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Quantum statistics in complex networks

Ginestra Bianconi
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~Received 20 June 2002; published 21 November 2002!

In this work we discuss the symmetric construction of bosonic and fermionic networks and we present a case
of a network showing a mixed quantum statistics. This model takes into account the different nature of nodes,
described by a random parameter that we call energy, and includes rewiring of the links. The system described
by the mixed statistics is an inhomogeneous system formed by two class of nodes. In fact there is a threshold
energyes such that nodes with lower energy (e,es) increase their connectivity, while nodes with higher
energy (e.es) decrease their connectivity in time.
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I. INTRODUCTION

Recently, pushed by the need to fit the available exp
mental data on a large variety of networks, statistical phys
is addressing its attention to complex networks@1–3# and in
particular to scale-free networks characterized by power-
connectivity distribution. The topological properties of the
networks are related to their dynamic evolution and pla
key role in collective phenomena of complex systems@4–6#.
Consequently there is an urgent need of a general forma
able to make a distinction between networks. Different
proaches have already been proposed for equilibrium gra
@7,8#.

In this paper we will restrict our study to inhomogeneo
growing networks with different quality of nodes, describ
by quantum statistics. In fact we have recently presente
growing scale-free network with different qualities of th
nodes and a thermal noise that is described by Bose stat
@9#. On the other hand we have found that a growing Cayl
tree with different qualities of the nodes and a thermal no
is described by Fermi statistics@10,11#. In order to be syn-
thetic in the following we will refer to these two networks a
the bosonic and the fermionic networks, respectively. Giv
the fact that the solution of the dichotomy between Bose
Fermi statistics is an attractive topic discussed in many
ferent contexts, from supersymmetry@12# to quantum alge-
bras @13#, in the first part of the paper we compare t
growth dynamics of the two networks. We find that t
bosonic and the fermionic networks are obtained by conti
ous subsequent addition of an elementary fanshaped un
tached in two opposite directions. While the appearance
classical system described by quantum statistics is not c
pletely new@14,15#, this is an example of the occurrence
two symmetrically constructed models following Bose a
Fermi statistics, respectively. Always having in mind t
general problem of the Bose-Fermi dichotomy, in the sec
part of this work we provide a more realistic example
network in which the two growth processes coexist. This
obtained by rewiring a bosonic network. This complex inh
mogeneous system has two classes of nodes with increa
and decreasing connectivity and is fully described by
mixed statistic depending on two chemical potentials (mB
andmF).
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II. SYMMETRIC CONSTRUCTION OF BOSONIC
AND FERMIONIC NETWORKS

The bosonic network@9# is a scale-free network in which
each node has an intrinsic qualitye from a time-independen
distributionp(e). At each time step a new node is added
the network attachingm links preferentially to more con-
nected low-energy nodes. The probabilityP i that a new link
is attached to a node of energye i and connectivityki is given
by

P i
B}e2be iki . ~1!

The fermionic network@10# is a growing Cayley tree of co
ordination numberm11 in which nodes have an intrinsi
quality e from a time-independent distributionp(e). Nodes
are distinguished between nodes at the interface~with con-
nectivity 1! and nodes in the bulk~with connectivity m
11). At each time step a node at the interface can gr
giving rise to m new nodes. The probability that a nodei
grows is given by the probabilityr i that the node is at the
interface~its survivability!, timesebe i,

P i
F}ebe ir i . ~2!

The dynamics of the two networks is parameterized byb
that is a characteristic of the network growth and plays
role of the inverse temperature, i.e.,b51/T. For T50 the
dynamics became extremal andP i

B , P i
F are different form

zero only for the lowest and the highest energy nodes of
network, respectively. As the temperature increases, the
namics involves the other nodes also and in theT→` limit,
P i

B and P i
F do not depend anymore on the energy of t

nodes.
A generic bosonic network following Eq.~1! and a ge-

neric fermionic network following Eq.~2! can be constructed
by attaching a fixed elementary unit to a number of nod
growing linearly with the size of the networkN.

The fixed elementary unit playing the role of the ‘‘unita
cell’’ in crystal lattices, is a fan-shaped element constitu
by a vertex node connected tom other nodes. But the way in
which this unit is attached is symmetric in the two network
In the bosonic network the vertex of the fan is a new no
attached bym links to m of the N existing nodes of the
network. On the contrary, in the fermionic network the e
©2002 The American Physical Society23-1
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ementary unit is reversed and the vertex is one of the
21/m)N nodes at the interface, while them nodes attached
to it are new nodes of the network. Consequently both n
works are constructed by the addition of the same elemen
unit attached in the two opposite directions.

The mean-field equation for the bosonic and fermio
network describes respectively, the evolution of the conn
tivity ki and the survivabilityr i of the nodes. In the bosoni
network, since every new link is attached to nodei with
probability ~1!, and m new links are attached at each tim
step, the mean-field equation for the connectivityki is given
by

]ki

]t
5m

e2be iki

(
j

e2be jkj

, ~3!

where( je
2be jkj is the normalization sum of the probabilit

P i
B , Eq. ~1!. Symmetrically, in a fermionic network ever

node grows with probabilityP i
F given by Eq.~2!. Conse-

quently, the probabilityr i(t) that a nodei is at the interface
decreases in time following the mean-field equation

]r i

]t
52

ebe ir i

(
j

ebe jr j

, ~4!

where the denominator sum is needed in order to norma
the probabilityP i

F . In both networks the resulting structur
optimizes the system by minimizing the ‘‘free energy’’ o
each node of the networke i2T log(ki) ~bosonic network! or
e i2Tu logriu ~fermionic network!. In the two networks this
optimization is achieved in different ways. In the boson
network the low-energy nodes are more likely to be awar
a new link while in the fermionic network high-energy nod
are more likely to be removed from the interface. Wh
geometrically the two networks are related by the reversa
the elementary unit, the mean-field equations~3! and ~4!, in
the casem51, are symmetric under time reversal (t→2t)
and the change of sign of the energies (e i→2e i). Self-
consistent calculations@9,10# show that the connectivity
k(tue,t8) @the survivabilityr(tue,t8)] of a node of energye
added to the network at timet8, follows a power law in time
with an exponent dependent on its energy,

k~ tue,t8!5mS t

t8
D f B(e)

with f B~e!5e2b(e2mB),

~5!

r~ tue,t8!5S t8

t D f F(e)

with f F~e!5eb(e2mF).

The time reversal of the two mean-field solutions impl
here that the connectivity of the nodes always increase
time in the bosonic networks while the survivability of th
nodes always decreases in time in the fermionic netwo
05612
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The dynamics described by Eq.~5! depends on the two con
stantsmB andmF given, respectively, by the solutions of th
two equations

15E dep~e!
1

eb(e2mB)21
5E dep~e!nB~e!,

~6!

12
1

m
5E dep~e!

1

eb(e2mF)11
5E dep~e!nF~e!,

wherenB(e) and nF(e) indicate the bosonic and fermioni
occupation numbers, respectively. Thus, the evolution
each node of the network is completely determined by
number,mB or mF , defined as the chemical potentials of
bosonic or fermionic system with specific volumesvB51
andvF5111/(m21), respectively.

The quantum occupation numbersnB(e) and nF(e) ap-
pear spontaneously in the solution of the mean-field eq
tions ~3! and~4! and assume a clear meaning when we lo
at the static picture of the networks. In fact, in the boso
network the total number of links attached to nodes w
energye, NB(e), is given by

NB~e!5mtp~e!@11nB~e!#. ~7!

In the left-hand side of Eq. (7) the first and second ter
represent the number of outgoing and incoming links c
nected to nodes of energye. Similarly, in the fermionic net-
work, the total number of nodes with energye found below
the interface,NF(e) is given by the difference between a
the nodes of the network and those that are at the interf
i.e.,

NF~e!5mtp~e!@12nF~e!#. ~8!

Nevertheless,nB(e) and nF(e) acquire also a very specifi
role in the single time evolution of the network. In fact,
time t, the probabilitypB

(t)(e) of attaching a new link to a
generic node of energye ~bosonic network! and the probabil-
ity pF

(t)(e) that a generic node with energye will grow in the
fermionic network, are given by

pB
(t)~e!5E

1

t

dt8d~e2e t8!
]k~ tue t8 ,t8!

]t
→p~e!nB~e!,

~9!

pF
(t)~e!5E

1

t

dt8d~e2e t8!
]r~ t,ue t8 ,t8!

]t
→p~e!@12nF~e!#.

These results explain the interconnection between the
namics of the networks and their self-similar aspect. In fa
for the bosonic network we have that the probability for
new node to be linked to a node with energye converges in
time to the same limit as the density of existing links poin
ing to nodes of energye. Similarly, for the fermionic net-
work we have that the probability that a node with energye
is chosen to grow converges to the same limit than the d
sity of nodes in the bulk.
3-2
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The occurrence of the two quantum statistics in the
scription of such networks is due to the fact that the netwo
are growing by the continuous addiction of the unitary c
but they try also to minimize the energy of the system~by the
choice of the node to which attach a new link in the boso
network or by the choice of the growing node in the ferm
onic network!. The stochastic model behind the constructi
of the two networks always involves the choice of a node
between a growing number of nodes, but while in the Cay
tree a chosen node is removed from the interface and ca
be chosen anymore, in a scale-free network there is no l
to the number of links a node can acquire. Consequently,
Cayley tree is described by a Fermi distribution while t
scale-free network is described by a Bose distribution.

The framework of quantum statistics clarifies the relat
between the self-organized critical processes and scale
models. In fact, the fermionic network evolution in theT
→0 limit reduces to the invasion percolation dynamics o
Cayley tree@16–18#, a well known self-organized proces
@19#, while the bosonic network in theT→` limit reduces to
the Baraba´si-Albert model@20# for growing scale-free net
works.

III. MIXED STATISTICS IN SCALE-FREE NETWORK
WITH REWIRING

Our purpose here is to expand on the previous results
to discuss systems which are governed by additional p
cesses on top of the simple growth discussed before.
example, in real networks, in addition to the appearance
new nodes, one can observe new links as well, or rewiring
existing links. In fact rewiring of the link in a scale-fre
network has been used to model increasing disorder in m
realistic networks@21,22#. We show that the presence of su
additional processes can create a coexistence of Fermi
Bose statistics within the same system. This implies t
most real systems, for which such additional processes
present, exist in a mixed state, whose statistics can be
scribed only by simultaneously involving both Bose a
Fermi statistics. It is not our purpose to model any particu
system at this point. Thus next we discuss a simple sys
that displays this mixed behavior.

A simple example of mixed statistics is given by introdu
ing rewiring into a bosonic network. This network is co
structed iteratively in the following way: at each time step
new node andm links are added to the network. The ne
node has an energye chosen from a distributionp(e) and the
m links connect the new node preferentially to well co
nected, low-energy nodes of the system. As in the boso
network without rewiring we assume that a new link is
tached with probability

P i
1}e2be ik~ tue i ,t i ! ~10!

to nodei arrived in the network at timet i , with energye i
and connectivityk(tue i ,t i) at timet. Furthermore we assum
also that at each time stepm8 edges detach from existin
nodes and are rewired to the new node. Consequently, e
new node will havem1m8 links attached to it. We assum
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that the edges connected to high-energy nodes are more
stable, so that the probability that an edge connected
node of energye i detaches from it is proportional toebe i.
Consequently, the probability that a nodei will loose a link
because of the rewiring is given by

P i
2}ebe ik~ tue i ,t i !, ~11!

where t i is the time nodei added in the network ,e i is its
energy, andk(tue i ,t i) is its connectivity at timet. The con-
tinuous equation describing the time evolution of the conn
tivities of the nodes is given by

]k~ tue i ,t i !

]t
5m

e2be ik~ tue i ,t i !

(
j

e2be jk~ tue j ,t j !

2m8
ebe ik~ tue i ,t i !

(
j

ebe jk~ tue j ,t j !

~12!

with the initial condition

k05k~ tue i ,t !5m1m8. ~13!

To solve Eq.~12! we assume that in the thermodynamic lim
the normalization sumsZB andZF , given by

ZB5(
j

e2be jk~ tue j ,t j !,

~14!

ZF5(
j

ebe jk~ tue j ,t j !,

self-average and converge to their mean value^ZB&e and
grow linearly in time, with the asymptotic behavior given b
the constantsmB andmF , ^ZF&e ,

ZB→^ZB&e→mte2bmB,
~15!

ZF→^ZF&e→m8tebmF.

Using Eq.~15!, the dynamic equation~12! reduces to

]k~ tue i ,t i !

]t
5~e2b(e i2mB)2eb(e i2mF)!

k~ tue i ,t i !

t
. ~16!

Consequently, we have found that the time evolution of
connectivityk(tue i ,t i) follows a power law

k~ tue,t8!5k0S t

t8
D f mix(e)

~17!

with

f mix~e!5e2b(e2mB)2eb(e2mB). ~18!

The characteristic difference of this network from th
bosonic scale-free network is that the connectivity of t
nodes, due to the rewiring process, can either increas
decrease in time. In fact,f mix(e) @defined in Eq.~18!# change
sign at a threshold energy value
3-3
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es5
mB1mF

2
. ~19!

Consequently, the nodes with energye,es increase their
connectivity in time while nodes with energy higher then t
thresholdes , i.e., e.es , have a decreasing connectivity.

After substitutingk(tue i ,t i) from Eq. ~17! with f mix(e)
given by Eq.~18! into Eq. ~12! and the sum overj with an
integral , we get the self-consistent equations for the che
cal potentialmB andmF ,

m

m1m8
5E dep~e!

e2b(e2mB)

12e2b(e2mB)1eb(e2mF)
,

~20!
m8

m1m8
5E dep~e!

eb(e2mF)

12e2b(e2mB)1eb(e2mF)
.

At the same time, the distribution of edges attached
nodes with energye converges to the mixed statistics

nmix~e!p~e!5~m1m8!p~e!
1

12e2b(e2mB)1eb(e2mF)
,

~21!

while the numbern1(e)p(e) of the edges stochastically a
tached to the nodes of energye or the numbern2(e)p(e) of
the nodes detached from nodes with energye are given by

n1~e!p~e!5mp~e!
e2b(e2mB)

12e2b(e2mB)1eb(e2mF)
,

~22!

n2~e!p~e!5m8p~e!
eb(e2mF)

12e2b(e2mB)1eb(e2mF)
,

respectively. The distributionnmix(e) appears as a natura
candidate of a mixed statistics going from themF→` limit
where nmix(e)}11nB(e) to the mB→` limit where
nmix(e)}nF(e).

We have simulated a network withm52 andm851 and
uniform energy distributionp(e)51 for eP(0,1), with
chemical potentialsmB50.03, mF50.51, andes50.27. In
Fig. 1 we show the connectivity of the nodes of the netwo
with energy values above and below the thresholdes
50.27. The figure shows that nodes with energye,es in-
crease their connectivity in time while nodes with energye
.es decrease their connectivity in time. In Fig. 2 we rep
the number of links attached to the nodes of energye,
nmix(e), for a system sizeN5104 with the data averaged
over 100 runs. In the same figure we report also the num
of nodes stochastically attached to~detached from! nodes of
energye, n1(e) @n2(e)#.

The connectivity distributionP(k) is given by the sum of
the probabilitiesP(kue) that a node with energye has con-
nectivity k. Thus, if k.m1m8 we have to sum over all the
nodes with energy lower then the thresholdes , while if k
,m1m8 the summation will be over the nodes with ene
gies higher than the threshold,
05612
i-

o

k

t

er

P~k!5u~k2k0!
t

k0
E

e,es

dep~e!
1

u f mix~e!uS k

k0
D 2g(e)

1u~k02k!
t

k0
E

e.es

dep~e!
1

u f mix~e!uS k

k0
D 2g(e)

, ~23!

with

g~e!5111/f mix~e! ~24!

with

g~e!.1 for e,es ,
~25!

FIG. 1. Dynamical evolution of the connectivity of nodes wi
different energies. The connectivity of the nodes always follow
power law, increasing or decreasing in time depending on the
ergy e and the threshold valuees .

FIG. 2. The numbernmix of edges attached to the nodes wi
energye, the numbern1(e) of the edges stochastically attached
the nodes with energye, and the numbern2(e) of the nodes de-
tached from nodes with energye are plotted as a function of energy
The simulations have been obtained with a uniform energy dis
bution in the interval@0,1#. The data for 105 time steps are aver
aged over 100 runs.
3-4
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g~e!,1 for e.es .

In the limit b→0 all the nodes of the network evolve in th
same way with

f mix~e!5
m2m8

2m
5D. ~26!

Thus, if D.0 every node increases its connectivity in tim
while if D,0 all the nodes have decreasing connectivity.
the caseD50 the mean-field equation describes a system
which the connectivities remain constant in time.

On the contrary in thelimit b→` the difference between
nodes with different energy is strongly enhanced.

We have to observe that asD goes from its highest value
D51/2 to negative values, the energy distribution goes fr
a pure Bose distribution to a mixed distribution with an i
creasing Fermi character, i.e., with a decreasing Fermi po
tial mF . But it is impossible to reach the pure Fermi statist
in this way. In fact, if we consider the limitm50, the num-
ber of links in the network is not increasing in time, and t
new nodes only acquire edges from the rewiring process
this case the connectivity of the nodes decreases expo
tially as

k~ tue,t i !5k0exp@2e2b(e2mF)~ t2t i !# ~27!

with the chemical potential defined by

N5E dep~e!m8eb(e2mF). ~28!

We observe that in this case the network does not grow a
more and the number of edges attached to nodes with en
e is simply given by the Boltzmann occupation factor. In th
case, the self-consistent equation and the mass conserv
e

rin
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relation are not anymore equivalent, the first one reducing
the thermodynamic limit to an identity. For this network, th
probability P(k) to find a node with connectivityk is given
by

P~k!5
1

kE dep~e!k0eb(e2mF), ~29!

i.e., goes likeP(k);k21.

IV. CONCLUSIONS

In conclusion we have shown the symmetry between
fermionic and the bosonic networks emphasizing the role
quantum statistics.

These two particular evolving networks are related by
time reversal evident in the continuum equations describ
their dynamics and in the reversed unitary unit by which
two networks are built. This time reversal implies that t
connectivity increases in time while the survivability of ea
node decreases in time as an energy-dependent power
The time reversal of the single process generates two di
ent structures with properties and dynamics only descri
by the functionalsmB and mF , at every temperatureT
51/b. Having introduced these two limit simple cases a
having illustrated their symmetry we have shown that it
possible to construct a new class of networks described b
mixed statistics that can be applied to real systems where
two different growth processes coexist.
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