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Quantum statistics in complex networks
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In this work we discuss the symmetric construction of bosonic and fermionic networks and we present a case
of a network showing a mixed quantum statistics. This model takes into account the different nature of nodes,
described by a random parameter that we call energy, and includes rewiring of the links. The system described
by the mixed statistics is an inhomogeneous system formed by two class of nodes. In fact there is a threshold
energy € such that nodes with lower energg<e;) increase their connectivity, while nodes with higher
energy > €;) decrease their connectivity in time.
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I. INTRODUCTION II. SYMMETRIC CONSTRUCTION OF BOSONIC
AND FERMIONIC NETWORKS

Recently, pushed by the need to fit the available expe_ri- The bosonic network9] is a scale-free network in which

: o . . ®ach node has an intrinsic qualityfrom a time-independent
is addressing its attention to complex netwofks3| and in  gisyribytion p(e). At each time step a new node is added to

particular to scale-free networks characterized by power-lawhe network attachingn links preferentially to more con-
connectivity distribution. The topological properties of thesepacteq low-energy nodes. The probabilify that a new link

networks are related to their dynamic evolution and play gg attached to a node of energyand connectivityk; is given
key role in collective phenomena of complex systés6]. by

Consequently there is an urgent need of a general formalism

able to make a distinction between networks. Different ap- HiBoce*ﬁEiki. (8]
proaches have already been proposed for equilibrium graphs o ] )
[7.,8]. The fermionic networK10] is a growing Cayley tree of co-

In this paper we will restrict our study to inhomogeneousord'nat'on numbem+1 in which nodes have an intrinsic

growing networks with different quality of nodes, describedqual(ijtyte_ ffof“ha (’;inge;independdent dis;[rr]ibqti?n(e) :mNodes

by quantum statistics. In fact we have recently presented gre . '.S{ |n%u|s 3 ((ajwegn Pho ebs I?( .tﬁ n er’(amt_ .tcon—

growing scale-free network with different qualities of the nectivity ) -and nodes In the bultwiin: connectivity m
+1). At each time step a node at the interface can grow

nodes and a thermal noise that is described by Bose Statlsuﬁ?ving fise tom new nodes. The probability that a node

[9]. Or.] the'other hand we have found that a growing Caylgy- rows is given by the probability; that the node is at the
tree with different qualities of the nodes and a thermal nois nterface(its survivability), timese?<

is described by Fermi statisti¢40,11]. In order to be syn- ' '
thetic in the following we will refer to these two networks as Hi':o(eﬁfipi ) 2

the bosonic and the fermionic networks, respectively. Given

the fact that the solution of the dichotomy between Bose andhe dynamics of the two networks is parameterizedfy
Fermi statistics is an attractive topic discussed in many difthat is a characteristic of the network growth and plays the
ferent contexts, from supersymmefd2] to quantum alge- role of the inverse temperature, i.@=1/T. For T=0 the
bras[13], in the first part of the paper we compare the dynamics became extremal ablf, II{ are different form
growth dynamics of the two networks. We find that the zero only for the lowest and the highest energy nodes of the
bosonic and the fermionic networks are obtained by continunetwork, respectively. As the temperature increases, the dy-
ous subsequent addition of an elementary fanshaped unit atamics involves the other nodes also and inThe limit,
tached in two opposite directions. While the appearance of E[? and HiF do not depend anymore on the energy of the
classical system described by quantum statistics is not cormodes.

pletely new[14,15], this is an example of the occurrence of A generic bosonic network following Eq1) and a ge-
two symmetrically constructed models following Bose andneric fermionic network following Eq.2) can be constructed
Fermi statistics, respectively. Always having in mind theby attaching a fixed elementary unit to a number of nodes
general problem of the Bose-Fermi dichotomy, in the secondrowing linearly with the size of the netwoik.

part of this work we provide a more realistic example of The fixed elementary unit playing the role of the “unitary
network in which the two growth processes coexist. This iscell” in crystal lattices, is a fan-shaped element constituted
obtained by rewiring a bosonic network. This complex inho-by a vertex node connected twother nodes. But the way in
mogeneous system has two classes of nodes with increasimghich this unit is attached is symmetric in the two networks.
and decreasing connectivity and is fully described by an the bosonic network the vertex of the fan is a new node
mixed statistic depending on two chemical potentiglss ( attached bym links to m of the N existing nodes of the
and ug). network. On the contrary, in the fermionic network the el-
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ementary unit is reversed and the vertex is one of the (IThe dynamics described by E() depends on the two con-
—1/m)N nodes at the interface, while tm nodes attached stantsug andug given, respectively, by the solutions of the
to it are new nodes of the network. Consequently both nettwo equations
works are constructed by the addition of the same elementary
unit attached in the two opposite directions.

The mean-field equation for the bosonic and fermionic 1=f dep(e)
network describes respectively, the evolution of the connec-
tivity k; and the survivabilityp; of the nodes. In the bosonic (6)
network, since every new link is attached to nddeith 1_&_ q 1 _[4
probability (1), and m new links are attached at each time m_ Ep(f)eﬁ(ewF)Jrl = | dep(e)ng(e),
step, the mean-field equation for the connectikitys given

eﬂ(ei’us)—l = j dep(e)nB(e),

by whereng(e) andng(e) indicate the bosonic and fermionic
occupation numbers, respectively. Thus, the evolution of
akK; e Peik each node of the network is completely determined by a
E:m—, ) number,ug or ug, defined as the chemical potentials of a
2 e‘BfikJ bosonic or fermionic system with specific volumeg=1
j

andvg=1+1/(m—1), respectively.

The quantum occupation numbeang(e) and ng(€) ap-
whereX e”#€ik; is the normalization sum of the probability pear spontaneously in the solution of the mean-field equa-
I17, Eq. (1). Symmetrically, in a fermionic network every tions (3) and(4) and assume a clear meaning when we look
node grows with probabilit)HiF given by Eq.(2). Conse- at the static picture of the networks. In fact, in the bosonic
quently, the probabilityp;(t) that a node is at the interface network the total number of links attached to nodes with

decreases in time following the mean-field equation energye, Ng(e€), is given by
i P Ng(e)=mtp(e)[1+ng(e)]. (7
=, (@)
Jt 2 eBeip. In the left-hand side of Eq. (7) the first and second terms
- I

represent the number of outgoing and incoming links con-
nected to nodes of energy Similarly, in the fermionic net-
where the denominator sum is needed in order to normaliz&0rk, the total number of nodes with energyfound below
the probabilityII’ . In both networks the resulting structure the interface Ne(e€) is given by the difference between all
optimizes the system by minimizing the “free energy” of f[he nodes of the network and those that are at the interface,
each node of the network — T log(k) (bosonic networkor €
€—T|logp| (fermionic network. In the two networks this
optimization is achieved in different ways. In the bosonic Ne(e)=mtp(e)[1—ne(e)]. ®
network the low-energy nodes are more likely to be awarde
a new link while in the fermionic network high-energy nodes i ; : .
are more likely to be removed from the interface. While 01€ I the single time evolution of the network. In fact, at
geometrically the two networks are related by the reversal ofme t, the probability 7 (e) of attaching a new link to a
the elementary unit, the mean-field equati¢@sand (4), in ~ 9€nefc node of energy (bosonic networkand the probabil-
the casem=1, are symmetric under time reversal{—t) Ity 7{)(€) that a generic node with energywill grow in the
and the change of sign of the energies— —¢;). Self-  fermionic network, are given by
consistent calculation$9,10] show that the connectivity

?\IeverthelessnB(e) andng(€) acquire also a very specific

k(t|e,t’) [the survivabilityp(t|e,t’)] of a node of energy (O J't o ok(tlest)
added to the network at tinté, follows a power law in time () 1dt ole=ev)— —pleing(e),
with an exponent dependent on its energy, (9)
vt ap(t,| e ,t")
wf(e)= [t st e P pa1-ne(o).

fg(e)
k(t|e,t’)=m(t—,) with fg(e)=e Alemus),

These results explain the interconnection between the dy-
(5 ; . e
fe(e) namics of the_networks and their self-similar aspect. In fact,
) with  fr(e)=eBle#r), for the bosonic network we have that the probability for a
new node to be linked to a node with energgonverges in
time to the same limit as the density of existing links point-
The time reversal of the two mean-field solutions impliesing to nodes of energy. Similarly, for the fermionic net-
here that the connectivity of the nodes always increases iwork we have that the probability that a node with enetgy
time in the bosonic networks while the survivability of the is chosen to grow converges to the same limit than the den-
nodes always decreases in time in the fermionic networksity of nodes in the bulk.

!

p(tlet’)=

t
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The occurrence of the two quantum statistics in the dethat the edges connected to high-energy nodes are more un-
scription of such networks is due to the fact that the networkstable, so that the probability that an edge connected to a
are growing by the continuous addiction of the unitary cellnode of energye; detaches from it is proportional tef€i.
but they try also to minimize the energy of the systdaythe  Consequently, the probability that a nodeill loose a link
choice of the node to which attach a new link in the bosonicecause of the rewiring is given by
network or by the choice of the growing node in the fermi-
onic networl. The stochastic model behind the construction I cePeik(t| € . ty), (13)
of the two networks always involves the choice of a node in
between a growing number of nodes, but while in the Cayleyvheret; is the time node added in the network ¢; is its
tree a chosen node is removed from the interface and cannefergy, and(t|; ,t;) is its connectivity at time. The con-
be chosen anymore, in a scale-free network there is no |imﬁjnUOUS equation describing the time evolution of the connec-
to the number of links a node can acquire. Consequently, thivities of the nodes is given by
Cayley tree is described by a Fermi distribution while the

scale-free network is described by a Bose distribution. dk(tle t) e Pk(t|et) , ePk(t]e t)
The framework of quantum statistics clarifies the relation ot =m -m

between the self-organized critical processes and scale-free > e Pak(tle ) > efak(tle; )

models. In fact, the fermionic network evolution in tfie . . (12)

—0 limit reduces to the invasion percolation dynamics on a
Cayley tree[16-18, a well known self-organized process with the initial condition
[19], while the bosonic network in thE—c limit reduces to
the Barabai-Albert model[20] for growing scale-free net- ko=Kk(t|€ ,t)=m+m’. (13
works.
To solve Eq(12) we assume that in the thermodynamic limit

lIl. MIXED STATISTICS IN SCALE-FREE NETWORK the normalization sumgg andZe, given by

WITH REWIRING

— — Be; ¢l
Our purpose here is to expand on the previous results and Zp= 2,: © Jk(t|€’ 1),
to discuss systems which are governed by additional pro- (14)
cesses on top of the simple growth discussed before. For
example, in real networks, in addition to the appearance of ZF:Z eBEjk(t|€J 1),
new nodes, one can observe new links as well, or rewiring of .

existing links. In fact rewiring of the link in a scale-free self-average and converge to their mean valdg), and

netv_vork has been used to model increasing disorder in MOT&ow linearly in time, with the asymptotic behavior given by
realistic network$21,22. We show that the presence of such {4 constantgg and ur, (Z¢)

additional processes can create a coexistence of Fermi and

Bose statistics within the same system. This implies that Zg—(Zg) . —mte Pre,
most real systems, for which such additional processes are (15)
present, exist in a mixed state, whose statistics can be de- Ze—(Zg) —m'telr,

scribed only by simultaneously involving both Bose and

Fermi statistics. It is not our purpose to model any particulatUsing Eq.(15), the dynamic equatiofil2) reduces to

system at this point. Thus next we discuss a simple system

that displays this mixed behavior. ak(t| € ,t;)
A simple example of mixed statistics is given by introduc- at

ing rewiring into a bosonic network. This network is con-

structed iteratively in the following way: at each time step aConsequently, we have found that the time evolution of the

new node andn links are added to the network. The new connectivityk(t|e; ,t;) follows a power law

node has an energychosen from a distributiop(e) and the

k(t|e,t;
:(e—ﬁ(fi—,ua)_eﬁ(fi—up))wl (16)

m links connect the new node preferentially to well con- t | fmix(®)
nected, low-energy nodes of the system. As in the bosonic k(tle,t")=ko| — 17
network without rewiring we assume that a new link is at- t
tached with probability with
11" ce™ Peik(t]€; 1) (10 fi(€)=e Al up) _ghle-up) (18)

to nodei arrived in the network at timé¢, with energye; The characteristic difference of this network from the
and connectivityk(t|€; ,t;) at timet. Furthermore we assume bosonic scale-free network is that the connectivity of the
also that at each time stap’ edges detach from existing nodes, due to the rewiring process, can either increase or
nodes and are rewired to the new node. Consequently, evedecrease in time. In fact,,i.(€) [defined in Eq(18)] change
new node will haven+m’ links attached to it. We assume sign at a threshold energy value
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+u 10* T
e =HBTHE (19)
2
Consequently, the nodes with energy s increase their 10° | /“"’M
connectivity in time while nodes with energy higher then the
thresholdeg, i.e., e>¢€g, have a decreasing connectivity. = 990992
. After substitutingk(tlei 1) from Egq. (17) with fmix(é) o8 10°
given by Eq.(18) into Eq. (12) and the sum ovef with an i
integral , we get the self-consistent equations for the chemi-
cal potentialug and ug, 0t | o3
m e_.B(f_MB) ; Z:gg
= f dep(e) : '
m+m’ 1—e Alere) 4 ghleup) 107 .
(20) 10’ 10’ 10'
m’ e:B(f_/’“F) t
— )
m+m’ J’ dEp(e’l_e—ﬁ(f—ug)+eﬁ(f—up)' FIG. 1. Dynamical evolution of the connectivity of nodes with

At the same time, the distribution of edges attached tOdn‘ferent energies. The connectivity of the nodes always follows a

. . " power law, increasing or decreasing in time depending on the en-
nodes with energy converges to the mixed statistics ergy e and the threshold value, .

. = ! t 1 k\
Mmi €)P(€) =M+ m)P(e) — T chtewn” P(k)=a(k—ko)k—f dep(e) —<—)
0J e<eg

(21) |fmix(6)| kO

—v(e)
while the numbemn_ (e)p(e) of the edges stochastically at- + 9(ko—k)LJ dep(e) _< _) (23
tached to the nodes of energyor the numben_(e)p(e) of KoJ e>e |[fmix(€)|\ Ko

the nodes detached from nodes with enetggre given by
with
e~ Ble—nep)

o Ple—ng) 1 gBle—mp)’ y(€)=1+Utyi(e) (24)
(22 \ith

n+(e)p(e)=mp(e)1

eB(€7 ME)

n_ =m’ ,
(e)p(e) p(f)l_e—ﬂ(f—ﬂs)+eﬁ(e—w) He>1 for e<e.,

25

respectively. The distributiom,;,(¢) appears as a natural 5 (29
candidate of a mixed statistics going from the—oo limit
where ng(€)*x1+ng(e) to the ug—o limit where | pa=tns * n{e)
N €) % Ne(€). SIT . &

We have simulated a network with=2 andm’=1 and -
uniform energy distributionp(e)=1 for e<(0,1), with
chemical potentialgtg=0.03, ur=0.51, andes=0.27. In
Fig. 1 we show the connectivity of the nodes of the network
with energy values above and below the thresheld
=0.27. The figure shows that nodes with eneegye, in-
crease their connectivity in time while nodes with eneegy _
> €5 decrease their connectivity in time. In Fig. 2 we report \ ",
the number of links attached to the nodes of eneegy "~ i e
Nmix(€), for a system size&\=10* with the data averaged 0w B s —
over 100 runs. In the same figure we report also the number : i
of nodes stochastically attached(tetached fromnodes of
energye, n (€) [n_(e€)].

The connectivity distributiorP (k) is given by the sum of

n_, (), n_(e),n_(g)

FIG. 2. The numben,,;, of edges attached to the nodes with

e . energye, the numben , (€) of the edges stochastically attached to
the probabilitiesP(k|€) that a node with energy has con-  he nodes with energy, and the numben_(e) of the nodes de-

nectivity k. Thus, ifk>m+m’ we have to sum over all the (ached from nodes with energyare plotted as a function of energy.
nodes with energy lower then the thresheld while if K The simulations have been obtained with a uniform energy distri-
<m+m’ the summation will be over the nodes with ener-pution in the interva[0,1]. The data for 1Dtime steps are aver-
gies higher than the threshold, aged over 100 runs.
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y(e)<1l for e>es. relation are not anymore equivalent, the first one reducing in
the thermodynamic limit to an identity. For this network, the
In the limit 8—0 all the nodes of the network evolve in the probability P(k) to find a node with connectivitk is given
same way with by

!

m—m 1
fmix( €)= 5 =A. (26) p(k)zE j dep(e)kgePle#F), (29

Thus, if A>0 every node increases its connectivity in timei.e., goes likeP(k)~k™ 1.
while if A<O all the nodes have decreasing connectivity. In
the cased =0 the mean-field equation describes a system in IV. CONCLUSIONS
which the connectivities remain constant in time.
On the contrary in théimit 8— o the difference between
nodes with different energy is strongly enhanced. L
We have to observe that asgoes from its highest value quanium Stalistics.

A=1/2 to negative values, the energy distribution goes from[. These twc: pargcula_r et\éolvmgt_networks arti rela:jed bybt_he
a pure Bose distribution to a mixed distribution with an in- Ime reversal evident in theé continuum equations describing

- r1i[1eir dynamics and in the reversed unitary unit by which the
two networks are built. This time reversal implies that the
connectivity increases in time while the survivability of each
node decreases in time as an energy-dependent power law.
H’he time reversal of the single process generates two differ-
nt structures with properties and dynamics only described
y the functionalsug and ug, at every temperaturd

In conclusion we have shown the symmetry between the
fermionic and the bosonic networks emphasizing the role of

tial g . Butitis impossible to reach the pure Fermi statistics
in this way. In fact, if we consider the limih=0, the num-

ber of links in the network is not increasing in time, and the
new nodes only acquire edges from the rewiring process. |
this case the connectivity of the nodes decreases expone

tially as =1/B. Having introduced these two limit simple cases and
k(t]e,t)) =koexd —e Alem#r(t—t;)] (27) having illustrated their symmetry we have shown that it is

possible to construct a new class of networks described by a

with the chemical potential defined by mixed statistics that can be applied to real systems where the

two different growth processes coexist.

N=f dep(e)m’eflemre), (29)
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