveysQa→ i(u) are initialized randomly.
~2! Function nodes are selected sequentially at rand

for each such nodea, we update theu surveys as follows~see
Fig. 6!:

~2.1! for each variable nodei connected to the selecte
function nodea, we compute theh survey Pi→a(h) as a
reweighted convolution, see Fig. 6,

Pi→a~h!5Ci→aE du1 . . . duk Qb1→ i~u1! . . . Qbk→ i~uk!

3dS h2 (
a51

k

uaD expS yU(
a51

k

uaU D ; ~73!

~2.2! successively, theu surveys on all edgesa→ i con-
nected toa are updated using theseh surveys:

Qa→ i~u!5Ca→ iE dg dh Pj→a~g!P,→a~h!

3d„u2ûJ~g,h!…exp~y@ŵJ~g,h!2ugu2uhu# !.

~74!

(Ci→a ,Ca→ i are normalization constants!.
~3! The iterative process of step~2! continues until con-

vergence is reached. If the process converges, the co
6-16
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RANDOM K-SATISFIABILITY PROBLEM: FROM AN . . . PHYSICAL REVIEW E66, 056126 ~2002!
sponding stable set ofu surveys is used to compute theN
local field distributions using Eq.~70!, and the zero-
temperature free energyF(y) given in Eqs.~71! and ~72!.

The above procedure can be repeated for different va
of the reweighting y so that the complexity S(y)
5]F(y)/](1/y) and the energy density e(y)
5]„yF(y)…/]y of states can be estimated. The parame
plot of S(y) versuse(y), varying y, gives the complexity
S(e) of states of energyE5Ne.

When it converges, SP allows to get an order param
~the set of all the surveys!, a zero-temperature free-energ
densityF(y), and a complexity curveS(e) for one given
instance. What is the meaning of these quantities in gen
is an open question. A given instance has a finite value oN,
and therefore the notion of ‘‘state’’ is not easy to defin
Roughly speaking, one can think that for largeN, there might
exist some effective finiteN states, such that the number
spins to flip in order to reach one state from another on
large, leading to a separation of scales of the number of s
involved between the intrastate moves and the interst
moves. Such a situation would generally be difficult
handle for search algorithms, and this is where SP could
quite useful. In order to get a first understanding of the
questions, we have experimented SP on single instance
the random 3-SAT problem for large values ofN.

B. The case of random 3-SAT

We consider one instance of the 3-SAT problem, cho
randomly as in Sec. IV, with energy

E52(
a51

M

)
j PV(a)

11Ja→ js j

2
. ~75!

For 3-SAT the cavity-biases on a given linka→ j takes val-
ues ua→ j50,2Ja→ j ; The corresponding survey i

FIG. 6. Function nodea and its neighboring graph.
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Qa→ j (u)5ca→ jd(u)1(12ca→ j )d(u2Ja→ j ). The full set
of u surveys is characterized by the 3M numbersca→ j which
are updated according to the SP algorithm described ab
until convergence. The results of our numerical experime
are the following.

1. The paramagnetic phase

For a,ad , SP converges toward the trivial paramagne
solutionQa→ i(u)5d(u), for all a→ i edges. Local field dis-
tributions are also trivial,Pi(H)5d(H) ; i , and no infor-
mation can be gained on the fine structure of ground sta
In this region, there is a single state and the statistical pr
erties of the zero energy configurations are totally driven
its entropy. A different formulation of the cavity approach,
which the properb→` limit is taken and the evanescen
fields are computed, could reveal some finer information
this paramagnetic phase, which however is known to
trivial from the algorithmic point of view.

2. The intermediate phase

For ac.a.ad , that is in the glassy region, the rando
sequential updating of the iterative process converges
unique nontrivial solution, providedy is large enough. In
practice, we start fromy large, like e.g.,y56 ~remember that
the corrections to they→` limit are exponentially small!,
run SP, and after finding a solution for theu surveys we
decreasey ~e.g.,y→y20.2) and rerun SP using the previou
u surveys as a starting configuration for this newy. This
speeds up the convergence. Below some value ofy the non-
trivial solution disappears abruptly and the algorithm co
verges to the paramagnetic solution.

In this region ofa, the solution space, as well as th
configurations of higher energy become divided into an
ponential number of states. To compute the complexity,
measure the free energyF(y), see Fig. 7, and we perform
the Legendre transform numerically.

The curve of the total complexityNS versus the total
energy Ne for one sample of random 3-SAT withN
510 000 andM542 000 is given in Fig. 8. One find
NS(E50);34, meaning that the zero energy~SAT! states
are predicted to be exponentially numerous,e34 at the lead-
ing exponential order@remember that each such state its
contains a large number of spin configurations@4##. The
threshold states have an energy of approximatively 44 v
lated clauses and their number is predicted to be aboute216.
A cross check of such predictions is given by the behavio
ZTMA which cannot cross energetic barriers. It can
shown that for random 3-SAT zero-energy moves allow
explore configurations within each state and therefore,
expect such algorithms to get trapped in the most numer
ones ~the threshold states!. Indeed, extensive numerica
simulations of ZTMA on many samples of different siz
~ranging from few hundreds to 105) and for different values
of a confirm such scenario. As a representative example,
report that for the sample whose compexity is plotted in F
8, repeated runs of ZTMA get stuck at an energy shar
peaked around 48 violated clauses, with a small residual
pendence of the final energy on the simulation time~the final
6-17
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M. MÉZARD AND R. ZECCHINA PHYSICAL REVIEW E66, 056126 ~2002!
energy found by ZTMA shows a power law behavior on t
total number of spin flips!.

We have checked that the functional order parame
given by theu surveys and the local field distributions car
precise information concerning the space of solutions for
given sample. Working withN not too large, some SAT con
figurations can be found efficiently by good algorithms li
e.g., walkSAT-35@48,49#. We have collected a large se
~1000! of uncorrelated SAT configurations by running th
algorithm many times with random initial conditions. In ea
such configurationv, the spins i takes a values i

v , and we
have computed, for each given sitei, the average of the
whole set of SAT configurationsv. Next we have compared
the above results with the predictions of SP as follows.

We first have selected the states with minimal energy,
picking the value ofy which maximizesF(y). Here this is
y5` and for practical computation it was enough to choo
y sufficiently large~corrections are exponentially small!. Ac-
cording to Eq.~70!, the fieldHi5(aua→ i in each state is an
integer valued variable which can be computed from thu
surveys. The total weights

FIG. 7. Extensive zero temperature free energyNF(y) versus
reweightingy for two specific instances of sizeN510 000 with
M542 000 andM545 000 clauses, respectively. (a54.2 anda
54.5).

FIG. 8. Extensive complexityNS versus the total number o
violated clausesNE8 (5NE/2), for the specific instance of siz
N510 000, M542 000 studied in Fig. 7. The complexity is ob
tained as the Legendre transform of the zero-temperature free
ergy.
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dH Pi~H ! ~76!

of Pi(H) on positive~negative! integers give the fractions o
zero energy states wheres i is fixed to 1 ~to 21). As dis-
played in Fig. 9, we find a remarkable agreement betw
the local magnetizationswi

12wi
2 predicted by SP and the

local magnetizations measured by averaging over the gro
states found by the walkSAT algorithm. In the figure w
report data forN510 000 andM542 000: we have divided
the local magnetization in 30 intervals and labeled spins
cording to the prediction of SP. Next on such a partitioni
of spins we have taken the average over the configurat
found by walkSAT.~The remarkable agreement of numeric
and SP results indirectly shows that walkSAT is a good u
form sampler.!

The weight inH50 of Pi(H), wi
0512wi

12wi
2 , mea-

sures the tendency of a variable to be under constrained
instance, variables which belong to very few clauses h
wi

051.

3. The UNSAT phase

For a.ac , SP predicts a positive ground state ener
with zero complexity, whereas excited states remain ex
nentially numerous. Proper tuning of the reweighting, tha
choosingy so that the complexity vanishes, allows to pred
the ground state energy and to evaluate the probability
tribution of effective fields for each variable. In this regim
SP is found to converge only when the reweighting para
eter is well chosen. For small values ofy, SP converges to
the paramagnetic solution or to the RS solution. For interm
diate values ofy, SP converges to the nontrivial solutio
whereas for larger values ofy, SP stops converging. Th
range ofy values for which SP converges to the nontriv
solution is sufficient to determine the free energy. An e
ample is given in Fig. 7.

For large values ofa, we expect multiple nested cluste
ing phenomena to appear, that is continuous replica sym
try breaking@50#. This scenario could be analyzed by a fu
n-

FIG. 9. The bias of the variables predicted by SP~with y58)
compared with the one measured analyzing SAT configurati
from the same sample (N510 000, M542 000).
6-18
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RANDOM K-SATISFIABILITY PROBLEM: FROM AN . . . PHYSICAL REVIEW E66, 056126 ~2002!
ther generalization of SP which is beyond the scope of
work.

IX. SURVEY PROPAGATION AS A SOURCE OF NEW
ALGORITHMS FOR HARD OPTIMIZATION PROBLEMS

The preceding section has shown how SP can give ra
precise answers on the structure of the space of config
tions and the ground state energy of the random 3-SAT p
lem. Here we shall stay within this problem and ask t
following natural question: Given a random 3-SAT formu
of sizeN, how can we take advantage of SP in order to fi
optimal configurations?

If SP could predict with very high accuracy the value
the ground state~g.s.! energy of a given formula, it could
also predict its satisfiability. Then one could proceed in fin
ing a satisfying assignment just by converting the decis
algorithm into a search algorithm as follows@2#. A variable is
selected and fixed to one value. We then use SP to eva
the g.s. energy of the subproblem of sizeN21 and decide
whether it is still SAT or not. If the subproblem is SAT the
we keep the assignment, otherwise the opposite value o
binary variable is chosen. The process is repeated until
the variables have been exhausted~in at most 2N steps!. If
along this reduction process the subsystem becomes a
magnet, then SP becomes ineffective and another searc
gorithm must be used on the subsystem~but for a paramag-
net it is very easy to find the ground state!.

The above scheme, however, suffers from finite size
fects and from the imprecision in the determination of t
ground state energy, a fact which is particularly importa
close toac . Moreover, it does not take advantage of t
information provided by theu surveys.

A. Categories of variables in one specific instance

Somewhat coarse grained information contained in thu
surveys, once SP has reached convergence, is that give
the total weightswi

6 of the local field distribution which
gives the fraction of states where the spins i is positive
~negative!. Having computed these weights, we may dist
guish three reference types of spins~of course all the inter-
mediate cases will also be present!: the paramagneticones
with wi

0;1, thebiasedones withwi
1;1 or wi

2;1 and the

balancedones withwi
1.wi

2 andwi
0 small.

In order to characterize the differences between th
various types of variables, we have performed a few num
cal experiments and analyzed the effect of fixing one s
spin on the structure of states of the subproblem of sizeN
21. As displayed in the complexity curve of Fig. 10, th
three types of spins produce different effects, consiste
with the interpretation of the order parameter. Fixing a
ased spin does not alter the structure of the states and
complexity changes smoothly. Fixing a paramagnetic s
has an effect only on the internal entropy of the states~which
we cannot measure! but leaves the energy unaltered. Inte
estingly enough, balanced spin have an enormous effect
most balanced ones produce a decrease very close to ln
the complexity; indeed half of the states are eliminated
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fixing one single balanced variable!

B. Survey inspired decimation„SID… algorithm

One strategy for using this information in order to pr
duce an optimization algorithm is to fix as many variables
possible without altering the ground state energy, evalua
step by step as the size of the problem decreases. Eventu
either all variables have been fixed or~more likely! the re-
maining variables turn out to be paramagnetic@i.e., Pi(H)
5d(H), ; i ], in which case a simple search process c
be run to find the complete ground state configuration.

A straightforward implementation of the above ideas p
vides a simple algorithm that can be used to find solution
random 3-SAT in the hard regionaP@ad ,ac#. We do not
expect this implementation to be the most efficient one,
that no particular strategy has been worked out to optim
the decimation process. The scope of this first implemen
tion consists in showing the potentiality of the novel alg
rithmic scheme and we leave for future work the design
optimized versions of the algorithm or applications in diffe
ent contexts.

The overall idea underlying the search process is ra
simple. At each time step a single variable is fixed accord
to the outcome of SP and the effect of such fixing is used
simplify the problem. The size of the problem reduces fro
Nt to Nt212St , whereSt is the number of variables which
become fixed due to the simplification of the problem: sa
fied clauses are eliminated, unsatisfiedK clauses are trans
formed into (K21) clauses.K51 clauses need to be sati
fied and therefore their variables are properly fixed~unit
clause propagation! leading to further spin elimination.

At the beginning of the process, randomly chosen b
anced spins can be fixed in order to reduce the numbe
states. At each step one may compute the free energ
detect the onset of violated clauses. One may also eval
the functionF(y) to have an estimate of the complexit
Successively, biased spins are fixed. Whenever a param
netic state is found, or at some intermediate steps, a r
search process like simulated annealing at a fixed coo

FIG. 10. Effect of fixing a single balanced spin on the compl
complexity curveNS versus the number of violated clauses~ i.e.,
one half of the extensive energy! of an instance of 3-SAT withN
51000 andM54200. The difference in the two curves is ve
close to ln 2.
6-19
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M. MÉZARD AND R. ZECCHINA PHYSICAL REVIEW E66, 056126 ~2002!
rate or walkSAT is run on the subsystem. We may end
either by having found a solution or by having still few vio
lated clauses. In the latter case we may simply restart.
sketch of the SID algorithm is as follows.

~1! Random initial condition for the cavity biases.
~2! Run SP and evaluate$Pi(H)%, or $wi

1 , wi
2 , wi

0%, and
F(y).

~3! Check for a paramagnetic state and in case~or at some
intermediate step! run a fast local search process~e.g., simu-
lated annealing or walkSAT!. If a solution is found output
‘‘SAT’’ and stop.

~4! Select and fix the most biased variable~the one with
the largestuwi

12wi
2u) and simplify the problem.

~5! If the problem is solved completely by unit claus
propagation, then output ‘‘SAT’’ and stop. If no contradictio
is found then continue the decimation process on the sm
problem~go to 1.! else~if a contradiction is reached! restart
~go to 0.!

Extensive numerical experiments on random 3-SAT
stances ata54.2 with size up toN5105 have shown a re-
markable efficiency of SID. While the process of fixing
single variable takes some time@O(N) operations# the num-
ber of assignments explored is very small. Ata54.2 typi-
cally a single run of SID~i.e., with no restarts! leads to a
solution. Closer to the criticala, few restarts might be nec
essary in order to find a configuration of strictly zero ener
However, at each run the typical energy found by SID is v
close to zero, well below the energy at which simulated
nealing gets stuck. A detailed description of the numeri
experiments will be given in a forthcoming paper@51#. We
just mention that the largest public benchmarks of rand
3-SAT @49# have been solved efficiently by SID.

In Fig. 11 we show the evolution of the complexity und
SID. For a sample of sizeN510 000 ata54.2 we evaluate
the complexity curve every 200 decimation steps unti
paramagnetic state is reached. SID acts by eliminating c
ters of solutions and hence reducing the complexity of
ground state down to the point where very few clusters
main.

X. CONCLUSION

We have derived here two main results. The first one c
cerns the phase diagram of the randomK-SAT problem, and
establishes the existence of an intermediate phase wher
problem is SAT but the solution is difficult to find because
the existence of many states. We would like to point out t
the cavity method which we have used here is not rigoro
it relies on some hypotheses which can be true only for la
systems and are thus difficult to prove~although this can be
done in some cases@29#!. However, the experience gaine
from similar problems, together with numerical results
this and previous papers, indicates that this solution is lik
to be the correct one. If higher order replica symmetry bre
ing effects would show up, one can believe that in any c
their quantitative influence on the results should be rat
small. It should also be noted that the very same cavity st
egy which we have used here has been tested on a varia
theK-SAT, the XORSAT problem, which can be also solv
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by exact methods@52,53#. In this case, the existence of th
intermediate phase has been confirmed and all the pre
tions ~qualitative and quantitative! from the cavity method
have been checked rigorously@52#.

The second result gives a new class of message pas
algorithms for solving optimization problems in the regim
where the proliferation of metastable states slows down a
all the local algorithms. One such algorithm turns out to
quite powerful on the case of random 3-SAT problem
Clearly a lot of work needs to be done in order to deve
such algorithms in various contexts and test them aga
traditional strategies. A more direct derivation and und
standing of the algorithm, and in particular of the nontriv
reweighting term, would also be welcome.

Finally, we expect that thesingle sampleSP methodat
finite temperature can become a useful tool in analyzing
fine structure of order parameters in disordered systems
other complex systems.
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APPENDIX A: LARGE y EXPANSION FOR THE
3-SAT PROBLEM

We give here some details on the solution of the popu
tion dynamics equation~56! of the 3-SAT problem at largey.
We start from the self-consistent equation~63! for the distri-
bution of the rescaled weights of theu surveys inu51, and
we recall thatf q

(m,n)(h) is defined as the probability thatu1

1•••1uk5q, given thatQ1(u1), . . . ,Qm(um) are of type
b1 , and Qm11(um11), . . . ,Qm1n(um1n) are of typeb2 .
The quantitiesA0 ,B0 are expressed in terms of three num
bersg1 ,g2 ,g0:

g1~h![ (
q51

k

f q
(m,n)~h!eyuqu,

FIG. 11. Evolution of the complexity curve upon decimatio
TheS versusE85E/2 curve is shown when 200,400,600, . . . spins
have been fixed according to the SID algorithm (N510 000, M
542 000 for this sample!.
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g2~h![ (
q52k

21

f q
(m,n)~h!eyuqu,

g0~h![ f 0
(m,n)~h! ~A1!

as

A0[g1~h!g1~h8!,

B0[g1~h!@g2~h8!1g0~h8!#1g1~h8!@g2~h!1g0~h!#

1@g2~h8!1g0~h8!#@g2~h!1g0~h!#. ~A2!

The following step consists in introducing the joint pro
ability distributionP(m,n)(g1 ,g2 ,g0),

P(m,n)~g1 ,g2 ,g0![E dh1•••dhm1nr~h1!•••r~hm1n!

3dS g12 (
q51

k

f q
(m,n)~h!eyuqu D

3dS g22 (
q52k

21

f q
(m,n)~h!eyuqu D

3d„g02 f 0
(m,n)~h!…. ~A3!

Equation~63! reads

r~w0!5
1

12t (
k50

`

(
m51

k

(
n50

k2m

Ck,m,n (
k850

`

(
m851

k8

(
n850

k82m8

Ck8,m8,n8

3E dg1 dg2 dg0 dg18 dg28 dg08

3P(m,n)~g1 ,g2 ,g0!P(m8,n8)~g18 ,g28 ,g08!

3dS w02
A

A1BD , ~A4!

where the coefficientsCk,m,n are given in Eq.~60!, andA,B
are given in Eq.~62!.

The scaling of the weights of theu surveys inu51, w0,
with e2y at largey is consistent with the self-consistenc
equation~63!. In this limit we find g1 ,g2 ,g0;O(1), and
these quantities simplify to~up to corrections of ordere2y)

g1~h!5~11h1!•••~11hm!21,

g2~h!5~11hm11!•••~11hm1n!21,

g0~h!51. ~A5!

Therefore, the three variablesg1 ,g2 ,g0 become uncorre-
lated random variables in the largey limit, with a distribu-
tion:

P(m,n)~g1 ,g2 ,g0!5V (m)~g1!V (n)~g2!d~g021!,
~A6!

where
05612
V (,)~g!5E dh1•••dh,r̂~h1!••• r̂~h,!

3dS g2F)
i 51

,

~11h i !21G D . ~A7!

The equation forr(h0) reads

r~h0!5
1

12t (
k50

`

(
m51

k

(
n50

k2m

Ck,m,n (
k850

`

(
m851

k8

(
n850

k82m8

Ck8,m8,n8

3E dg1 dg2 dg18 dg28 V (m)~g1!

3V (n)~g2!V (m8)~g18 !V (n8)~g28 !dS h0

2
g1g18

g1~11g28 !1g18 ~11g2!1~11g2!~11g28 !
D .

~A8!

Clearly, the functionV (,)(g) can be seen as the,th con-
volution of a certain function after an appropriate change
variables. One is led to introduce the variablesf i and x
defined by

f i5 ln~11h i !, x5 ln~11g!, ~A9!

and we callS(f i), T(m)(x) their probability distributions.
Equation~A7! shows that

T(m)~x!5E df1 . . . dfm S~f1! . . . S~fm!

3dS x2(
i 51

m

f i D , ~A10!

wheref iP@0,@`@ andxP@0,m @`@ .
In order to simplify the self-consistency equation, we i

troduce the joint probability distribution

R~x1 ,x2![
1

A12t
(

k
(

m51

k

(
n50

k2m

Ck,m,nT(m)~x1!T(n)~x2!,

~A11!

which is normalized:*dx1 dx2 R(x1 ,x2)51.
We may show thatR factorizes by introducing its Fourie

Transform: Using the coefficients~60!, the triple series can
be resummed and expressed in terms of the Fourier tr
form Ŝ(q) of S(x):
6-21
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E dq1 dq2 R~x1 ,x2!ei (q1x11q2x2)

5
e23a

A12t
(

k

~3a!k

k! S F t1
12t

2
Ŝ~q1!1

12t

2
Ŝ~q2!Gk

2F t1
12t

2
Ŝ~q2!GkD

5
1

A12t
expF3aS t211

12t

2
Ŝ~q1!1

12t

2
Ŝ~q2! D G

2
1

A12t
expF3aS t211

12t

2
Ŝ~q2! D G . ~A12!

Rearranging the above expression and taking the inv
transformation we find forR

R~x1 ,x2!5A~x1!B~x2!, ~A13!

where

A~x1![
1

e3a(12t)/221
E dq1

2p
e2 iq1x1~e~3a/2!(12t)Ŝ(q1)21!,

B~x2![
1

e3a(12t)/2E dq2

2p
e2 iq2x2e~3a/2!(12t)Ŝ(q1).

~A14!

We may now write the self-consistency equation in a tr
table form. Defining the variablef0 associated withh0 as

h05
~ex121!~ex18 21!

~ex121!ex28 1~ex18 21!ex21ex2ex28
5ef021

~A15!

we transform the equation forr̂(h0) into an equation for
S(f0)

S~f0!5E dx1 dx2 dx18 dx28 R~x1 ,x2!R~x18 ,x28 !

3dS f02 lnF1

1
~ex121!~ex18 21!

~ex121!ex28 1~ex18 21!ex21ex2ex28
G D .

~A16!

This is the equation that we have used in order to solve
problem numerically.

Let us mention however that a series of further simpl
cations may also be written. It is easy to verify that
05612
se

-

e

-

S~f0!5E dz dz8 C~z!C~z8!dS f02 lnF11
1

z1z81zz8
G D ,

~A17!

where

C~z![E dx1 A~x1!dx2 B~x2!dS z2
ex2

ex121
D .

~A18!

Moreover, if we perform in the above the change of varia
11z5ez, defining the distribution

D~z!5C~z!
dz

dz
, ~A19!

we find

S~f0!5E dh E~h!dS f02 lnF eh

eh21
G D , ~A20!

whereE(h) is the convolution ofD with itself

E~h![E dz dz8 D~z!D~z8!d~z1z82h!. ~A21!

The transformations which we have written fromS
→A,B→C→D→E→S can all be done using one dimen
sional integrals, Fourier transforms, and changes of v
ables. Hence this provides an iterative mapping from
function S(f) onto itself which can be handled efficientl
numerically. Which form of the self-consistency equation
use is a matter of computational convenience. It turns
that, for our purpose, enough precision could be obtai
from Eq.~A17! and we did not try to develop this alternativ
computation.

We now proceed with the computation of the ener
F(y) defined in Eq.~48!. We shall be interested in evalua
ing it at largey, using the solution for the distribution ofu
surveys that we have just found in this limit.

We start with the pieceF1(y). It consists of two terms

F1~y!5
3a

y
ln C0̄2

1

y
ln A0̄, ~A22!

where the overline denotes the average over the popula
dynamics of Sec. VI B 4 and whereC0 andA0 are given by

A05E )
,51

k

@du, Q,~u,!#expF yU(
,51

k

u,UG , ~A23!

1

C0
5E dg dh P1~g!P2~h!exp@yŵJ~g,h!#. ~A24!

The termA0 is easily written in terms of the variable
g1 ,g2 ,g0,

A05(
q

f q
(m,n)~h!eyuqu5g1~h!1g2~h!1g0~h!.

~A25!
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FIG. 12. The set of nodes with
which one computes the free
energy shiftFa

f (y).
d

m

Averaging over the population dynamics, we get for largey

1

y
ln A0̄5

1

y (
k,m,n

Ck,m,nE dg0 dg1 dg2 P(m,n)~g1 ,g0 ,g2!

3 ln@g01g11g2#

5
1

y (
k,m,n

Ck,m,nE dx dz T(m)~x!T(n)~z!

3 ln~ex1ez21!. ~A26!

Treating separately them>1 piece, which can be resumme
as in Eqs.~A11! and ~A13!, and them50 piece, the sum
over k,m,n gives

(
k,m,n

Ck,m,nT(m)~x!T(n)~z!

5A12tA~x!B~z!1d~x!(
k,n

Ck,0,nT(n)~z!

5B~x!B~z!. ~A27!

Putting this expression back into Eq.~A26!, we finally find

1

y
ln A0̄5

1

yE dx dz B~x!B~z!ln~ex1ez21!. ~A28!

We now turn to the second contribution,C0, to Eq.~A24!;
before averaging over the iteration of the population dyna
ics, we have
05612
-

1

C0
5E )

i 51

k

@dui Qi~ui !#)
j 51

k8

@dv j Qk1 j~v j !#

3expF yŵJS (
i 51

k

ui ,(
j 51

k8

v j D G . ~A29!

Without loss of generality we assumeJ15J251; we use the
solution ~57!, and denote as before bym,n,m8,n8 the num-
bers of variousu surveys appearing in Eq.~A29!

k→m type b1 , n type b2 and k2m2n type a,

k8→m8 type b1 , n8 type b2 and k8-m82n8 type a.

C0 can then be written in terms of theg variables as

1

C0
5E dg0 dg1 dg2 P(m,n)~g1 ,g0 ,g2!

3dg08 dg18 dg28 P(m8,n8)~g18 ,g08 ,g28 !

3~g1g18 e2y1g1@g28 1g08#

1g18 @g21g0#1@g28 1g08#@g21g0# !. ~A30!

For y large we can drop the term in exp(2y); averaging over
the iteration of the population, we get
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FIG. 13. The set of nodes with
which one computes the free en
ergy shiftF0

v(y).
e

2 ln C0̄5 (
k,m,n

(
k8,m8,n8

Ck,m,nCk8,m8,n8

3E dx dz T(m)~x!T(n)~z!

3E dx8 dz8 T(m8)~x8!T(n8)~z8!

3 ln@~ex21!ez81~ex821!ez1ezez8#

5E dx dz dx8 dz8 B~x!B~z!B~x8!B~z8!

3 ln@~ex21!ez81~ex821!ez1ezez8#.

~A31!

Finally we now compute theF2(y) piece given in Eq.
~48!. For a generic clause with couplingJ1 ,J2 ,J3, involving
the h surveysP1(h1), P2(h2), P3(h3), we have

exp@2yF2~y!#5E dh1 dh2 dh3 P1~h1!P2~h2!

3P3~h3!e22yu(J1h1)u(J2h2)u(J3h3).

~A32!
05612
We write as beforeP1(h1)5*),51
k1 @du, Ql(u,)#, and sup-

pose that this set ofk1 u surveys containsm1 u surveys of
type b1 , n1 of type b2 andk12m12n1 of type a, charac-
terized by the weightsh1. The same decomposition is don
for P2(h2) @respectivelyP3(h3)], where the numbers ofu
surveys of various types arem2 ,n2 ,k22m22n2 and the
weights areh2 ~respectivelym3 ,n3 ,k32m32n3 ,h3). For
this iteration, the expression~A32! for F2(y) can be reex-
pressed as

exp@2yF2~y!#

5 (
q1 ,q2 ,q3

f q1

(m1 ,n1)
~h1! f q2

(m2 ,n2)
~h2! f q3

(m3 ,n3)
~h3!

3exp@22yu~q1!u~q2!u~q3!#

.y→`)
i 51

3

@g1~h i !1g2~h i !1g0~h i !#

2)
i 51

3

@g1~h i !#. ~A33!

The average over the population gives
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F2~y !̄52
1

y (
k1 ,m1 ,n1

(
k2 ,m2 ,n2

(
k3 ,m3 ,n3

Ck1 ,m1 ,n1
Ck2 ,m2 ,n2

3Ck3 ,m3 ,n3)i 51

3 H E dxi dzi T(mi )~xi !T
(ni )~yi !

3 lnF)
i 51

3

~exi1ezi21!2)
i 51

3

~exi21!G J
52

1

yE )
i 51

3

dxi dzi B~xi !B~zi !

3 lnF)
i 51

3

~exi1ezi21!2)
i 51

3

~exi21!G . ~A34!

Grouping together the contributions ~A22!,~A28!,
~A31!,~A34!, we find the total zero-temperature free-ener
densityF(y)5F1(y)22aF2(y) given in Eq.~67!.

APPENDIX B: FREE ENERGY FOR ONE GIVEN SAMPLE

Let us explain here how to compute the zero-tempera
free energy for one given sample. We start from the con
bution of one given factor nodea. We shall look at a some
what large part of the graph containinga ~see Fig. 12!. We
call s1 ,s2 ,s3 the three spins connected to it. One of the
spins,s r is connected, besidea, to kr other function nodes
which we call br

1 , . . . ,br
kr . The function nodebr

s is con-
nected, besides r , to two other spins which we calls r

s and
t r

s , and the cavity fields onto them are calledgr
s andhr

s ~see
Fig. 12!. In the absence of the spinss1 ,s2 ,s3 and of all the
function nodesbr

s , the ground state energy of the syste
would be

Einit52(
r 51

3

(
s51

kr

~ ugr
su1uhr

su!. ~B1!

Adding the spinss1 ,s2 ,s3 and all the function nodesbr
s ,

the ground state energy becomes

Ef in5 min
s1 ,s2 ,s3

S Ea~s1 ,s2 ,s3!

1(
r 51

3

(
s51

kr

$ min
sr

s ,tr
s

@Eb
r
s~s r ,s r

s ,t r
s!2gr

ss r
s2hr

st r
s#%D

5 min
s1 ,s2 ,s3

H Ea~s1 ,s2 ,s3!2(
r 51

3

s r (
s51

kr

ûJ~gr
s ,hr

s!J
2(

r 51

3

(
s51

kr

~ŵJ~gr
s ,hr

s!2ugr
su2uhr

su!. ~B2!

The zero-temperature free-energy shift induced by the a
tion of all these nodes is given by
05612
y

re
i-

e

i-

e2yFa
f (y)5E e2y(Ef in2Einit ), ~B3!

where the integral is over all thegr
s ,hr

s fields, each with a
probability distribution given by itsh survey. We can use the
iteration equation~74! in order to simplify this complicated
integral through the use ofu surveys

e2yFa
f (y)5E )

r 51

3

)
s51

kr F 1

Cb
r
s→r

dur
s Qb

r
s→r~ur

s!G
3expS 2y min

s1 ,s2 ,s3

H Ea~s1 ,s2 ,s3!

2(
r 51

3

s r (
s51

kr

ur
sJ D . ~B4!

We now compute the contribution from one given variab
nodei 50. We use the notations of Fig. 13, callingar the k
function nodes to which it is connected (r P$1, . . . ,k%). The
function nodear is connected, besides0, to the spinss r ,t r ,
and we callgr ~respectivelyhr) the cavity field ons r ~re-
spectivelyt r). In the absence of spins0 and of the function
nodes connected to it, the ground state energy of the sys
would be

Einit52(
r 51

k

~ ugr u1uhr u!. ~B5!

Adding the new spin and the function nodesar , the ground
state energy becomes

Ef in5min
s0

(
r 51

k

$ min
sr ,tr

@Ear
~s0 ,s r ,t r !2grs r2hrt r #%

5min
s0

S 2s0(
r 51

k

ûJr
~gr ,hr !D 2(

r 51

k

ŵJr
~gr ,hr !

52U(
r 51

k

ûJr
~gr ,hr !U2(

r 51

k

ŵJr
~gr ,hr !. ~B6!

The zero temperature free energy shift induced by the a
tion of these nodes is given by

e2yF0
v(y)5E e2y(Ef in2Einit ), ~B7!

where the integral is over all thegr ,hr fields, each with a
probability distribution given by itsh survey. As usual, this
can be simplified by the use ofu-surveys derived from the
iteration Eq.~74!

e2yF0
v(y)5E )

r 51

k F dur

Car→0
Qar→0~ur !Geyu(ur u. ~B8!

A little thought shows that, when computing the tot
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zero-temperature free-energy F(y)5(aFa
f (y)2( i(ni

21)F i
v(y), one is correctly counting each node once.

particular, in the limit ofy→0, F(y) reduces to the sum o
the energy of all factor nodes, as it should. The same rea
on
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ci.
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05612
n-

ing shows that the ‘‘1/C’’ factors in Eqs.~B4! and ~B8! ac-
tually cancel, so that one can forget these normalizations
the computation ofF(y), as was done in the text in formula
~71! and ~72!.
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