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Random K-satisfiability problem: From an analytic solution to an efficient algorithm
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We study the problem of satisfiability of randomly chosen clauses, eactviitolean variables. Using the
cavity method at zero temperature, we find the phase diagram fét ¢ case. We show the existence of an
intermediate phase in the satisfiable region, where the proliferation of metastable states is at the origin of the
slowdown of search algorithms. The fundamental order parameter introduced in the cavity method, which
consists of surveys of local magnetic fields in the various possible states of the system, can be computed for
one given sample. These surveys can be used to invent new types of algorithms for solving hard combinatorial
optimizations problems. One such algorithm is shown here foKth& satisfiability problem, with very good

performances.
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[. INTRODUCTION of optimization. In practice, algorithms that are used to solve

real-world NP-complete problems display a huge variability

The K-satisfiability (K-SAT) problem deals with an en- of running times, ranging from linear to exponential, when
semble ofN Boolean variables, submitted ¥ constraints. the parameterée.g., the number of claugeare changed. A
Each constraint is in the form of apr function of K vari-  theory for the typical-case behavior of algorithms, on classes
ables in the ensembler their negations and the problem is of random instances chosen from a given probability distri-
to know whether there exists one configuration of the vari-bution, is therefore the natural complement to the worst-case
ables(among the ? possible oneswhich satisfies all con- analysis[10—15.
straints. TheK-SAT problem forK=3 is a central problem In random 3-SAT, numerical simulations have shown the
in combinatorial optimization: it was the first problem to be existence of a phase transition when one varies the tatio
shown NP-complete[1,2], and an efficient algorithm for =M/N of the number of clauses to the number of variables.
solving theK-SAT problem in its worst-case instances would For a<a. the generic problem is satisfiab{8AT), for «
immediately lead to other algorithms for solving efficiently >« the generic problem is not satisfiadlgNSAT) [16].
thousands of different hard combinatorial problems. Using the cavity method, first developed in spin-glass theory,

At the core of the statistical physics of disordered systemsve shall show the existence of this threshold and compute
is the spin-glass problet8G), which also deals with Bool- «.=4.267. We also find an intermediate region, the hard-
ean variablegsping, interacting with random exchange cou- SAT phaseay=3.921< a<a., Where the generic problem
plings [3]. Each pair of interacting spins can be seen as as still SAT but the proliferation of metastable states makes it
constraint, and finding the state of minimal energy in a spindifficult for algorithms to find a solution. This proliferation is
glass amounts to minimizing the number of violated con-similar to the effect found in the theories of structural glasses
straints. Although the precise form of the constraints in SGusing spin-glass models with multispin interactiofis7],
andK-SAT differ, there exist deep similaritigd,5]; in both  where it is known to lead to a dramatic slowdown of the
cases the difficulty comes from the existence of “frustration” relaxation. In this sense the difficulty to solve the 3-SAT
[3], which forbids to find the global optimal state by a purely problem in the intermediate regiary<a<a, is similar to
local optimization procedure. Links between combinatorialthe difficulty in equilibrating structural glasses.
optimization and statistical physics have been known for This theoretical analysis is done using the cavity method,
long [3]. Two main categories of questions can be addressedt a level equivalent to what is called one-step replica sym-
One type is algorithmic, for instance finding an algorithm metry breaking in the replica language. This means that it
which decides whether an instance is satisfiable or not. Anassumes the existence of many states, but cannot handle a
other is more theoretical, and deals with large random innontrivial correlation pattern between them. There are some
stances, for which one wants to predict the typical behaviorarguments which point towards the correctness of this solu-
Examples of use of statistical physics in each category aréon, although an exact proof looks somewhat remote at
the simulated annealing algorithi@] and the solution of the present.
random assignment problefi, 8], or the direct mapping of In this cavity method with many states, the order param-
certain graph partitioning problems to spin glasi$§s Here  eter consists in the surveys of local magnetic fields acting on
we address the two types of questions in Ke 3 satisfi- each spin. While for the theoretical analysis one averages
ability (3-SAT) problem. over the random graph structure of the problem, it turns out

The study of randonK-SAT problems, where the clauses that this order parameter can also be computed for one given
are chosen randomly, is also interesting from the viewpoinsample, using a reasonably simple message passing proce-
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dure which takes into account the multiplicity of states. This [l. FACTOR GRAPH REPRESENTATION
procedure provides a generalization of the belief propagation

used in statistical inferend@&8]; it is shown here to converge ables which interact in groups, the energy being the sum of

in some Qiﬁicult s_ituation with_ many equilibrium states energies of all groups. We shall adopt the factor graph rep-
where ordinary belief propagation does not converge. Theasentation22] familiar in computer science, but we shall

resulting surveys provide an interesting description of ONgeep to the representation of Boolean variables as Ising
given sample, where the various variables are found to pla¥pins, more familiar to statistical physicists.

very different roles. This single sample analysis is very use- we consider a set oN Ising spinsc;e{*1} and we

ful in order to find new algorithms for solving hard optimi- suppose that we hav®l groups of interacting variables,
zation problems. Here we show one such algorithm for thevhich are called function nodes. Each function nadim-
random 3-SAT problem, where the surveys are used to idervolves a set oh, spins. We denote by, the set of all these
tify one spin and fix it. The problem is thus reduced and thespins. The interaction is an arbitrary function of the spins in
surveys are computed again on the new system. This dec¥,, which depends on the problem one considers, and can
mation procedure is shown to have very good performanceslso involve hidden variables.

The models we are interested in involve Boolean vari-

comparable to, or better than, the state of the art in this The total energy of a configuratian,, . .. ,oy is
problem. "

The paper presents a number of concepts and techniques,
both analytical and numerical, which can be applied to a E:a; Ea, @

rather large class of combinatorial optimization problems.
We have presented these concepts and techniques in a brogsl the goal in combinatorial optimization is to find a con-
framework, in order to allow for future use on different prob- figuration of spins which minimizeg. A generalization of
lems. The concrete implementation is then done on the rarthis problem, natural from the point of view of physics, and
dom 3-SAT problem. Some of the results discussed in thisvhich connects with problems in statistical inference, con-
paper have been recently announced in REJ]. sists in introducing an additional paramej@r an “inverse
The paper is organized as follows: in Sec. Il we presentemperature” in the physics language, and in studying the
the generic structure of the optimization problems in whichBoltzmann probability distribution
we are interested. These can be represented as bipartite
graphs called factor graphs. Section Il recalls a general mes-
sage passing procedure which can be used to study optimi-
zation or inference problems defined on these factor graphs.
The basic ingredients of this procedure are messages whigihereZ is a normalization constant. As usual in physics, we
we call cavity biases which play a crucial role in the whole shall denote by(O) the expectation of an observab@
paper. Section IV defines the set of random graphs which wévhich can be any function of the;) with respect to this
study, which are random hypergraphs with a fixed connectivineasure. In the largg (low-temperaturglimit this measure -
ity. Section V provides some background on the decomposigoncentrates or!to the Iowe_zst energy conﬁggrauons. At finite
tion of the configuration space into states. It consists of & ON€ may be interested in computing for instance the ex-
short introduction for nonphysicists, a specific definition of PECtation value of one spin variabig with the Boltzmann
zero-temperature states for the random 3-SAT problem, an robab!llty. Because we vyork with bmz_;uy spins, this average
the definition of thecomplexitywhich is a crucial concept for etermmes the fuII. marginal propab|llty law @.'fl: this IS
a system with many states. Section VI provides an introducprecIsely the quantity that one typ|cal]y seeks in many infer-
ence problems, such as e.g., decoding procedures for error

tion to the zero-temperature cavity method, presented in thé .
correcting codes.

general setting of combinatorial problems on random factor The general problem can be represented by a graph con-

graphs. This section summarizes, and puts in a more genergksing of two types of vertices, “variable nodes” associated
context, some recent work which has developed the cavity i, aach spin, and “function nodes.” A function nodeis
method for finite connectivity problems, first at finite tem- .4 nected by edges to all the variable nodes involves,in
perature[20], then at zero temperatuf@1]. It provides the  Therefore, each variable node has connections towards all
whole formalism for the analytic study of the phase diagram¢ne function nodes in which it appears, and the graph is bi-
This formalism is applied to the random 3-SAT problem in partite (see Fig. 1 Each spino; is connected ta; function
Sec. VI, where all the results on the phase diagram are deyodes, we denote this set of function noded/byWe calln;
rived. We explain the survey propagation algorithm on athe connectivity of spiri, n, the connectivity of function
given sample in Sec. VIII, and the decimation algorithm fornodea. Throughout this paper, the variable nodes indices are
solving large random 3-SAT problems is presented in IX.taken ini,j,k, ..., while the function nodes indices are
Section X contains some concluding remarks. The Appendixaken ina,b,c, etc.

A contains some technical details relative to the computation Let us give here a few standard examples.

of the phase diagram done in Sec. VII. The Appendix B Spin glassesAll the interactions involve two spins, so all
explains the computation of the free energy for one givem, are equal to 2; the energy of an interaction nadevolv-
sample. ing spinso; and o is given by

1
P(Ul!"'!UN):Zqu_BE)! (2)
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low energy. In the SAT problem, one wants to know whether
there exists a configuration of zero enefg@ywhich case the
instance is called SAT or not(in which case the instance is
UNSAT).

Ill. THE SUM-PRODUCT ALGORITHM

A popular method for studying the inference, i.e., the
probability measure(2), is a message passing procedure
called the “sum-product” algorithnj22,18. When used at
B—, the corresponding “min-sum” algorithm can also be

FIG. 1. An example of a factor graph with five variable nodes US€d t0 get some information on the lowest energy configu-
i=1,...,5 andthree function nodea=1,2,3. In this case, each rations. This procedure is exact and fast on treelike graphs.
function node has connectivity 3, as in the 3-SAT problem. Theln our case the sum-product algorithm amounts to sending
connectivities of the five variable nodes are, respectively, 2,2,1,1,350me messages along the edges of the graph. We call cavity-

field, and denote by, _,,, the message passed from a vari-
E,=—J. oo, (3)  able nodei to a function nodea. We call cavity-bias, and
e denote byu,_,;, the message passed from a function nade
where the numbed;; is called the coupling constant. Gener- to & variable node.

alized spin glasses with-spin interactions, The cavity-fieldh,_, 5 is given by the sum of cavity-biases
converging to from all function node® distinct froma:

Ea=—Ji,..i,00, 01, (4)

ig---ip

have also been studied a lot in statistical physics as models '"He\:bE\/E(i)/a1 Up—i- (6)

of structural glasses. They are the closest physical analogues

of the satisfiability problems which we study hg&s].
K-SAT: All interactions involveK spins, and the energy

of an interaction nodea involving spins Tipr oo Ty is

The operation performed by a function node to compute
the cavity-biases which it will send to its neighboring vari-
, able nodes is a partial summation: it computes the marginal
given by probability law for that variable to which it sends the mes-
sage. More precisely, let us consider a function nadef

r
E =2ﬁ (1+J50i)) ®) connectivityK and let us suppose, for notational simplicity,
a Sy 2 : that it is connected to variables,, . . . ,o . The cavity-bias
U,_, sent from the function noda to the variable nodé
It depends on a set ofK coupling constantsJ, =1 is a function of the cavity fieldhj_,a sent from all other
=(3%, ... 3% which take values- 1. This interaction node Variables nodege{2, ... K} towards nodea. One consid-
has a simple interpretation as a clause: the enErgig zero €S the function of o, defined by =, . , exp
as soon as at least one of the spiﬂ§ is opposite to the [—pBE (01,09, ...,0k)+B(hso_zoo+ - +he_,0k)]. As

corresponding coupling’,. If all spins are equal to their ¢1==*1, this function can be written for instance as the
couplings, the energy is equal to 2. The more conventionafXPonential of a linear form imr;. The cavity-biasi, ., sent
description ofK-SAT uses Boolean variables: let us intro- from ato 1 is defined from

ducex; which isTRUE if and only if o;=1. The energye,

depends on ther of theK variablesy; , ... .y; , wherey; S exf—BEJ(0L.0 o)

is the originalx; when J,=—1 and is its negation when op ok AT T2y Tk

J,=+1. The energy vanishes j}fil\/- Vi is true (the + B(hyaopt - +heao)]

clause is then said to be satisfiedtherwise it is equal to 2

and the clause is unsatisfied. This arbitrary factor of 2 is =exXd B(Wa .1+ 01Ua 1) ] (0

introduced for future convenience.

One can also consider graphs involving mixtures of func-Besides the cavity-bias,_,4, this equation also defines a
tion nodes of different types, e.g., mixtureskof2 clauses “free-energy shift” w,_; which is not used in the sum-
andK =3 clauseg5,24]. These are some examples of con-product algorithm but will become very important in our
straints satisfaction problems, but of course there exist mangeneralization later on. In physics words, ., is the mag-
other instances of problems, much studied in computer sciretic field on spin number whenever the interaction is
ence, which can be represented by such factor graphs.  turned off, andu,_,; is the contribution to the magnetic field

In general, an instance of the proble@lso called a on spin numbei from the interactiora. Equation(6) indi-
sample in physics languages given by a graph and the set cates that the probability law of spim; due to the interac-
of couplings needed to define each function node. In physicBonsa=2, ... K is a product of independent laws due to
(e.g., spin glass¢®ne is interested in the configurations of each interaction, while the marginalization operati@nis a
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partial summation, hence the name sum-product. The algodV. RANDOM GRAPHS AND THERMODYNAMIC LIMIT
rithm is easily generalized to variables which are more com-
plicated than Boolean.

The iteration of the above message passing algorithm, In the rest of this paper we shall consider the random
starting from a generic random initial condition, is known to K-SAT problem, which is defined on some ensemble of ran-
converge whenever the underlying factor graph is a tree. Acdom graphs which we now describe. To lighten the notation,
tually it converges in one sweep if one first computes theve concentrate on thi€ =3 cases for which all the function
messages from the leaves of the tree. The resulting set ofodes have connectivity,=3, and we generate the random
messages can be used to compute the probability distributiagraphs as follows: For each triplet j <k of variable nodes,
of one spin(or more generally of some subset of spir@ne  a function node connecting them is present with a probability
just needs to compute the local figtj on sping; : 6a/N?, and it is absent with probability 46a/N?. The

average number of function nodes is thbh=aN. The
graph model used is analogous to tAEN,p) model of ran-

A. Definition of random graphs

Hi= > Ui, (8)  dom graph theorysee, e.g., Ref25]], with p=6a/N2.
aeV(i) For the problem which we consider, the eneByasso-
ciated with a function noda also depends on some coupling
and the probability distribution of; is constants], [see for instance Ed5)], which may be drawn

randomly and independently for each function node from

exp(BH; o) some probability distribution. For instance in random 3-SAT,

SPRPTTY (99  each numbed;,J;,J] takes values- 1 with probability 1/2.

2 costigH;) In general we shall denote I#40 the average of any quan-
tity O over all the choices of the random grapsth fixed

One way to prove this result, using the physics language, i&l and M), and over the choices of couplings. In such a

to show that the message passing algorithm minimizes therobabilistic setting, one is interested for instance in comput-

Bethe free energy of the spin systéir8]. As the Bethe free ing the average “ground state energy:” For each sample, an

energy is exact for treelike graphs, this provides the proof. IPptimal configuration(one with minimal energy is called

one is interested in the optimization probler-¢), one the ground state, its energy &, and one would like to

can show that the configuratiom;=sgnH; is the lowest compute&;E,.

energy configuration if there is a unique such configuration.

If there are several lowest energy configurations, taking the B. Thermodynamic limit

B— o limit of (o) with the measuré9) gives the average of

the spino; over all these configurationdut one needs to

make this detour through the finifg problem in order to get

this resulj.

P(oi)=

We shall be interested in thetlfermodynamic limft
whereM and N go to «, keeping the ratiox=M/N fixed.
The connectivities of variable nodes become independent
identically distributed(iid) random variables with a Poisson

In this work we shall mainly be interested in the optimi- distribution f : o

. ) ) o o 3.(K) of mean 3y, since the probability of hav-
zatlorj problem. qukmg directly g8 =« then simplifies the ing k edges connected to a variable node is
algorithm. The cavity-fields are generated as before by sums

of cavity biases. For computing a cavity-bias, one performs a (N=1)(N—2)/2
partial minimization, and the formul@) simplifies to lim ( K )(Ga/Nz)k
N—o
min [Eq(oy,02, ... ,00) = (ha_qoot - - +he_q00)] X (1—6a/N?)(N-DN=2)/27k
Ty vvny TK
2 (3a)
== (Wa 1+ 01U 1), (10 = O~ 3a)=f3,(K). (12

This equation defines the output messageandu as func-

tions of the input messagés . In general, we shall write The structure of the random graphs generated by this pro-

cess for largeN is interesting. Locally such a graph is tree-
R like: the typical size of a loop in the graph scales likeNn(
wa_,lsza(hzﬁa, .hksa), for large N. On the other hand loops are definitely present,
and they can induce frustration in the sense of having com-
~ peting constraintgit has been argued that similar random
Ua1=Uy (N2, - .. hia), (11)  graphs with a local treelike structure provide a natural setting
for discussing the “Bethe approximation” of frustrated sys-

. ] . R . tems[26]]. The structure of the graph has one important
which defines the functions; andu,_[the labelJ, is here  consequence: consider one given function node, connected to
to explicitly remind that a given function node enerfy  three variable nodegsping. If one deletes this function
will in general depend on some set of couplings—see Eqsmode, the typical distance between any two of these three
(4) and (5)—which we denote collectively a,]. spins (measured as the length of the shortest path on the
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graph which connects thénis of order InN, and thus di- tween two distant spins; ,o; decays exponentially with the
verges in the thermodynamic limit: the spins are far apartdistanced;; at large distances
This property will be crucial in understanding the type of
correlations existing between the spins, and in solving the ({oioy) —(oi){oj)|=Cexp(—dij /§),
model. Notice that the limit wherl®l,N— is also the one . .

where ¢ is the correlation lengthQ can be a constant, or

that is interesting from a computational complexity point of . . : . o
view 9 P plexity p involve power law corrections in the distance&his is called

For problems defined on random graphs with giveM, the clustering property. On the other hand, some systems can

the ground state energy fluctuates from sample to sample. jso have phase transitions, and display a low-temperatue

is often true, but it may be difficult to show, that the distri- phase with sevgral pure state. . .
bution of the ground state “energy densit&,/N becomes The archetypical case which we briefly describe here as a

. . pedagogical example is the ferromagngtic 2 spin system
more and more peaked wheM increases, so that, in the with energy given by Eq4) with J; = 1: at low temperature

tehrermdoednysri\? m\i\?hlimité;r:”ézsisrl# Sigglgi have the same ent_he spins polarize in one of two pure states, related to each
9y Y. P other by the global symmetry changing allto — o . Let us
) call a configuration one assignment of tHe spins,
€0= lim &Eq/N. 13 o4, -..,0N- The pure states are probability measures on the
N=e configuration space obtained using a slightly modified Bolt-
zmann measure where one adds an external “symmetry
For the randomK-SAT problem it can be proved that the preaking” magnetic fieldin the present language one adds a
above condition holdg27]. function node of connectivity one connected to each vari-
One of our aims is to compute this limiting valegfora  able node i, with energy —Bo;). One computes
fixed value ofa=M/N. For theK-SAT problem it turns out IimB—»OtIimN—>oc<0'i>v which defines the expectation value
that this value is equal to zero below a certain threshQld (o). of spini in each of the two states and —. It is a
and becomes-0 for a>a.. In statistical physics it is very well known fact that the connected correlation functions
difficult to go beyond the estimate of the energy density: ifwithin each state have the clustering property
one can computey, one knows thaEy~ egN is the leading
behavior of the energy for large, but in general one cannot [{oioj)+ —(oi) (o)) |=Cexp(—d;/£). (15
control the subleading part, and in principle it could be pos-
sible for instance that also in the smallphase ofK-SAT  This means that when the spins collectively polarize inthe
where e,=0, some finite contribution t&, (finite whenN state, the correlations between distant spins vanishes. It is not
— ) could make the problem typically UNSAT. Numerical true for the full Boltzmann measure: if one does not add the
simulations tend to show that this is not the case. Knowingsmall symmetry breaking field, but keeps to the Boltzmann
€o will then allow to get the phase diagram of the problem.measure(2), one gets for any observabl@®)=1/2((O)
But one is also interested in other properties of the generig-(O)_) (the fact that the two states enter with equal weight
samples in the thermodynamic limit, like the decomposition1/2 is a consequence of the global symmetry of the original
of the space of accessible configurations at a given energy, @oblem), and one easily shows that the corresponding cor-
which we now turn. relations do not vanish at large distances.
The lesson we learn from statistical physics is that corre-
lations decay at large distance within each pure state. In
V. STATES AND CLUSTERING PROPERTY problems more complicated than the ferromagnet it may be
A. A simple example of pure states: The ferromagnet difficult to identify the various pure states, especially when
we do not have at hand a simple breaking of a symmetry. A

One of the main aims of statistical physics is t0 under-546 part of the work on spin glasses has been devoted to
stand the building up of correlations between distant variyyig problem and we shall not try to reproduce it hisee
ables, when the basic interactions between them are shqgy¢ [3] for a review, nor to give a general definition of

range. This is prepisely t'he type of question thgt we need tQi5tes at finite temperature in our problems.
address here: variables interact locdllye only direct inter-
actions involve spins connected to the same function node
But we also need to control the correlations established be-
tween two spins belonging to the same function node, due to Instead we shall focus on the zero-temperature lingit (
their indirect coupling through other nodes. As we saw, the—x), where the situation is simpler. A state is defined in the
geometry is such that this indirect interaction builds upthermodynamic limit as a cluster of configurations, all of
through very long(O(In N)) paths. equal energy, related to each other by single spin flip moves,
Usually, in the statistical physics of systems with shortand which are locally stable, in the sense that the energy
range interactions, the correlation between distant variablesannot be decreased by any flip of a finite number of spins.
displays a relatively simple variety of behaviors. The sim-In the random 3-SAT problem one can use an even simpler
plest one is when there is only one pure state in the systemefinition which allows to generalize the definition of states
(typically a “paramagnetic phasg”then there exists a finite also to finiteN problems: the condition of local stability can
correlation length and the connected correlation function bebe substituted by a condition of stability with respect to any

(14)

B. States at zero temperature
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sequence of one spin flips. The reason for this simplification, ' !
specific to theK-SAT problem, is that in this case the stabil- ! ! 2
ity with respect to sequences of single spin flips insures sta- hy Yo! VGZ
bility with respect to collective flips of finite sets of spins. g ? 'G

h,

C. Many states: Definition of the complexity

Experience with disordered and frustrated systems like
glasses shows that there can exist many states, and the num-
ber of states typically grows exponentially with the number
of variables. The number of statdgE) with energyE is
written as o

ME)=exf N3 (a,é)], (16) FIG. 2. When a new spirpro is added to the sys_,tem,1 it gets
connected througk new function nodes to R other spinsg; and
o2. The cavity field ono? is denoted byg,, the one ono? is

where the quantit ,€) is called the complexity. It is a
a P (a,€) b y denoted byh, .

function of a=M/N and e=E/N, and the form(16) is de-
rived from the basic assumption thatAfE) is extensive. In . . ] o
general, whenever a problem has a nonzero complexity, orf&inction nodes involve exactly_ three spittise g_enerallzatlon
may expect that simple local algorithms will have great dif-t0 more general problems is totally straightforward but
ficulty in finding the ground state, simply because the statey/ould make the notation more cumbersomé/e refer the
proliferate (for large N) and the algorithm will easily get interested reader to .Re_[121]'for more Qeta|ls. We shall first
trapped into one state with energy above that of the groun@resent the method in its simple replica symmetR€) ver-

state. We shall see in the next sections how the cavitpion where it assumes the presence of a single state, and we
method can handle such a situation. shall then turn to the more involved case in which many

states exist but are uncorrelated, a situation called one-step

replica symmetry breakin@lRSB) in the replica jargon.
VI. APRIMER ON THE CAVITY METHOD P y y gl B P jarg

AT ZERO TEMPERATURE

. o . ) A. The cavity method with one single statg RS case
The cavity method was originally introduced in REZ8]

to study spin glasses, but it gives a general framework for 1. Adding one spin

computing statistical properties of various frustrated systems, consider aN spin systems, . . . ,o and its interaction
and is ideally adapted to systems with a locally treelikegraph, and add to it a new spin,. Then generate the new
structure. It is always in principle equivalent to the replicafnction nodes involving this new spin as follows: for each
method, which is a more compact and very appealing for'pair 1<i<j<N, the function node (0,j) is present with
malism; however, it possesses two advantages. On one ha’}ﬁ’robability 6a/N2. Therefore, we have addéchew function

it proceeds through a standard probabilistic analysis, anfyqges which we label bu=1, ... k, wherek is a random
makes explicit all the hypotheses involved in it. Roughlyariaple with probability distributioris,(k). Let us consider
speaking, the cavity method assumes some properties abayf the new function nodes which involves, besidag 2k
the correlations between variables in a system WMtspins, i, spins which we calrt and o (see Fig. 2 Generi-
and shows that these are self-consistently reproduced for@a"y, on the original graph?i.e., be?‘ore addingro), these

S%Stem. withN+1 tiplg sys,ttrt]arrt].thThe Eroblt(;m in turlmnhg II(; spins are far apart from each other. If there exists only one
INto a rigorous methods 1S that these Nypotneses only Nold 18 e e clustering property implies that the correlations be-

good ool of the correlations 25 & functionhafthen the . Wee", hese pins, before adding, varish. Using the fact
g that o> and o2 are binary variables, this decorrelation im-

cavity method becomes also a choice method for rigorousl. that the minimal f the original h. for fixed
probabilistic studies of frustrated systef@29]. On the other phes that the minima e{‘ergy% € origina’ graph, Tor fixe
hand, in the cavity method, one considers explicitly the site/alues of the R spinso and oy, can be written as
dependence of the order parameter, and the averaging over
“disorder” is performed at the endéhis is in contrast with L o N 5
the replica approach where the disorder average is made E({Ua!aa}):A_Z (9aozthao3), (17
from the very beginning As we shall see here, this aspect art
allows to define some algorithm, inspired from the cavity
method, which computes the order parameter on each site fé¢here the X local fieldsg, andh, are nothing but cavity-
one given sample. fields passed from each spin to the function nadandA is

In what follows we shall be interested in the zero-a constantindependent of the local fieltls
temperature version of the cavity method. As discussed in Looking at the function noda in the full graph including
detail in Ref[21], the formalism simplifies a lot in this limit. Spin 0o, we need to minimize the functioB,(c,03,073)
Here we shall mainly outline for completeness the basic as= (gaoa+h,02) with respect toos,o2. This is precisely
pects of the method, applied to the 3-SAT model where alivhat one does in the message passing procedure of Sec. Il

k
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and one can thus use Ed.0) to get the minimal energy of
the new graph wittN+ 1 spins, for a given value af:

k k

2 ga- 0'02 u

a=1 a=1

E(og)=A Ja(garha)v (18

where Eq=A—3X_,(|h}|+|h2|) is the minimal energy of
the N-spin system.

PHYSICAL REVIEW E66, 056126 (2002

k
AEEO):EI (_\’AVJa(ga’ha)+|ga|+|ha|)

k

2, U3, (ga:ha)|.

(22

Equation(21) gives an integral equation for the order pa-
rameter which is the probability distributiocB(h) [or alter-

Equation(18) shows that the cavity field on the new spin natively Q(u)]. Let us now suppose that this equation has

o (the coefficient of— o) can be written as

k

ho= 2 U(Ga.ha). (19

As we shall see, its is often useful to decompose this cavity

field as a sum of cavity biases

U= lA-I\Ja(ga Na). (20

2. Self-consistency equation: The order parameter

Whenever one adds a new spig, one picks up a value
of k, and a set of R fields g,,h,, which are iid variables
taken from a probability distributioriP(h). The cavity
method assumes the existence of a thermodynamic Nmit
—oo where the energy densifg/N and the distribution of

local fieldsP(h) have well defined limits. This means that

the distribution ofhg is the same as that of thekZields.
Calling Q(u) the probability distribution of the variables,
this stability condition of the iteratiof20) implies that

o= [ dganptgyPe,su-yg.n)

P(h):go fSa(k)f dug- - -duQ(uy) - - - Q(uy)

(21)

been solvedwe shall see below how this can be done on
each specific exampleand show how the energy density can
be deduced from this order parameter. We must compute the
average of the energy shift for adding one spaveraged
over the choice ok and of the corresponding cavity fie)ds

k

AE,= kgo faa(k) & }1 [dgaP(ga)dhaP(ha) ]

k
X E [_\;VJa(gav
a=1
k

>, Uy (0asha)

ha) +[gal +[hal]

) . (23

One might believe that, as the energy grows linearliiat
large N, this average energy shift would be equal to the en-
ergy density; however, there is a correction term due to the
change in the number of function nodes per variable in the
iterationN—N+1. Indeed in theN+ 1 spin system we are
generating function nodes with probabilityx8N? in a sys-
tem with N+ 1 vertices and therefore we are slightly over-
generating function nodes. We need to cancel a fraction 1
—N?/(N+1)2=2/N of them at random: the probability of
deletingk’ function nodes is

aN , , /
( o )(Z/N)k (1—-2IN)N"K =(2a)K exp(—2a)/K'!

=f2q(k") (29)

and the average number of deleted function nodesds 2
Each deleted function node contributes to the average energy
change with a correction term

where&; means an expectation value with respect to all the

couplingsJ.

3. Computing the energy

One can easily compute the average shift in the ground

AE,=¢, f dh, dh, dhs P(hy) P(hy)P(hs)

X{ min [E(oy,0,,03)—hio1—

01,02,03

hyo,—hzo3]

state energy when adding one new spin. Looking at the ad-

dition process defined in Sec. VIA 1, we see that the energy

of the original graph withN spins iSA—32X_,(|g./+|hal),
while that of theN+1 spin system isA—SX_,w;(ga.h,)

—|=X_,Us(ga.ha)|. Therefore, the shift in energy when add-

ing the new spirv is

+[hy|+[hy| +[hs[}. (29
The ground state energy density is finally given by
GO:AEl_ZaAEz. (26)
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B. The cavity method with many states(one-step RSB have to generalize the messages, and the important quantities
are the probability distribution@ver the many states having
a fixed energy densijyof the cavity-biases going through a
Let us now see how the cavity method can be used tgjiven link.
handle a situation in which there exist many states. As far as
the clustering condition holds within each state, the iterative
method can still be applied to each state. The problem is that
the iteration induces some crossings of the energies of the One iteration step of the cavity procedure leads to an
states, and one needs to take this effect into account properigquation relating the probability distributions, before any av-
We proceed as in the previous section by adding the newraging over the graph. In our iteration procedure,Hisir-
spin oy connected to the @Spins{g; ,gg}_ In each statev, vey on the new siteRg(h), is related to théa surveys on the
one can reproduce the previous arguments: due to the vanther X spinScr;,crg1 computed in the absence @f. Let us
ishing of correlations, the energy of the state for fixed  denote by Pg(g,) the h survey incoming ontoo: and
values of the R spins{ol} and{o?}, can be written as P¢’(h,) the h-survey incoming ontoo2. The h survey
Pg(h) is given by

1. Iteration within one state

3. Iteration: level crossings and reweighting

k
E“({oé,a§}>=Aa—a§1(g;“a;+h§a§>. (27)

k
We now have, for each state 2k local fields. Pg(h)=Cf 11 [P5(92)dgaPs’ (ha)dhy,]

Within each stater, the optimization procedure on thé 2 a-t
spinS(r;,a(f1 proceeds as before. The minimal energy of the

k
h-2 aja<ga,ha>}

new graph withN+ 1 spins, for a given value af, is X 6|
k k .
E (UO):A _aZj_ WJa(ga yha)_ O-Oagl uJa(ga ;ha). % ex’{yE (\;\V‘]a(ga ,ha)_ |ga| _ |ha|)
a=1
(28)
k
This shows that the local field on the new spigin statea +yl > aJa(gavha) } (31)
can be written as a=1
k
hg:aZl u;.(9a.ha), (29 whereC is a normalization constant insuring ttg§(h) is a
normalized probability distribution. This equation provides
and the shift in energy of this state[isee Eq.(22)] the generalization to the RSB case of the simple iteration
(20) of the previous section. Two complications have ap-
K ~ peared: the simple messagdeavity fields and cavity biasgs
AE*= 21 (—wy (9a,h9)+|gzl+[hg]) have becomeh surveys, i.e., probability distributions of
a=

simple messages, and a new term has appeared which is the
exponential reweighting term. In this term, the paramgier

_ (300 a number equal to the derivative of the complexity with re-
spect to the energy:

k
> y(g%,h2)
a=1

2. Hypotheses on the states: u surveys

We suppose the existence of many states, with a complex- 9% 32)
ity function X («,E/N) defined as in Eq(16) which is an Je’
increasing convex function. Let us consider all the states
with a given energy densitlf/ N=e. We suppose that all the
local fieldsh;" , on a given edgg¢—a are iid, taken from a  Let us now explain the origin of this new and crucial term.
probability distribution Pfﬂa(h) called anh survey. This For a given stater, we add one new spin to the system and
probability distribution fluctuates from one edge to the nextwant to compute the new survey. In this process, we have
so that the full order parameter, obtained by averaging oveseen in Eq.(30) that there is an energy shitE“ which
edges, is the functional probability distributions of thése depends on the state, and is correlated to the value of the
surveys. The same hypotheses hold for the distribution of theavity-field h=3K_,0,(g2,h%). Let us call Sy(h,AE) the
cavity biases: all the,_.o on a given link are iid taken from joint probability (when looking at all statgsof the cavity
a probability distributionQ3_,,(u) called au survey. Notice  bias and the free-energy shift, for this function node.
that the previous RS solution corresponds to having deter- When we computePg(u) at a fixed energy densitg
ministic messages on each edgg ,(h)=6(h—h;_;) and  =E/N, we get a contribution from all states with energies
Q5 _o(u)=68(u—u,_ o). In the many state hypothesis, we before iteration equal t&— AE. Therefore,
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. E—AE (20 Pick up at random k surveys of u,
o(h):CJ d(AE)Sy(h,AE)ex NE( N ) Q4(uy), . .. ,.Q(uy) from the distributionQ[ Q(u)].
(3) Compute ah surveyP4(g) as the reweighted convo-

lution
=C’f d(AE)Sy(h,AE)exp(—yAE). (33
The reweighting term in exp(yAE) is due to the level cross- Pl(g):qJ dug, ..., duQq(uy), ... Qluy)
ing, and the fact that the complexi®/( «, €) is not constant, . .
but increasing: states with a negative value of the energy
shift are thus favored. Xexp( y Z Ua ) 5( 9_;::1 “a)- (36)

It is useful, as before, to decompose the iteration proce-
dure(31) into two steps and introduce thiesurveys. On any

function nodea, we merge twoh surveys P(g,) and (4) Pick up at random a number of neighb@rs with the

probability f5,(k").

er H H .
Pa’(ha) in order to build au survey: (5) Pick up at random k' surveys of u,
Qrr1(uy), ... Qrik (uy) from the distribution@[ Q(u)];
QS(U)=f dg dh F(g)P§’ (h)s(u—u;, (g,h)) (6) Compute zh surveyP,(h) as the convolution
xexplytwo, (g, =gl =In[1}. B4 pyh=C, | duy, - BUQursU). - Qe
Then we can combine all the surveys incoming onto the K’ K’
new spin in order to build ith survey xexp( y az,l u, ) 5( h—gl ua). (37)

P8(h)=J dug, ..., du Qf(uy), ... ,Qr(uy)

k
xexp(y

> U

a=1
Note that there is some degree of arbitrariness in the way one .
distributes the reweighting between the two iteration steps: Qo(U)=CoJ dg dh Pi(g)P,(h)s(u—uy(g,h))
different choices amount to different definitionswo$urveys.
The above one is the most natural one, and this is what we xexp{y[wJ(g,h)—|g|—|h|]}, (39
shall adopt from now on.

(7) Pick up at random a set of couplingscharacterizing
a new function node, from tha priori distribution of cou-

k .
)5( -3 ua). (35  Plings.

(8) Compute a new survey,Qqy(u) as

whereC, is a normalization constant insuring tH@fu) has
an integral equal to one.

Equationg34) and(35) are the main result giving the way  This iteration defines a stochastic process in the spage of
to compute the messages sent along to a new added site. Toigrveys, which in turn defines a flow f@{ Q(u)], of which
assumed existence of a thermodynamic limit allows in prin-we would like to compute the fix point. Following R¢R0],
ciple to write a self-consistency of the iteration in a waythis is done in practice by a population dynamics algorithm:
similar to Eq.(21). In the present case, this is an equation forone uses a representative population\éfi surveys from
the functional P[P(h)] giving the probability, when one which the variougQ,(u), € {1, ... k+k’'} used in the it-
picks up an edgé—a at random, to observe on this edge aeration are extracted. Aft&y(u) has been computed, one of
h surveyP;_ ,(h) equal toP(h). Alternatively, one can use the u surveys in the population, chosen randomly, is erased
the functional Q[ Q(u)] giving the probability, when one and substituted b@,(u). After some transient, this popula-
picks up an edga— | at random, to observe on this edge ation dynamics algorithm generates setsuo$urveys which
u surveyQ,_.;(u) equal toQ(u). In the following we shall are sampled with a frequency proportional to the seeked
rather work with theu surveys which turn out to have a Q[Q(u)].
simpler structure in practice, but obviously a fully equivalent  The point of this stochastic process approach is to avoid
description can be obtained working withsurveys. trying to write explicitly the complicated functional equation

These functional equations are the generalization to theatisfied byQ[Q(u)]. This is one crucial place where the
RSB case of the Eqg$21) for the RS case. One could write cavity method turns out to be superior to the replica method:
them explicitly, but they are not particularly illuminating, with replicas one performs the average over disorder from
and we prefer to work directly with the iteration equationsthe beginning, and one is forced to work directly with the
(34) and (35). These define a stochastic process; at each ittunctional Q[ Q(u)] [30]. As this is very difficult, people

4. Order parameter and self-consistency: Population dynamics

eration, one performs the following operations. have thus been constrained to look for approximate solutions
(1) Pick up at random a number of neighbdgswith the  of Q[ Q(u)] where the functional is taken in a simple sub-
probability f,(K). space, allowing for some explicit computations to be done.
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5. Computing the energy and the complexity

Here we show how to generalize the computation of the Pal 5E):J dhy dhzdhsPy(hy) Po(hz) Ps(ha)

energy of Sec. VIA3 to the 1RSB case.
When adding one site 0, connected througfunction
nodes to X sites the energy shift in one given state is

X§[5E_ min {_hlﬂ'l_hz(fz_h30'3

01,02,03

+ey(01,02,03) = ([hq| +|hy| +hg))]. (43

k k
5522:1 [=w;,(he,ge)+ el +gel1- Z«l Uy, (he,go)|, Let us look at the corresponding change in complexity. The
(39) new system ha$l variables andv +1 function nodes, so
that
whereh,,g, are the incoming fields onto the function node
number¢. Let us callP,(h,) andP;(g,) the corresponding NS | — = M+1 E)
field distributions(the h surveys. They induce a probability "N
distribution Py(SE) of the energy chang39) M E—sE
" :Jd(éE)Pa(éE)exp{NE(ﬁ, N ”
Po(oE)= [ 1 (dh dg, Po(hoPi(g)] )

k

- After averaging over the iterations, this gives
8| 9B+ 2 [Wy,(he,90)=Ihe|—[g]

k

A - In( d(SE)P( 5E)ex;{—y5E]) . (45)
421 u(he.ge) f

+

) . (40

Combining the two expression@?2) and (45), it turns out
Let us look at the corresponding change in complexity. Thehat the quantity which is computed naturally in this scheme
new system hadl+1 variables andV +k function nodes, s the Legendre transfori®(y), with respect to the energy
and its number of states at ener@y exd(N+1)X((M  densitye, of the complexity functior® (a,€) [31,32. This

+KJIN+1][E/N+1])] is given by “zero-temperature free energy” is defined precisely as
M+k E das
SR (NTDX {31 N1 S(a€)—ye=—y@(y); y=g4- (46)

M E-J6E
=f d(&E)P0(6E)exp{ NE(W’ N ” (41)  and it can be computed from the population dynamics as

This expression depends on the precise spin which has been P(y)=P1(y) —2aPa(y), (47)
added through the choice of the distributidhsandP;, and
of couplingsJ,, which appear in Eq(39). As one expects 1

3 (a,€) to be self-averaging, one must average the logarithm Da(y)=— yln( f d(6E)Po( 5E)exp[—y5E]),
of the expressions in E¢41) over the iteration of population
dynamics algorithm. We denote this averaging by an over-

line. As SE is finite, one can expand i6E/N in the thermo- _ E ( f _ )
dynamic limit, to get(calling as alwaysa=M/N and e ®ay) In| | d(SE)Pa(sE)ex —yoE]}, (48)
=E/N)
whereP, and P, are given in Eqs(40) and (43).
% 2 Technically, it turns out that,(y) is more easily com-
2(a,e) - EEJFZC“% puted through the normalization of thesurveys. When we

compute au surveyQq(u) as in Eq.(38), we can memorize

the corresponding normalization const&@y. Picking upk
:In< f d(6E)Po(SE)exd —yoE] |, (42 | surveysQ, at random in the population, and callify the
corresponding normalizations, one gets

where we used the fact thiat= 3a. As in the RS case of Eq.

(25), the derivatived>/da can be computed by adding one K Qe( ¢) K

function node to the system. For a generic function nade Dy(y)=— —In f H C, expgy gl Uel | ]
connected to the sites 1,2,3 and with interaction coupling -

the probability distributiorP,(SE) of the energy change is (49
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VII. THE CAVITY METHOD APPLIED TO THE RANDOM one of the couplings id,, and these couplings are random
3-SAT PROBLEM variables taking values:1 with probability 1/2, the distri-
A. Known results on the phase diagram bution Q(u) of cavity biases must be of the form

Considering the random 3-SAT problem where the graph
is generated at random and the various couplings take values  Q(u)=cyd(u)+
+1 with probability 1/2, numerical experiments have pro-
vided a detailed study of the probabilityy(a,K) that a ] ] o . ]
given F including M = N clauses be satisfiable. For large Plugging this expression into the self-c0n3|s_tency equations
sizes, there appears a remarkable behafi@eems to reach (21) leads to a relation betweary and the weighp,="P(h
unity for a<a(K) and vanishes for> a(K) [13]. Such =0)
an abrupt threshold behavior, separating a SAT phase from
an UNSAT one, has indeed been rigorously confirmed for (k2 k k—2q 1—co\2%9( 29
2-SAT, which is inP, with a¢(2)=1 [33-35. For largerK po=§k: f3a(K) (;O 2q c (T) q
=3, K-SAT is NP-complete and much less is known. The
existence of a sharp transition has not been rigorously proven =exd —3a(l—cy)]lo(Ba(l—cyp)), (53
yet but estimates of the thresholds have been found. The
present best numerical estimate far at K=3 is 4.26[36],  wherel, is the Bessel function anik/2] is the integer part
and the rigorous bounds &&7—-4Q 3.26< @.<4.506, while  of k/2. Let us now compute,. From Eq.(50) we find that a
previous statistical mechanics analysis using the replicgavity-bias vanishes whenever at least one of the incoming
method, has found(3)~4.48[41] and a.(3)~4.396[42] fields (h, or h3) is zero or has a sign opposite to the corre-
in the framework of variational approximations. sponding coupling. This shows that

The interest in randoriK-SAT arises from the fact that it
has been observed numerically that hard random instances 1-pg\?
are generated when the problems are critically constrained, cO=1—Prot[(h<0)ﬂ(g<0)]=1—( 5 ) . (59
i.e., close to the SAT/UNSAT phase boundaiys,24. The
study of such hard instances represent a theoretical challen
towards a concrete understanding of complexity and th
analysis of algorithmg15]. Moreover, hard random in-
stances are also a testbed for the optimization of heuristi
(incomplete search procedures, which are widely used in

(1—co)
2

[S(u—1)+du+1)]. (52

gﬁe obtain a closed set of Eq&4) and(53) which is easily
solved. The distributiorP(h) of cavity fields is then given
py P(h)=Zp,o(h—r), where the weightp, are equal to

[(k=r)/2] k

practice.
pe=Ph=n=Ph=-1)=2 fsl) 2 |, .
B. The cavity analysis with one state
. o [1—cp\%aTr 2g+r
In the 3-SAT problem, the energy of a function node, as ng 2q f(_) (55)
given by Eq.(5), is 2 q
Ea=(1+3301)(1+350,)(1+I03)/4 and the energy is computed from E@23) and (25).
A nontrivial solution exists fore>4.667, with a ground
and leads to state energy that becomes positiveaat 5.18. The predic-
. tion of this hypothesis assuming a single state is a paramag-
W, (hz,hg)=hy|+[hs| = 6(I3h,) 6(I3hs), netic SAT phase witlty=py=1, and energye,=0 for «

<5.18, and a frozen UNSAT glassy phase witi<1 and
(50) Eo>0 for «>5.18. It is known[4,5] that this solution is
wrong both quantitatively(the location of the transition
point) and qualitatively(the structure of the order param-
etep.
The true transition is much more sophisticated, and the
many state formalism corresponding to 1RSB is needed to

. I : o unveil its structure.
Let us consider the cavity iteration scheme, within the

hypothesis of there being a single state. We thus use the _ o
general formalism presented in Sec. VIA. In the case of C. The cavity analysis with many states

3-SAT, Eq.(50) shows that the cavity bias on a given edge e introduce as before tHesurveys andi surveys, and
Ua_.j takes values either in 0,1 if the corresponding couplingye use the population dynamics algorithm defined in Sec.
is negative, otherwise it takes Values—'HTI.,O. Therefore, the VIB 4. It turns out to be more convenient to work 0n|y in
cavity fields are integerdThis is the reason for using the terms ofu surveys. The algorithm computes at each iteration
unusual factor 2 for each violated clause in the definit®n 3 new u survey Qo(u) by taking k+k’ u surveys

of the energy. Because the functiofnJa is an odd function of  Qq(u), ... ,Qx.k (u) in the population through

Uy (hz,hg) = —J36(35h,) 6(J5hs),
where the functiord(x) is defined as

0(x)=1 if x>0; 6(x)=0 if x=<0. (51
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Qo(U):Coj J' du; Qq(uy) ... duQy(uy)
Xdvq Qur1(ve) - .- dog Quirr(vir),

5(U_GJ(U1+ cesF U, vt '+Uk’))

XexgyW;(uy+ - - +Ug,o1+ - - +oe)]. (56)

Here,k andk’ are two iid random numbers taken from the

Poisson distributiorf;,(k) defined in Eqg.(12), andJ de-
notes a set of three iid random numbéysJ,,J;, each being
equal to£1 with probability 1/2.

The functionsli andw are defined in Eq(50). A u survey
always takes the simple forr®@y(u)=(1—c)d(u)+cs(u

+J,); itis thus a probability distribution which can be char-

acterized by a single numbeyand therefore the iteration of
the population dynamics is easily done numerically.

D. Solution of the self-consistency equations

Apart from the RS solution witly=0 andQ;(u)=é(u
—Uuj), where theu; are iid taken from a distributio®(u),

the numerical solution finds one other solution in the region

a>~4. Generically, theu surveys found can be of three

types:

S(u) (trivial ortype g

(1—mieY)o(u)+neYs(u—1) (type b,)

(1—meY)o(u)+neYsu+l) (type b.).
(57)

Qi(u)=

The arbitrary factoe™Y has been introduced for convenience

because numerical simulations show that the weighi=n
+1 of the nontrivialu-surveys scale proportionally ® ¥ at
largey.

PHYSICAL REVIEW E66, 056126 (2002

k ©
1(1-t
Proh J,>, u;<0|=2, fa,(K) tk+—utk*12
= k=0 2 2
1({1-t\2 K
—_ — k=2 “ e
+25| ) A
_ 1-t
=eX —3aT. (58)
The first termtX corresponds to alQ;(u), ie{1,... k},

being of typea. The second term corresponds|tme of the
Qi(u) of type b, , all the other ones of typa, and J,=
—1] or [one of theQ;(u) of typeb_, all the other ones of
typea, andJ,= +1]. The rest of the series is easily obtained
similarly.

The probabilityt of having a trivialu survey is thus

t=1—(1—Pr0t{Jzzkl uiSOD ( 1—Prol{l3]k2,1 vj$Ol)

e )

For « small the only solution is the paramagnetic one
=1. A solution different fromt=1 appears abovex,
=1.636 94(which corresponds tb=0.048 83).(In fact there
appears a pair of nontrivial solutions, the relevant one is the
one with lowestt, as can be seen from its behavior at large
«, and also checked in the population dynamics algorithm
It is interesting to observe that this threshold coincides with
the point where the so called “unit clause liter@27] algo-
rithm ceases to converge. At large valuesagfthe fraction

of u surveys of typea becomes very small, e.gt
=0.0051,0.0011,0.00025, at=4,5,6, respectively.

(59

2. Expansion at large y: Location of the phase transition

Here we shall show that, at largethe scaling ine™¥ of

The statistical symmetry of the problem due to the factthe weights ati= =1 for nontrivialu surveys is indeed con-

that the couplings take values1 with probability 1/2 im-
plies that the probability of finding in the population & "
message is equal to that of finding b“” message. We call

(1—-1t)/2 these probabilities, artdhe probability of finding a

type a message. Nontrivial messages are fully characterizedly of having k cavity biasesQ, ..

by the distributionp( %) of the %, variables. For any, the
full solution of the problem is given by the value bénd of

the functionp( 7). It can be obtained numerically by aver-
aging over many iterations of the population dynamics. We
shall now show how one can get some analytic control in the

largey limit.

1. Existence of nontrivial u surveys

Looking at the iteration equatiofb6), the only way one
can obtain a trivialu survey Qq(u)=8(u) is when either
Jin“:luisO in the whole integration domain, or

’

sistent with the iteration of the population dynamiés),
and we deduce from this iteration a self-consistent equation
for p(7).

Let us study one given iteration of E¢r6). The probabil-
.,Qx, among whichm
are of typeb, , n of typeb_ andk—m—n of typea is

k! tkmn<1_t)m+n

m!n!(k—m-—n)! 2

Ck,m,n:fBa(k) 2

(60)

Without loss of generality, we can assume that the n
nontrivial u surveys areQq, ... ,Qm+n, and the couplings
are J;=J,=J;=1 for this iteration. We denote byy
the vector of weightsy= (71, . .. ,7msn). Sincel;(uy+ -
< +Ug, vt tou)=1 if and only if (J;Z;u;>0) and
(J22jv;>0), the newu surveyQo(u) depends only on the

332}‘:11)160 in the whole integration domain, or both. The probabilities

probability to haveJZEikzluisO in the whole integration
domain is

f™M () =Prolfu; + - - - +u=q] (61)
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and is given by
kK K

Qo(U):Co[ 5(u—1>[2 > )

gq=1 q'=1

Xey(|q|+|q'—1)]
k/
>+

kq’:1 q

0

+5(u>{(qz >

=1 qr:_

0
+ 2>
kK 9=

« fgm,n)( n)fgp’,n')( n/)ey(|q+|q’)]

———

=Cy{S(u—1)Age Y+ 8(u)Bg}. (62

Iterating the population dynamics, one finds thdty)
satisfies the equation

o)

1
P(ﬂo):EkEO

k—1 k—m o k'—-1 k'-m’
2 2 Ck,m,nz E
m=1 n=0 k'=0m’'=1 n'=0

m+n

X Cyr i f L[l [d7ne p(70)]

m’+n’

X dnep(1e)18| mo— ————
El [d7ep(¢0)] (770 Age '+ B,

Ao

(63
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B —igx

B(x)= 27Te

e3a(1-1)72

xexp{Sa

Equations(65) and(66) are simple enough to be solved nu-
merically to high accuracy.

OnceS(¢) [and thereforep(7)] is known, one can de-
duce the value of the zero-temperature free-endr@y). To
leading order at largg, we show in Appendix A thatb (y)
=T/y, with

t—1+ %(1—t)§(q)”. (66)

\If:—f dx dz Bx)B(z)In(e*+e*—1)

2
—3a | ] dx dy, B(x)B(z)
i=1

XIn

2 2
I (ei+ei—1)-]] (exi—l)}
i=1 i=1

3
+2a | ] dx dy, B(x)B(z)
i=1

—

3

3
i[[l (eXi+eZi—1)—i]:[1 (exi—l)}. (67)

XIn

In order to compute th&(¢),A(x),B(x) functions, solu-
tions of Eqs.(65) and(66), we have used the fact that these
functions are probability distributions, and we have devel-
oped a population dynamics algorithm which follows a
population ofN variables¢, ... ,py, for a given value

of a.
This is an exact self-consistent equation for the distribution (1) Compute t, the solution of t=1—[1—exg3a(t

p(7). It can be simplified at largg, and we show in Appen-

dix A how to write a more tractable self-consistent equation

-1)/2]7.
(2) Initialize the ¢; as iid random positive variables, for

in this limit. This equation is best written in terms of the jhstance with an exponential distribution of width 1. Initial-

probability distribution functionS(¢4) of the variable ¢
=In(1+ 7). One finds thaB(¢) satisfies

S(¢)= j dx, dx_ dx} dx” A(x;)B(x_)A(x})B(x")
(64)

|

(65

(e —1)(e—1)

1+ ; 7 ]
(e*r—1)e*-+(eX+—1)e* +e*-e*-

5( ¢—1In

where A(x) and B(x) are two probability distributions re-

lated to S(¢) through its Fourier transformS(q)
=Jd¢ exp(a¢)S¢),

B 1 dqg ~iax 3a ~
A(X)=M Ee ex 7(1_1:)3((4) -1/

ize the “time variable”r7=1.

(3) Upgrade the timer— 7+ 1.

(4) Generate an integek=1 with the distribution
Yk 1/[ exp(y)—1], where y=3a(1—1)/2. Pick upk inte-
gersiy, ..., at random in{1,... N}, and compute the
sume; + -+, The distribution of the variabl& , (7)
=ity is A(x.), related toS(¢) through Eq(66).

(5) Generate a random variabte (7), which will be dis-
tributed according toB(x_), as follows: with proba-
bility exp(—7), one takesx_(7)=0; with probability 1
—exp(—1y), one repeats the procedure @ and calls the
outputx_(7)=¢; +--- + ;.

(6) Repeat the step#&t) and (5) to generate two other
variablesx’, (7) andx’ (7).

(7)  Compute x(7)=e*-/(e+D=1), x'(7)
=" (0(e% (1), and ¢o(r)=IN[1+1ix(7)+x'(7)
+x(1)x'(7))].

(8) Replace one randomly chosen variable in the popula-
tion, ¢, , by the new valuepy(7).
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Steps(3)—(8) must be repeated a large number of times, 0
say7. One can compute the average of any functiopais
-0.005 |
4 T a=42
J dpS(H()=7- 2 f(do(r). (68 001 |
37T +=Tla+1 §
] _ ] ) 0.015 |
(One forgets the firs7/4 iterations in order to reach a sta-
tionary regimé. The integrals involving a variabbe distrib- 002 |
uted according tB(x) can be estimated by summing func- )
tions of x_. For instance, the first term in the zero- ‘ . ‘ . . .
temperature free-energy E@7) is evaluated as O T T . s 4 s s 7
y
—f dxdz Bx)B(z)In(e*+e*—1) FIG. 3. Free energyp(y) versus the reweighting parameter
for the random 3-SAT problem at=4.2
T
= 4 > In(e-M4ex'-(0_1), (69  found to be finite down t@=0. This implies that there is an
37 +=TTa+1 exponentially largdin N) number of states with zero energy

density.

and the two other terms are computed similarly, using the The cor_nplexity of these ground states is pl_otted_in F_ig. 5.

x_ ,x_ values from twa(respectively threesuccessive time e call this phase the hard-SAT pha#tSP), since in this

steps. regime the typical sample is SAT, but the proliferation of
In practice, we used values ®f~10° and 7~ 100N states(most of which have strictly positive energmakes it

which was enough to achieve the precision given below irflifficult to find a solution. _ »
For a.<«, the function®(y) has a maximum at a finite

the results. .
For a< ay=3.921, the algorithm converges towards the¥alue y*, and ®(y*)>0. The complexity curve(a,e)
solutiong, = - - - = ¢y =0. This is the paramagnetic solution Starts at a positive energy densiy==(y”) (see Fig. 4.

This energy densitye, is the minimal number of violated
n- clauses per variable which will be found in almost all

trivial distribution S(¢). Computing the leading larggbe- ~ Samples at largé\. It is plotted in Fig. 5. We are in the

: - UNSAT phase.
havior of the zero-temperature free-energy functidry) T
~W/y, on this solution using Eq67), we find that¥ is This figure also shows the value efwhere the complex-

negative fora<a,=4.267, while it is positive fora>a, Y CUV€Z(a,€) is maximum gives the energy where there
[Ref. [19] reporteéa —4 256 which was 3% too low bCe- exists the largest number of states. This is the “threshold”
. C . ’

cause of some correlations in the random number generat?rnergy densite,, where a simple zero-temperature metropo-
used in solving Eqs(65),(66)]. Is algorithm (ZTMA) will be trapped. This implies that

ZTMA should find satisfying assignments only fa<ap,

in agreement with the numerical results[df3]. These pre-

dictions can be tested most clearly through their generaliza-
The previous largey analysis is in agreement with the tion to single instances which we discuss in the following

direct numerical iteration of the population dynamics of Secsection.

VIB4, but it allows one to get a much more precise deter-

where all theu surveys are trivial.
For a>ay=3.921, we find a new solution with a no

E. Phase diagram of the random 3-SAT problem

mination of the thresholds. The results of this section have 0.025

been obtained through the combined use of the numerical

and analytical methods. 0.02 1
For a<ay, the system is in the SAT phase, the solution is

paramagnetic, it is easy to find a solution. Note that, although 0.015 |

the t equation(59) in principle allows for the existence of W

nontrivial knowledge abover=1.64, we have not found 0.01 |

such a solution and the only one which remains is the para- 0

magnetic one witlt=1. 0.005 T
For ag<a<a., we find a monotonically increasing

®(y) function, which reaches its maximu—0 aty—o

0 N
(See Flg 3_ 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Fitting ®(y) by a function =P_,v,exp(=yf)ly with e
pe{1,2,3 gives a good and stable fit, from which the Leg-  FIG. 4. ComplexityS versus the fraction of violated clauses

endre transforn(46) is easily done. This allows one to re- ¢’=¢/2 for the random 3-SAT problem at=4.2, obtained from
construct the complexity curv&(a,e) (see Fig. 4 It is  the Legendre transform of Fig. 3.
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0.035 y - - y - - cas would require using a more complicated Ansatz.
003 | Note that our approach working directly Bt=0 also has
’ its limitations, for instance we are unable to determine pre-
0.025 | cisely the self overlagor the typical radiusof a state, or its
internal entropy, precisely because we do not control the eva-
0.02 | nescent fields. We leave for future work the delicate study of
0015 | the smallT region of the phase diagram. Let us just notice
here that a population dynamics study of this region with the
0.01 | 1RSB finite temperature Ansatz of R¢20] shows that the
distributions of local fields tend to peak on integers when the
0.005 temperature goes to zero in the HEF]. This is a strong
0 . argument in favor of the exactness of this 1RSB solution
36 38 (i.e., the fact that we do not need to go to higher-order RSB

as argued in Ref.21].
FIG. 5. The phase diagram of the random 3-SAT problem. Plot-
ted is €)= €¢/2 (full line), the number of violated clauses per vari- VIll. SURVEY PROPAGATION: CONFIGURATION SPACE

able, versus the control parametewhich is the number of clauses ANALYSIS ON A SINGLE INSTANCE
per variable. The SAT-UNSAT transition occurs @t a.~4.267. ) ) ) ] -
The dashed line is}, = e,,/2, the threshold energylivided by twg The analysis of the iterative equations for the probability

per variable, where local algorithms get trapped. The dotted line iglistributions of messages of the previous sections was done
the complexity3, of satisfiable states, equal td\Lfimes the natural by using a population dynamics algorithm, which performs
logarithm of their number. an average over the underlying random factor graphs. At
each step of the iteration, a random choice of coupling con-
Previous statistical mechanics attempts at finding thistants, as well as neighboring nodes is performed with the
phase diagram culminated in powerful variational approxi-proper probability distribution. While such an averaging step
mations using the replica method; see Réfl] for the first  is central if one wants to estimate typical properties, the it-
results and Ref42], which predicted approximate values for erative equations make perfect sense on a single specific in-
the SAT/UNSAT threshold-e.~4.48 in the case of Ref. stance. The order parameters arising from the cavity equa-
[41] and a;~4.39 in Ref.[42]—with an intermediate phase tions, namely theu surveys, are histograms of probability
appearing abovers=3.96 [41] and a4=3.94 with the An-  distributions of cavity biases. They determine the bias of
satz of Ref[42]. each spin in all metastable states of a given energy density
The difference between the variational results and oufor a given instance of the underlying factor graph. This is a
cavity result is both quantitative and qualitative: in Refl]  very important piece of information which can be exploited
the predicted nature of the intermediate phase is differenio study specific problems and to invent new algorithms.
with respect to ours while in Ref42] the structure of the In the largeN limit, we expect that the cavity assumptions
order parameter is oversimplified. In the present appréagh hold for locally treelike factor graphs and we may use
well as in Ref.[42]) we work directly at zero temperature u-survey propagation to have access to the properties of op-
(T=0), which has the advantage that we do not need teimal states of minimum energy. Here we shall develop one
study the subtle question of the limiit—0. The reason why such application for random 3-SAT which is a concrete
this limit is subtle is due to the fact that some of the localworld-wide benchmark for search algorithms. However, the
fields, at low temperatures, vanish linearly Tn and thus idea of exploiting the information on optimal states carried
contribute to the local magnetization=tanh(@H); we call by the functional order parameter is rather general and we
these fields evanescent fields. The local magnetizatioh at expect algorithmic applications in different fields.
=0 is zero for a zero field, it is equal to 1 for a finite field, = Whenever the factor graph representing the problem does
and it takes an intermediate valoe= ] — 1,1 for an evanes- not lead to clustering within states, in practice whenever
cent field. The variational approach of Refl] focuses onto loops are short enough, one should think to the present ap-
evanescent fields, and findscantinuousphase transition at proach as a first step of a sequence of possible approxima-
as=3.96 where the evanescent fields in different states stattons.
to cluster. However, as these are all evanescent fields, this As is well known, the so called Cluster Variation Method
means that the corresponding local magnetizations, in p46] provides a systematic scheme that can be adopted to
given state, are not frozen tb1 but take some intermediate improve the approximate results given by the cavity ap-
value, even in th@—0 limit. In our T=0 cavity approach proach[47]. The latter corresponds to the so called Bethe
(as well as in Ref[42]), the HSP corresponds todiscon-  approximation which is the first step in the cluster variation
tinuoustransition at zero temperature, involving fields which scheme. Our present approach deals with the Bethe approxi-
are not evanescent, but are of order ¢4d]. This means mation in a frustrated case. While a great deal of work has
that, in a given state, a finite number of local fields are nonbeen done concerning higher order cluster approximations
zero integers, giving rise to magnetizationd, as one could for simple models, the corresponding analysis for frustrated
expect at zero temperature. This phenomenology cannot &ystems such as spin-glasses or hard-combinatorial problems
found by considering evanescent fields. Its study with repli-over nonlocally treelike graphs is largely unexplored.
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A. The survey propagation (SP) algorithm 1

M N

In the ordinary sum-product algorithnig2] as described P(y)= N(;l @;(y)—zl QJi”(y)(ni—l)) (7D
in Sec. lll, the messages arriving at a node are added up and
then sent to a function node. Next, the function node transyhere
forms all input signals into a new message which is sent to
the descendant variable node. At each time step, on the links _ 1
of the factor graph there are signals traveling, just like in a Paly)= y | f iel;[(a) beV()-a
communication network. SP works with the same principle,
but now the messages traveling along the links of the factor
graph areu surveys of usual messages over the various pos- Xexr{
sible states of the system at a given value of the enégy
rather, in practice, at a given value of the reweighting param-
etery). Of course this higher level of description is useful ‘Ti)H’
only when there are many states, which will be typically the
case in hard optimization problems. Oaepriori drawback 1
of the approach is that the messages are complicated, beirgy (y)= — —In[ IT du, Qaai(ua)exF(y )]
functional probability distributions: a cavity bias is already a y aeV(i)
parametrization of a probability distributidivhich turns out 1
to be parametrized by a single variable in our case of binary =——In(C)). (72)
spins, but could be more complicated in generdere theu y
surveys are probability distribution functions of these cavity
biases. In cases likK-SAT at T=0 in which the standard

messages can take only few valugayr), au survey is usual result using Eq.72) in they—0 limit. The generali-

given by the probabilities of t_hese values, i.e.,_rbyl r.eall zation toy#0 given in Eq.(72) adds the effect of the re-
numbers and the SP can be implemented easily. This is oRgeighting terms due to level crossings. The origin of these
big advantage of working directly at=0, but we believe torms is exactly the same as in Sec. VI.
that the SP method could also be used more generally at | et us now explain how SP works. We start with a general
finite temperature or with continuous variables, by using wellpresentation of the algorithm, which applies to any optimi-
adapted parametrizations of the cavity biases. zation problem involving binary variables, characterized by a

SP is defined for one given value of the reweighting pa-given factor graph. Some details of the implementation for
rametery and one given instance, witl variable nodes and the 3-SAT problem will be given below.
M function nodes. Its basic ingredients are theurveys. (1) All the u surveysQ,_,i(u) are initialized randomly.
Each edgea—]j from a function node to a variable nogle (2) Function nodes are selected sequentially at random;
carries au survey Q, .j(u). The algorithm finds these for each such node, we update the surveys as followgsee
surveys by a message passing procedure detailed below, afig- 6):
finds simultaneously all tha surveysP; _,(h). Once these (2.1) for each variable node connected to the selected
are known, one can compute the so called local field distrifunction nodea, we compute theh survey P;_,(h) as a
butions and the zero-temperature free energy for this infeweighted convolution, see Fig. 6,
stance. The local field distributio®;(H) on a variable node
i is the distribution, over all states selected by the reweight; _
ing parametey, of the total local fieldH acting on spino; P”a(h)_ciﬂaj du - du Qp,~i(Uy) - Qpy—i(U)

k
h— >, ua) exp( y
a=1

[see Eq.{8)]. It is given by
(2.2) successively, the surveys on all edgea—i con-
) (70) nected toa are updated using thesesurveys:

IT  Qu_i(up_p)duy_;

—y min ( E.
{oiieV(a)}

ieV(a)

: Up—i
beV()-a

> U,

aeV(i)

The form (71) is the familiar one for the free energy in the
Bethe approximatior{18], and indeed one gets back the

k

PINTA

a=1

)

); (73
Pi(H)=C; H(,)danaﬁmua)a

X

> U,

ae V(i)

H— E ua)ex;(y

aev(i)

Qus(W=Cyr [ dgdh B_(@P_a(h)

C; being the normalization constant. . .

We show in the Appendix B that the zero-temperature X 8(u—uy(g,h))exply[w,(g,h)—|g[—[h[]).
free-energyd®(y) density ofthis samplecan be computed as (74)
a sum of contributiond);(y) for each function node, cor-
rected by the contribution®{ (y) from each variable node  (C;_,,C,_; are normalization constants
weighted by a facton;—1, wheren; is the connectivity of (3) The iterative process of ste@) continues until con-
variable node: vergence is reached. If the process converges, the corre-
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Qa_j(u)=c4j6(u)+(1—cyj)8(Uu—Jsj). The full set

of usurveys is characterized by th&3numbersc,_,; which

are updated according to the SP algorithm described above,
until convergence. The results of our numerical experiments
are the following.

1. The paramagnetic phase

For a<ay, SP converges toward the trivial paramagnetic
solutionQ,_.;(u) = &(u), for alla—i edges. Local field dis-
tributions are also trivialP;(H)=46(H) V i, and no infor-
mation can be gained on the fine structure of ground states.
In this region, there is a single state and the statistical prop-
erties of the zero energy configurations are totally driven by
its entropy. A different formulation of the cavity approach, in
which the properg—« limit is taken and the evanescent
fields are computed, could reveal some finer information for
this paramagnetic phase, which however is known to be
trivial from the algorithmic point of view.

2. The intermediate phase

FIG. 6. Function noda and its neighboring graph. For a.>a>ay, that is in the glassy region, the random
sequential updating of the iterative process converges to a
sponding stable set af surveys is used to compute tiN  unique nontrivial solution, provided is large enough. In
local field distributions using Eq(70), and the zero- practice, we start frony large, like e.g.y=6 (remember that
temperature free energh(y) given in Eqs.(71) and(72). the corrections to thg—o limit are exponentially smal

The above procedure can be repeated for different valuesin SP, and after finding a solution for thesurveys we
of the reweightingy so that the complexity>(y)  decrease (e.g.,y—y—0.2) and rerun SP using the previous
=d®(y)/d(lly) and the energy density e(y) u surveys as a starting configuration for this ngwThis
=d(y®(y))/dy of states can be estimated. The parametricspeeds up the convergence. Below some valugth& non-
plot of %(y) versuse(y), varyingy, gives the complexity trivial solution disappears abruptly and the algorithm con-
> (€) of states of energfE=Ne. verges to the paramagnetic solution.

When it converges, SP allows to get an order parameter In this region of«, the solution space, as well as the
(the set of all the surveysa zero-temperature free-energy configurations of higher energy become divided into an ex-
density®(y), and a complexity curvé. (e) for one given  ponential number of states. To compute the complexity, we
instance. What is the meaning of these quantities in generaheasure the free energy(y), see Fig. 7, and we perform
is an open question. A given instance has a finite valud, of the Legendre transform numerically.
and therefore the notion of “state” is not easy to define. The curve of the total complexitiNX, versus the total
Roughly speaking, one can think that for lafdethere might  energy Ne for one sample of random 3-SAT witiN
exist some effective finité states, such that the number of =10000 andM=42000 is given in Fig. 8. One finds
spins to flip in order to reach one state from another one i§y3 (E=0)~34, meaning that the zero ener¢§AT) states
large, leading to a separation of scales of the number of spingre predicted to be exponentially numeroe®, at the lead-
involved between the intrastate moves and the interstatgfg exponential ordefremember that each such state itself
moves. Such a situation would generally be difficult tocontains a large number of spin configuratiddg]. The
handle for search algorithms, and this is where SP could bghreshold states have an energy of approximatively 44 vio-
quite useful. In order to get a first understanding of thesaated clauses and their number is predicted to be agtfit
questions, we have experimented SP on single instances pfcross check of such predictions is given by the behavior of

the random 3-SAT problem for large valueshof ZTMA which cannot cross energetic barriers. It can be
shown that for random 3-SAT zero-energy moves allow to
B. The case of random 3-SAT explore configurations within each state and therefore, we

. . expect such algorithms to get trapped in the most numerous
We consider one instance of the 3-SAT problem, chose%ngs (the threghold statéag Indeé)oFI), extensive numerical
randomly as in Sec. IV, with energy simulations of ZTMA on many samples of different size
M (ranging from few hundreds to ¥pand for different values
E=2D (759 of a confirm such scenario. As a representative example, we
a=1jeV(a) 2 report that for the sample whose compexity is plotted in Fig.
8, repeated runs of ZTMA get stuck at an energy sharply
For 3-SAT the cavity-biases on a given liak—]j takes val- peaked around 48 violated clauses, with a small residual de-
ues U, .j=0,—J,.;; The corresponding survey is pendence of the final energy on the simulation titthe final
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FIG. 7. Extensive zero temperature free eneigj(y) versus  FIG. 9. The bias of the variables predicted by @Rt y=8)

reweightingy for two specific instances of sizd=10000 with  compared with the one measured analyzing SAT configurations
M=42000 andM =45 000 clauses, respectivelyp€4.2 anda from the same sampleéN(= 10 000, M = 42 000).
—4.5).

energy found by ZTMA shows a power law behavior on the wit= f‘” dH P,(H): W'_:J
total number of spin flips : ot ne !

We have checked that the functional order parameter
given by theu surveys and the local field distributions carry N o ) )
precise information concerning the space of solutions for on€f Pi(H) on positive(negative integers give the fractions of
given sample. Working witiN not too large, some SAT con- Z€ro energy states wherg is fixed to 1(to —1). As dis-
figurations can be found efficiently by good algorithms like Played in Fig. 9, we find a remarkable agreement between
e.g., walkSAT-35[48,49. We have collected a large set the local magnetizations;” —w; predicted by SP and the
(1000 of uncorrelated SAT configurations by running this local magnetizations measured by averaging over the ground
algorithm many times with random initial conditions. In each states found by the walkSAT algorithm. In the figure we
such configuration, the spino; takes a valuer®, and we ~ report data folN= 10000 andV=42000: we have divided
have computed, for each given sitethe average of the the Ipcal magnetization in 30 intervals and labeled spins ac-
whole set of SAT configurations. Next we have compared cordlng to the prediction of SP. Next on such a partitioning
the above results with the predictions of SP as follows. ~ Of spins we have taken the average over the configurations

We first have selected the states with minimal energy, byound by walkSAT.(The remarkable agreement of numerical
picking the value ofy which maximizesF (y). Here this is and SP results indirectly shows that walkSAT is a good uni-
y=cc and for practical computation it was enough to choosd®rm samples. o
y sufficiently large(corrections are exponentially smalhc- The weight inH=0 of Pj(H), w/=1-w"—w; , mea-
cording to Eq.(70), the fieldH;,=3,u, .; in each state is an Sures the tendency of a variable to be under constrained: for
integer valued variable which can be computed fromuhe instance, variables which belong to very few clauses have

“dHP(H) (76)

surveys. The total weights WiO: 1.
250 T T 3. The UNSAT phase
200 For a>a., SP predicts a positive ground state energy
with zero complexity, whereas excited states remain expo-
nentially numerous. Proper tuning of the reweighting, that is
" 5o choosingy so that the complexity vanishes, allows to predict
= the ground state energy and to evaluate the probability dis-
100 1 tribution of effective fields for each variable. In this regime
SP is found to converge only when the reweighting param-
50 eter is well chosen. For small values pfSP converges to
Nz-34 the paramagnetic solution or to the RS solution. For interme-
0 diate values ofy, SP converges to the nontrivial solution

0 5 10 I5 20 25 30 35 4 & whereas for larger values of SP stops converging. The
» - ..
E range ofy values for which SP converges to the nontrivial

FIG. 8. Extensive complexiti\N, versus the total number of solution is sufficient to determine the free energy. An ex-
violated clauseNE’ (=NE/2), for the specific instance of size ample is given in Fig. 7.
N=10000, M=42 000 studied in Fig. 7. The complexity is ob- ~ For large values o, we expect multiple nested cluster-
tained as the Legendre transform of the zero-temperature free eflg phenomena to appear, that is continuous replica symme-
ergy. try breaking[50]. This scenario could be analyzed by a fur-
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ther generalization of SP which is beyond the scope of this 2
work. 20 |
8

IX. SURVEY PROPAGATION AS A SOURCE OF NEW
ALGORITHMS FOR HARD OPTIMIZATION PROBLEMS T
" INAZ=In(2)

NZ
~
N

The preceding section has shown how SP can give rather
precise answers on the structure of the space of configura-
tions and the ground state energy of the random 3-SAT prob- 10+
lem. Here we shall stay within this problem and ask the
following natural question: Given a random 3-SAT formula
of sizeN, how can we take advantage of SP in order to find 6
optimal configurations?

If SP could predict with very high accuracy the value of
the ground statég.s) energy of a given formula, it could FIG. 10. Effect of fixing a single balanced spin on the complete
also predict its satisfiability. Then one could proceed in find-complexity curveNX versus the number of violated claugeise.,
ing a satisfying assignment just by converting the decisiorPne half of the extensive enenggf an instance of 3-SAT withN
algorithm into a search algorithm as follof&. A variable is ~ =1000 andM=4200. The difference in the two curves is very
selected and fixed to one value. We then use SP to evaluafise to In2.
the g.s. energy of the subproblem of side-1 and decide _ . ) i
whether it is still SAT or not. If the subproblem is SAT then fiXing one single balanced variable!
we keep the assignment, otherwise the opposite value of the
binary variable is chosen. The process is repeated untill all B. Survey inspired decimation(SID) algorithm

the variables have been exhaustadat most N steps. If One strategy for using this information in order to pro-
along this reduction process the subsystem becomes a pa@ce an optimization algorithm is to fix as many variables as
magnet, then SP becomes ineffective and another search gossible without altering the ground state energy, evaluated
gorithm must be used on the subsystéut for a paramag- step by step as the size of the problem decreases. Eventually,
net it is very easy to find the ground state either all variables have been fixed @nore likely) the re-

The above scheme, however, suffers from finite size efmaining variables turn out to be paramagndtie., P;(H)
fects and from the imprecision in the determination of the— 8(H), V i], in which case a simple search process can
ground state energy, a fact which is particularly importantye ryn to find the complete ground state configuration.
close toa.. Moreover, it does not take advantage of the A straightforward implementation of the above ideas pro-

E

information provided by thel surveys. vides a simple algorithm that can be used to find solutions to
random 3-SAT in the hard regioa e[ ay,a.]. We do not
A. Categories of variables in one specific instance expect this implementation to be the most efficient one, in

that no particular strategy has been worked out to optimize
he decimation process. The scope of this first implementa-
¥n consists in showing the potentiality of the novel algo-
rithmic scheme and we leave for future work the design of
optimized versions of the algorithm or applications in differ-
ent contexts.
, - ; The overall idea underlying the search process is rather
m_edlatoe cases will also be p_res)e?he paramagneticones  gimple. At each time step a single variable is fixed according
with wi~1, thebiasedones withw; ~1 orw; ~1 and the {5 the outcome of SP and the effect of such fixing is used to
balancedones withw; =w;" andwi0 small. simplify the problem. The size of the problem reduces from
In order to characterize the differences between thessl, to N;—1—S;, whereS; is the number of variables which
various types of variables, we have performed a few numeribecome fixed due to the simplification of the problem: satis-
cal experiments and analyzed the effect of fixing one suclied clauses are eliminated, unsatisfi€ctlauses are trans-
spin on the structure of states of the subproblem of Bize formed into K—1) clausesK=1 clauses need to be satis-
—1. As displayed in the complexity curve of Fig. 10, the fied and therefore their variables are properly fix@ohit
three types of spins produce different effects, consistentlglause propagatiorieading to further spin elimination.
with the interpretation of the order parameter. Fixing a bi- At the beginning of the process, randomly chosen bal-
ased spin does not alter the structure of the states and tlamced spins can be fixed in order to reduce the number of
complexity changes smoothly. Fixing a paramagnetic spirstates. At each step one may compute the free energy to
has an effect only on the internal entropy of the statdsch  detect the onset of violated clauses. One may also evaluate
we cannot measuréout leaves the energy unaltered. Inter-the function®(y) to have an estimate of the complexity.
estingly enough, balanced spin have an enormous effect: thiguccessively, biased spins are fixed. Whenever a paramag-
most balanced ones produce a decrease very close to In 2 ietic state is found, or at some intermediate steps, a rapid
the complexity; indeed half of the states are eliminated bysearch process like simulated annealing at a fixed cooling

Somewhat coarse grained information contained inuhe
surveys, once SP has reached convergence, is that given
the total weightsw;” of the local field distribution which
gives the fraction of states where the spif is positive
(negative. Having computed these weights, we may distin-
guish three reference types of spits course all the inter-
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rate or walkSAT is run on the subsystem. We may end up

either by having found a solution or by having still few vio- 2001
lated clauses. In the latter case we may simply restart. The
sketch of the SID algorithm is as follows. 150
(1) Random initial condition for the cavity biases.
(2) Run SP and evalua{@®;(H)}, or{w;", w; , w’}, and " 00|
O(y).

(3) Check for a paramagnetic state and in ca@seat some
intermediate steprun a fast local search proce&sg., simu-
lated annealing or walkSAT If a solution is found output
“SAT” and stop. 0

(4) Select and fix the most biased varialflee one with
the larges{w;" —w; |) and simplify the problem.

(5) If the problem is solved completely by unit clause FIG. 11. Evolution of the complexity curve upon decimation:
propagation, then output “SAT” and stop. If no contradiction The2 versusE’ = E/2 curve is shown when 200,400,600 . spins
is found then continue the decimation process on the smalldrave been fixed according to the SID algorithid=10 000, M
problem(go to 1) else(if a contradiction is reachedestart =42 000 for this sample
(go to 0)

Extensive numerical experiments on random 3-SAT in-by exact method$52,53. In this case, the existence of the
stances at=4.2 with size up toN=10 have shown a re- intermediate phase has been confirmed and all the predic-
markable efficiency of SID. While the process of fixing a tions (qualitative and quantitatiyefrom the cavity method
single variable takes some tifi®(N) operationthe num- have been checked rigoroug§2].
ber of assignments explored is very small. &&4.2 typi- The second result gives a new class of message passing
Ca”y a Sing|e run of SID(i.e., with no restarisleads to a algorithms for solving optimization problems in the regime
solution. Closer to the criticak, few restarts might be nec- Where the proliferation of metastable states slows down a lot
essary in order to find a configuration of strictly zero energy@ll the local algorithms. One such algorithm turns out to be
However, at each run the typical energy found by SID is veryduite powerful on the case of random 3-SAT problems.
close to zero, well below the energy at which simulated anClearly a lot of work needs to be done in order to develop
nealing gets stuck. A detailed description of the numericapuch algorithms in various contexts and test them against
experiments will be given in a forthcoming padéd]. We  traditional strategies. A more direct derivation and under-
just mention that the largest public benchmarks of randonstanding of the algorithm, and in particular of the nontrivial
3-SAT [49] have been solved efficiently by SID. reweighting term, would also be welcome.

In Fig. 11 we show the evolution of the complexity under ~ Finally, we expect that theingle sampleSP methodat
SID. For a sample of sizh=10000 ate=4.2 we evaluate finite temperature can become a useful tool in analyzing the
the complexity curve every 200 decimation steps until afine structure of order parameters in disordered systems and
paramagnetic state is reached. SID acts by eliminating clugther complex systems.
ters of solutions and hence reducing the complexity of the
ground state down to the point where very few clusters re- ACKNOWLEDGMENTS
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ing out the inaccuracy in our previous estimateaQf R.Z.

We have derived here two main results. The first one conthanks the LPTMS, Orsay, for their kind hospitality.
cerns the phase diagram of the rand§rSAT problem, and
establishes the existence of an intermediate phase where the APPENDIX A: LARGE y EXPANSION FOR THE
problem is SAT but the solution is difficult to find because of 3-SAT PROBLEM
the existence of many states. We would like to point out that We give h detail th luti fth la-
the cavity method which we have used here is not rigorous:, € give here some detalls on e solution of the popuia
it relies on some hypotheses which can be true only for larg jon dynamics equatio(66) O.f the 3-SAT_pr0bIem at Ia_rgy_z
systems and are thus difficult to protethough this can be ' c. start from the self-consistent equati@S) for the distri-
done in some casdgf9]). However, the experience gained bution of the r%i%"'ed \.Nelgh.ts of thesurveys |nu-=.1, and
from similar problems, together with numerical results of W& recall thatfg" () is defined as the probability thag
this and previous papers, indicates that this solution is likely™ =~ * +Uk=0, given thatQ,(uy), ... .Qm(unm) are of type
to be the correct one. If higher order replica symmetry break?+» @1d Qm+1(Um+1), -+ Qmin(Um+n) are of typeb._.
ing effects would show up, one can believe that in any casd N€ duantitiesio,B, are expressed in terms of three num-
their quantitative influence on the results should be ratheP€S9+,9- 00!

50

0 5 10 15 20 25 30 35 40 45
E’

X. CONCLUSION

small. It should also be noted that the very same cavity strat- K
egy which we have used here has been tested on a variant of 9. (n)= 2 f(m,n)( n)ey|q|
the K-SAT, the XORSAT problem, which can be also solved * g=1 9 '
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-1
g (= > fM0(ye, Q‘“(QFJ dny- - -dnep(70)- - p(7e)
q=-k
€
do( ) =F"" () (A1) —[Il(l+n0—1}). (A7)
i=1
as
Ao=9+(1)9+(7'), The equation fop( 7o) reads
Bo=0+(m[9-(7")+go(7")]+09+(7")[g-(7)+o(7)] bk kem e K K
1
+L9-(7')+do(7") 19~ (7 +Go()]- A2)  plr=772 2 2 Cmn2 2 2 Cumwa
k=0 m=1 n= k =0m'=1 n'=0
The following step consists in introducing the joint prob-
ability distribution P™" (g, ,g_ ,go), x f dg. dg_dg’ dg’ 0 (g, )

P(m’”)(g+.g-,go)5f dn1- - dDminp(72) - - p(Dmsn) , ,
x QM (g_)QM™)(g} )M (g ) 8| 7o

k
% _ (m.n) ) evldl
o 9+ qzl fa(me ) B 9.9}
-1 9. (1+9.)+gL(1+g ) +(1+g_)(1+g.)/
89— X fé,m'“)(n)eyq) (A8)

X 8(go— ™M (7). A
(Go=fo™(m) (A3) Clearly, the function2()(g) can be seen as tH&h con-

volution of a certain function after an appropriate change of
variables. One is led to introduce the variablés and x
k—m K'—m'’ defined by

© k © k'
1
P(Wo)— 1— E z z Ck,m,n 2 z 2 Ck’,m’,n’
k=0 m=1 n=0 k'=0m’=1 n’=0

Equation(63) reads

¢i=In(1+7%;), x=In(1+g), (A9)

x| dg. dg_dudg dg’ dgs
o and we callS(¢;), T(M(x) their probability distributions.
xPMM (g, ,g_,90)P™ ")(g’ 9" ,g5) Equation(A7) shows that

(A4)

X5 WO_

ATB kam=Jd¢y.u¢m&¢n.na¢m
where the coefficient€, , , are given in Eq(60), andA,B
are given in Eq(62).

The scaling of the weights of thesurveys inu=1, wy,
with e ¥ at largey is consistent with the self-consistency
equation(63). In this limit we findg, ,g_,9o~0(1), and
these quantities simplify téup to corrections of ordez Y) where¢; e [0,[[ andxe[0m][oe].

In order to simplify the self-consistency equation, we in-

—E@» (A10)

g+(m)=(1+ny)- - (1+ny—1, troduce the joint probability distribution
9-(mM=(1+7mia) - (14 7min) =1, < e
go(m) =1. (A5) R@aqx,>z——j;—§;|;§ 2 CimaT™(x )T,
(A11)

Therefore, the three variablegs, ,g_,g, become uncorre-
lated random variables in the largeimit, with a distribu-

tion: which is normalizedy dx. dx_ R(x, ,x_)=1.
We may show thaR factorizes by introducing its Fourier
(m,n) =(m (n) —
P (g4 ,0-,90)=0"(g)Q"™(g-)d(go— 1), Transform: Using the coefficient$0), the triple series can
(AB) . : )
be resummed and expressed in terms of the Fourier trans
where form $(q) of S(x):
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J dg, dg- R(x, ,x_)e! (@ +a-x-) s<¢0)=f dz dZ C(z)C(z’)&( bo—In[1+ ——— )
z+7'+z7
et g Bal[ 1t 1t T* (AL7)
At K K = S(q+)+7 (a-) where
1-t. k X_
—|t+ TS(q_)} ) C(Z)Ef dx; A(x)dx_ B(x)a‘( z— .
e*+—1
(A18)
1 1-t. 1-t.
= Jl—_texf{3“(t_ 1+ —-S(q)+ TS(Q)” Moreover, if we perform in the above the change of variable
1+z=e¢?, defining the distribution
! 3o t-14 13 AL2 dz
T Aot Sa))l (AL D(£)=C(2) g5, (A19)
Rearranging the above expression and taking the invers&€e find
transformation we find foR )
= | dnpE(n)d —In , A20
R(X. X ) =A(X,)B(X_), (A13) S J nE) (¢° L’HD (20
where whereE(7) is the convolution oD with itself
1 dq. - 05a) E(ﬂ)Ef dgd' D(D(L) oL+ —n). (A21)
= —ig4 X4 [ a(3a/2)(1-1)S(q,) _
A(X+)_e3a(lt)/2_1J 5 € 4%+ (e a+)—1),

The transformations which we have written fro®
—A,B—C—D—E—S can all be done using one dimen-
1 dg. . . sional integrals, Fourier transforms, and changes of vari-
B(x-) mf Eef'q*X*e(?’“’z)(lft)S(q”. ables. Hence this provides an iterative mapping from the
e function S(¢) onto itself which can be handled efficiently
(A14) numerically. Which form of the self-consistency equation to
) ) o use is a matter of computational convenience. It turns out
We may now write the self-consistency equation in a traCynat, for our purpose, enough precision could be obtained
table form. Defining the variable, associated withyo 8 from Eq.(A17) and we did not try to develop this alternative
computation.
(e —1)(e4—1) We now proceed with the computation of the energy
=efo—1 ®(y) defined in Eq(48). We shall be interested in evaluat-
(A15) ing it at largey, using the solution for the distribution af
surveys that we have just found in this limit.
We start with the piec@(y). It consists of two terms

o= ’ ’ ’
(e —1)e*-+ (e — 1) +e*-e*

we transform the equation fgs(7) into an equation for

3a 1
S(¢o) B(Y)= I Co— —InAq, (A22)
y y
S( ¢0)=f dx, dx_ dx} dx” R(x, ,Xx_)R(x} ,x") where the overline denotes the average over the population
dynamics of Sec. VIB 4 and whef@, andA, are given by
k k
X&( ¢O—In[1 Ao:f (11 [du, Qe(Ue)]exl{y ;::1 Uel [, (A23)
. (€ —1)(e¥ —1) 1 ]
(eX+— 1)exl+(ex'+_ 1)ex,+ex,exL ' C_O = J dg dh P(g)Po(h)exdyws(g,h)]. (A24)
(A16) The termA, is easily written in terms of the variables
g+ 197 ng!

This is the equation that we have used in order to solve the
problem numerically. A= f(mn) ylal — 4 "

Let us mention however that a series of further simplifi- 0 Eq: a (e 9+ (7 +9-(7)+ Gol 7).
cations may also be written. It is easy to verify that (A25)
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FIG. 12. The set of nodes with
which one computes the free-
energy shiftd!(y).

g ¥ \h;

Averaging over the population dynamics, we get for layge K/

K

1

1 1 C_o: il:[l[dui Qi(ui)]]ljl [dv; Quj(v))]
“InAg= y k;n Ck,m,nf dgodg, dg- P™"(g, ,go.9-)

y K K
XIn[go+g++9g-] XeXF{y\R’J(iEl ui’jgl Uj)‘|- (A29)
1
= m) (n)
y k%n Ck*m'“f dx dz T()TM(2) Without loss of generality we assundg=J,=1; we use the

. solution(57), and denote as before log,n,m’,n’ the num-
XIn(e’+e*—1). (A26)  pers of variouss surveys appearing in EGA29)

Treating separately the=1 piece, which can be resummed
as in Egs.(A11) and (A13), and them=0 piece, the sum k—mtypeb,, ntypeb_ and k—m—n typea,
overk,m,n gives

k’—m’ typeb,, n’ typeb_ and k’-m’'—n’ typea.
> CmaT™M0T"(2)
n

k,m,
C, can then be written in terms of thgevariables as

= \/1—tA(x)B(z)+5(x)k2 CronT™M(2)
n 1
R (m,n)
=B(x)B(z). (A27) Co fd90d9+ dg- P™"Y(g+,90.9-)
Putting this expression back into EgA26), we finally find xdgydg’. dg” PM")(g" ,g5,9")
x(9+9%e7Y+9.:[9" +9ol

1 1
—InAy= —f dx dz Bx)B(z)In(e*+e*—1). (A28)
y y +94[9-+dol+[g" +9ol[g-+0o]). (A30)

We now turn to the second contributidg, to Eq.(A24);
before averaging over the iteration of the population dynam#ory large we can drop the term in expy); averaging over
ics, we have the iteration of the population, we get
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_>
___> 9

gk

—1In COI 2 2 Ck,m,nck’,m’,n’

Kmn g’ m’ n’

xf dx dz T™(x)T("M(z)

Xf dx’ dz’ T™)(x")T")(z")

X In[(e"~1)e? +(e¥ —1)e*+e%? |
=f dxdz dx dz B(x)B(z)B(x")B(z')

xIn[(e*—1)e? +(eX' —1)e?+e%? ].
(A31)

Finally we now compute th&,(y) piece given in Eq.

(48). For a generic clause with couplidg,J,,Js;, involving
the h surveysP,(h,), P,(h,), Ps(h3), we have
exp{—yd)z(y)]=f dh; dh; dhs P1(hy)Py(hy)

X P3(hg)e™2Y?01h1) 0(32n2) 0(Ishs).

(A32)
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FIG. 13. The set of nodes with
which one computes the free en-
ergy shift®g(y).

We write as beforePl(hl)=fH;1:l[du€ Q(uy)], and sup-
pose that this set df; u surveys containsn; u surveys of
typeb,, n; of typeb_ andk;—m;—n; of type a, charac-
terized by the weightsy,. The same decomposition is done
for P,(hy) [respectivelyP5(hs)], where the numbers af
surveys of various types am,,n,,k,—m,—n, and the
weights arez, (respectivelyms,ns,k3—msz—nz, 7). For
this iteration, the expressio\32) for ®,(y) can be reex-
pressed as

exd —y®(y)]

— (mg.ng) (mz,n7) (m3,n3)
= T I ) g ()

Xexd —2y6(q,) 6(d,) 6(ds) ]
3

:y%i[[l [9+(m)+9-(m)+9o( )]

3
—i[ll [9: (7] (A33)

The average over the population gives
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Ckl,ml,nlckz,mz,nz
Y kq,my.ng kp,my,ny k3 mg,ng

Xck3,m3,n3i1:[1 | j dXi dZ| T(mi)(xi)T(ni)(yi)

3

IT (exi+er—

i=1

XIn

3
1)_51 (eXi—l)H

T
_yJ |:Hl dx; dz B(x)B(z)

XIn

3 3
[[1 (e¥i+eli— 1)—[[1 (i—1)|.  (A34)

Grouping together the contributions (A22),(A28),

(A31),(A34), we find the total zero-temperature free-energy

density®(y)=d,(y) —2ad,(y) given in Eq.(67).

APPENDIX B: FREE ENERGY FOR ONE GIVEN SAMPLE

Let us explain here how to compute the zero-temperature
free energy for one given sample. We start from the contri-
bution of one given factor node We shall look at a some-
what large part of the graph containiag(see Fig. 12 We

PHYSICAL REVIEW E66, 056126 (2002

e—ytD;(y):f e Y(Efin~Einit), (B3)

where the integral is over all thg},h? fields, each with a
probability distribution given by ité survey. We can use the
iteration equatior(74) in order to simplify this complicated
integral through the use af surveys

3 K
efy<1>fa(y):J IT 11 [
r=1s=1

3 K
- 2 Urz u?J ) .
r=1 s=1

d uI‘S Qb?—n‘(uf)]

S
br—>f

—y min

01,02,03

[ Ea(Ul 10—210-3)

(B4)

We now compute the contribution from one given variable
nodei =0. We use the notations of Fig. 13, calliag the k
function nodes to which it is connected€ {1, . .. k}). The
function nodeg, is connected, beside,, to the spmar, VT

and we callg, (respectivelyh,) the cavity field ono, (re-
spectivelyr,). In the absence of sping and of the function
nodes connected to it, the ground state energy of the system
would be

call o1,0,,03 the three spins connected to it. One of these

spins, o, is connected, beside to k, other function nodes
which we callb?!, ... ,blr(f. The function nodeb; is con-
nected, beside, , to two other spins which we calt; and
77, and the cavity fields onto them are caligtandh; (see
Fig. 12. In the absence of the spinsg, 05,03 and of all the
function nodesb;, the ground state energy of the system
would be

(B1)

3k
|n|t Z Zl (|g?|+|hrs|)

Adding the spinso,0,,05 and all the function nodes;,
the ground state energy becomes

Efin= min | Ey(0q,05,03)
01,00,03
3 Kk
+r§_: Z mln[Ebs(O'r,O'r,Tr) gro;— Trs]})
3 ke
= min [Ea(a'l,o'zya's)_z O'rz UJ(gf,hf)]
71,09, =1 $=1

_Z‘l 52’1 (Wy(g7,hD) =gzl = [hD). (B2)

The zero-temperature free-energy shift induced by the add
tion of all these nodes is given by

E (Ig¢|+[he]). (B5)

|n|t

Adding the new spin and the function nodes the ground
state energy becomes

k
Efm—m|n21 {min[E, (09,00, 7))~ g,0.—h, 7]}

90 Or Ty
k k
:min( _0'021 qu(gr -hr)) - 21 WJr(gr )
[ r= =
k k
= | 2 Uy (gr )| = 2 Wy (g hy) (B6)

The zero temperature free energy shift induced by the addi-
tion of these nodes is given by

e*y<1>8(y):f e7Y(Efin7Einit), (B?)
where the integral is over all thg, ,h, fields, each with a
probability distribution given by it survey. As usual, this
can be simplified by the use afsurveys derived from the
iteration Eq.(74)

k
e YPH) = f H Qa _o(uy) (el (BY)

aﬂO

i-
A little thought shows that, when computing the total
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zero-temperature  free-energy ®(y) =3, (y)—i(n; ing shows that the “XZ” factors in Egs.(B4) and (B8) ac-
—1)®?(y), one is correctly counting each node once. Intually cancel, so that one can forget these normalizations for
particular, in the limit ofy—0, ®(y) reduces to the sum of the computation o (y), as was done in the text in formulas
the energy of all factor nodes, as it should. The same reasoff?1) and (72).
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