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Trapping thresholds in invasion percolation
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We give numerical estimates for the site percolation trapping thresholds for invasion percolation on various
three dimensional lattices. We find that in most cases the thresholds for invasion and ordinary percolation
coincide. However, for coordination numbers less than five the thresholds diverge. Since most rock networks
exhibit coordination numbers less than five the rules for simulating residual saturation in porous rocks must be
chosen carefully.

DOI: 10.1103/PhysRevE.66.056122 PACS number~s!: 64.60.Ak, 47.55.Mh
ua
-
n
u
id
-
n
n
n

ai
id
ia
g
-

e
d

o

. I
on
tte
p

a

ar
l i

-
ou
h

-
to

pts
to-

vi-
on
r-
re

hich
ical

nes.
tant

og-
-
re

hat

one
v-

t
ss
ap-
ola-

of
the
m-
ver,
rge

e
a

I. INTRODUCTION

Percolation theory is useful to explain trapped resid
fluids in petroleum reservoirs@1,2# and groundwater hydrol
ogy @3#. In the language of percolation theory ‘‘the fractio
of sites occupied’’ can be mapped to measurement of fl
saturation~fraction of the pore space occupied by a flu
phase!. Within this context of multiphase flow in porous me
dia, percolation theory has been applied in several varia
both as ordinary percolation and invasion percolation, a
with and without trapping rules. A description of percolatio
with trapping can be found in several textbooks@4–8#.

There seems to be general consensus that slow ‘‘dr
age’’ ~displacement of a wetting fluid by a nonwetting flu
in slow capillary dominated displacements in porous med!
is well described by invasion percolation with trappin
~TIP!. Note that here ‘‘wetting’’ is used in the physico
chemical sense, which is different from some of the usag
percolation where ‘‘wetting’’ is used to label the introduce
phase@9#.

The correct rules for ‘‘imbibition’’ ~displacement of a
nonwetting fluid by a wetting fluid! are still being debated
@10,11#, and probably depend on rate and the contribution
flow in thin films. Both ordinary percolation andinvasion
percolation with trapping, with variants, are candidates
invasion percolation with trapping and ordinary percolati
with trapping give the same results, then it may not ma
which rule to use and the debate is academic. For exam
Wilkinson and Willemsen@12# studiedinvasionpercolation
with trapping on the simple cubic lattice and observed
invading phase trapping threshold ofpt;0.66. Paterson@13#
studied ordinary percolation with trapping~TOP! on the
same lattice and observed a trapping threshold ofpt
;0.658. Within the numerical uncertainty these values
identical, supporting the notion that the choice of mode
not significant.

The mean coordination numberz̄ or mean number of con
nections from each site, is an important concept in por
media. Estimates of trapping thresholds on lattices other t
1063-651X/2002/66~5!/056122~6!/$20.00 66 0561
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the simple cubic grid (z56) have been neglected until re
cently due to the large computational effort necessary
check for trapping after each site is added. Few attem
have been made to correlate network studies to the true
pology of sedimentary rock. This is despite mounting e
dence that rock networks exhibit much lower coordinati
numbers. Ioannidiset.al. @14,15# measured the average coo
dination numberz̄ from serial sections of a sandstone co
and from stochastic porous media and foundz̄53.46 @14#

and z̄.4.1 @15#, respectively. Oren and co-workers@16,17#
developed a process-based reconstruction procedure w
incorporates grain size distribution and other petrograph
data obtained from two dimensional~2D! thin sections to
build network models that are analogues of real sandsto
The average coordination number derived from the resul
pore network isz̄53.5 @17#. Direct measurement of a 3D
pore structure via synchrotron x-ray computed microtom
raphy ~micro-CT! @18# coupled with skeletonization algo
rithms @19# has allowed groups to directly measure the po
coordination number in rock networks; results indicate t
z̄<4.0 for most sandstones. Lindquistet al. @20# derived the
topological properties of a suite of Fontainebleau sandst
samples with porosity varying from 7.5% to 22%. The a
erage coordination number varied fromz̄53.37 at f

57.5% toz̄53.75 atf522%. All measurements imply tha
the coordination number of the network is significantly le
thanz56. These studies highlight the need to consider tr
ping thresholds on a range of lattices. In this paper, perc
tion thresholds with trapping are compared over a range
coordination numbers to see if TIP and TOP always give
same results. The conclusion is that for coordination nu
bers greater than or equal to five, this is the case. Howe
below a coordination number of five the thresholds dive
and the choice of model is significant.

II. IMPLEMENTATION

In simple ordinary site percolation, a given site of th
lattice has a probabilityp of being present or occupied and
©2002 The American Physical Society22-1
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corresponding probability 12p of being empty or vacant
There is a critical value ofp that separates the globally dis
connected and globally connected states for an infinite
tice. To perform an actual realization of the percolation p
cess, sites on a finite lattice may be preassigned values
a uniform probability distribution so that the sites occupi
can be determined by choosing sites with values less thap,
and unoccupied sites have values greater thanp. The occu-
pied sites are then tested to determine if they span the lat

In invasion percolation, at each step the site with the la
est valueadjacent to the invading clusteris chosen to be the
next site to be occupied. Thus the number of sites availa
for growth is substantially limited, and the invading cluster
always connected. For ordinary percolation this limitati
does not exist and the site with the largest value anywher
the lattice can be chosen, so that the invading cluster is
connected.

Trapping rules can be applied to both ordinary and in
sion percolation. In both cases, regions that become c
pletely enclosed by invading fluid become excluded fro
further occupancy by invading fluid. Trapping algorithm
have been computationally very slow, because as each
site is invaded a search of the entire lattice to label all c
nected sites has been made. Recent developments by o
us ~A.P.S.! has led to an optimized trapping routine@21#.

Simulations are performed onL3L3L lattices. We mea-
sure the finite thresholdpt(L) for the fraction of the invading
phase in two ways: when the defending fluid becomes
connected and no longer spans the lattice from inlet to ou
~rule R1) and second, when all the defending fluid is trapp
and no further invasion is possible~rule R2). Simulations on
lattices were performed for a range of lattice sizes up
2003.

III. RESULTS

A. Lattices

We consider invasion percolation with trapping~TIP! on
seven lattices@22#: The 12-coordinated hexagonally clos
packed lattice~HCP!, the face-centered cubic lattice~FCC!,
the body-centered cubic lattice~BCC!, the six-connected
simple cubic lattice~SC!, the four-coordinated diamond an
NbO lattices@23# ~Fig. 1! and the three-coordinatedY* lat-
tice @23# ~Fig. 2!.

~i! z512. The data for the HCP and FCC lattices we
generated on lattices up toL5128. Data for the HCP lattice
are summarized in Fig. 3~a!. Finite size scaling was used t
determine the extrapolated value ofpt(L→`) by fitting to
the relationship

pt5pt~L !2AL2y. ~1!

The extrapolated values and fits to the relationship are g
in Fig. 3~b! and in Table I. For ordinary percolation one find
that the exponenty51/n wheren is the correlation length
exponent. We note that the fit to Eq.~1! is very good yet the
resultant exponenty is very different from the ordinary per
colation result. This deviation from 1/n has been noted pre
viously @13,24#.
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~ii ! z58. Data for the BCC lattice was generated on gr
up to L580. The trapping threshold and finite size scali
exponent are given in Table I.

~iii ! z56. This lattice has been studied extensively pre
ously @24#. The trapping threshold and finite size scaling e
ponent are given in Table I.

~iv! z54. Data for the diamond lattice were generated
lattices up toL5128. We found a good fit to Eq.~1! for the
R2 rule, but the data for theR1 condition did not lead to a
good finite size scaling fit~see Fig. 3!. Values ofpt andy are
summarized in Table I. Data for the NbO lattice were gen
ated on lattices up toL564.

~v! z53. Each node of the three-coordinatedY* lattice
has 3 ten-rings surrounding each site. Trapping data for

FIG. 1. NbO lattice with coordination number 4.

FIG. 2. Perspective view of a unit in theY* lattice. Adjacent
vertical layers are offset.
2-2
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TRAPPING THRESHOLDS IN INVASION PERCOLATION PHYSICAL REVIEW E66, 056122 ~2002!
FIG. 3. Trapping thresholdspt(L) for three different lattices
plotted against~a! L, and ~b! L2y. The HCP lattice is shown with
circles, the diamond lattice is shown with diamonds, and theY*
lattice is shown with triangles. Unfilled and filled symbols are f
theR1 andR2 rules, respectively. The lines show the fit to Eq.~1!
with pt andy as defined in Table I.

TABLE I. Extrapolated thresholds and finite size scaling exp
nent for invasion percolation with trapping~TIP! on different
lattices.

Lattice z pt y

HCP(R1) 12 0.7816 0.83
HCP(R2) 12 0.7821 0.99
FCC(R1) 12 0.780 0.99
FCC(R2) 12 0.782 1.25
BCC(R1) 8 0.727 1.06
BCC(R2) 8 0.729 0.87
SC(R1) 6 0.6598 0.66
SC(R2) 6 0.6599 1.21
NbO(R1) 4 0.595 0.59
NbO(R2) 4 0.593 1.17
Diamond(R2) 4 0.5830 1.08
Y* (R2) 3 0.5734 0.97
05612
Y* lattice were generated on lattices up toL5214. We find
a good fit to Eq.~1! for theR2 rule, but the data for theR1
condition again leads to a poor fit. In fact, thept(L) for R1
is not monotonic and exhibits a minimum value for interm
diateL.100. The finite size scaling fit forR2 rule is shown
in Fig. 3~b! and the values ofpt and y are summarized in
Table I.

In a recent paper the trapping thresholds for TOP o
number lattices were shown@13# to follow the formula of
Galam and Mauger@25#:

pt512p0@~d21!~z21!#2a, ~2!

whered is the dimension andp051.33;a50.59. A compari-
son of this formula and the TOP data from@13# to the TIP
thresholds given here are shown in Fig. 4. One observe
strong deviation from the formula for coordination numbe
z,6. In Table II we review the thresholds and compare
the thresholds from TOP and OP. It is interesting to note t
for the low coordinated lattices, the threshold for TIP
greater than the corresponding threshold (12pc) for OP.
This result is suprising. It has been previously argued@12#

-

FIG. 4. Comparison of the thresholds for TOP and TIP. Circ
are for TOP from Ref.@13#, diamonds are for TIP on regular lat
tices. TIP thresholds for the diluted HCP lattice~filled triangles! and
CCP lattice~filled diamonds! are also shown. The line gives th
prediction of Galam and Mauger@25#.

TABLE II. Comparison of the thresholds for TIP with those o
TOP from Ref.@13# and the equivalent values from OP, (12pc).
The values ofpt

TOP and 12pc for the Y* lattice are derived from
the formulas derived in Paterson@13# and Galam and Mauger@25#,
respectively.

Lattice pt
TIP pt

TOP 12pc

HCP 0.7816 0.780 0.800
FCC 0.780 0.780 0.800
BCC 0.727 0.727 0.754
SC 0.6598 0.658 0.6884
NbO 0.593 0.537 0.578
Diamond 0.5830 0.529 0.5703
Y* 0.5734 0.432 0.550
2-3
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that the sumpt1pc,1 for all lattices and thatpt1pc→1
only asz→`. This is intuitively consistent because there a
always some sites which would be filled in an OP simulat
which never become available to the invading phase s
they are contained inside trapped defender clusters. Asz in-
creases this trapping becomes more difficult as there
more outlets for the potentially trapped defender to esca

B. Acceptance profile

To investigate this anomalous behavior in the obser
sum pt

TIP1pc
OP.1 on lower coordinated lattices, we con

sider the acceptance profilea(r ) @12# of the cluster, which is
the number of random numbers in the interval@r ,r 1dr#
which are accepted into the cluster expressed as a fractio
the total number of random numbers available within
interval. Defining the normalized acceptance profilea(x)
wherexP@0,1# by

x5

E
r

r max
a~r !dr

E
r min

r max
a~r !dr

~3!

gives the ranking of the sites independent of the distribut
of values chosen at each site.

Following Wilkinson and Willemsen@12# we define the
following quantities:

A1~x!5E
0

x

~12a~x8!!dx8, ~4!

A2~x!5E
x

1

~a~x8!!dx8, ~5!

which are, respectively, the probability that a random num
below xP@0,1# is not chosen and a random number abo
xP@0,1# is chosen. We also define

xmin5sup@x;A1~x!→0 as L→`#, ~6!

xmax5 inf@x;A2~x!→0 as L→`#. ~7!

In ordinary percolation, the profilea(x) is a trivial step
function; all small random numbersx<12pc are accepted
and all larger values rejected (xmin5xmax512pc). The ac-
ceptance profile for TIP on the cubic lattice is shown in F
5. As L→`, the profile does not approach a step functi
andxmin50. This reflects the finite probability that any ra
dom number can be trapped before it is itself invaded
cutoff value ofxmax.0.6884 is determined by requiring th
best possible fit to a power lawA2.L2m @12#. As predicted
in Ref. @12# xmax512pc ; the trapping rule does not forc
the invader to occupy larger random numbers than it wo
for ordinary percolation. It will however invade up to
2pc in order to reach the threshold of the defending fluid

In Fig. 5 we also illustrate the acceptance profile for T
on the diamond lattices withz,6. This plot shows very
strong differences to the results on the cubic grid. First,
05612
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probability of trapping the most favorable invasion sites
significant. Second, the value ofxmax is significantly larger
than the value of 12pc . The trapping rule for the lower
coordinated grid is forcing the invading fluid to enter sit
with larger random numbers than it would for an ordina
percolation system. TheY* lattice was also studied with
similar outcomes to the diamond lattice. Values ofxmax for
all three lattices studied are summarized in Table III.

IV. SIMULATIONS ON DILUTED NETWORKS

The TIP and TOP thresholds begin to diverge betwee
,z,6. As we know of no five-coordinated lattice in 3D
defining a more precise range becomes problematic.
therefore, have developed a method that can be preci
controlled and allow us to consider a wider range of coor
nation numbers. The method we have implemented is s
marized by the following 4 part algorithm@26#.

~i! Construct a 12-connected network based on eithe
hexagonal close or a cubic close packing of spheres. In p
ciple any network with a high coordination number could
used as a starting point.

~ii ! Assign a coordination number to each site using v
ues drawn from the specified coordination number distri
tion. Onlyz values between 3 and 11 can be generated. F
network of uniformz assign the same value to each site.

FIG. 5. Acceptance profiles for the cubic and diamond lattic
The vertical lines denote the threshold of the defender in OP
2pc50.6884 for the cubic and 12pc50.5703 for the diamond.
Note for the cubic lattice that asL→` the areaA2 vanishes indi-
cating xmax512pc while A1 remains finite, whereas for the dia
mond latticexmax.12pc .

TABLE III. Comparison of the cutoffxmax to 12pc for three
lattices. The value ofpc for the Y* lattice is derived from the
formula of Galam and Mauger@25#.

Lattice xmax 12pc

SC 0.6884 0.6884
Diamond 0.633 0.5703
Y* 0.683 0.550
2-4
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~iii ! Add bonds to the diluted network one by one un
with the exception of inconsistencies, all desired coordi
tions have been obtained.

~iv! Build the diluted network which contains only th
bonds declared to be needed during stage~iii !.

The key part of the algorithm is stage~iii !. At the begin-
ning, all bonds are declared gray. During the dilution, bon
chosen to be part of the diluted network are colored wh
rejected bonds are colored black.

The gray bonds are kept in a list, sorted according
priority. The priority function for the bondb connecting the
sitess1 ands2 is

pb5
1

11F~s1!F~s2!
, ~8!

where the filling factorF(s)512ns / f s andns is the number
of bonds that the site still requires, whilef s is the number of
gray bonds still connected to the site. For example, a sit
desired coordination 6 with 2 bonds already declared w
needs 4 more bonds and has 10 free bonds.

This priority function is the proportional reduction in th
degrees of freedom on the subnetwork consisting ofs1 , s2
and their immediate neighbors that would result if the bonb
was declared to be part of the diluted network. Selectin
bond reduces the degrees of freedom available to the
work. The algorithm chooses the bond insertions that ca
the smallest reduction in the number of degrees of freed

At each step, the bond with the maximum priority is ch
sen and colored white. The number of bonds needed and
on the adjacent sites are changed and then the prioritie
the neighboring bonds are shifted. If a site is filled co
pletely, then all its gray bonds are colored black and remo
from the priority list. This algorithm allows us to genera
stochastic networks for diluted lattices with a specific co
dination number. The execution time forNb bonds required
andM bonds initially on the network isNbln(M). Compared
to our IP simulation, which scales asNsln(n) whereNs is the

FIG. 6. Finite size scaling of the thresholds for differentz di-
luted off the HCP lattice. In all cases the fit to scaling is excelle
05612
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number of sites in the network andn is the number of sites a
the interface@21,27# we find the network generation is
factor of 5 –10 times slower than the TIP simulation. As t
network generation code is markedly slower and requ
more memory we limit the study to lattice sizes at a ma
mum of 903.

Results

We first consider integralz and generate stochastic ne
works with z in the range from 3 to 6 diluted from both th
HCP and the CCP lattices. The values atz53, 4, and 6 can
be compared to the values obtained on the regular latt
described in the previous section, andz55 will allow us to
investigate further where TIP and TOP diverge. Data
given in Fig. 6. The scaling of the data is in all cases exc
lent and the values ofpt andy are summarized in Table IV
We note that the values ofpt for the stochastic networks ar
consistently.0.01 less than the corresponding thresholds
the lattices.

We also consider systems with a range of nonintegraz.
To obtain a system with nonintegerz we generate a stochas
tic network with a fractionf of the sitesz5n and (12 f ) of
the sitesz5n11. We generated a number of networks wi
nonintegralz in the range 3,z,6. Again the fit to Eq.~1! is
in all cases very good. The results are summarized in Fi
where we plot all the TIP predictions, the TOP predictio
from @13# and show the formula of Galam and Mauger@25#.
The results indicate that the thresholds begin to diverge
low z55.

V. DISCUSSION

These results are significant because of the applicatio
the prediction of residual phases in multiphase flow throu
porous media. The importance of coordination number
thresholds at lowerz is particularly notable as recent me
surements@14–17,20,26# indicate that the coordination num
ber in equivalent network models of sandstones ranges f
3.2–4. The divergence of the thresholds for TIP and TOP
this range ofz highlights the importance of choosing th
correct rule for imbibition~TIP or TOP! when modeling fluid
imbibition into many porous rocks. For rocks withz.5 the
choice of modeling rules is not significant, but unfortunate
this type of rock may be in a minority fraction.

t.

TABLE IV. Extrapolated thresholdspt and finite size scaling
exponenty for stochastic diluted HCP and CCP networks alo
with the threshold for corresponding undiluted latticespt

lattice . The
undiluted lattices are:z53, Y* ; z54, diamond;z56, SC. As
there is not an undiluted lattice withz55 the value forpt

lattice(z
55) was estimated from Galam and Mauger’s formula.

z pt
HCP yHCP pt

CCP yCCP pt
lattice

3 0.562 0.894 0.565 1.30 0.573
4 0.571 0.968 0.574 1.39 0.583
5 0.606 0.993 0.610 1.41 0.610
6 0.648 0.979 0.656 1.40 0.6598
2-5
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