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Trapping thresholds in invasion percolation
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We give numerical estimates for the site percolation trapping thresholds for invasion percolation on various
three dimensional lattices. We find that in most cases the thresholds for invasion and ordinary percolation
coincide. However, for coordination numbers less than five the thresholds diverge. Since most rock networks
exhibit coordination numbers less than five the rules for simulating residual saturation in porous rocks must be
chosen carefully.
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[. INTRODUCTION the simple cubic grid Z=6) have been neglected until re-
cently due to the large computational effort necessary to
Percolation theory is useful to explain trapped residuacheck for trapping after each site is added. Few attempts
fluids in petroleum reservoiifd,2] and groundwater hydrol- have been made to correlate network studies to the true to-
ogy [3]. In the language of percolation theory “the fraction Pology of sedimentary rock. This is despite mounting evi-
of sites occupied” can be mapped to measurement of fluiglence that roclg networks exhibit much lower coordination
saturation(fraction of the pore space occupied by a fluid "umbers. loannidist.al.[14,15 measured the average coor-
phasg. Within this context of multiphase flow in porous me- dination numberz from serial sections of a sandstone core
dia, percolation theory has been applied in several variantgnd from stochastic porous media and fourd3.46 [14]
both as ordinary percolation and invasion percolation, anéndz=4.1 [15], respectively. Oren and co-workelrs6,17)
with and without trapping rules. A description of percolation developed a process-based reconstruction procedure which
with trapping can be found in several textbodks-8]. incorporates grain size distribution and other petrographical
There seems to be general consensus that slow “drairdata obtained from two dimensioné&D) thin sections to
age” (displacement of a wetting fluid by a nonwetting fluid build network models that are analogues of real sandstones.
in slow capillary dominated displacements in porous mediaThe average coordination number derived from the resultant
is well described by invasion percolation with trapping pore network isz=3.5 [17]. Direct measurement of a 3D
(TIP). Note that here “wetting” is used in the physico- pore structure via synchrotron x-ray computed microtomog-
chemical sense, which is different from some of the usage imaphy (micro-CT) [18] coupled with skeletonization algo-
percolation where “wetting” is used to label the introduced rithms[19] has allowed groups to directly measure the pore
phase[9]. o _ coordination number in rock networks; results indicate that
The correct rules for “imbibition” (displacement of a 74 o for most sandstones. Lindquital. [20] derived the

nonwetting fluid by a wetting fluidare still being debated ,,q0gical properties of a suite of Fontainebleau sandstone
[10,11], and probably depend on rate and the contribution Ofsamples with porosity varying from 7.5% to 22%. The av-
flow in thin films. Both ordinary percolation andnvasion

percolation with trapping, with variants, are candidates. fSf29€ coordination number varied from=3.37 at ¢
invasion percolation with trapping and ordinary percolation=7-5% t0z=3.75 at¢=22%. All measurements imply that
with trapping give the same results, then it may not matteghe coordination number of the network is significantly less
which rule to use and the debate is academic. For exampl#)anz=6. These studies highlight the need to consider trap-
Wilkinson and Willemserj12] studiedinvasionpercolation ~ Ping thresholds on a range of lattices. In this paper, percola-
with trapping on the simple cubic lattice and observed arfion thresholds with trapping are compared over a range of
invading phase trapping thresholdmf-0.66. PatersofiL3] coordination numbers to see if _TIP and TOP alvyays give the
studied ordinary percolation with trapping(TOP) on the Same results. The conclusion is thaf[ fpr coordination num-
same lattice and observed a trapping threshold pef bers greater than or equal to flve,_ this is the case. However,
~0.658. Within the numerical uncertainty these values aréelow a coordination number of five the thresholds diverge
identical, supporting the notion that the choice of model is2nd the choice of model is significant.

not significant.

The mean coordination numbeior mean number of con-

nections from each site, is an important concept in porous In simple ordinary site percolation, a given site of the
media. Estimates of trapping thresholds on lattices other thakattice has a probabilitp of being present or occupied and a

II. IMPLEMENTATION
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corresponding probability 2 p of being empty or vacant. © ©
There is a critical value op that separates the globally dis-
connected and globally connected states for an infinite lat- i i
tice. To perform an actual realization of the percolation pro- © O ©
cess, sites on a finite lattice may be preassigned values from
a uniform probability distribution so that the sites occupied i I
can be determined by choosing sites with values lessthan . -
and unoccupied sites have values greater fhahhe occu-
pied sites are then tested to determine if they span the lattice. © N o) N ©
In invasion percolation, at each step the site with the larg- I I
est valueadjacent to the invading clustés chosen to be the
next site to be occupied. Thus the number of sites available © ©
for growth is substantially limited, and the invading cluster is

always connected. For ordinary percolation this limitation Leyer
does not exist and the site with the largest value anywhere on O ) ~ @ O
the lattice can be chosen, so that the invading cluster is dis- I I I
connected.

Trapping rules can be applied to both ordinary and inva- %) %) )

sion percolation. In both cases, regions that become com-
pletely enclosed by invading fluid become excluded from
further occupancy by invading fluid. Trapping algorithms ; ©) @: (@): {
have been computationally very slow, because as each new
site is invaded a search of the entire lattice to label all con-

nected sites has been made. Recent developments by one of Q Q o
us (A.P.S) has led to an optimized trapping routifl].
Simulations are performed dnx L XL lattices. We mea- e S ) @)
sure the finite thresholg,(L) for the fraction of the invading
phase in two ways: when the defending fluid becomes dis- Layer 1 ©) = bond perpendicular to page
connected and no longer spans the lattice from inlet to outlet
(rule R;) and second, when all the defending fluid is trapped FIG. 1. NbO lattice with coordination number 4.

and no further invasion is possibleule 3,). Simulations on . ) )
lattices were performed for a range of lattice sizes up to (i) z=8. Data for the BCC lattice was generated on grids
2005. up to L=280. The trapping threshold and finite size scaling

exponent are given in Table I.

(iii) z=6. This lattice has been studied extensively previ-
ously[24]. The trapping threshold and finite size scaling ex-
A. Lattices ponent are given in Table I.

(iv) z=4. Data for the diamond lattice were generated on
lattices up toL=128. We found a good fit to Eql) for the
R, rule, but the data for th&k; condition did not lead to a
good finite size scaling fitsee Fig. 3 Values ofp, andy are
summarized in Table I. Data for the NbO lattice were gener-
ated on lattices up tb =64.

(v) z=3. Each node of the three-coordinat¥éd lattice
has 3 ten-rings surrounding each site. Trapping data for the

Ill. RESULTS

We consider invasion percolation with trappiigiP) on
seven latticed22]: The 12-coordinated hexagonally close
packed lattic6f HCP), the face-centered cubic latti¢€ECC),
the body-centered cubic latticeBCC), the six-connected
simple cubic latticgSC), the four-coordinated diamond and
NbO lattices[23] (Fig. 1) and the three-coordinated* lat-
tice [23] (Fig. 2.

(i) z=12. The data for the HCP and FCC lattices were
generated on lattices up to=128. Data for the HCP lattice
are summarized in Fig.(8). Finite size scaling was used to
determine the extrapolated value pf{L—«) by fitting to
the relationship

p=py(L)—AL™Y. (1)

The extrapolated values and fits to the relationship are given
in Fig. 3(b) and in Table I. For ordinary percolation one finds
that the exponeny=1/v where v is the correlation length
exponent. We note that the fit to Ed.) is very good yet the
resultant exponeny is very different from the ordinary per-
colation result. This deviation from i&/has been noted pre- FIG. 2. Perspective view of a unit in thé* lattice. Adjacent
viously [13,24]. vertical layers are offset.
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0.75k Ry tices. TIP thresholds for the diluted HCP latti¢dled triangleg and
CCP lattice(filled diamond$ are also shown. The line gives the
07 prediction of Galam and Maugép5].
Py v Y* lattice were generated on lattices uplte-214. We find
0.65} R, - a good fit to Eq.(1) for the R, rule, but the data for thé};
,};'f diamond condition again leads to a poor fit. In fact, thgL) for %R,
06| ‘*..*“ R, ) is not monotonic and exhibits a minimum value for interme-
F<o diateL=100. The finite size scaling fit fdR, rule is shown
0.5 . . . . . in Fig. 3(b) and the values op, andy are summarized in
o 002 004 006 008 01 012 Table 1.
(b) L In a recent paper the trapping thresholds for TOP on a

number lattices were showi3] to follow the formula of
Galam and Maug€25]:

pi=1—po[(d—1)(z—1)]" 3, 2

whered is the dimension angdy=1.33;a=0.59. A compatri-

son of this formula and the TOP data frdh3] to the TIP
thresholds given here are shown in Fig. 4. One observes a
strong deviation from the formula for coordination numbers
z<6. In Table Il we review the thresholds and compare to
the thresholds from TOP and OP. It is interesting to note that
for the low coordinated lattices, the threshold for TIP is
greater than the corresponding threshold {p.) for OP.
This result is suprising. It has been previously arg{i&?]

FIG. 3. Trapping thresholds,(L) for three different lattices
plotted againsta) L, and(b) L Y. The HCP lattice is shown with
circles, the diamond lattice is shown with diamonds, and e
lattice is shown with triangles. Unfilled and filled symbols are for
the R, andfR, rules, respectively. The lines show the fit to Eb)
with p, andy as defined in Table I.

TABLE |. Extrapolated thresholds and finite size scaling expo-
nent for invasion percolation with trappingTIP) on different

lattices.
Lattice z o y TABLE Il. Comparison of the_ thresholds for TIP with those of
TOP from Ref.[13] and the equivalent values from OP,<b,).
HCP@R,) 12 0.7816 0.83 The values ofp] °” and 1— p, for the Y* lattice are derived from
HCP@R,) 12 0.7821 0.99 the formulas derived in Paterspb3] and Galam and Maugép5],
FCC(R,) 12 0.780 0.99 respectively.
FCC(R,) 12 0.782 1.25 Lattice ortP oToP 1-p
BCC(R,) 8 0.727 1.06 ! ! ¢
BCC(R,) 8 0.729 0.87 HCP 0.7816 0.780 0.800
SC(R,) 6 0.6598 0.66 FCC 0.780 0.780 0.800
SC(R,) 6 0.6599 1.21 BCC 0.727 0.727 0.754
NbO(R,) 4 0.595 0.59 SC 0.6598 0.658 0.6884
NbO(R,) 4 0.593 1.17 NbO 0.593 0.537 0.578
Diamond{Rr,) 4 0.5830 1.08 Diamond 0.5830 0.529 0.5703
Y* (R,) 3 0.5734 0.97 Y* 0.5734 0.432 0.550
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that the sump,;+p.<1 for all lattices and thap;+p.—1

only asz—<. This is intuitively consistent because there are
always some sites which would be filled in an OP simulation
which never become available to the invading phase since
they are contained inside trapped defender clusters iAs
creases this trapping becomes more difficult as there are
more outlets for the potentially trapped defender to escape.

a(x)

B. Acceptance profile

To investigate this anomalous behavior in the observed
sum p{'"+pP”>1 on lower coordinated lattices, we con-
sider the acceptance profigr) [12] of the cluster, which is
the number of random numbers in the interyalr +dr]
which are accepted into the cluster expressed as a fraction of
the total number of random numbers available within the
interval. Defining the normalized acceptance proflgx)
wherex e[0,1] by

FIG. 5. Acceptance profiles for the cubic and diamond lattices.
The vertical lines denote the threshold of the defender in OP, 1
—p.=0.6884 for the cubic and -1p.=0.5703 for the diamond.

M max Note for the cubic lattice that ds—o the areaA, vanishes indi-
f a(r)dr cating Xhax=1—p. while A; remains finite, whereas for the dia-
;

3) mond latticeXa>1—p¢ -
Mmax
f a(r)dr
;

min

X:

probability of trapping the most favorable invasion sites is
significant. Second, the value &f,,, is significantly larger
gives the ranking of the sites independent of the distributiorthan the value of +p.. The trapping rule for the lower

of values chosen at each site. coordinated grid is forcing the invading fluid to enter sites
Following Wilkinson and Willemser12] we define the with larger random numbers than it would for an ordinary
following quantities: percolation system. Th&* lattice was also studied with
similar outcomes to the diamond lattice. Valuesxgf,, for
X , / Il three lattices studied are summarized in Table IlI
Ai(x)= | (1—-a(x’))dx’, 4 2 '
0
1 IV. SIMULATIONS ON DILUTED NETWORKS
Ay(X)= f a(x’))dx’, 5 . .
2%) X (a(x)) ® The TIP and TOP thresholds begin to diverge between 4

<z<6. As we know of no five-coordinated lattice in 3D,
which are, respectively, the probablllty that a random numbeaefining a more precise range becomes prob]ematic_ We
below xe[0,1] is not chosen and a random number abovetherefore, have developed a method that can be precisely
xe[0,1] is chosen. We also define controlled and allow us to consider a wider range of coordi-
nation numbers. The method we have implemented is sum-
marized by the following 4 part algorithfi26].

(i) Construct a 12-connected network based on either a
hexagonal close or a cubic close packing of spheres. In prin-
ciple any network with a high coordination number could be
used as a starting point.

(ii) Assign a coordination number to each site using val-
ues drawn from the specified coordination number distribu-
tion. Only z values between 3 and 11 can be generated. For a
network of uniformz assign the same value to each site.

Xmin=SUA X;A;1(X)—0 as L—ox], (6)
Xmax=INf[X;A5(X)—0 as L—o]. (7)

In ordinary percolation, the profila(x) is a trivial step
function; all small random numbers<1—p. are accepted
and all larger values rejected {in=Xmax=1—Ppc)- The ac-
ceptance profile for TIP on the cubic lattice is shown in Fig.
5. As L—x, the profile does not approach a step function
andx.,i,=0. This reflects the finite probability that any ran-
dom number can be trapped before it is itself invaded. A _
cutoff value ofx,,,,~0.6884 is determined by requiring the ~ TABLE Ill. Comparison of the cutofix,a, to 1—p, for three
best possible fit to a power law,=L~* [12]. As predicted lattices. The value of. for the Y* lattice is derived from the
in Ref. [12] Xma=1-p.; the trapping rule does not force 'ormula of Galam and Maug4e5].
the invader to occupy larger random numbers than it would

for ordinary percolation. It will however invade up to 1 Lattice Xmx 1P

—p. in order to reach the threshold of the defending fluid. SC 0.6884 0.6884
In Fig. 5 we also illustrate the acceptance profile for TIP Diamond 0.633 0.5703

on the diamond lattices witz<<6. This plot shows very Y* 0.683 0.550

strong differences to the results on the cubic grid. First, the
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0.75 TABLE IV. Extrapolated thresholdp, and finite size scaling
exponenty for stochastic diluted HCP and CCP networks along
with the threshold for corresponding undiluted lattigg®°® . The

0.7 undiluted lattices arez=3, Y*; z=4, diamond;z=6, SC. As
there is not an undiluted lattice with=5 the value forp;?"'°®(z
=5) was estimated from Galam and Mauger’s formula.

Py 0.65 . prcp yHeP ptCCP yCCP plattice
3 0.562 0.894 0.565 1.30 0.573

0.6 4 0.571 0.968 0.574 1.39 0.583
5 0.606 0.993 0.610 141 0.610
6 0.648 0.979 0.656 1.40 0.6598

0.55 L L L

0 0.1 02 0.3
L Y

S . . . number of sites in the network amds the number of sites at

FIG. 6. Finite size scaling of the thresholds for differemni- the interface[21,27 we find the network generation is a
luted off the HCP lattice. In all cases the fit to scaling is excellent.fgctor of 5—10 times slower than the TIP simulation. As the
network generation code is markedly slower and requires
more memory we limit the study to lattice sizes at a maxi-

mum of 9G.
(i) Add bonds to the diluted network one by one until,

with the exception of inconsistencies, all desired coordina-
tions have been obtained. ] ) ) )

(iv) Build the diluted network which contains only the ~ We f'fSt c_onS|der integrat and generate stochastic net-
bonds declared to be needed during stéije works with z in the range from 3 to 6 diluted from both the

The key part of the a|gorithm is Stagm) At the begin_ HCP and the CCP lattices. The Valueia{& 4, and 6 can

ning, all bonds are declared gray. During the dilution, bond$’® compared to the values obtained on the regular lattices

chosen to be part of the diluted network are colored whitedescribed in the previous section, and5 will allow us to

rejected bonds are colored black. investigate further where TIP and TOP diverge. Data are
The gray bonds are kept in a |ist, sorted according t(given in F|g 6. The Scaling of the data is in all cases excel-

priority. The priority function for the bont connecting the 1ent and the values gf; andy are summarized in Table IV.
sitess; ands, is We note that the values @ for the stochastic networks are

consistently=0.01 less than the corresponding thresholds on

1 the lattices.
pb=m, (8) We also consider systems with a range of nonintegral

1 2 To obtain a system with nonintegewe generate a stochas-
. . tic network with a fractiorf of the sitesz=n and (1—f) of
where the filling factoF (s) =1—ns/fs andns is the number  the sitesz=n+1. We generated a number of networks with
of bonds that the site still requires, whilgis the number of nonintegrakz in the range 3<z<6. Again the fit to Eq(1) is
gray bonds still connected to the site. For example, a site of; )| cases very good. The results are summarized in Fig. 4
desired coordination 6 with 2 bonds already declared whitg§yhere we plot all the TIP predictions, the TOP predictions
needs 4 more bonds and has 10 free bonds. from [13] and show the formula of Galam and Maug25].

This priority function is the proportional reduction in the The results indicate that the thresholds begin to diverge be-
degrees of freedom on the subnetwork consisting,0fs,  |ow z=5.

and their immediate neighbors that would result if the bbnd
was declared to be part of the diluted network. Selecting a
bond reduces the degrees of freedom available to the net-
work. The algorithm chooses the bond insertions that cause These results are significant because of the application to
the smallest reduction in the number of degrees of freedonthe prediction of residual phases in multiphase flow through

At each step, the bond with the maximum priority is cho- porous media. The importance of coordination number on
sen and colored white. The number of bonds needed and frebresholds at lower is particularly notable as recent mea-
on the adjacent sites are changed and then the priorities stirement$14—17,20,26indicate that the coordination num-
the neighboring bonds are shifted. If a site is filled com-ber in equivalent network models of sandstones ranges from
pletely, then all its gray bonds are colored black and remove8.2—4. The divergence of the thresholds for TIP and TOP at
from the priority list. This algorithm allows us to generate this range ofz highlights the importance of choosing the
stochastic networks for diluted lattices with a specific coor-correct rule for imbibitionTIP or TOP when modeling fluid
dination number. The execution time fbl, bonds required imbibition into many porous rocks. For rocks with-5 the
andM bonds initially on the network i8l,In(M). Compared choice of modeling rules is not significant, but unfortunately
to our IP simulation, which scales &kIn(n) whereN; is the  this type of rock may be in a minority fraction.

Results

V. DISCUSSION
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