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Statistical mechanics in the context of special relativity
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In Ref. [Physica A296, 405 (2001], starting from the one parameter deformation of the exponential
function expy(¥)=(vV1+ 22+ kx)V*, a statistical mechanics has been constructed which reduces to the
ordinary Boltzmann-Gibbs statistical mechanics as the deformation parameipproaches to zero. The
distribution f =exp,,(— BE+Bu) obtained within this statistical mechanics shows a power law tail and de-
pends on the nonspecified paramgiercontaining all the information about the temperature of the system. On
the other hand, the entropic for®,=fd®p(c, f1"*“+c_, f17%), which after maximization produces the
distributionf and reduces to the standard Boltzmann-Shannon en8gpg«— 0, contains the coefficiemt,
whose expression involves, beside the Boltzmann constant, another nonspecified pazariretbe present
effort we show thatS, is the unique existing entropy obtained by a continuous deformatio8,cénd
preserving unaltered its fundamental properties of concavity, additivity, and extensivity. These prop&ties of
permit to determine unequivocally the values of the above mentioned pararfeaesa. Subsequently, we
explain the origin of the deformation mechanism introducedxbgnd show that this deformation emerges
naturally within the Einstein special relativity. Furthermore, we extend the theory in order to treat statistical
systems in a time dependent and relativistic context. Then, we show that it is possible to determine in a self
consistent scheme within the special relativity the values of the free paraketdch results to depend on the
light speedc and reduces to zero as—c recovering in this way the ordinary statistical mechanics and
thermodynamics. The statistical mechanics here presented, does not contain free parameters, preserves unal-
tered the mathematical and epistemological structure of the ordinary statistical mechanics and is suitable to
describe a very large class of experimentally observed phenomena in low and high energy physics and in
natural, economic, and social sciences. Finally, in order to test the correctness and predictability of the theory,
as working example we consider the cosmic rays spectrum, which spans 13 decades in energy and 33 decades
in flux, finding a high quality agreement between our predictions and observed data.
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I. INTRODUCTION physics, econophysics, geology, biology, mathematics, infor-
mation theory, linguistics, et¢5-9].
The following one-parameter deformations of the expo- In Ref.[1] it has been shown that the statistical distribu-

nential and logarithm functions tion
exp g (X) = (V1+ &2+ kx) V¥, (1.2) f=exp.q(—BlE-ul), 1.3
P which generalizes the Boltzmann-Gibbs distribution, can be
Inj ()= X=X , (1.2) obtained also by maximizing, after properly constrained, the
2 entropy

which reduce to the standard exponential and logarithm, re-
spectively, as the real deformation parameteapproaches
zero, have been introduced recently in Rdfl. The above
functions have many very interesting properfies4] (some  which reduces to the standard entrdgyas the deformation
being identical to the ones of the undeformed functighat  parameter approaches to zero. The coefficentwhich also
permit one to construct a statistical mechani@sd thermo-  absorbs the Boltzmann constédq, depends on a free pa-
dynamic$ which generalizes the standard Boltzmann-Gibbsametera [see Eq.(65) of Ref. [1]] which remains to be
one. Thisk-deformed statistical mechanics preserves unaldetermined together with the paramegwhich contains the
tered the structure of the ordinary one and can be used tmformation about the temperatuffeof the system.
explain a very large class of experimentally observed phe- A first question which arises naturally is if it is possible
nomena described by distribution functions exhibiting powerand how to find any criterion which allows us to fix the
law tails. The areas where this formalism can be appliegparameters and « or at least express these in terms of the
include among others, low and high energy physics, astrodeformation parametet, in order to reduce the free param-
eters of the theory.
A second question regards the properties of the entropy
*Electronic address: kaniadakis@polito.it S, . Itis well known that the Boltzmann-Shannon entrc&gy

sK=J dw(c, f1  +c_, f17r), (1.4
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is concave, additive, and extensive. We know tBats con- In Sec. VIII, we propose an approach which permits to
cave with respect to the variabfebut what happens about determine within the special relativity the value of the pa-
its additivity and extensivity? More in general, beside therameterx.

Boltzmann-Shannon entropy other concave, additive, and ex- In Sec. IX, we compare two sets of experimental data
tensive entropies do exist? with the predictions of the present theory.

A third question is related to the physical mechanism Finally in Sec. X, some concluding remarks are reported.
which originates the deformation introduced by the param-
eterx. In other words, does a more fundamental theory exist Il. DEFORMED MATHEMATICS
where this deformation emerges, or is it simply a purely
mathematical tool?

A fourth question is if it is possible to extend the theory  Let g(x) be an arbitrary real function of the real variable
originally developed in the framework of a classical kineticsx, that we call generator of the deformation, having the fol-
to treat statistical systems in the context of a relativistic ki-lowing properties:
netics. (i) g(x) e C*(R);

A fifth question regards the deformation parameter (i) g(—=x)=—9g(x);

This parameter will continue to remain free or is it possible (i) dg(x)/dx>0;
to determine its value self consistently within the theory? (iv) g(**)==*o; and

The present paper deals with the above questions and its (v) g(x)~x, for x—0.
purpose is double. First, we will show th& is the unique Starting from the generatag(x), we construct the real
existing, concave, additive, and extensive entropy, beside th@nctionx,, of the real variable and depending on the real
Boltzmann-Shannon entropy. As we will see these propertieparameter, as follows:
of S, are sufficient to determine unequivocally the values of
parameters3 and «. Second, we will show that the defor-
mation introduced by is a purely relativistic effect and then
we will explain the deformation mechanism within the Ein-
stein special relativity. Then, we will formulate a relativistic Its properties descend directly from the ones of the generator
x kinetics and we will calculate the value af g(x):

Finally, in order to test the predictability and correctness (i) x{,q € C*(R);
of theory here proposed we will consider two sets of experi- (i) (=X);,q= — X4
mental data. In particular we will analyze the cosmic rays (i) dx;,, /dx>0;
spectrum which spans 13 decades in energy and 33 decades(iv) (=) ,,=*;
in particle flux that, as it is widely known, violates the  (v) x;4~Xx, for x—0 and then Q,=0;

Boltzmann-Gibbs statistics. As we will see, we have a high  (vi) x;4~x, for k=0 and therx;,=x; and
quality agreement between the theory and the observed data. (vii) X{— 3= X} -

The paper is organized as it follows. In Sec. Il, general- Together with the functiox;,, one can introduce the in-
izing the approach proposed in Ref4,2], we introduce a yerse functionx!*!, through &) g = (X(q) ' =x, which
class of one parameter deformed structures and study thejssmes the form
mathematical properties.

In Sec. Ill, within this context, starting from the Jaynes 1
maximum entropy principle we consider the most general X{K}Zzg_l(SinhKX)- (2.2
class of deformed statistical mechanics preserving the main
features of the standard Boltzmann-Gibbs one.

In Sec. IV, we show that the entrogSy, introduced in Ref. B. Deformed algebra
[1] is the only one existing beside the Boltzmann-Shannon . . « _
entropy S, which is simultaneously concave, additive, and ~ Proposition 1 The composition law® defined through
extensive. Then the statistical mechanics and thermodynam-
ics based ors, can be viewed as a natural extension of the (xé Y———— 2.3
Boltzmann-Gibbs one, recovering this last as the deforma- Y =X Y i '
tion parametek approaches to zero. 0

In Sec. V, we consider the mean propertiescagxponen-  which reduces to the ordinary sum as-0, namelyxey
tial and « logarithm which have a fundamental role in the =x+vy, is a deformed sum and the algebraic structirRe (
forlmuéanonv(l)f the statlsélcrzil Techal_nlcs. g . &) forms an Abelian group.
andn rei’;\%vist,i(\:,v?:oen)gaexr; Itne ormalism to & time dependent Proof. Indeed, from the definition o%;,,, the following

. particular after introducing the P
relativistic «-kinetic evolution equation we study its station- properties of® follow:
ary state and prove thd theorem.

A. Generator of the deformation

1
X{K}zzarcsinrg( KX). (2.1

In Sec. VII, we explain the origin of th& deformation () associativity property,X®y) ®z=x® (Y8 2);
and show that it emerges naturally within the Einstein special P K
relativity. (ii) neutral elementx®0=0®x=X;
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(iii ) opposite elemen® (—x)=(—x)®x=0; and

(iv) commutativity propertyx®y=y®x.

Of course thex-difference indicated Witié is defined as
Xoy=x®(-y).

Proposition 2 The composition laws defined through

(X®Y) (1= X (i Vit » (2.9

which reduces to the ordinary product as-0, namelyx
0

®y=Xxy, is a deformed product and the algebraic structure.

(R—{0},®) forms an Abelian group.
Proof. Indeed from the definition of;,, we have the fol-
lowing properties:

(i) associative law,X®y)®z=x®(y®2);

(ii) neutral elemenx® | =1®x=Xx;

K_ _K
(i) inverse elemenx®x=x®x=1; and
K K
(iv) commutative law:x@y=yox; |=11% being the
neutral element while the inverse element ®»fis X

= (1/x;q) 1. Of course thex division o is defined as

XOY=X®Y.

Proposition 3 The deformed sun® and product® obey
the distributive law

K K K K K

ZR(X®Y)=(zX)®(zeY), (2.5

and then the algebraic structurB,@,®) forms an Abelian
field.

Proof. This proposition follows from the definition2.3)
and(2.4).

We remark that the fieldR,®,®) is isomorphic with the

field (R,+,-). Moreover,z- (x®y) # (z-x)®(z-y) and then
the structure R, @, -) it is not a field.

Proposition 4 The functionx'*! has the two following
properties:

xt @yl = (x+y)is, (2.6)

X{K}®y{K}:(Xy){K}_ (27)
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Proof. These properties follow directly from the defini-
tions given by Eqgs(2.3) and(2.4).

Proposition 5 The functionx;,, and its inverse!*} obey
the following scaling laws:

Xy =ZX) s (2.9
x' &'t = zxix} (2.9
with
X' =2zXx, (2.10
Kk'=klz. (2.1)

Proof. These laws follow from the definitions of the func-
tions x;,q andx*.
Proposition 6 The pseudodistributive law

K klz

Z-(x®y)=(z-x)®(z-y) (212

holds and then the structur®(®,-) is a pseudofield.
Proof. Indeed, by using the propositions 1 and 5 one ob-
tains

z-(x@y) =2 [(x®Y) (1" =2+ (X[ Ty

1, 1, {r}
=27 (EX{K;}‘l' Ey{Kr})

1 /KI !
E(X ey’)

1 rK/ ’ {K}
=2z E(X DY)y

]{K}
{«}
K klz

=x'@y'=(z-xX)®(z'y).
C. Deformed derivative

Consider the two algebraic structureX,é,-) and (Y,
+,-) with X=R andY=R. Let us introduce the set of the
f
functions F={f:X— Y} with FCC*(X).
The « differential d,,x is defined as

diqXx=lim xoz.

Z—X

(2.13

and results in being
d{K}deX{K}. (214)

We define thex derivative for the functions of the st
through
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df(x)
=i

f(x)—f(2)
d{K}X '

K

Xez

(2.19

Z—X

with x,ze X and f(x),f(z) e Y. We observe that the de-

rivative, which reduces to the usual one as the deformation

parameterk— 0, can be written in the form

dfx) _dfoo 1 df(x)
d{K}X B d X{K} B dX{K}/dX dx

: (2.16

from which clearly it appears that the derivative is gov-
erned by the same rules of the ordinary one.

D. Deformed exponential

The « exponential expy(x) e F is defined as eigenstate of
the « derivative

de%{,j}(x) =expq(X), (2.1
and is given by
exp . (X) = eXp(X ) (2.19
It results in
expg)(X) =expx), (2.19
exp— (X) =exp g (X). (2.20

The k exponential, just as the ordinary exponential, has

the properties

exp.q(x) e C*(R), (2.20)
d
&R (0>0, (2.22
exp y(—°)=0", (2.23
expq(0)=1, (2.29
exp q(+ )=+, (2.29
exp q(X)expq(—x)=1. (2.26
Furthermore, thec exponential has the two properties
[expq(X)]"= expqr(rx), (2.27)
exp (VxR (Y) —exn,(xBY), (228

with r e R, and can be expressed in terms of the generator

g(x) as

exp o (X) =[V1+g(xx)?+g(xx)]V . (2.29
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E. Deformed logarithm

The « logarithm In,y(X) is defined as the inverse function
of the of x exponential, namely lp(exp.qX)=exp.q(In;4X)
=X, and is given by

;o (X)=(Inx) . (2.30

It results in
Inggy(x) =In(x), (2.3)
N (X) =Ing(x). (2.32

The k logarithm, just as the ordinary logarithm, has the
properties

Inq(x) € C*(R™), (2.33
%lnw(xpo, (2.34
Ingg(0")=—<, (2.39

In(1)=0, (2.36
Iy (+00) = +o0 (2.3
N (1) = = Ing (%) (2.39

Furthermore, thec logarithm has the two properties

INg o (X) =1 Ing q(x), (2.39

(2.40

with r e R, and can be expressed in terms of the generator
g(x) as

Ing i (Xy) =Ingq(X) S Inga(Y),

1 [x=x7"

Equation (2.41 defines a very large class of deformed
logarithms varying the arbitrary functiog(x). These de-
formed logarithms can depend on many other parameter
[through the generatay(x)] besides the parametar. We
recall briefly that in literature one can find other di®,11]
or two [12] parameter deformations of the exponential and
logarithm functions. Anyway in the following we will con-
sider the deformed logarithms defined through ¢ and
depending only on the parameter

F. Deformed trigonometry

We define thex-hyperbolic sine and cosine

1
sinhg ()= S[eXRg(X) —exp (X)), (242

1
cosh,,(X)= E[exgk}(x) texpa(—x], (243
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starting from thex-Euler formula We remark that it results in: sig(x)=sin(x;,q) and cogq(x)

(2.44 =Cossiq)-

It is straightforward to introduce the-hyperbolic trigonom-
etry, which reduces to the ordinary one as-0. For in-
stance, the formulas

exXQ (= X) = cosh,q(X) £ sinhy 4 (X).
G. Deformed inverse functions

The «-inverse hyperbolic or cyclic trigonometric func-
tions can be introduced starting from the corresponding di-
rect functions just as in the case of the undeformed math-

costfy(x) —sintf,,(x)=1, (249  ematics. It is trivial to verify thatk-inverse functions are
related to thex logarithm by the usual formulas of standard
sinhy (X mathematics. For instance, we have
tanh o (x) = SMG09 (2.46
cosh,4(x) _ . i 5
arcsin, o (x) = —ilngq(ix+y1—x°), (2.55
cosh 4 (x)
cothy o (X)= S (%) (2.47) 1 1+x
! arctanh,(x)= E'”{K}ﬁ’ (2.56)

still hold true. All the formulas of the ordinary hyperbolic
trigonometry still hold true after properly deformed. The de-and so on.
formation of a given formula can be obtained starting from
the corresponding undeformed formula, and then by making

; e ) / H. Deformed product and sum of functions
in the argument of the hyperbolic trigonometric functions the

Let us consider the set of the non-negative real functions
D={f,hw, ...}
Proposition 7 The composition lawy defined through

K

K K
substitutionsx+y—x@y, and obviouslynx—x&x .. .&Xx
(n times. For instance, it results in

f®h=erK}(In{K}an{K}h), (2.57)

sinm}(xekay) + sinf‘m(xéy) =2 sinh q(x)cosh,,(y),
(2.48

which reduces to the ordinary product as-0, namelyf

. “ ®h=f-h, is a deformed product and the algebraic structure
sinhy 4 (X®y) 0

cosh g (x)coshq(y)’ (D—{0},®) forms an Abelian group.
(2.49 x

tanh (x) +tanh 4 (y) =

Proof. Indeed, this product has the following properties:
and so on. (i) associative law, (@ h)ow=f® (h@w);
The k—De Moivre formula involving hyperbolic trigono- . KooK KooK
metric functions having arguments of the type with r (i) neutral elementf@1=1of=f;

R, assumes the form (iii) inverse elementt® (1/f)=(1/f)@f=1: and
[COSHK}(X)iSinm}(x)]r:COS'?K/r}(rX)iSi”m/r}(r(xz)'s (iv) commutative Iaw,fK®h:h®f. '

K

Also the formulas involving the derivatives of the hyper- Of course the dIVISlon? can be defined througlﬁ%h

bolic trigonometric function still hold, after properly de- —tg (1/h). The deformedc powerf®" is defined through

formed. For instance, we have p
d sinh . (X @r_
h }( ):COSHK}(X), (25]) f eng}(rln{K}f), (258)
dX{K}

and generalizes the ordinary powiér In particular, wherr

d tanh . (x) _ 1 (2.52 is integer one has®*'=fef...®f, (r times.
Xt [cosh,q(x)]? Proposition 8 The algebraic structurel},®) forms an

Abelian monoid.

Proof. Indeed the element O does not admit an inverse
element.

Furthermore, just as in the case of the ordinary product, it

and so on.
The k-cyclic trigonometry can be constructed analo-
gously. Thex sine andx cosine are defined as

Sin(x) = —i sinhy 4 (ix), (253 results infe0=08f=0.
COS i (X) =C0osh 4 (ix). (2.549 Proposition 9 The composition lawp defined through

K
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feh=exp {In[exp(In;,f)+exping )]}, (2.59

PHYSICAL REVIEW E 66, 056125 (2002

which is related withf throughn= af, a being another new
real parameter which will be determined together witlin
the following.

which reduces to the ordinary sum as the deformation param- We recall that in the ordinary statistical mechanics the

eter approaches to zero, namélph=f+h, is a deformed
0

sum and the algebraic structur®,@®) forms an Abelian

monoid.
Proof. Indeed, this sum has the following properties:
(i) associative law, f(@h)ew=f® (hew);

(i) neutral elementf®0=0af=f; and

(i) commutative lawf@&h=haof.

K K

We remark that the product and sum@ are distributive
operationsv® (feh)=(wef)®(w®h). The product® al-

lows us to write the following property of the exponential

EXP iy (X) @ EXP o (Y) = exp q(X+Y). (2.60

Equivalently Eq.(2.60 can be written also in the form

In{K}(f®h)=In{K}(f)+In{K}(h) (2.6

Equation(2.61) gives a relevant property for thelogarithm.
Finally, starting from the definition of the power f®",
we obtain the following relation:

r In{K}(f)ZIn{K}(f®r). (262

The relations given by Eq$2.61) and(2.62, which ex-
press two mathematical properties of théogarithm, will be

very useful in the following section in defining a new addi-

tive and extensive entropy.

IIl. THE JAYNES MAXIMUM ENTROPY PRINCIPLE

Let us consider the following non-normalized statistical

distribution involving thex exponential,

f=exp [~ B(E-w)]. (3.1

We write the real nonspecified paramegas
_ 1 3.2
B= NkgT' 3.2

\ being a new real parametdtg the Boltzmann constant,
andT the temperature of the system.

In the following it will be useful to introduce the distri-
bution

E—,u),

n=aexgk}( —m (3.3

mean value of a given physical quantiyfp,n), depending
on the variablep and the distributiom=n(p), is defined as

fd3p A(p,n)n(p)

(A(p,n))= (3.4)

J d®p n(p)

Analogously, in the case wher&=A(p1,p2,Ny,N,) de-
pends on two independent variables, p, and on the two
independent distribution functions;(p;) and n,(p,), we
have that the mean value is given by

f d®p1d3p,A ny(p1)na(p2)

(A)= (3.5

f d®p1d3p,ny(p1)na(p2)

It is easy to verify that the stationary distributiarcan be
obtained as a solution of the following variational equation:

1)
I
5njdp

Then the distributiomn can be viewed as maximizing the
information content .,

M

1
—kB)\f In{K}(n/a)dn—?En+?n =0.

(3.6

|K=fd3p J.(n), JK(n)z)\f Ingq(n/a)dn, (3.7)

under the constraints

f d®p En=U, (3.8

f d®p n=N, (3.9

imposing the conservation of the mean energy and of the
particle number, respectively. Note that the chemical poten-
tial w should be chosen in such a way to set the particle
number equal to unity, nameN = 1[4].

We observe that wher=0 it resultsJo(n)=nInn and
the information content, is the mean value of the ordinary
logarithm. In this case the above variational equation ex-
presses the Jaynes maximum entropy principle which con-
ducts to the Boltzmann-Gibbs statitical mechanics. In the
following, in analogy with the standard statistical mechanics,
we require that , must be expressed as the mean value of
In;qn. To do so we must consider the subclass of the de-
formed logarithms obeying the condition
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independent, and after taking into account the definitions of
)\J Ing(n/a)dn=nlngyn. (310 the mean valueg3.4), (3.5 and of thex entropy(3.13, the
two above properties of the logarithm transform into the
The above condition, as we will see in the following, allows following properties for thec entropy:
the simultaneous determination of both the formkofoga-
rithm and the values of the free parametarsind\. First, S [n1]+S[n2]=S, [Nyl (3.18
we observe that this class contains the standard logarithm N
Inn, for which resultsk=0, a=1/e, A=1. It will be the rS.[n]=S{n*]. 319
task of the following section to investigate on the existenc . . :
o ew aionl Scluion of £43 10, besi he standard. e 219319 52 il e ennopis, defned
Ioganth_m: Taking mtp accognt this condition we can write (3.10 are additive and extensive just as the Shannon entropy.
the variational equatiof8.6) in the form The distributionn,, describes the composite system obtained
P 1 u starting from the systems 1 and 2 whit¢ describes the
n d3p(—anIn{K}n—fE n+Tn =0. (3.11 scaled system related to the system described through
Note that the state described through the distributigyis
We define thex entropy through differgnt with respept to the state described through the dis-
tribution nyn, resultingS,[nq,]<S,[nyn,].

3 Finally, from the concavity property of the deformed
Se= _ka d°pninggn, (812  |ogarithm the concavity 08, , follows
so thatS, can be viewed as proportional to the mean value of Sdtni+(1-t)ny]=tS,[ny]+(1-1)S,[n,], (3.20

the In4n, namely with O=<t=<1

S.=—Kkg(Ingqn). (3.13 As we have already noted, the ordinary logarithm is solu-

tion of EqQ.(3.10 and then the Shannon entropy
In this definition of S, we have a perfect analogy with the

Shannon entropys, which is the proportional to the mean L 3

value of the Im. It is remarkable that in both the definitions Soln]=—kg | dpninn, (3.2

of S, and S, appears the standard mean value given by Eq. - _ _

(3.4). which is additive and extensivan{,=n;n, andn* =n"), is
Equation(3.11) assumes the form admitted within the present formalism.

In the following section we will show that E¢3.10 ad-
1 ) mits a new(only one less evident solution. Then beside the
%( —ke(Ingqn) - ?<E>+T) =0, (314 shannon entropy we have a new concave, additive, and ex-
tensive entropy which is the-entropy proposed in Ref1].
and then

s IV. THE NEW ADDITIVE AND EXTENSIVE ENTROPY

1 M
JEE— +_
S TU T

=0. (3.19 We consider Eq(3.10 which, after performing a deriva-
tion with respect tm, assumes the form

The above variational equation can be viewed as defining a q

maximum entropy principle analogous of the Jaynes prin- il _ _

ciple of the standard Boltzmann-Gibbs statistical mechanics n dnln{K}an{K}n A Inyg(nfa)=0. @D

[13]. We remark that this maximum entropy principle, in the ) ] ) o

form given by Eq.(3.11), holds only and exclusively for the N the following we will determine the explicit form of jgn

subclass of logarithms, which are solutions of the integral by solving this differential-functional equation. We recall

equation(3.10. that In4n can be expressed in terms of the generator function
We show now that the families of entropies, definegaccording to Eq(2.41) so that Eq.(4.1) becomes

through(3.12 and involving thex-logarithms which are so-

lutions of Eq.(3.10, have two important properties typical nig—l(l +gt &)
of the Shannon entropy. To do so we consider the properties dn 2 2
(2.61) and(2.62 of « logarithm, which rearrange as (na)<—(nla)"*
-\g 7t =0. (4.2)
In{K}n1+ In{K}n2= |n{K}n12, (3.1 2
rInggn=Ing4n*, (3.17  In the above equation the function to be determined is now

the generator functiog. To do so we make the following
with n;,=n;®n, andn* =n®". When the systems 1 and 2 changes of variables:

K

described throughn,; and n,, respectively, are statistically t=klInn, 4.3
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z(t)=g Y(sinht), (4.4) it is possible to determine the real constaxtand « obtain-
ing
c=—«lna, (4.5
A=1-«2, (4.16
so that Eq.(4.2) assumes the following simple form: »
1—k 1/2«
kZ'(t)+z(t)—Az(t+c)=0. (4.6) a=| 1. (4.17

The property(v) of the generatog(x) imposes thag(t)
obeys the two conditions(0)=0 andz’'(0)=1. These con-
ditions, if combined with Eq(4.6), can be equivalently writ-
ten in the form

In this case the generat@(x)=x imposes the following
expressions for the deformed logarithm and exponential

XK_X—K
Inga(X)= , 4.1

\2Z(C) =k, 4.7) W)= "5 419

AZ'(c)=1. (4.9 exp o (X) = (V1+ kX2 + kx) e, (4.19
It is more convenient to take into account these conditions-or the general case where 1 we obtain the same solution
and write Eq.(4.6) under the form given by Egs(4.15-(4.19 with the only difference that in
, , place of k now the scaled parametex appears. Then we
z(t+c)=2z(1)z'(c)+z'(t)z(c). (49 can setr=1 without loosing the generality of the theory.

Moreover for k=0 we obtain the Shannon solution as a
particular and limiting case of the new solution.

Finally, after inserting the expression of tkelogarithm
22(¢)z' (t)=z(c+t)+2z(c—1). (4.10  9iven by Eq.(4.18 into Eq.(3.12, we can write the new
additive and extensive entropy in the following simple form:

After recalling the propertyii) of g(x), which imposes that
z(—t)=—2z(t), Eq. (4.9 can be written as

Let us introduce the new functiom(t)=2z'(t). We can see e aex
that Eq.(4.10, after deriving with respect tg, transforms s [n]=—k f d3pn — (4.20
into the following functional equation: “ B 2 ' '

2w(c)w(t)=w(c+t)+w(c—t). (4.1) We can write the entrop$,. also in terms of the distribu-

tion f obtaining
Finally the nonlinear transformation defined througit)

= cosh{(t) permits us to write the last equation under the SK[f]z—ka dp(c, flresc 9, (4.20)

form
costé(c) +&(t)]+cosh é(c) —&(t)]=cosh é(c+1)] where the coefficient,= o' “/2«x depends exclusively on
+costig(c—1)]. (4.12 the deformation parametear and is given by
. . . . 1/1-« (14 )12k
It is trivial to verify that the most general solution of Eq. C,=o— (4.22
(4.12 is given by 2k\1+k
&t)=rt, (4.13  The above entropy is contained, as a particular case, in the
class of entropies introduced previously in Rgf] [In Eqg.
with r an arbitrary real parameter. (65) of this reference it appears the nonspecified parameter

Shannon solutioWe note that in the case=0 we obtain  «, while the Boltzmann constant is absent because setted to
g(x) =sinhx and then Igy(n)=Inn. This is the well known havekg(1+ k)a=1].
standard logarithm which, inserted in E@.12, produces We recall that the entropy given by E@.20 is different
the Shannon entropy. from the nonextensive entropy introduced in Ré¢fs?,15.

The new solutionWe consider now the caset0. It is  Of course the statistical distribution defined through Egs.
easy to realize that in this case the genergior) assumes (3.1) and (4.19), introduced previously in Ref1], is also
the form different from the distribution of the nonextensive statistics

[15] and of the plasmas physi¢§6].

. (4.19

1
X)=S8Inn —arcsinn rx
90 I{r h(rx) V. THE « EXPONENTIAL AND & LOGARITHM

For simplicity of the exposition we first discuss the case ~ Let us report here the main mathematical properties, some
=1 for which g(x)=x. After some simple calculations we ©f these reported in Ref§1-3], of the functions exp,(x)

obtain that only when and In(x) defined through Eqg4.18 and (4.19), respec-
tively.
—1<k<1, (4.195 We start by observing that the generator of the deforma-
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tion is the functiong(x) =x and then from(2.1) and(2.2) we
obtain

x{K}=%arcsinr( KX), (5.1
x{"}:%sinh(Kx). (5.2
We have alsdRef.[17], p. 58
X(q=XF %,%;g;—xzxz), k2x2<1. (5.3
The following function:
[x]= Z__;' . (5.4

which has a central role in quantum group thept$,19,

results in being proportional t&!*!; namely, we have the

relation
= {x}
X]= X, 5.
=g (55
which can be written also in the form
In; . (€%)
{x}
X]|=—"—F—, 5.6
=T (5.6)

with g=e”“. We note that the well known symmetry of quan-

tum group theoryg—q ! is related the symmetry«— —

of the present theory. We also observe that, exploiting Egs.
(2.6) and(2.7), we can obtain the two following properties of

the function[x]:

’
K

[x+yl=[x]e[y]. (5.7)

’
K

[xyl=[x]®[y], (5.8

with ' =(q—q~1)/2.

The definitions ofx-sum andx-product given through

Egs.(2.3) and(2.4), respectively transform as follows:

K

XPy= ;sinl[arcsinhjxx)+arcsinmf<y)], (5.9

x 1 1
X®y=;sinl-(;arcsinm;<x) arcsinliky)|. (5.10

In particular, thex-sum assumes a very simple form

X®y=xy1+ k?y?+y1+ kX2 (5.11)

PHYSICAL REVIEW E 66, 056125 (2002

Starting directly from thec sum given by Eq(5.11), one
obtains the following expressions for tikedifferential andx
derivative:

dx
dX{K}:—,—1+K2X2, (512)
d f(x) B - d f(x)
dX{K} =1+ k“X W (5.13

We consider now the functions exjfx) and In,,(X) which
can be written also as

1
exp gX= ex;{ — arcsinth) , (5.19
K
1
Ing o (X)= ;smr(;c Inx). (5.15
We point out the following concavity properties:
d2
Wexp{K}(x)>O, xeR, (5.1
d2
W|H{K}(X)<O, x>0. (5.17

A very interesting property of these functions is their power
law asymptotic behavior

expg(x) ~ [2xx|=U, (5.19
X— F oo
L
In{K}(X) ~ _2|K|X ) (5.19
x—0"
N (%) =y (5.20
Nga(X) ~  Z—x. .
{} X— 40 2|K|

The Taylor expansion of the exponential is given by

exp q(x)= nzo an(K));—_, K2x?<1 (5.21

(Ref.[17], p. 26, with the coefficients,, defined as

ag(k)=1, ay(x)=1,

m—1

Bom(K) = JHO [1-(2))%?], (5.22

a2m+1<f<>=j[ll [1-(2j—1)2k?].

It results thata,(0)=1 anda,(— «)=a,(«). We note that
the first three terms in the above Taylor expansion are the
same as the ordinary exponential, namely,
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10°

107'F

10} exponential power law 3

E region region
g
3 10°F
107k k=0.3
10° . -
10" 10° 10' 10°

FIG. 1. Plot of the function exp(—x) versusx for k=0.3. This

function is compared with the ordinary exponential and with a pure

power law.

x2 x3
= —_— —_ 2 R — P
exp,q(X)=1+x+ 5 +(1-« )3! +.... (5.23

In Fig. 1, the function exp,(—x) for a fixed value ofk is

PHYSICAL REVIEW E 66, 056125 (2002

3

Lr[1+ 8
2+ 1+ 3

1
by(x)= 5 (1K)

1+ ﬁ) (5.25

It results inb,(0)=1 andb,(— «)=b,(«). The first terms
of the expansion are

X2

In{K}(1+x)=x— E'f’

2 X3
1+7)§—~--. (5.26

Another expansion involving the exponential x*<1) is
the following:

exg,(}(x)zexp< HZO dnKan2n+1) (5.27)

(Ref.[17], p. 58, being

(—=1)"(2n)!

S D27 (nne

(5.28

plotted. We note that the bulk of this function is very close toExploiting this expansion, we can write theexponential as
the standard exponential. Indeed the Taylor expansion cn infinite product of standard exponentials
exp.qa(—X) is the same, up to second order, of the one of

exp(—X). The tail of expy(—x) behaves as a power law.
Between the bulk and the tail an intermediate region whose

extension depends on the valuerokxists.

In Fig. 2, the function exp,(—x) for some different val-

ues of « is plotted. We note that wherk—O0 the
x-exponential approaches the ordinary one.

The Taylor expansion of iy (1+x) converges if—1<x
=1 and assumes the form

o

n

ln{“}(1+x):,§1 bn(K)(—l)”_l%, (5.29

(Ref.[17], p. 25, with b;(x)=1, while forn>1, b, («) is
given by

exp,(-X)

FIG. 2. Plot of the function exp(—x) versusx for some differ-

ent values of«. The case«=0 corresponds to the ordinary expo-

nential.

0

exp () =1 exp(d k2"
n=0

(5.29

On the other hand the exponential can be viewed as a
continuous linear combination of an infinity of standard ex-
ponentials. Namely, for Re=0 it results(Ref.[17], p. 1108

» 1 X
eXRK}(—S)=fO —Jl,K( )exq—sx)dx. (5.30

KXY\ ke
The following two integrals can be useful:

fxx“lexg,(}( —x)dx

0

1 r
[1+(r—2>|xl]|2K|"F(W_§)
"D [ 1 T
r(w+§
(5.31)
1 r—1
T F(W‘T)
JO(m{K};) dx:1+(r—1)|,<| 1 r-1 L.
F(W+T>
(5.32

We conclude the present section focusing our attention to
another interesting property @f logarithm. We consider the
following eigenvector equation:

D (x)L(x)=1,L(x), (5.33
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and examine the case of the eigenvedidx)=n*. It is Steady statesWe consider now the steady states of Eq.
trivial to verify that whenD,y(x)=d/dx we obtain that the (6.1) for which the collision integral becomes equal to zero.
eigenvaluel ; of this operator is the standard logaritign ~ Then we have

=Inn. We pose now the question if it is possible to deter-

mine the operatoD,(x) associated to the same eigenvector fof=f'®f], (6.2
L(x)=n* and having as eigenvalue tkelogarithm, namely, " “

and after taking into account the propei@®.61) of the «

Le=Ingqn. (5.34  |ogarithm, we obtain
We obtain that this operator is the finite difference operation Inof+1Ingqfi=Ingaf" + In{K}fi. (6.3
L(x+ k) —L(x—«) This last equation represents a conservation law and then we

D,.(X)L(x)= (5.39 can conclude that |pf is a summational invariant; in the
most general case it is a linear combination of the micro-
scopic relativistic invariants, namely a constant and the four-

which reduces to the standard derivative as the increment 2yector momentum. In Ref20] it is shown that in presence

of the independent variable approaches to zero. ~ of external electromagnetic fields the more general micro-
One can find many other elegant and useful mathematic&copic relativistic invariant has the fornp’(+qA’/c)U,+
properties for thex functions which obviously we cannot constant, beindJ, the hydrodynamic four-vector velocity

report here. with U”U,=c?. Then we can pose

2K '

(p"+qA’/c)U,—mc—u
AT

VI. RELATIVISTIC KINETICS

|n{K}f:_ (64)
In this section we treat the statistical system, considered
previously in stationary conditions, within a relativistic and Consequently we obtain the following stationary distribu-
kinetic framework. The new relativistic kinetics here pre- tion:
sented, in the limitc—o0, reduces to the classical kinetics
considered in Ref1]. (p"+qA*/c)U,—mc—u
By using the standard notation of the relativistic theory f=expq| - AkgT .
we denote withx=x"=(ct,x) the four-vector position and
with p=p”=(p° p) the four-vector momentum, being® In the casex=0 this distribution reduces to the already
= p?+m?c? and employ the metrig”’=diag(1,—1,—1, known relativistic distributior{20].
—1) [20]. The above equilibrium distribution, in the global rest
Let us consider the following relativistic kinetic equation: frame wherdJ "= (c,0,0,0) and in absence of external forces
(A”=0), simplifies as

(6.5

d®p’ d®p, d°p;
0 0 0 fo E-n
p pl p 1 _eXRK} _)\kBT ’

X[a(f'®f))—a(fefy)], (6.1

e
Pro M= 6.6
and assumes the same form of the distributi®n).

We remark that forE— u>\kgT this distribution pre-

where the distributioris a function of the four vectorsand ~ S€NtS & power law behavior, namely,

p, namelyf=f(x,p). We note that the left hand side of Eq. REL
(6.1) is the same of the standard relativistic Boltzmann equa- fm(_*) , (6.7)
tion but the collision integral in the right hand side results to E

be more complicated, containing the deformed prodfnct being E*=kBT\/EZ/2K.
and the arbitrary functioa(f) which we suppose to be posi-  In order to introduce explicitly the dependence on the
tive and increasing. The fact@ is the transition rate which Vvelocity variable in the distributiori6.6), we consider the
depends only on the nature of the two body particle interacexpression of the relativistic kinetic energy=E(v),
tion.
The above equation in the cage: 0 anda(f) =f reduces E=Vm’c*+p*c®—md, (6.8
to the already known relativistic Boltzmann equation de- .
scribing the standard relativistic kinetif0]. Clearly in the ~With p=my(v)v and the Lorentz factor given by
casex# 0 anda(f)#f, the above equation describes a new
relativistic kinetics, radically different from the standard one. Yv)= 1 _ 6.9
We anticipate that this new relativistic kinetics, which we 1—v2/c?
will consider here, defines a statistics resulting to be inde-
pendent on the particular form of the functiagf). After defining »=u/mc> we write Eq.(6.6) as follows:
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d3pl d3p d3p' d3p
—r ——0 —oGla(f'®f})
p pP: P71 P K

mc? 1
fZEXQK} —m[’y(l})—l— 7] . (6.10 HVSVZ—ZKBAC!

Note that in the regiorw<<c this distribution assumes the

—a(fef)llIn af+In . fi—In . f —Ing . f1].
form (Kl)][{} afi—Ingg yf1l

1, (6.16
Emv — M

—W ) (6.1])

f~exp,q Finally, we set this equation in the form

d3pr d3p d3p/ d3p
—o —o—0 —oGla(f'®f])
p P; P71 P K

which, after settind\kgT=1/8, coincides with the nonrela-
tivistic statistical distribution, proposed in Ré¢i.].

H theorem In the standard relativistic kinetics it is well
known from theH theorem that the production of entropy is
never negative and in equilibrium conditions there is no en-
tropy production. In the following we will demonstrate the
theorem for the system governed by the kinetic equation
(6.1). For simplicity of the notation, hereafter we omit the
letter « in the symbol ofx entropy. We define the four-vector

L1
(7,,8 :ZkB)\a

—a(fef)lng(f' ef)—Ing(fofy)].
(6.17)

After imposing thata(h) is an increasing function, it results

entropyS=S"=(S",9), in terms of the distributiom= af,
as follows:

dp
S'= —ka Wp"n Ing,qn, (6.12
and note thag® coincides with thex entropy defined previ-
ously through Eq(4.20 while S is the entropy flow. If we
take into account the relatiof8.10, the above four-vector
entropy can be written in terms of the distributibas

. dp ,
S =—kB7\a’f Wp J dfln{K}f. (6.13
It is trivial to verify that the entropy productiof,S” can be
calculated starting from the definition 8f and the evolution
equation(6.1), obtaining

dp
9,8"=— kaaf (I Dp"a.f

d3 rd3 d3 rd3
e [ i SR Sela et

B PPl plop .
_a(f®f1)]|n{x}f_k3)\amf d?’—f(ln{,(}f)F”a—i.
x p ap
(6.19

Since the Lorentz forc&” has the propertiep”F,=0 and
JF’19p”=0 the last term in the above equation involviRY
is equal to zerd20], namely,

dp’ d3p, d°p; d°p
9,8"=—k mf—,——,—e a(f' of!
B pO pg pg) pO [ ( . 1)

—a(fefy)lingf. (6.19

Given the particular symmetry of the integral in E§.15
we can write the entropy production as follows:

[a(hy) —a(hy) I[Ingg(hy) —Inge(hy) =0 Vhy,h, and then we
can conclude that

3,5"=0. (6.18

This last relation is the local formulation of the relativiskic
theorem which represents the second law of the thermody-
namics for the system governed by the evolution equation
(6.2).

Concerning the arbitrary positive and increasing function
a(f) appearing in the collision integral of the evolution
equation, we note that, if we suppose that obeys to the fol-
lowing condition:

a(fefy)=a(f)a(fy) (6.19
we recover the expression
a(f)=exp(Ingyf), (6.20

proposed in Ref1].

VII. PHYSICAL MEANING OF THE « DEFORMATION

In this section we will show that the deformation intro-
duced by the parametet emerges naturally within Ein-
stein’s special relativity, so that one can see ihdeforma-
tion as a purely relativistic effect.

Let us consider in the one-dimensional fragévo iden-
tical particles of rest mass. We suppose that the first par-
ticle moves toward right with velocity; while the second
particle moves toward the left with velocity,. The relativ-
istic momenta of the particles are given py=p(v,) and
p>=p(v,), respectively, being

mo

N .3

p(v)=

056125-12



STATISTICAL MECHANICS IN THE CONTEXT G . .. PHYSICAL REVIEW E 66, 056125 (2002
We consider now the same particles in a new frahe Proof. We start by using the definition of thesum, sub-
which moves at constant speegltoward left with respectto  sequently we use the explicit form of the relativistic momen-
the frameS. In this new frame the particles have velocities tum and finally we use the definition of the velocity relativ-

given byv;=v,8°, andv,=0, respectively, being istic additivity law

vitu, 7.2 pl(vl)épZ(UZ)

1+U]_U2/C2, ml m2

the well known relativistic additivity law for the velocities. ~ Pa(va) / Po(v2) % Palva) | p1(vq)]?
In the same frames’ the particle relativistic momenta are Tm 1+ m + m, 1+ m,C

c
given byp;=p(v;) andp,=0, respectively. Up to now, we 2
1

vl®°vz=

have simply recalled some well known concepts of the spe- U1

(va/c)?
cial relativity [21]. Vim0 Vi 1= (0,007

Let us pose the following question: if it is possible and
vy (vy/c)?
+t =\ 1t —
V1—(v,/c)? 1—(vy/c)

how to obtain the value of the relativistic momentym
starting directly from the values of the momemptaandp, in

the frameS. The answer to this apparently innocent question
is affirmative. One, after straightforward calculatidesee the

theorem in this section arrives at the following surprising - V1t
result: V[1—(v1/0)2][1—(v,/c)?]
1+v,v,/c?
’ - . 1 :(vl@cUZ) 2
P1=P(v)®P(va); K= (7.3 V[1—(v1/0)2[1—(v,/c)?]
V1D,

In words, the relativistic momentugpy, of the first particle in =

the rest frame of the second patrticle is theleformed sum, \/1_ i V1tU2 )2
with k= 1/mc, of the momenta, andp, of the particles in c?\ 14+vqv,/c?
the frames. c c
Unexpectedly we discover that thesum is the additivity _ V19U _Pi(01®%v2) 7.7
law for the relativistic momenta. E@7.3) which we write in \/ (v,®%,)? m; '
the form -
c
p(vl)ép(v2)=p(vl®°vz), = i (7.4 Trivially from Eg. (7.6) one obtains Eq(7.4) as the par-

mc ticular case, whem,;=m,=m. Note that the parameter
has different values in these two equations because the
says that thec-deformed sum and the relativistic sum of the summed quantities in the two cases are different.
velocities are intimately related and reduce both, to the stan- We can easily explain the meaning of the deformed de-
dard sum as the velocity approaches to infinity. The defor- rivative. We indicate wittp the relativistic momentum in the
mations in both the cases are relativistic effects and are origirame S, and withdG/dp the derivative with respect tp of
nated from the fact that has a finite value. Eq7.4) follows  the Lorentz invariant scala®. The same quantities in the
as a particular case from the following theorem. frameS’ are indicated wittp’ anddG/dp’, respectively. It
Theorem Let is trivial to verify that

(v) = —— 7. =—, :
SN Py dp’

and then we can conclude that thedeformed derivative can
be viewed as a standard derivative in an appropriate frame.

In the following section we will consider, in the frame-
work of the special relativity, the statistics ofN-identical
particles, wherec is a dimensionless parameter and we will
determine its value. To do so, it is more convenient to write
Eq. (7.4) in the form

be the relativistic momenta of two particles<1,2) of rest
massm; andm, which move in the one-dimensional frame
S with speedv; and andv ,, respectively. If we indicate with

é the x-sum defined through Ed5.11) and with ¢ the
velocity relativistic additivity law defined through E@7.2),
it results in

P1(vy) “ Pa(vy) Pi(v1©°vy) p(vy) “ p(vy) P(V1©Vy)
® - L oKk==. (79 o2 = .
m, m, m KkMC ~ kMC KkMC

(7.9
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which holds for anyk.

VIIl. DETERMINATION OF THE PARAMETER  k

In this section we calculate the value of the parameter
which, due to the symmetrng¢« — « of the theory, we con-
sider positive, namely € k<1. Clearly if we start from the
k-statistical distributiond, and f, describing two indepen-
dent statistical systems, we can construct the distributjon

PHYSICAL REVIEW E 66, 056125 (2002

without losing generality, we can consider E§.4) in the
ultrarelativistic region ¢—c) where it results inp(v)
~E(v)/c:

(_E(vn) (_E(Uz))
exp & exp &
E(v,9,
—orp| - 89

®f, which describes a new composite system. This system

K

After comparing Egs(8.2) and(8.5), one obtains the relation

in the casex=0 reduces to the one described through the

distribution ff,. In the following we will assume thahe
distribution f;f, describes a state also in the cage+0.

Obviously this state is different from the one described b
fi®f,. As we will see, this simple but meaningful hypoth-

esis is sufficient to determine the value ©fin the case of
relativistic statistical systems.

Taking into account the form of the distributiohsandf,
given by Eq.(6.6) (for simplicity we posex=0), and the
property (2.28 of the x exponential one can write immedi-
ately

= E>
R T NkgT) TR T NkgT
—ex _i@i (8.1)
R T NkgT T NKgT) '

with E;=E(v;). After some simple algebra we rewrite Eq.
(8.1) as follows:

E, Ex | Es
SR " XkaT) SR T XkT) TR T NigT )
(8.2
with Eg=E;y1+E5/E5+E,\1+EZ/E; and
AkgT
o= P . (83)

We assume now that the exponential in the right-hand side

Y%

chzz)\kBT, (86)

which is the same as the one given by E}3), only if we
mpose thaE,=mc?. Equation(8.6) can be also written as

K

1—x2’

and results in being formally similakkgT/c<—p, k<v/C)
to the relation defining the relativistic momentum given by
Eqg. (7.1). We can extract finally the value af obtaining

mcz)2
keT)

1

—=1 (8.9

It is important to emphasize that this expression of the pa-
rameterx holds only under the above mentioned hypothesis
and imposes thatx|<1. This condition on the value of
coincides with the one expressed by E4.15 and obtained
in a completely different way. We have=0 only if T=0 or
if c=c. The limiting casex=1 is obtained ifT=« or if
mc=0.

At this point one can write the distributiof6.6) in the
form

1E—u
‘;W)-

Note that the statistical information of the system, namely
the temperature is hidden exclusively in the parameter
When E—« the distribution (8.9) shows a power law
asymptotic behavior

f=exgk}( (8.9

of the Eq.(8.2 has the same structure of the one given by

Eq. (6.6). Clearly we must impose thd, be exclusively

expressed in terms of nonstatistical parameters. In the fol-

lowing we will show thatE,=mc2. To do this we exploit
Eq. (7.9) obtained within the special relativity. Starting from
this equation and taking into account the propé&y28 of
the k exponential we obtain

p(vq) p(vy)
XA T Teme | TR T Teme
= exRK}( - %) . (8.9

Recall that we wish to calculate the parametewhich

f~ (8.10

mC2 1/k

The distribution(8.9) viewed as a function of the velocity
becomes

v)—1—
f=exp. _Aw)miw 77), v<c. (8.11
K
Concerning its derivative one obtains
df v 3
_ 4 f (8.12

o

has a value that does not depend on the particle energy. Theand then forw —c it results in
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FIG. 3. Plot of the distribution functiortafter normalizatioh
given by Eq.(8.16) versusv/c for some different values ot.

—1+1/2«

df 1

v
a*‘W(l‘z

(8.13

Then for k<1/2 one has botli=0 anddf/dv=0 inv=c.
For k>1/2 resultsf=0 anddf/dv=—« in v=c. Finally
for k=1/2 resultsf =0 anddf/dv=—1/2c in v=c.

In the nonrelativistic region for which<c we have

1
Emvz—,u

- kmc ’

f~exp. (8.14

while in the limit c— o one recovers the standard Maxwell-

ian distribution

1
_ 2__
M

Tk (8.19

fu=exp| —

The explicit form of the distribution(8.11) when u=
—mc? simplifies as follows:

1—v2/c? U
=\ VNii g + v @19

and in the limitc—o~ becomes

o my?

M= EXB T okeT

In Fig. 3, the distribution function given by E@8.16
(after normalizatiopversusv/c for different values ok and

then for different values ainc®/kgT, according to Eq(8.8),
is plotted.

. (8.17

IX. EXPERIMENTAL EVIDENCES
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10 2° (m?srs GeV) !, is not exponential and then it vio-
lates the Boltzmann equilibrium statistical distribution
cexp(—E/kgT) [22—-24. Approximately this spectrum fol-
lows a power lawE ™2 and the spectral indea is near 2.7
below 5x10% eV, near 3.1 above %10 eV and again
near 2.7 above 810" eV. On the other hand it is known
that the particles composing the cosmic rays are essentially
the normal nuclei as in the standard cosmic abundances of
matter. Then the cosmic rays can be viewed as an equivalent
statistical system of identical relativistic particles with
masses near the mass of the prote&8 MeV).

These above characteristi¢elativistic particles with a
very large extension both for their flux and energield the
cosmic rays spectrum an ideal physical system for a prelimi-
nary test of the correctness and predictability of the theory
here proposed.

We consider the statistical distributidE) given by Eq.

(6.6) or (8.9). The particle fluxd (E)«p?f(E) can be calcu-
lated trivially if we take into account the relativistic expres-
sion linking E and p obtaining

2

O(E)=A -1

ma 1 exp gl —B(E—w)]. (9.1

Note that this particle flux, in agreement with the observa-
tional data, decays following the power law

O(E)xE~?, (9.2
with
B mc2)2
a 1+(kB—T -2 (93)

Analogously the particle flux obtained starting from the
Boltzmann-Gibbs statistical distribution is given by

E
ex% — kB_T) . (9.9

We use these two theoretical distributions of particle flux
to fit the cosmic rays data reported in Rgf4]. In Fig. 4, we
show the observed data together with the theoretical curves
®(E) (solid line) and®y(E) (dotted ling. The curved (E)
corresponding tA=10° (m?sr s GeV) !, mc?=938 MeV,
u=—375 MeV, and k=0.2165 provides a high quality
agreement with the observed data. This agreement over so
many decades is quite remarkable. From the value ahd
mc? and adopting Eq(8.7) we obtain thakgT=208 MeV.

In the same figure the cun@y(E) [with A;=1.3x10*
(m?srsGeVy!, mc®=938 MeV, and kgT=208 MeV]
which decays exponentially and cannot fit the observed data
violating the Boltzmann-Gibbs statistics, is reported .

A short remark must be made at this point. Clearly, the

Do(E)=Ag

E 2
m_(77+1) -1

For a long time it has been known that the cosmic raypower law asymptotic behavior of the spectrdnfE) is im-
spectrum, which extends over 13 decades in energy, from posed by thex exponential whose origin is the sum. But
few hundred of MeV (1BeV) to a few hundred of EeV the x sum emerges naturally within the special relativity as

(10%° eV) and spans 33 decades in particle flux, frorfi D

the composition law of the relativistic momenta. Then we
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FIG. 4. Plot of the cosmic rays flux versus energy. The solid Iineeven.ts versus the event siké (mm). The. SO'.'d line is the curve
is the curve obtained within the present theory and is given by Eq2Ptained within the present theory and Is given by E5) with
9.1 with A=1C° (mPsrsGev)l, mc=938 Mev, p=  A=8x10 [eventstyear mm], =75 (mm %) and x=0.7. The
—375 MeV, k=0.2165, andksT=208 MeV. The dotted line rep- dotted line corr_esponds to the ordinary exponential functien (
resents the theoretical curve obtained within the standard Boltzmanfo)' The experimental data are from RES].
Gibbs statistics given by Eq.(9.4 with Ay,=1.3x10* . )
(m2sr s GeV) 'L, mc2=938 MeV, anckgT =208 MeV. The obser- Clearly, one can hunt other mechanisms, different from
vational data are collected by Sworf3A]. the relativistic one, leading te statistics. Beside the impor-

tant problem of the agreement between the theoretical curve

can conclude that the power law asymptotic behavior of thénd the observational data one does not neglect the episte-
cosmic rays flux is simply the signature of the particle rela-mological problem concerning the structure of the theory
tivistic nature. which must be able both to explain the origin and to deter-

It is widely known that the Boltzmann-Gibbs distribution mine the value of any parameter appearing within the theory.
exp(—E/kgT) originally proposed to describe a classical par-
ticle gas in thermodynamic equilibrium can be adopted to
describe an enormous amount of phenomena in nature. On
the other hand the power law tails have been observed ex- We summarize briefly the results obtained in the present
perimentally in several fields of science. Some times in pareffort. We have shown that beside the Boltzmann-Shannon
ticular fields, this power law has a narteg., Pareto law in  entropy, the quantity
econophysics, Gutenberg-Richter law in seismology). etc
Furthermore the power law tail is preceded by an exponential S ——k E |
region and between the two regions exists a third intermedi- x— ~ TB& NilNga i
ate region. It is worth remarking that the exponential de-
fines a distribution which can describe simultaneously the,;

three above regionsee Fig. 1 and then is particularly suit- g entropy, simultaneously concave, additive and extensive.

able to describe the above mentioned phenomena. Starting from this entropy it is possible to construct a gener-

As a working example we analyze the experimental data,i;eq statistical mechanic&@nd thermodynamigshaving
reported in Ref[8] related to the rain events in meteorology. he same mathematical and epistemological structure of the

In Fig. 5 is plotted the number densiyf events/(year mm)  ggjtzmann-Gibbs one, which is recovered when the defor-

of rain events versus the event sitmm] on a double  5ion parametek approaches to zero. Within this general-

logarithmic scale. We note that the data have a large extensq( statistics the distribution function assumes the form
sion (the abscissa spans 7 decades and the ordinaéedb

remark that its behavior is typical of a class of experimental _

. L . . n; = aex - B(E,— ,
data which we find in several areas of science. In order to fit i=aexpgl-BE~p)]
the experimental data we adopt the distribution

X. CONCLUSIONS

th Inpgx=(X"—x"")/2«k and —1<«<1, is the only exist-

with exp,q(x)=(V1+ «*x?+ kx)¥* while the constantsy
N=Aexp,q(—BM), (9.5 and B are given by a=[(1-«x)/(1+x)]¥*, 18
=\1— «%kgT. The chemical potentigk can be fixed by the
and, as one can see in Fig. 5, a remarkable agreement i®rmalization condition. This distribution has a bulk very

obtained with A=8x10* [eventsfyear mm], B=75 close to the exponential one while its tail decays following a
(mm %) and«x=0.7. power lawn;=E; V<.
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The origin of this deformed statistics has its roots in theso that the relativistic statistcal mechanics does not contain
Einstein special relativity and the relativistic statistical me-free parameters.

chanics kinetics obeying thd theorem. The theory can describe observational data in many fields.
We have shown that, within the special relativity, it is In particular we find a high quality agreement in analyzing
possible to determine the value ef obtaining the spectrum of the cosmic rays which violates manifestly

the Boltzmann-Gibbs statistics. This is an important test for
) the theory because the cosmic rays are relativistic particles
mcz) and their spectrum has a very large extension (13 decades in

1
=14 — .
K kT energy and 33 decades in flux
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