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We define a large class of continuous time multifractal random measures and processes with arbitrary log
infinitely divisible exact or asymptotic scaling law. These processes generalize within a unified framework both
the recently defined log-normal multifractal random wigl. Muzy, J. Delour, and E. Bacry, Eur. J. Phys. B
17, 537 (2000, E. Bacry, J. Delour, and J.F. Muzy, Phys. Rev6& 026103(2001)] and the log-Poisson
“product of cylindrical pulses”[J. Barral and B.B. Mandelbrot, Cowles Foundation Discussion Paper No.
1287, 2001(unpublishedl]. Our construction is based on some “continuous stochastic multiplicafias”
introduced in F. Schmitt and D. Marsan, Eur. J. Phys2®.3 (2001)] from coarse to fine scales that can be
seen as a continuous interpolation of discrete multiplicative cascades. We prove the stochastic convergence of
the defined processes and study their main statistical properties. The question of geqarieéysality of
limit multifractal processes is addressed within this new framework. We finally provide a method for numerical
simulations and discuss some specific examples.
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[. INTRODUCTION When the exponend, is linear inq, i.e., 3H, {,=qH, the
process is referred to asmonofractalprocess. Let us note

Multifractal processes are now widely used models inthat the so-calledself-similar processes(e.g., fractional
many areas including nonlinear physics, geophysics, oBrownian motions, Levy walksare a particular case of
econophysics. They are used to account for scale-invarianagaonofractal processes. On the contrary jfis a nonlinear
properties of some observed data. Our purpose in this articlieinction ofq it is referred to as anultifractal procesgor as
is to introduce a wide class of random measures and stochaa-process displayingultiscalingor intermittency.
tic processes with stationary increments that possess exact The scale-invariance propertit) can be qualified as a
multifractal scaling withoutany preferred scale ratioThis  continuousscale-invariance in the sense that the relation is a
construction generalizéand unifie$ the recently introduced strict equality for the continuum of scales<O<T. Alterna-
log-normal “multifractal random walk(MRW) model[1,2] tive “weaker” forms of scale-invariance have been widely
and the log-Poisson compounded “multifractal product ofused. All of them assume at least the asymptotic scale-
cylindrical pulses”[3]. Technical mathematical proofs are invariance relation
reported in the companion papet].

In the multifractal framework, scale-invariance properties m(q,l)~KqI§q, —0". (4)
of a one-dimensionallD) stochastic proces¥(t) are gen-
erally characterized by the exponerig which govern the Thediscretescale-invariance property adds strict equality for
power-law scaling of the absolute moments of the “fluctua-discrete scale valudg (with 1,—0", whenn— + )
tion” §X(t) of X(t) at any scalé up to a scaldT, i.e.,

1)=K%, n—+oo. 5
m(qg,l)=Kql%, VI<T, 1) m(d,ln)=Kglpd, n (5)

wherem(q,!) is defined as the expectatiéiom now on, the The image implicitly associated with a multifractal pro-

symbol E(.) will always refer to the mathematical expecta- C€SS is a random multiplicative cascade from coarse to fine
tion): scales. Such cascading processes can be explicitly defined in

very different ways ranging from the original construction
m(q,l)=E[]§X(t)]9]. (2)  proposed by Mandelbrot in its early worl6] to recent
wavelet-based varian{§]. Though these different construc-
The so-called “fluctuation’s; X(t) can be defined in vari-  tions do not lead to the same objects, they all aim at building

ous ways, the most commonly used definition being a stochastic proces§(t) which fluctuations, | X(t) at a scale
Nl (wherel is an arbitrary scale smaller than the large scale
SX(D)=X(t+1)=X(V). 3 T and\<1) is obtained from its fluctuatiod X(t) at the
larger scald through the simple “cascading” rule
*Electronic address: muzy@univ-corse.fr law
Electronic address: emmanuel.bacry@polytechnique.fr OuX(t) =W\ X(1), VI=T, (6)
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where W, is a positive random variable independent>f so-called multifractal random walk processes as limit pro-
and which law depends only an cesses based on discrete time random walks with stochastic
In the multiplicative construction by Mandelbrds]  log-normal variance. Independently, Barral and Mandelbrot
[which log-normal variant was originally introduced by Ya- [3] have proposed a new class of stationary multifractal mea-
glom [7]], a positive multifractal measurs!(dt) is built, ~ sures. Their construction is based on distributing, in a half-
i.e., X(t)=M([0;]) is an increasing process and the fluctua-Plane, Poisson points associated with independent identically
tion 6,X(t) at scald is defined by Eq(3). In the more recent distributed(i.i.d.) random weights and then taking a product

wavelet-based constructiolt) is a process, not necessar- of the.se weights over cqmcal domains. I.n the same time,
ily increasing, and the fluctuatio X(t) is defined as the Schmitt and Marsan considered an extension of discrete cas-

wavelet coefficient at scalband timet [6]. Such cascade C2d€S !0 a continuous scale framewpik)] and introduced
infinitely divisible stochastic integrals over conelike struc-

: . i di H A ﬁires similar to those of Barral and Mandelbrot. However,
invariance properties as expressed in €. However, apar they did not consider any continuous time limit of their con-

from self-similar processes which are monofractal processeg,ction nor study its scaling properties as defined by Eq.
with continuous dilation-invariance properties, all cascadetl)_

processes involve some arbitrary discrete scale ratio and con- |y this paper, we propose a model that is based on the

sequently only have discrete scale-invariance propeifigs  stochastic approach developed in Réf9] and that unifies
(5)]. Indeed, they rely on a “coarse to fine” approach con-a|| previous constructions within a single framework. Start-
sisting first in fixing the fluctuations at the large scaleand  ing from original discrete multiplicative cascades, we will
then, using Eq(6) iteratively, deriving fluctuations at smaller use a conelike construction as in R€f3,19] in order to get
and smaller scales. However, thigl} time-scale half-plane rid of discrete scale ratios and to consider any log infinitely
is very constrained: one cannot choose fregbf(t) at all  divisible multifractal statistics. We will show that this allows
scales and times. Thus, the cascade is generally not builis to build a very large class of multifractal measures and
using the whole time-scale half-plane but only using a sparsprocesses[including original MRW [1,2] and Barral-
(e.g., dyadi¢ grid in this half-plane. Consequently an arbi- Mandelbrot multifractal measurg8]] for which both long-
trary scale ratige.g.,A=1/2) is introduced in the construc- range correlations and multiscaling properties can be con-
tion. The continuous scale-invariance propefty is thus trolled very easily.
broken and replaced by the weaker discrete scale-invariance The paper is organized as follows. In Sec. Il, we review
property(5) with I,,=\"T. Moreover, as a consequence, thethe discrete multiplicative cascades in order to naturally in-
fluctuationss; X (t) in these approaches are no longer stationtroduce the notion of stochastic integral over a conelike
ary. structure in some “time-scale” half-plane. We then define a
Let us point out that despite the potential interest of stoclass of log infinitely divisible stationary multifractal random
chastic processes with stationary fluctuations and continuouseasuresMRM) which statistical properties are studied in
invariance-scaling properties, until recenfly—3], explicit ~ Sec. lll. In Sec. IV, we define the log infinitely divisible
constructions possessing such properties were lacking. Let usultifractal random walks. We show how their scaling prop-
assume that one can build a continuous cascade pri¢gss erties can be inferred from the associated MRM. In Sec. V
satisfying Eq.(6) with a continuous dilation parameter As  we address some questions related to numerical simulations
first pointed out by Noviko8], if such a construction is and provide explicit examples. In Sec. VI, we discuss some
possible, a simple transitivity argument shows thatWjn  links of the present work with previous connected ap-
must have an infinitely divisible law: its characteristic func- proaches. Conclusions and prospects for future research are

tion is of the formG, (q)=\"(@. One can then easily prove "eported in Sec. VII.
that m(g,\)=m(q,))AF7'D, and  consequently ¢,

= F(—iQ). Continuous cascade statistics and |Og infinite di- 1l. FROM DISCRETE MULTIPLICATIVE MEASURES

VISIbI'Ity have been the subject of many works with applica- TO MULTIFRACTAL RANDOM MEASURES

tions in various domains ranging from turbulence to geo-

physics[8—16]. In the caseW,=\" is deterministic, one In this section, we provide some heuristics about how one

gets {;=qH and thereforeX(t) is a monofractal process. can build a positive stationary stochastic measMredt)
This is the case of the so-called self-similar processes. Thith continuous scale-invariance properties, i.e., such that
simplest nonlineari.e., multifracta) case is the so-called the associated increasing procest)=M([0t]) satisfies
log-normal cascade that corresponds to a log-normal law fokEd. (6) with a continuous dilation paramet&r

W, and thus to a paraboli, spectrum. Other well known
log infinitely divisible models often used in the context of

fully developed turbulence are log-Poissph7] and log- ) _ L .
Levy [18] models. For the sake of illustration, let us start with simple dis-

From our knowledge, among all the attempts to builgcrete multiplicative cascades. In the original construction, as
multifractal processes with continuous scale invariance propProPosed by Mandelbrot, one builds the meadur@t) as
erties and stationary fluctuations, only the recent works byhe limit of a sequence of stochastic measuvks, indexed
Bacry et al. [1,2] and Barral and Mandelbrd8] refer to a by a discrete scale parametge=T\" (we choose\ =1/2).
precise mathematical construction. Baetyal. have built the  The measureM, , at the stepn of the construction, has a

A. Discrete multiplicative cascades
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R A, ;(000) A,(010) (a) wherelSo s, is of sizeT2™ " and is one of the two “sons”
] of the intervalls s  andWg s are iid. Since the
| M, construction is invariant with respect to a rescaling by a fac-
tor 2, the limit measureM (dt) will then satisfy the same
scale-invariance property and will be multifractal in the dis-
crete sense of E@5). There is a huge mathematical literature
devoted to the study of such a construction and we refer the
| ! reader to Refs[20—23 for rigorous results about the exis-
% X ' tence, regularity and statistical properties of Mandelbrot cas-
cades. In physics or other applied sciences, as recalled in the
M, Introduction, the previous constructi¢and many of its vari-
antg is considered as the paradigm for multifractal objects
and has been often used as a reference model in order to
reproduce observed multiscaling. But because of its lack of
continuous scale invariance and translation invariance, such
models cannot be fully satisfactory in many contexts where
At A, L) (b) _the considered phenomena possess some degree of stationar-
ity and do not display any preferred scale ratio.

-
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B. Revisiting discrete cascades

In order to generalize Eq7) to a continuous framework
one can try to perform the limik—1 in the discrete con-
struction as in Ref[19]. Another way to proceed is to rep-
resent a Mandelbrot cascade as a discretization of an under-
lying continuous construction.

For that purpose, we suppose that the random weights
Ws, .5, in the cascade are log infinitely divisible. For a

continuous cascade, this choice can be motivated as follows:
Let us suppose that the large scale density(dt) is equal
(or proportional to the Lebesgue measudé. We would like
to define iteratively the densitied,(t), for all I<T. To go
from resolutionl’ to resolutionl<|’, we thus write

FIG. 1. Defining a continuous cascade interpolating Mandelbrot
cascades(@ Mandelbrot cascade: One starts from the coarse scale
T and constructs the sequeride that is resolved at scalE2™" by
iterating a multiplicative rule along the dyadic tree. At each con- . . ) .
struction step, the random multiplicative faci s can be rep- WherQW,,|,(t) IS a po:5|t|ve stationary discrete random pro-
resented as the exponential of the integral of an infinitely divisibleC€SS independent &/ (t). Let us define
noise over a square domain indicated by hatched @®t€ontinu-

Scalel ™

T

o
]

T/4 |

T/8

Time t

law

M (t) = Wy ()M (1), VIsI’, (8

ous cascade conical domains obtained as linear smoothing of the w(t)=InW,1(1). 9)
hatched domains ifa). Such cones are involved in the definition of

the proces&)273(t). Thusy one gets

uniform density on successive dyadic intervals of dige oi(t) (1)

The idea is to build the sequendé, so that it statisfies Mi(t)dt=e*""M+(t)dt=e”dt. (10)

(when n is varying a scale-invariance property. Theh ) ) .

measure is obtained from the¢ 1)th measure by multipli- BY itérating Eq.(8), we see that+(t) can be obtained as a
cation with a positive random procegwhich law does not continuous product” of positive i.i.d. random varlaples.
depend om. One can naturally index the dyadic intervals COnsequentlyy(t) can be written as the sum of an arbitrary

along the dyadic tree using a kneading sequesge . . s,} number of i.i.d. random variables. This is precisely the defi-
wheres,=0 (s,=1) if, at “depth” i, the interval is on Qhe nition of an infinitely divisible random variabl&4]. In order
I 1 ’ ’

left (on the right boundary of its parent interval. Thus, for to go from discrete to continupus cascades, it is t.here_fore

instance, one gets the following dyadic intervalg; —natural to assume that, in the discrete situation,

:[07271], |1:[27171]1 |00:[01272]v |Ol:[272,271], and w|n(So .. 'Sn)zln(Hi:OWSO...Si) IS |nf|n|tely divisible. A

so on. With these notations, the multiplicative rule repsgee  “simple” way of building such an infinitely divisible process

Fig. 1(a)] o is to represent it by a stochastic integral of an infinitely
_ divisible stochastic 2D measure(dt,dl) over a domain

Mln(lso...sn)_Wso...snMInfl(IsO...snfl)v ( Aln(SO---Sn):
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C. Towards multiplicative cascades with continuous scale
@ (So .. -Sn)=P[A (So...80)]= L‘ s )P(dt.d|)- invariance
1,80 . . .
" (12) We would like to apply the previous scheme in the case

the construction is no longer indexed by a discrete scale pa-
rameterl, but by a continuous scale parameter

The stochastic measur¥(dt,dI) is uniformly (with respect In order to “interpolate” smoothly this construction both

to a measurqu(dt,dl)) distributed on the time-scale half- in time and scale, one can interpolate the previous union of
planeS*={(t,1), te R, e R*}. ' P P

Let us recall that, by definitiohjf P(dt,dl) is a stochas- similar squaresA; (so - - -sn) [EQ. (14_)] +usmg domains
tic infinitely divisible measure uniformlywith respect to a “i(t) where ¢,1) can take any value i& ™. In order the
measurew(dt,dl)) distributed onS*, then, for any two limit measureM (dt)=Ilim,_oM,(dt) to be stationary, it is

u-measurable setd and A’ such thatu(A)=u(A'), then clear that one has to choose the gitt) to be “translation
P(A) and P(A’) are identically distributed random vari- Invariant”in the sense that
ables which characteristic function is nothing but (t+rl) e At+netl) e At), Y (15)

E(e'PP(A) = ge(PI(A) (120  One thus just needs to specify the s§(0). A “natural”
choice(though, as we will see in Sec. Il F, it only leads to
where o(p) depends only on a centering paramateand asymptotlc, and not exact, scaling propeitssems to be the
the so-called canonical kg measures(dx) which is asso- conical sefsee Fig. 1b)]
ciated withP. The general shape @f is described by the _ N1 =1 — (1Y 2<t<f(l’
celebrated Ley-Khintchine formulal24,26: A== =F(2<t<t(17/2} - (16
wheref(l) is the function

_ e'PX—1—ip sinx | for |<T
(p(p)=|mp+f —Zv(dx), (13 fl)= or I< an
X 0 for I=T,
with [ Y p(dx)/x?<oo andf;cy(dx)/xz<oo for all y>0. in case, we get exactly the construction originally proposed,

The setsA, (s ...s,) associated with each of the"2 using a densification argument, by Schmitt and Marsan in
n

values , _o-n(So - - .S,) in Mandelbrot construction can Ref. [19]. Other choices for the function(l) will be dis-
n cussed in Sec. Il F.

be chosen Qﬁtura,”(yk,%s the union of all similar squares ™ ot 5 remark that the choice of the linear conical shape
ls,. .5 X[T275,T2 ], nsk=1: s : , ’ .
0 Sk f(1)=1 is consistent with the interpretation of the parameter
| as a scale parameter. Indeed, the value of the medsure
A (Sg...80)=Up_ols ¢ X[T27KT2 ("1, around some positiort4,!) in the half-planeS™* influences
n - 0" >k . .
(14) the values of the measure over the time intefugh1/2,t,
+1/2], i.e., exactly over a time scale

The sets4 ,-3(000) andA ,-3(010) are indicated as hatched

domains in Fig. (a). Since the\NSo_,_Sn’s are i.i.d., we want lll. STATIONARY MULTIFRACTAL RANDOM

MEASURES
to choose the measue(dt,dl) such that the measure of
each squard . s X[T2 " T2 (" Y] is a constant. The A. Defining MRM
natural measure to choose jg(dt,dl)=dtdl/I2. It is the According to the arguments of the previous section, we

natural measure associated with the time-scale pfhen  thus propose the following definition for the class of log
the sense that it ifleft) invariant by the translation-dilation infinitely divisible multifractal random measures. Let us in-
group. troduce an infinitely divisible stochastic 2D meas&reini-
Fixing w(dt,dl)=dtdl/I? one then get¥n, formly distributed on the half-planeS™={(t,l),teR,l
eR*} with respect to the measupe(dt,dl)=dtdl/I? and
5= (n—1) o0 associated with the vy measurev(dx). Let us recall that
J o1y T J |~2dl J dt=1/2 for any setACS™, P(A) has an infinitely divisible law
lsp...sp (T2 T2 70 7 2 whose moment generating function is

-n

0

P(A)) — pe(—ip)u(A
and thus, from Eq(12), Wy, s are i.i.d.: we recover ex- E(ePP)=e#(7 1P, (18)

actly the Mandelbrot construction. whereg(p) is defined by Eq(13). Henceforth, we define the
real convex cumulant generating function, as, when it exists,

YWe refer the reader to Reff25] for a rigorous definition of the y(p)=e(—ip). (19
so-called “infinitely divisible independently scattered random mea-
sure.” Let w|(t) the stationary stochastic process defined by
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FIG. 2. Conical domairfEq. (22)] in the (t,I) half-plane in-
volved in the definition ofw, [Eq. (20)].

w|(t)=PLA(1)], (20
where A(t) is the 2D subset of * defined by
A@)={’ 1", I'=1,—f")r2<t —t<f(')/2},
(21)
wheref(l) satisfies
I for I<T
=11 for 1=7. 22

As it will be shown in the following sections, the choice of
the large scale behavid(l)=T for |=T is the unique one

PHYSICAL REVIEW E66, 056121 (2002

Since a simple change in the mean of the stochastic measure
P would lead to the same measure up to a deterministic mul-
tiplicative factor, we will assume, without loss of generality,
that ¢ satisfies

%(1)=0. (26)

We can consider some generalizations of the previous
construction. The first one consists in changing the function
f(1), i.e., to change the shapg the measur® is integrated
on. The second one consists in changing the measure
p(dt,dl), i.e., to change the way the measiés distrib-
uted in the half-planeS . Actually, from Eq.(12) one can
easily show that the construction only depends on the func-
tion w(A4,), consequently, changing the shapef(if) basi-
cally amounts changinge(dt,dl). A simple example that
illustrates such a freedom is the chojeédt,dl) =dtdl, i.e.,

m is nothing but the 2D Lebesgue measure. In that case,
m(A)) remains unchanged if one choosg$)=1/ in the
definition (22). The parameter is no longer a scale but can
be interpreted as a frequency and th8$ is the time-
frequency half-plane. Therefore, in the following sections,
without loss of generality, we choose to fix(dt,dl)
=dtdl/I? (i.e., to work within the time-scale half-plar")

and we will discuss, in Sec. lll F, the consequences which
rise from other choices than E2) for the functionf(l).

B. Existence of the limit MRM M (dt)

In Ref. [4], we prove, within the framework of positive
continuous martingales that, almost surdly,converges to a
well defined limit measure wheh—0". Moreover, we
prove that if '(1)<1 then there exist¥>0 such that
Yy(l+e)<l and the moment of order e,

that ensures the convergence of the construction and the eé-(Ml([Ot])Hs) is finite. Then, using the fact thag(1)

act scaling of the limit measure. The conelike domait)
is indicated as a hatched domain in Fig. 2.
We finally define the stochastic positive meashtgdt)
as
M, (dt)=e(dt, (23

meaning that for any Lebesgue measurable sebe has
M|(I)=fe“"(t)dt. (24)
|

The MRM M is then obtained as the limit measutbe

meaning and the existence of this limit will be addressed i

the following section

M(dt)= lim M,(dt).

|—0"

(29

=0, it is straightforward to prove that

E(M([0t])= lim E(M([0t]))=1.

|—07

(27)

Consequently the limit measuid (dt) is nondegenerated
(i.e., different from zerp The overall proof is very technical
and, for this reason, has not been reproduced in this paper.
However, if /(2)<1, one can provdsee Appendix A
that supE(M,[0t]%) is bounded and that the sequence
M, (dt) converges in the mean square sense. Again, using the
fact thaty(1)=0, it follows thatM(dt) is nondegenerated.
Let us note that, as explained in Sec. 1l D, one can prove
4] that assuming/(2)<1 basically amounts assuming that
E[M([0t])2]<+ce).

C. Exact multifractal scaling of M (dt)
In order to study the scaling properties of the limit mea-

2Since the paths ab(t) are continuous to the right and limited to sureM (dt), let us establish the scale invariance properties of

the left, the integra(24) is well defined[see Ref[4]].

the processy(t).
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1. Characteristic function ofe,(t) 2. Multifractal properties of M(dt)
Let ge N*, tq=ty,t5, ... tg with t;<st,< ... <t, and The multifractal scaling properties of the limit MRM
Pq=P1.P2, - .. ,Pq. The characteristic function of the vector M(dt) result from the scale-invariance property of the pro-
{oi(tn) }1=m=q is defined by cessw(t) that is itself a direct consequence of previous

exponential expressiof83) for the characteristic function of
, the processw, and the particular shape of the conical do-
Qi(tq.pg)=E eXpmzzl IPmPLA (tm)] |- (28) " mains leading to expressid81). Indeed, using these equa-
tions together with Eq(36), it can be proven tha¥n,
Relation (18) allows us to get an expression for quantitiesVty, . ..the[0,T]", Vp;...p,eR", one has
like E[exp=_,anP(Bm)] where {B.,}, would be disjoint
subsets ofS™ and a,, arbitrary numbers. However, the E
{A/(tm)}m in Eq. (28) have no reason to be disjoint subsets. Qui(Mg.pg) =X~ PIQi(tq.Pg).
We need to find a decomposition £#(t,) }, onto disjoint
domains. This is naturally done by considering the differentt follows that, for \<1, the processy,(t) satisfies, forl

intersections between these domains. e€[0,T], the following invariance property:
Let us define the cone intersection domains as
law
At =A(H)NA(L) (29) {on(N) = {0+ @ (D}, (37)
and where (), is an infinitely divisible random variablé.e., it
does not depend ot) which is independent ob,(t) and
pi(t)=u[A O] (300 which infinitely divisible law is defined by
Using the definition of4,(t) with the shape of(l) as given E(ePh)=) "¢, (38)

by Eq.(22), the expression fop,(t) reads
We deduce the following scale-invariance relationship for

In II +1—|E if t<I the sequence of measurg([0t]):
At t
pi()= In(I) if T=t= @D {Mm([o,xt])}t:H e‘”*"“)dUJ 7\“ e“*'(”“)dU}
t 0 t 0 t
0 if t>T law t
=)\egkrje‘“'(“)du} =xe™{M,([0t])}
Notice thatp,(t) satisfies the remarkable propeftpr t<T 0 ¢
and\<1):
=W {M([0tD}, (39
pri(M)=pi (1) —In(N). (32

whereW, = \e‘ is independent of M, ([OAt])};.
In Ref.[4], Q(tq.p,) is computed using a recurrence on By taking the limitl—0", one gets the continuous cas-

g- We obtain the following result: cade equation for MRM as defined in E®):
a | law
Qg P = e 2 ), 33 {M([OXMD} = Wy {M([0t])};, VAe[01], (40)
where where InfV,) is an infinitely divisible random variable inde-
pendent ofM([0t])};.

a(j K=o )+ o(Frsri )= o 1) —o(Ferss) The exact multifractal scaling follows immediately.q
' J 1 o T4 (34) eR, Vt<T, we get

and E[M([04])9]=Kqt4s, (41)

é for ke were the multifractal spectrum and the prefactor read
Pm TOr K<)

M= m=k | @9 La=a-¥(a), (42
0 for k>j.
=T ¢ q
Moreover, let us remark that Kq=T"*EIM(O.T]. @3
q q Let us notice that the mome&{ M ([0,t])9] in Eq. (41) can
2 2 a(j,k)=¢ E pk) (36) be infinite. Conditions folE[ M ([0,t])%] to be finite will be
j=1k=1 ’ k=1 discussed in Sec. Il D.
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3. Multiscaling of correlation functions (i) Deterministic caseThe simplest situation is when the
The exact(multi)scaling law (41) for the absolute mo- Levy v(dx) measure i_s 'identically zero: Th.is case corre-
ments can be easily extended, along the same liney to sponds to the self-similar, monofractal situation where
points correlation functions. Indeed, let us define the n-point’(P)=Pm. The constraing/(1)=0 impliesm=0, and we

correlation function, when it exists, as thus get the Lebesgue measure. , ,
(i) Log-normal MRM The log-normal MRM is obtained
Cn(te, - tai71, T Pey - PR) =E[M([Hg, 1y when the canonical measures attributes a finite mass at the
origin: v(dx)=A?8(x)dx and A>>0. From Egs.(13) and
+r )P M([t t+ 7], (449 (19, the cumulant generating function is that of a normal

distribution: (p)=pm+A2p?/2. The condition(1)=0
implies the relationshipn=—\?/2. The log-normal, spec-
trum is a parabola:

where 7,>0, andt,+ n.<t,. 4. It is easy to show that if
t,+7,—t,<T, thenC, is an homogeneous function of de-

greelsy,:
A%\ A?
ColiMt N7 {ph) =M PCr({tidi{ s {p}) (49 5!;‘=q(1+ > |- 7q2- (5
with . . .
Let us note that the so-obtained increasing prod&g0,t])
n is the same as the increasing MRW process mentioned in the
p= 2 Pk - (46) conclusion of Ref[2]. This similarity will be further dis-
k=1 cussed in Sec. VIAL.

(iii) Log-Poisson MRMWhen there is a finite mass at
some finite valuexy=In(8), of intensity A%=y(In 8>
v(dx)=A28(x—X,). The corresponding distribution is Pois-
son of scale parametey and intensity Ing): ¢(p)=p[m
—sin(In(8))]—A1—6%). The log-Poisson{, spectrum is
Let us note that, ifj>1, therefore exactly the same as the one proposed by She and

E[M([04])%]= E[(M([0/2]) + M([t/2]))°] Leveque in their cascade model for turbulerid€]:

This equation extends the scaling l&#il) for the moments
to multipoints correlation functions.

D. Algebraic tails of probability density functions

Ip_ ’
=2E[M([0./2])9]. {E=aqm’' +y(1-69), (52
Using the multifractal scaling41), one getsl®a=2(I1/2)%a  wherem’ is such that{;=1. Notice that in the limits
leading to =21 “a. It follows that —17, ¥(In 5>—=\?, one recovers the log-normal situation.
In the original She-[eeque model,y=2 and§=2/3[17].
Kg<oe={=1. (47) (iv) Log-Poisson compound MRMVhen the canonical

measurer(dx) satisfiesf v(dx)x ?>=C< [e.g., v(dX) is
concentrated away from the oridjrone can see thdt(dx)
=p(dx)x ?/C is a probability measure. In that case,

Thus, ifg>1, theq order moment is infinite iff;<<1. In
Ref.[4], we show that the “reverse” implication is also true,
ie.,

[ 1=Ky <. (48 #(p)=im'p+C [ (7= 1)F(ax

Let us notice that this infinite moment conditigg<1, q

>1, is exactly the same as for discrete multiplicative casiS exactly the cumulant generating function associated with a
cades established in Ref20-27. Divergence of moments Poisson process with scalzand compound with the distri-
for multifractals have also been discussed in d%14]. butionF [24]. Let us now consider a random variablésuch

Therefore, if there exists some valuef], <« such that that IlW is distributed according t&(dx). It is easy to see
that feP*F(dx)=E(WP). It turns out that the log-Poisson

{q =1 (49 compound MRM has the following multifractal spectrum:
then, {P°=gm—C[E(W%) —1]. (53

ProfM([0t])=x}~x"% when x—+w=. (50)  Thijs is exactly the spectrum obtained by Barral and Mandel-
brot in their construction of “product of cylindrical pulses”

[3]. The similarity between our construction and Barral-
Mandelbrot construction will be further discussed in Sec.

The pdf of the measur®! ([0,t]) is thus heavy tailed with a
tail exponent that can be, unlike classieaktable laws, ar-

bitrary large. VIA?2
(V) Log-a-stable MRM When »(dx) ~x1~*dx for 0<a
E. Examples <2, one has an log-stable MRM:
In order to illustrate previous considerations let us con- s e
sider some specific examples. {q=am—o“|q|". (54)
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Such laws have been used in the context of turbulence angbsitive number The so-obtained sets in tl&" half-plane
geophysics[14,18. They have been often referred to as il be referred to as4(9(t), the w process as®(t) and
“universal multifractals” becausex-stable laws are fixed the associated MRM asM®(dt). Since, V t,t’,
points of infinitely divisible laws under a suitable renormal- [A,(e)(t)\Afs)(t)]ﬂAfS)(t’)=@, one has
ization procedure.

Many other families of{, spectra can be obtaine(q.g., wl(e)(t)=w|(5)(t)+ S.(1),
log-I', log-Hyperbolic...) for other choices of the Ly
measure. Let us remark that in the case of a normal randonvhere 5, (t)=P[.A®(t)\.A(9(t)] is a process which is in-
variablew, , the functionp,(7) is nothing but the covariance dependent of the procesés)(t) and which does not depend
of the process as introduced in Rdfk,2]. This function, that  on the value of (as long ad<L). It follows that
measures the areas of domaidgsintersections, is therefore
the analog of the covariance for general infinitely divisible E(MO[0t])N)<E(supe?tW)E(ME([0t])9)
distributions. The Eq(33) shows that our construction can [ot]
be seen as a natural extension of Gaussian procéssesil- .
tivariate Gaussian lawswithin the class of infinitely divis- E(M(e)([o,t])q)zE([|(|;1tf] ePLIHEME[0L])Y).
ible processesmultivariate infinitely divisible laws in the ’
sense that it is completely characterized by a cumulant gersecause the processs, (t) is (right) continuous,
erating functiong(p) (specifying the mean and the variance |imt*>0+suno,(]eq5L(t):|imtﬂo+inf[0t]eq‘5L(t):quL(O)' we
parameters in the Gaussian caaad a two-points “covari-  get ’ '
ance” functionp(t) (or covariance matrix
E[MO([01])] ~ C{E[M([0t])7]. (56)

t

F. Asymptotic scaling and universality -0

In the last section, we have seen that the ch¢&2 for  Thanks to the exact scaling 8 (®([0t]) [Eq. (41)], we see
f(1) leads to exact scaling of the moments of the associatethat,
MRM. In this section we study the scaling behavior of the
moments for other choices dfl).% Let us remark thaf(l) E[M®([0t])%] ~ Cqtla, (57)
is defined up to a multiplicative constant. This just amounts =0

to a choice in the scale af(p). . . . . S
In the following, f(®(1) will refer to the “exact scaling” wheredq is Qef|ned n Eq(4'2'). Thu;, We_f'”(g tha_M( )(dt?’
choice(22) that was made in the previous sections. The So_c_orrespondlng to t_he speCIfl_c chqg(el)—g (1)=0, satis-
obtained sets in thes™ half-plane will be referred to as fies the asymptotlc scale_ Invariance prope(dy. If one
A®(1). the » process as((t) and the associated MRM chooses a different functiog(l), using exactly the same
' ’ ! arguments as abovEin which M©®)(dt) is replaced by

(e)
asM™(dY). M (dt), i.e., the measure obtained when using the new func-
1. Large scale perturbation of(fl) tion g(1)], one can prove4] that
Rigorous mathematical proofs can be found in Ré4f. EM([0t])Y) ~ DqE(M(S)([O,t])q), (58
Let us first study the case when one builds an MRM using t—=0

a function f(1) which differs from f(®(l) only for scales
larger than a largé€fixed) scaleL, i.e.,

f(e)(l) for I1<L E(M([O,t])q) ~ chqtgq. (59)
(55) t—0

and consequently

f) a(l) for I1=L.
Thus, using any functiog(l) in Eq. (55 [satisfyingg(l)
For the measurd/(dt) to remain finite,p(t) must be =0(I'"€) (I— +=)] leads to an MRM measure which sat-
finite and thus we must ha\[e”f(u)u‘zdu<oo. Therefore, isfies the asymptotic scale invariance propésy
the large scale behavigi(l) must be such that, for some

>0, g(1)=0(11"¢) asl—+o. An example of such large 2. Small scale perturbation of ()

scale modification is the function defined by Ef7), where Let us now study the consequences of a small scale per-

g:.g(s) whereg®(1)=0 andL=T. This func_tion is the one  {,rpation off®(1). Let us suppose thé(l)~1¢ for 0. In
which was used by Barral and Mandelbrot in R&f. Let us  that case

first choose the particular cage=g‘® (L being any strictly
[e—1 if o<1

3We recall that we do not consider other choices for the uniform p|(0)|~o Cst if a>1 (60)
measureu(dt,dl) in the half spaceS ™ because (1) and »(dt,dl) L=In() if a=1,
are involved in the properties of the limit measuvi(dt) only
through the functiorp,(t)= u[A;(0)]. Hence, up to a change of In the first caseqp<<1, one can show any moment of order
variablel’=h(l), one can always set(dt,dl)=dtdl/| ~2. 1+ €[ €>0] cannot be bounded. Sincé[M([0t])]=1,
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general martingale arguments can be used to prove thanly in the marginal situation when the correlation function

M,([0t]) converges towards the trivial zero measure.

of the logarithm of the fluctuations decreases as a logarith-

If a>1, the limit measure is proportional to the Lebesguemic function
measure and thus one obtains the trivial asymptotic scaling:

E[M([01])%] ~ CqtC.
0

t—

Let us now consider the marginal ca$él)=1+o(l) at

G. An alternative discrete time construction for MRM

In the casg x 2v(dx) < (e.g., the Lgy measure has no
mass in an interval around=0) a realization of the measure
P(dt,dl) is made of dirac functions distributed in ti#"*

small scales. From the results of previous section, with N alf-plane. Thus the proces&,([Ot])zﬁ)e“"“)dt is a jump

loss of generality, as far as the asymptotic scaling is con
cerned, we can suppose that the large scale component is y,vever ifx—2

identical to the exact scaling situatiof(1)=T for I=T. We

can then show that, once again, the MRM satisfies a multi:

fractal scaling in the asymptotic sendeg. (4)]:

E[M([0t])9] ~ Ktée. (61)
t

—0

Indeed, let us index all the quantities by the cutoff s¢aed

the integral scald, i.e., we add an explicit reference to the
integral scaleT: p, 1(t) is the area of domain intersections
and M, +([0t]) is the associated MRM. After some little

algebra, using the definition @f +(t) and the fact thaf(l)
=|+o0(l), one can show that

priat(A) — p{(t). (62

A—0
Thus, thanks to Eq33), we have

law

{orxiT(ZND)} — {wl(,eT)(t)}t .
A—0

Hence, becauseM, +([0t])=[te” ™ Wdu, by taking the
limit | -0,

law
A" Mo r([OAL]) HOM&?MOJ])
A—

and therefore, from Eq$41), (42), and(43),

N "9E[ Mg\ r([OANt])9] — E[MEX([O,T]) T ~¢atéa.
A—0

By choosing T=T'A"! and using the identity
M) 1 ([ON LT/ ]) ="\ "*M{2,([0,T"]), we conclude
that

E[Mor([OAL])] ~ Aéo
N—0

This achieves the proof.

process that can be simulated with no approximation.

v(dx) has a nonfinite integrdk.g., it has

.a Gaussian componenthis is no longer the case. Thus, one
has to build another sequence of stochastic meaddet)

that converges in law towardd (dt) and that can be seen as

a discretized version oM (dt). We will see, in following
sections, that such a discrete time approach is also interesting
for multifractal stochastic processes construction.

We choosel\7h(dt) to be uniform on each interval
[kl,(k+1)I1, Vke N and with densitye®®). Thus, for any
t>0 such that=pl with pe N*, one gets

p—1
m,([o,t])zkE_‘,o ey, (63)

In the same way as for the measiig(dt), one can prove
[4], within the framework of positive martingales, that, al-
most surely,M,_,-n(dt) converges towards a well defined
limit measure whem— + (i.e.,| —0"). Moreover, in the
same way as in Sec. I B, if we suppogé2)<1, then one
can show(the proof is very similar as the one in Appendix
A) that, in the mean square sense,

lim M,_, n(dt)=M(dt).

n— +o

(64)

As long asy(2)<1, this construction gives therefore a way
of generating a measure which is arbitrarily cl@bg choos-
ing | small enoughto the limit measurévi (dt).

IV. LOG INFINITELY DIVISIBLE MULTIFRACTAL
RANDOM WALKS

In this section we build and study a class of multifractal
stochastic processes that are no longer, as before, strictly
increasing processémeasures They can be basically built
in two different ways: (i) By subordinating a fractional
Brownian motion(fBm) with the previously defined MRM
M (t) or (ii) by a stochastic integration of a MRM against a
fractional Gaussian noigéGn). As we will see, most of the
statistical properties of the so-obtained random processes are

We can therefore see, that, as far as asymptotic multifracgjrectly inherited from those of the associated MRM.
tality is concerned, the pertinent parameter is the small scale

behavior of the functiorf(l) or equivalently the small time
behavior ofp,—(t). As pointed out previously, in the case of
a Gaussian fieldo(t) (i.e., the infinitely divisible law has In the same spirit as the log-normal MRW constructions
only a Gaussian componenp(t) is nothing but the covari- in Refs.[1,2] [see also Ref{27]], we use a stochastic inte-
ance of the process. The previous discussion leads thus to theation of eI against the(independentWiener measure
conclusion thatontrivial limit multifractal measures arise dW(t).

A. MRW with uncorrelated increments
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1. Definition
SinceE(e“®M)=1, one can consider the process

X (t)= Jote(l’z)‘”l(“)dW(u), (65)

wheredW(t) is a Gaussian white noise independeniwpf
The MRW is then defined as the limit of;(t) when |

—0*:

X(t)= lim X;(t). (66)
-0
One can easily prove that for fixedandl, one has
law
Xi(t) = ay(t)e, (67)

wheree is a standardized normal random variable indepen-
dent of o (t) which is itself nothing but the associated MRM

as defined previously:

of(t)= Jote“"(”)du=M|(t). (68)

Let us note that thénondecreasingincrements Ofo'|2(t) are
referred to(in the field of mathematical finand&8,29) as
the stochastic volatility

Using the same kind of arguments on finite dimensional
laws, one can also prove that the finite dimensional laws o
the proces(t) converge to those of the subordinated pro-

cessB[M(t)]. Actually, one can show4] that, as long as
' (1)<1 (i.e., e>0, (1+€)<1 which is, as mentioned
in Sec. Il B, the condition for the limit measuké(dt) to be
nondegeneratgedone has

law law
X(t)= lim X,(t) = lim B(ay(t)) = B(M(t)).

|—0" I—0"

(69

The so-obtained MRW can be thus understood as a

Brownian motion in a “multifractal time”M (t). The subor-

PHYSICAL REVIEW EG66, 056121 (2002

Va, E(X(1)|D=E(elHEM0t])Y?)

2q/ZF<E)
2

E(M([0t])%?),

where the first factor comes the ordgmoment of a cen-
tered Gaussian variable of variane8.

If M(dt) is an exact multifractal stationary random mea-
sure, thenX(t) obeys the exact multifractal scaling equation

s
E(X()])=0"——r—Kgat's, (70

r(5)

whereK,, is defined in Eq(43) and
{q=al2—y(al2). (71)

Using Egs.(47), (48), and (49), one deduces that, fay
>2,

E(X(D)|N<+0o={,=1, (72

and conversely

Lq<1=E(X(1)|H <. (73

|l\/loreover, let us note that ifM(dt) verifies only an
gsymptotic scaling, so does the MRW proc&gs).

3. An alternative discrete time construction for MRW processes

As in Refs.[1,2] or in Sec. Il G, one can also try to build
an MRW process using a discrete approach. A discrete con-
struction can be useful for numerical simulations. Let us, for
instance, choosg=2"". And let e,[k]=f(k‘|<+1)'dW(u) be a
discrete Gaussian white noise. We define the piece-wise con-
stant proces§(,n(t) as t=pl,):

p—1
X ()= go et2, (K¢ [k]. (74)

dination of a Brownian process with a nondecreasing process

has been introduced by Mandelbrot and Tayl8d] and is

The MRWX, (t) can be rewritten as

the subject of an extensive literature in mathematical finance.

Multifractal subordinators have been considered by Mandel-
brot [31] and widely used to build multifractal processes

from multifractal measuregsee below. In a forthcoming

section we will see that multifractal subordination and sto-
chastic integration do not lead to the same processes Whémh

one considers long-range correlated Gaussian n¢i€es.

2. Expression of the moments and multifractal properties

Thanks to Eq.(69) [assumingy'(1)<1], one gets the
expression of the absolute moments Xft) [or X(ty+1)

—X(to)]:

p—1

X, (=3 VW ([Kly,(k+ D)l e [k, (79

erel\~/l|n is defined by Eq(63). One then deduces easily

the convergence ®~K|n from the convergence d%n. Thus,

for instance, one can proyd] that, as long ag/(2)<1, one
has

law
lim X, (t) = B[M(t)].

n— +oo

(76)
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B. MRW ith long- lati s
processes with long-range correlations E[|Xy(t)|9]=E[M (t)qH]E[|B(1)|q]= KqHthgq

1. Definitions h
wit
In order to construct long-range correlated MRW, it is
natural to replace the Wiener noi¢Brownian motion in gaqu_,p(qH)_ (82
previous construction by a fractional Gaussian ndfsac- _
tional Brownian motion A fBm, By(t) is a continuous, self- For the second versioixy, , the scaling of the moments is

similar, zero-mean Gaussian process which covariance readetermined using the scale invariance of the procegs)
[see, e.g., Ref32] for a precise definition and properties  and the self-similarity of the fGlWy(t). Using the same

5 method as for the measuk&(t), one obtains

_ O OH L w2H [+ o|2H _ i
EBu(DBy(s)= o (s +t—[t=s[*),  (77) X5 ()]9]= Mtéh @3

where O<H<1 is often called the Hurst parameter. Standardwith
Brownian motion corresponds té=1/2. .

The simplest approach to construct a long-range corre- {q=qH—¥(q). (84)
lated MRW follows the idea of Mandelbrot that simply con- ) .
sists in subordinating a fractional Brownian motion of indexWe can see that the multifractal spectraXdf and X}, are

H with the MRM M(t), i.e., different: they do not correspond to identical processes as it
was the case for the uncorrelated construction. Notice that
S =By[M(1)]. (78)  the existence criterioii81), can be simply rewritten ag,

>1. According to the considerations developed in Sec. Ill D,

An alternative would consist in building a stochastic inte-this condition ensures the existence of the second order mo-
gral against a fGrdWy(t) ment of X, . Whether the class of processég(t) can be
extended, in some weak probabilistic sense, to valudd of
<1/2+¢(2)/2 is still an open problem(such processes
would have an infinite variangeThe condition of finite vari-
ance forXj,(t) is less restrictive since it comes to the con-
and considering some appropriate lilit0. However, sto- dition K<, whereK,y, is defined in Eq.(43). For H
chastic integrals against fGn cannot be defined as easily as1/2 such a moment is always finite.
for the white Gaussian noise and the proposed constructions
require the complex machinery of Malliavin calculus or C. A remark on subordination
Wick products[33,34]. One simple way to define the previ-
ous integral could be to see it as the limit of a Riemann sum,

Xi u()= f;ew'mde(t) (79

Let us remark that, in some sense, the subordination by a
RM M(dt) can be iterated. Indeed, #([Ot]) and

. t/At M, ([0,t]) are two independent MRM, the subordinated mea-
Joe‘“'(t)dWH(t)E lim kEO en(kAe, \[k], (80  sSure
At—0 K=

M([t1,t2]) =M [Mo([0t1]),Mo([Ot2)] (89

is well defined. Using the cascade equat{df), we deduce
that

where ey z(K) =By (kAt)—By((k—1)At). We have not
proved yet that this is a mathematically sound definition.
However, if one assumes th&f9 makes sense, one can

address the question of the existence of the limit process _law 2)
lim,_oX| 4(t). In the Appendix B, we provide heuristic ar- M(LOALD)=""M1[OW,7M([01])] (86)
uments for mean square convergence. We obtain a condi-
fon ! ’ = WM ([01]), (®7)
H>1/2+ 4(2)/2, (81)  where W{*? are the(independentlog infinitely divisible

weights associated with the MRM ,. The second equality
where ¢(p) is the cumulant generating function associatedis valid only if W§2)<1, i.e., when the ey measure asso-
with o. ciated withM, is concentrated ofi0,+%]. By computing
the moment of ordeq of both sides of the equality, we see
2. Multifractal properties that the mulifractal spectrum of the subordinated measure
In the case of the subordinated versidf(t) of the reads
MRW, the scaling properties can be directly deduced by the P
self-similarity of By(t) [31]. Since By(t+7)—By(t) §q:§§gl)>=q— Y Pla—yH(a)], (88)
=1awH[B, (t+1)—By(t)], and M(t) is independent of _
By, one hasXu[M(t)]="""M(t)"By(1). Thescaling of ~where{ (respectivelyy)(q)], i=1,2, is the spectrum as-
the absolute moments of the incrementsXafis therefore sociated withM;. The EQq.(87) corresponds to a “random-
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ization” of the rescaling factoh that parametrizes the log with
infinitely divisible law of In(\/\&“). It is easy to prove 24|

1) RO, o
that the law of InY{v(Mz)) remains infinitely divisible. The pi'j:J' | ds/szf dtH, | (1), 93
S= n

class of log infinitely divisible MRM is therefore closed un-

der subordination. The family of subordinated spe®& is . o )
thus included in the family of log infinitely divisible spectra WhereH j (t) is the indicator function
and the operatiof85) does not allow us to build new MRM

with exact scale invariance properties. Hijs(O =iz 9.6, ;0 (D (94)
V. NUMERICAL SIMULATIONS with
A. Principles a j(s)=max (i— 1)+ F(8)/2,l,— F(5)/2],  (95)

In order to generate realizations thn(dt) [defined by

Eq. (63)], one needs to be able to generate realizations ofnd
w|n(kln). However, following the definition ofy; one would

need realizations of the 2D random measB(elt,dl) for |

=|,. In the case of a compound Poisson process, the proces:

S : Lo N
= teao DAt e A “Let us note that if the functiofi is boundedwhich is the
E/Izggoét;)snyf 0€”dtis a jump process that can be synthe case if we are under the hypothe&®), i.e., in the case of

. - “exact” scaling], the number of terms in Eq91) is finite.
In the general case, we need to find a set of disjoint “el- gl d91)

. In the Gaussian case, the situation is simpler becayse
ementary” domains of the half-plarf* such that, for ank : - : -
) : ’ ’ completely characterized by its covariance funciie(r). In
there exists a subset of this set such tHat(kl,) can be pletely y )

that case, the 2D synthesis problem can be easily transposed

expressed as a union over the elementary domains of thigs 4 1D filtering procedure by finding a filtei(t) such that
subset. Since, at fixet},, the boundaries of the domains

A|n(kln) (ke Z) define a tiling ofS™, it is natural to con- b+ d=p) (97)
sider the elementary cells of this tiling. Each cell is the in-

tersection between left and right strips limited by left andwhere * stands for the convolution product. The process
right boundaries of conical domains: Let us define the cell
Bi(t,t") (with t<t’) as

Bi(t,t) =[A(ONA(t=DIN[AEONAM +D].
(89

bi j(s)=minfil ,+f(s)/2(j+ DI,—f(s)/2].  (96)

w((t):f ¢ (t—t)HW(dt’) (99)

(whereW s here a 1D Wiener noisevill be thus identical to
Then, by definition the cell§B; (kI ,k'l;) <y are disjoint  the normal process(t) as defined in Eq(20). In the origi-
domains and form a partition of the Subspa((m S+) nal Study of RefS[l,Z] the MRW has been defined along this

{(t,)eS™*, I=1,}. Moreover method.

A'n(kln): U. K k .U Bln(il nodln)- (90) B. Numerical examples
—o<j< Sjs+4w
In Fig. 3 are shown two samples of MRW which are re-

On the other hand, for a fixes=1,, one has spectively log-normal and log-Poissdeee Egs.(51) and

B B (52)]. In both cases we have chos&r-512 sample units,
(us) e ANA (=D et=l+1(s)2<ust+1(s)/2, H=1/2 (e is a Gaussian white noiseFor the log-normal

and process)\?=0.05 while y=4 and 5=e™ %% for the log-
Poisson process. The log-Poisson process has been synthe-
(u,8) e A|(t+ O\ A (1) =t—f(s)2<ust+I—-1(s)/2. tized using Eq(91) while a simple filtering method was used

for the log-normal process. Equatid@7) was solved nu-
Thus settingY; ;=P[5 (il ,jl)], straightforward compu- merically in the Fourier domain. In Fig. 4 are plotted e
tations lead to the following representation of discrete profunctions estimated for both processes. These functions have
CeSSa)|n(k|n)Z been obtained from the scaling of the moments estimated
using 256 MRW trials of 64 integral scales long. Tlig
ko= values for negative have been obtained using the so-called
o (Klp)= > Zk Yij (9)  WTMM method that is a wavelet-based method introduced
s to study multifractal function§35—37. The superimposed

where (Y, };; are independent infinitely divisible random @nalytical formulas obtained with Eqr1), (51), and (52),

variables which satisfy fit very well with statistical estimates except a large negative
g values for the log-normal case. This can be explained as a
E(ePYij)=e?Prij, (92) finite statistics effect.
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(Ia) ' ' ' Gaussian process,(t) can be directly constructed from a
1D white noise, without any reference to 2D conical do-
mains. This model is interesting because its multifractal
properties are described by only two parameters, the integral
scaleT and the so-called intermittency paramexér Some
simple estimators of these quantities have been proposed in
Ref.[1]. Moreover, many exact analytical expressions can be
obtained and notably the value of the prefadtqy in Eq.
(42). In Ref.[38], it is shown that this prefactor can be writ-
ten as a Selberg integrgd9]. Its analytical expression reads

X(t) °

L T(1-202K) 2T (1—202(k+1))
Kq=TH . (99
a kE[O I'(2—2\%(q+k—1))'(1—2)\?) 99

X(t)_

It is easy to check that, is defined only ifg<q, =2/\2.

. , , We recover the finite moment conditidd9), q<q, with
2000 4000 g, =1 Notice that, as emphasized by Frigdfd], the exis-

t tence of infinite moments can be a drawback of a log-normal
multifractal as a model for experimental situations like tur-
bulence. However, for a typical valu&=5.10"2, q, =40,
so a log-normal approximation can be very good in a range
of g values far beyond the limit associated with the finite size
of experimental samples. Let us finally mention that the log-
normal MRW can be naturally generalized to a “multivariate
multifractal model” which is a multifractal vector of pro-
In this section we review some specific results concerningesses characterized by an intermittency matgix[1]. This
respectively log-normal and log-Poisson compound MRW. notion of “joint multifractality” can be very interesting in
many applications.

o -

FIG. 3. MRW signals sampled at rate (B) Log-normal MRW
with T=512 and\?=0.05. (b) Log-Poisson sample witfi=512,
y=4 andy In(8)?>=0.05. In both signals, the cutdfhas been fixed
to 1/8 for the numerical synthesis.

VI. CONNECTED APPROACHES

A. Log-normal MRW ) o
B. Multifractal products of cylindrical pulses

The log-normal MRW has been originally defined in Refs.
[1,2]. It corresponds to the simplest situation when theyLe
measure has only a Gaussian component. In that case, t

In Ref.[3], Mandelbrot and Barral introduced a positive
pltifractal random measure using products of positive ran-
dom variables associated with Poisson points within 2D
conical domains. Their construction is a particular case of
MRM. It actually reduces to the case wher@x) is a Levy
measure satisfyingf v(dx)x ?<o (see Sec. Il E and
where the set4,(t) is delimited by the functiorf(l) as de-
fined by Eq.(17). Let us note that, since they have not con-
sidered the full domain4,(t) associated with the function
f(1) as defined by Eq(22), as explained in Sec. Il F, this
construction performs asymptotic scalifd) but not exact
scaling(1). However, these authors did not study the scaling
properties of the random measures. They rather focused on
the pathwise regularity properties. More precisely, they
proved the validity of the so-called “multifractal formalism”
[see, e.g., Ref$35-37,41,47 that relates the functiofy, to
q the singularity spectrunD (h) associated withalmos} all
realizations of the process. For a given path of the increasing

rocess associated with an MRMW,(h) is defined as the

-4

FIG. 4. {4 spectrum estimation for log-normal and log-Poisson

MRWs. The exponents have been directly estimated from linea dorff di - fth tof larity” points. |
regression of increment ordgrabsolute moments in doubly loga- ausdortt dimension of the Set of fisoreguiarity “points, 1.€.,

rithmic representations. These moments have been estimated usifge PCints where théHolder) regularity is h. Barral and

a statistical sample of 256 signals of 64 integral scales. The symboflandelbrot proved thab(h) and ¢, are related by a Leg-
(®) correspond to log-Poisson estimates whil)(correspond to ~ €ndre transformation. Since we proved tligis the scaling
log-normal estimates. The solid line represents the log-Poisson angxponent of MRM moments, it follows that one can estimate
lytical spectrum(52) and the dashed line to log-normal analytical the singularity spectrum of the MRM paths in the case of
spectrum(51) rescaled using Eq71). The parameters of both pro- 10g-Poisson compound statistics. It should be interesting to
cesses are those of Fig. 2 and have been chosen so that the so-cakedend the Mandelbrot-Barral theorem to the general log in-
intermittency parameter £"(0), is the same(.05). finitely divisible MRM and MRW paths.
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VIl. CONCLUSION AND PROSPECTS the framework of “Markovian continuous cascades” as in-

A. Summary and open questions troduced in Refs[43,44.

In this paper, we have constructed a class of stationary
continuous time stochastic measures and random processes o
that have exact or asymptotic multifractal scaling properties ©One of the main issues of the present work was to con-
in the sense of Eq41) and (4). We have shown how sto- struct a vylde family of multlfractal progessésr m.easures
chastic integration of an infinitely divisible noise over cone-that are likely to be pertinent models in many fields where
like domains, as originally proposed in REL9], naturally r_nult|scaI|n_g laws are ob_servgd. Naturally, the first applica-
arises when one wants to “interpolate” discrete multiplica- fion of which one can think, is fully developed turbulence.
tive cascades over a continuous range of scales within a cof{rbulence and multifractals share a long history and we
struction that is invariant by time translations. The exponen!€fer the reader to Ref40] for a review on the “intermit-
t|a| of these Stochastic integra'e“ﬂ(t)) can be interpreted as tent” nature Of turbulent fleldS Recently, new aSpeCtS Of tur-
a “continuous product” from coarse to fine scales and thus agulence were studied by considering fluid dynamics from a
the continuous extension of the multiplicative rule involvedLagrangian point of view. This was possible because two
in the definition of discrete cascades. We have shown that thgroups developed new experimental devices based on a fast
probability density functions associated with MRM and imaging systeni45] or ultrasound techniqud46,47] allow-
MRW processes can have, like discrete cascades, fat tailsg for a direct measurement of the velocity of a single tracer
with arbitrary large exponents. However, unlike their discretein a turbulent flow. In a recent works, Pinton and his collabo-
analog, our “continuous cascades” have stationary fluctuarators[46,47] studied the intermittency of Lagrangian trajec-
tions, do not involve any particular scale ratio and can beories and related it to the sloWogarithmig decay of the
defined in a causal way. This “sequential” formulation, as particle acceleration correlatiof47,48,49, very much like
opposed to the classical “top to bottom” definition of multi- for a MRW model. In other words, these authors found that
fractals, can be very interesting for modeling dynamical prothe turbulent Lagrangian dynamics is very well described by
cessegsee the next sectionLet us note that we focused in an equation of Langevin type with a driving force amplitude
this study on 1D processes but our construction can easily bsimilar to e®'® involved in the MRW definition. The under-
extended to higher dimensions. standing of the physical origin of such dynamical correla-

It is well known[see Refs[1,2]] that the multiscalindl)  tions and the link between Lagrangian and Eulerian statistics
or (4) with a nonlinear convex, function cannot extend is a very promising path towards the explanation of the in-
over an unbounded range of scales and there necessarily egrmittency phenomenon in fully developed turbulence.
ists an “integral scale”T above which the scaling of the Besides turbulence, “econophysid80-57 is an emerg-
moments changes. The existence of such an integral scaiieg field where fractal and multifractal concepts have proven
can be found in the general shape of functic(h) as dis- to be fruitful. Indeed, many recent studies brought empirical
cussed in Sec. Il F: One must hatd)~1 whenl—0 and evidences for the multifractal nature of the fluctuations of
f(I)=o(l) whenl— +%, so the scald is a scale that sepa- financial market§see Ref[1] and reference therefjnSome
rates these two asymptotic regimes. It is remarkable thgphysicists raised an interesting analogy between turbulence
there exists a particular expression for the functigh) [Eq.  and financg/51,53-55. Logarithmic decaying correlations
(22)] for which the moments in the multifractal regille and “1/f” power spectrum have been directly observed for
<T satisfy anexactscaling. The existence of processes withvarious time serie§54,56], so it is reasonable to think that
such properties was nat priori obvious. In the same sec- MRW models are well suited for modeling financial time
tion, we have shown thd{l)~1 is a necessary and sufficient serieq 1]. The versatility of infinitely divisible MRW is very
condition for the existence of a limit multifractal object. interesting to account for various stylized facts of financial
From a fundamental point of view, one important questiontimes series such that the multiscaling, the power-law tail
concerns the unicity of our construction: Can any procesb¥ehavior of return pdf and therefore, such models can be
satisfying(1) be represented within the framework we havevery helpful for financial engineering and risk management.
introduced ? Among all the remaining disciplines where multifractality

It remains many open mathematical problems related tdas been observed, one can mention the study of network
the processes which we introduced in this paper. Some dfaffic [57-59, geophysics, and climatologys0—62, bio-
them have been already mentioned, notably the questiomsedical engineering63], the modeling of natural images
related to the construction of stochastic integrals in Sed.64], ... On amore theoretical ground, “continuous branch-
IV B. As discussed in Sec. VI B, it should be interesting toing trees” and log-correlated random processes have also
generalize the results of Reff3] in order to link scaling been considered in the physics of disordered systems
properties and pathwise regularity within a multifractal for- [65,66. The study of free energy density in the thermody-
malism. Another interesting problem concerns the study ohamic limit in presence of log-correlated disorder equiva-
limit probability distributions associated with MRM for lently on topologies involving random disordered theesse
which very few features are known. Like infinitely divisible questions very similar to the study of limit MRM addressed
laws, they appear to be related to some semi-group structuri this paper. One can hope that pushing forward this analogy
Finally, one can wonder if log infinitely processes we haveis a promising prospect to get significant results in both
defined are not the natural candidates to be described withirelds.

B. Possible applications
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E(M([0t]?)=<Ct>~ "),
APPENDIX A: MEAN SQUARE CONVERGENCE
OF A MRM whereC does not depend on This achieves the proof.

Let M,(dt) defined as in Eq(23). In this section we APPENDIX B: MEAN SQUARE CONVERGENCE

prove that, assuming(2)<1, one has OF A MRW WITH A FRACTIONAL GAUSSIAN NOISE ey
m.s. In order to simplify the proof and to avoid technical com-
M, ([0t]) — M([Ot]). (A1)  Dplications, let us show the mean square convergence of the
1=0 process
Let us define ‘
Xi(t)=| dWy(t)e®, B1
R /(1) =E(exWterutny (A2) I jo H(t) (B1)
In order to prove Eq(Al), let us first show that, if' <I: where dW,, is a continuous fGn which covariance il (
#1/2)
R (1) =Ry (1) =en(nv) (A3)
(1) =0?H(2H-1)72H "2 (B2)
with p,(7) as defined as in Eq$30) and(31).

The first equality in Eq(A3) comes directly from the Rigorously speaking the previous integral i; not well dg—
assumptiony(1)=0 while the second equality is a particular f|ned_ but the _prc_)of of the convergence of the discrete version
case of the identity33), whereq=2, p,=p,=—i andt, (80) is very similar. Let us now
_t2= T.

Let us show, that,Ve, 3l,, VI,I'<ly, E[(M(t) m-s.

—M, (t))?]<e. Let us suppose that=<I. Then, X,(t):OX(t) (B3)
C(L1",)=E[(M;([0£]) =M ([04]))*]=E[M{([04])] providedH satisfies
+E[M?([04])]— 2E[M,([0])M;([01])] H>1/2+y(2)12. (B4)

We proceed along the same line as in the Appendix A. In
order to prove Eq(B3), we have to prove, tha¥l,l’<I,
ELCOXG(1) =X (1)?]—1-00. Let

t [t
_zfofoE(ew'(u)m"(v))d“dv' E=E[(X(t)— X/ (1))2]. (B5)

Thanks to Eq(A3), we have

:J‘tJ't[E(ewl(u)+w|(v))+E(ew|/(u)+w|r(v))]dudv
0JO0

Thus, thanks to EqA3), we get, after a little algebra

: E=E[X7(0)]+E[X}. (0] 2E[X/() X ()]

C(I,I’,t)sthO(Rm,(u)—RL,(u))du, 't

:f f [E(eWHei@)) 4 E(gerWter®)]y, (Ju
0JO

|
SDtJ R|r'|r(U)dU, t [t
0 —v|)dudv—2ffE(ewKU)*wl'(v))yH(|u—u|)dudv
0JO

I '
< iy i vt
tho Rir (“)d‘“DtLIR' r(wdu =fofo[R.wlu—vl)—R|,|<|u—v|>]yH<|u—v|>dudv.

r1=y(2) 1=(2) _r1=-4%(2) . L . .
<Etl +E( ! ), The last integral behavior in the limlit—=0 can be easily

whereD and E are positive constants. Sinag2)<1, we evaluated. After some simple algebra we get

see thatM|([0,t]) is a Cauchy sequence and thus converges E[(X;(t) =X, (1))2]=0O(I12H—¥2)~1),
in mean square sense.
The previous computations also prove the convergence dfhus if condition(B4) is satisfied, i.e., Bl — (2)—1>0,
all finite dimensional vectofM [t ,t;+ 7], ... ,M|[t,.t, X,(t) is a Cauchy sequence and thus converges in mean
+7,]}. In order to prove the existence of the linhk([0,t]) square sense.
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