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Multifractal stationary random measures and multifractal random walks
with log infinitely divisible scaling laws
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We define a large class of continuous time multifractal random measures and processes with arbitrary log
infinitely divisible exact or asymptotic scaling law. These processes generalize within a unified framework both
the recently defined log-normal multifractal random walk@J.F. Muzy, J. Delour, and E. Bacry, Eur. J. Phys. B
17, 537 ~2000!, E. Bacry, J. Delour, and J.F. Muzy, Phys. Rev. E64, 026103~2001!# and the log-Poisson
‘‘product of cylindrical pulses’’@J. Barral and B.B. Mandelbrot, Cowles Foundation Discussion Paper No.
1287, 2001~unpublished!#. Our construction is based on some ‘‘continuous stochastic multiplication’’@as
introduced in F. Schmitt and D. Marsan, Eur. J. Phys. B.20, 3 ~2001!# from coarse to fine scales that can be
seen as a continuous interpolation of discrete multiplicative cascades. We prove the stochastic convergence of
the defined processes and study their main statistical properties. The question of genericity~universality! of
limit multifractal processes is addressed within this new framework. We finally provide a method for numerical
simulations and discuss some specific examples.
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I. INTRODUCTION

Multifractal processes are now widely used models
many areas including nonlinear physics, geophysics,
econophysics. They are used to account for scale-invaria
properties of some observed data. Our purpose in this ar
is to introduce a wide class of random measures and stoc
tic processes with stationary increments that possess e
multifractal scaling withoutany preferred scale ratio. This
construction generalizes~and unifies! the recently introduced
log-normal ‘‘multifractal random walk’’~MRW! model@1,2#
and the log-Poisson compounded ‘‘multifractal product
cylindrical pulses’’ @3#. Technical mathematical proofs ar
reported in the companion paper@4#.

In the multifractal framework, scale-invariance propert
of a one-dimensional~1D! stochastic processX(t) are gen-
erally characterized by the exponentszq which govern the
power-law scaling of the absolute moments of the ‘‘fluctu
tion’’ d lX(t) of X(t) at any scalel up to a scaleT, i.e.,

m~q,l !5Kql zq, ; l<T, ~1!

wherem(q,l ) is defined as the expectation~from now on, the
symbolE(.) will always refer to the mathematical expect
tion!:

m~q,l !5E@ ud lX~ t !uq#. ~2!

The so-called ‘‘fluctuation’’d lX(t) can be defined in vari-
ous ways, the most commonly used definition being

d lX~ t !5X~ t1 l !2X~ t !. ~3!

*Electronic address: muzy@univ-corse.fr
†Electronic address: emmanuel.bacry@polytechnique.fr
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When the exponentzq is linear inq, i.e., 'H, zq5qH, the
process is referred to as amonofractalprocess. Let us note
that the so-calledself-similar processes~e.g., fractional
Brownian motions, Levy walks! are a particular case o
monofractal processes. On the contrary, ifzq is a nonlinear
function of q it is referred to as amultifractal process~or as
a process displayingmultiscalingor intermittency!.

The scale-invariance property~1! can be qualified as a
continuousscale-invariance in the sense that the relation i
strict equality for the continuum of scales 0, l<T. Alterna-
tive ‘‘weaker’’ forms of scale-invariance have been wide
used. All of them assume at least the asymptotic sc
invariance relation

m~q,l !;Kql zq, l→01. ~4!

Thediscretescale-invariance property adds strict equality f
discrete scale valuesl n ~with l n→01, whenn→1`)

m~q,l n!5Kql n
zq , n→1`. ~5!

The image implicitly associated with a multifractal pro
cess is a random multiplicative cascade from coarse to
scales. Such cascading processes can be explicitly defin
very different ways ranging from the original constructio
proposed by Mandelbrot in its early work@5# to recent
wavelet-based variants@6#. Though these different construc
tions do not lead to the same objects, they all aim at build
a stochastic processX(t) which fluctuationdl lX(t) at a scale
l l ~wherel is an arbitrary scale smaller than the large sc
T and l,1) is obtained from its fluctuationd lX(t) at the
larger scalel through the simple ‘‘cascading’’ rule

dl lX~ t ! 5
law

Wld lX~ t !, ; l<T, ~6!
©2002 The American Physical Society21-1
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J.-F. MUZY AND E. BACRY PHYSICAL REVIEW E66, 056121 ~2002!
where Wl is a positive random variable independent ofX
and which law depends only onl.

In the multiplicative construction by Mandelbrot@5#
@which log-normal variant was originally introduced by Y
glom @7##, a positive multifractal measureM (dt) is built,
i.e.,X(t)5M (@0,t#) is an increasing process and the fluctu
tion d lX(t) at scalel is defined by Eq.~3!. In the more recent
wavelet-based constructionsX(t) is a process, not necessa
ily increasing, and the fluctuationd lX(t) is defined as the
wavelet coefficient at scalel and time t @6#. Such cascade
processes have been extensively used for modeling s
invariance properties as expressed in Eq.~1!. However, apart
from self-similar processes which are monofractal proces
with continuous dilation-invariance properties, all casca
processes involve some arbitrary discrete scale ratio and
sequently only have discrete scale-invariance properties@Eq.
~5!#. Indeed, they rely on a ‘‘coarse to fine’’ approach co
sisting first in fixing the fluctuations at the large scaleT and
then, using Eq.~6! iteratively, deriving fluctuations at smalle
and smaller scales. However, the (t,l ) time-scale half-plane
is very constrained: one cannot choose freelyd lX(t) at all
scales and times. Thus, the cascade is generally not
using the whole time-scale half-plane but only using a spa
~e.g., dyadic! grid in this half-plane. Consequently an arb
trary scale ratio~e.g.,l51/2) is introduced in the construc
tion. The continuous scale-invariance property~1! is thus
broken and replaced by the weaker discrete scale-invaria
property~5! with l n5lnT. Moreover, as a consequence, t
fluctuationsd lX(t) in these approaches are no longer stati
ary.

Let us point out that despite the potential interest of s
chastic processes with stationary fluctuations and continu
invariance-scaling properties, until recently@1–3#, explicit
constructions possessing such properties were lacking. L
assume that one can build a continuous cascade processX(t)
satisfying Eq.~6! with a continuous dilation parameterl. As
first pointed out by Novikov@8#, if such a construction is
possible, a simple transitivity argument shows that lnWl

must have an infinitely divisible law: its characteristic fun
tion is of the formĜl(q)5lF(q). One can then easily prov
that m(q,l l )5m(q,l )lF(2 iq), and consequently zq
5F(2 iq). Continuous cascade statistics and log infinite
visibility have been the subject of many works with applic
tions in various domains ranging from turbulence to ge
physics @8–16#. In the caseWl5lH is deterministic, one
gets zq5qH and therefore,X(t) is a monofractal process
This is the case of the so-called self-similar processes.
simplest nonlinear~i.e., multifractal! case is the so-called
log-normal cascade that corresponds to a log-normal law
Wl and thus to a paraboliczq spectrum. Other well known
log infinitely divisible models often used in the context
fully developed turbulence are log-Poisson@17# and log-
Levy @18# models.

From our knowledge, among all the attempts to bu
multifractal processes with continuous scale invariance pr
erties and stationary fluctuations, only the recent works
Bacry et al. @1,2# and Barral and Mandelbrot@3# refer to a
precise mathematical construction. Bacryet al.have built the
05612
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so-called multifractal random walk processes as limit p
cesses based on discrete time random walks with stoch
log-normal variance. Independently, Barral and Mandelb
@3# have proposed a new class of stationary multifractal m
sures. Their construction is based on distributing, in a h
plane, Poisson points associated with independent identic
distributed~i.i.d.! random weights and then taking a produ
of these weights over conical domains. In the same tim
Schmitt and Marsan considered an extension of discrete
cades to a continuous scale framework@19# and introduced
infinitely divisible stochastic integrals over conelike stru
tures similar to those of Barral and Mandelbrot. Howev
they did not consider any continuous time limit of their co
struction nor study its scaling properties as defined by
~1!.

In this paper, we propose a model that is based on
stochastic approach developed in Ref.@19# and that unifies
all previous constructions within a single framework. Sta
ing from original discrete multiplicative cascades, we w
use a conelike construction as in Refs.@3,19# in order to get
rid of discrete scale ratios and to consider any log infinit
divisible multifractal statistics. We will show that this allow
us to build a very large class of multifractal measures a
processes@including original MRW @1,2# and Barral-
Mandelbrot multifractal measures@3## for which both long-
range correlations and multiscaling properties can be c
trolled very easily.

The paper is organized as follows. In Sec. II, we revie
the discrete multiplicative cascades in order to naturally
troduce the notion of stochastic integral over a conel
structure in some ‘‘time-scale’’ half-plane. We then define
class of log infinitely divisible stationary multifractal rando
measures~MRM! which statistical properties are studied
Sec. III. In Sec. IV, we define the log infinitely divisibl
multifractal random walks. We show how their scaling pro
erties can be inferred from the associated MRM. In Sec
we address some questions related to numerical simulat
and provide explicit examples. In Sec. VI, we discuss so
links of the present work with previous connected a
proaches. Conclusions and prospects for future research
reported in Sec. VII.

II. FROM DISCRETE MULTIPLICATIVE MEASURES
TO MULTIFRACTAL RANDOM MEASURES

In this section, we provide some heuristics about how o
can build a positive stationary stochastic measureM (dt)
with continuous scale-invariance properties, i.e., such
the associated increasing processX(t)5M (@0,t#) satisfies
Eq. ~6! with a continuous dilation parameterl.

A. Discrete multiplicative cascades

For the sake of illustration, let us start with simple di
crete multiplicative cascades. In the original construction,
proposed by Mandelbrot, one builds the measureM (dt) as
the limit of a sequence of stochastic measuresMl n

, indexed

by a discrete scale parameterl n5Tln ~we choosel51/2).
The measureMl n

, at the stepn of the construction, has a
1-2
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MULTIFRACTAL STATIONARY RANDOM MEASURES AND . . . PHYSICAL REVIEW E66, 056121 ~2002!
uniform density on successive dyadic intervals of sizel n .
The idea is to build the sequenceMl n

so that it statisfies

~when n is varying! a scale-invariance property. Thenth
measure is obtained from the (n21)th measure by multipli-
cation with a positive random processW which law does not
depend onn. One can naturally index the dyadic interva
along the dyadic tree using a kneading sequence$s1 . . . sn%
wheresi50 (si51) if, at ‘‘depth’’ i, the interval is on the
left ~on the right! boundary of its parent interval. Thus, fo
instance, one gets the following dyadic intervals:I 0
5@0,221#, I 15@221,1#, I 005@0,222#, I 015@222,221#, and
so on. With these notations, the multiplicative rule reads@see
Fig. 1~a!#

Ml n
~ I s0 . . . sn

!5Ws0 . . . sn
M l n21

~ I s0 . . . sn21
!, ~7!

FIG. 1. Defining a continuous cascade interpolating Mandelb
cascades.~a! Mandelbrot cascade: One starts from the coarse s
T and constructs the sequenceMl n

that is resolved at scaleT22n by
iterating a multiplicative rule along the dyadic tree. At each co
struction step, the random multiplicative factorWs0 . . . sn

can be rep-
resented as the exponential of the integral of an infinitely divisi
noise over a square domain indicated by hatched sets.~b! Continu-
ous cascade conical domains obtained as linear smoothing o
hatched domains in~a!. Such cones are involved in the definition
the processv223(t).
05612
whereI s0 . . . sn
is of sizeT22n and is one of the two ‘‘sons’’

of the interval I s0 . . . sn21
and Ws0 . . . sn

are i.i.d. Since the
construction is invariant with respect to a rescaling by a f
tor 2, the limit measureM (dt) will then satisfy the same
scale-invariance property and will be multifractal in the d
crete sense of Eq.~5!. There is a huge mathematical literatu
devoted to the study of such a construction and we refer
reader to Refs.@20–23# for rigorous results about the exis
tence, regularity and statistical properties of Mandelbrot c
cades. In physics or other applied sciences, as recalled in
Introduction, the previous construction~and many of its vari-
ants! is considered as the paradigm for multifractal obje
and has been often used as a reference model in orde
reproduce observed multiscaling. But because of its lack
continuous scale invariance and translation invariance, s
models cannot be fully satisfactory in many contexts wh
the considered phenomena possess some degree of stat
ity and do not display any preferred scale ratio.

B. Revisiting discrete cascades

In order to generalize Eq.~7! to a continuous framework
one can try to perform the limitl→1 in the discrete con-
struction as in Ref.@19#. Another way to proceed is to rep
resent a Mandelbrot cascade as a discretization of an un
lying continuous construction.

For that purpose, we suppose that the random weig
Ws0 . . . sn

in the cascade are log infinitely divisible. For
continuous cascade, this choice can be motivated as follo
Let us suppose that the large scale density,MT(dt) is equal
~or proportional! to the Lebesgue measuredt. We would like
to define iteratively the densitiesMl(t), for all l<T. To go
from resolutionl 8 to resolutionl< l 8, we thus write

Ml~ t ! 5
law

Wl / l 8~ t !Ml 8~ t !, ; l< l 8, ~8!

whereWl / l 8(t) is a positive stationary discrete random pr
cess independent ofMl8(t). Let us define

v l~ t !5 ln Wl /T~ t !. ~9!

Thus, one gets

Ml~ t !dt5ev l (t)MT~ t !dt5ev l (t)dt. ~10!

By iterating Eq.~8!, we see thatWl /T(t) can be obtained as
‘‘continuous product’’ of positive i.i.d. random variables
Consequentlyv l(t) can be written as the sum of an arbitra
number of i.i.d. random variables. This is precisely the de
nition of an infinitely divisible random variable@24#. In order
to go from discrete to continuous cascades, it is theref
natural to assume that, in the discrete situati
v l n

(s0 . . . sn)5 ln()i50
n Ws0 . . . si

) is infinitely divisible. A
‘‘simple’’ way of building such an infinitely divisible proces
v l n

is to represent it by a stochastic integral of an infinite

divisible stochastic 2D measureP(dt,dl) over a domain
Al n

(s0 . . . sn):

t
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-

e
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1-3
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v l n
~s0 . . . sn!5P@Al n

~s0 . . . sn!#5E
Al n

(s0 . . . sn)
P~dt,dl !.

~11!

The stochastic measureP(dt,dl) is uniformly ~with respect
to a measurem(dt,dl)) distributed on the time-scale hal
planeS 15$(t,l ), tPR,l PR1%.

Let us recall that, by definition,1 if P(dt,dl) is a stochas-
tic infinitely divisible measure uniformly~with respect to a
measurem(dt,dl)) distributed onS 1, then, for any two
m-measurable setsA andA8 such thatm(A)5m(A8), then
P(A) and P(A8) are identically distributed random var
ables which characteristic function is nothing but

E~eipP(A)!5ew(p)m(A), ~12!

wherew(p) depends only on a centering parameterm and
the so-called canonical Le´vy measuren(dx) which is asso-
ciated withP. The general shape ofw is described by the
celebrated Le´vy-Khintchine formula@24,26#:

w~p!5 imp1E eipx212 ip sinx

x2
n~dx!, ~13!

with *2`
2y n(dx)/x2,` and*y

`n(dx)/x2,` for all y.0.
The setsAl n

(s0 . . . sn) associated with each of the 2n

valuesv l n5T22n(s0 . . . sn) in Mandelbrot construction can
be chosen naturally as the union of all similar squa
I s0 . . . sk

3@T22k,T22(k21)#, n<k<1:

Al n
~s0 . . . sn!5øk50

n I s0 . . . sk
3@T22k,T22(k21)#.

~14!

The setsA 223(000) andA 223(010) are indicated as hatche
domains in Fig. 1~a!. Since theWs0 . . . sn

’s are i.i.d., we want

to choose the measurem(dt,dl) such that the measure o
each squareI s0 . . . sn

3@T22n,T22(n21)# is a constant. The

natural measure to choose ism(dt,dl)5dtdl/ l 2. It is the
natural measure associated with the time-scale planeS 1 in
the sense that it is~left! invariant by the translation-dilation
group.

Fixing m(dt,dl)5dtdl/ l 2 one then gets;n,

E
I s0 . . . sn

3[T22n,T22(n21)]
dm5E

22n

22(n21)

l 22dlE
0

22n

dt51/2

and thus, from Eq.~12!, Ws0 . . . sn
are i.i.d.: we recover ex-

actly the Mandelbrot construction.

1We refer the reader to Ref.@25# for a rigorous definition of the
so-called ‘‘infinitely divisible independently scattered random m
sure.’’
05612
s

C. Towards multiplicative cascades with continuous scale
invariance

We would like to apply the previous scheme in the ca
the construction is no longer indexed by a discrete scale
rameterl n but by a continuous scale parameterl.

In order to ‘‘interpolate’’ smoothly this construction bot
in time and scale, one can interpolate the previous union
similar squaresAl n

(s0 . . . sn) @Eq. ~14!# using domains

Al(t) where (t,l ) can take any value inS 1. In order the
limit measureM (dt)5 lim l→0Ml(dt) to be stationary, it is
clear that one has to choose the setAl(t) to be ‘‘translation
invariant’’ in the sense that

~ t1t,l 8!PAl~ t1t!⇔~ t,l 8!PAl~ t !, ;t. ~15!

One thus just needs to specify the setAl(0). A ‘‘natural’’
choice~though, as we will see in Sec. III F, it only leads
asymptotic, and not exact, scaling properties! seems to be the
conical set@see Fig. 1~b!#

Al~0!5$~ t,l 8!,l 8> l ,2 f ~ l 8!/2,t< f ~ l 8!/2%, ~16!

where f ( l ) is the function

f ~ l !5H l for l<T

0 for l>T,
~17!

in case, we get exactly the construction originally propos
using a densification argument, by Schmitt and Marsan
Ref. @19#. Other choices for the functionf ( l ) will be dis-
cussed in Sec. III F.

Let us remark that the choice of the linear conical sha
f ( l )5 l is consistent with the interpretation of the parame
l as a scale parameter. Indeed, the value of the measuP
around some position (t0 ,l ) in the half-planeS 1 influences
the values of the measure over the time interval@ t02 l /2,t0
1 l /2#, i.e., exactly over a time scalel.

III. STATIONARY MULTIFRACTAL RANDOM
MEASURES

A. Defining MRM

According to the arguments of the previous section,
thus propose the following definition for the class of lo
infinitely divisible multifractal random measures. Let us i
troduce an infinitely divisible stochastic 2D measureP uni-
formly distributed on the half-planeS 15$(t,l ),tPR,l
PR1% with respect to the measurem(dt,dl)5dtdl/ l 2 and
associated with the Le´vy measuren(dx). Let us recall that
for any setA,S 1, P(A) has an infinitely divisible law
whose moment generating function is

E~epP(A)!5ew(2 ip)m(A), ~18!

wherew(p) is defined by Eq.~13!. Henceforth, we define the
real convex cumulant generating function, as, when it exi

c~p![w~2 ip !. ~19!

Let v l(t) the stationary stochastic process defined by
-

1-4



of

e

i

sure
ul-

y,

ous
ion

sure

nc-

se,

n

s,

ich

l
er.

ce
the

.
ve

at

a-
ofo

MULTIFRACTAL STATIONARY RANDOM MEASURES AND . . . PHYSICAL REVIEW E66, 056121 ~2002!
v l~ t !5P@Al~ t !#, ~20!

whereAl(t) is the 2D subset ofS 1 defined by

Al~ t !5$~ t8,l 8!, l 8> l ,2 f ~ l 8!/2,t82t< f ~ l 8!/2%,
~21!

where f ( l ) satisfies

f ~ l !5H l for l<T

T for l>T.
~22!

As it will be shown in the following sections, the choice
the large scale behaviorf ( l )5T for l>T is the unique one
that ensures the convergence of the construction and the
act scaling of the limit measure. The conelike domainAl(t)
is indicated as a hatched domain in Fig. 2.

We finally define the stochastic positive measureMl(dt)
as

Ml~dt!5ev l (t)dt, ~23!

meaning that for any Lebesgue measurable setI, one has2

Ml~ I !5E
I
ev l (t)dt. ~24!

The MRM M is then obtained as the limit measure~the
meaning and the existence of this limit will be addressed
the following section!

M ~dt!5 lim
l→01

Ml~dt!. ~25!

2Since the paths ofv l(t) are continuous to the right and limited t
the left, the integral~24! is well defined@see Ref.@4##.

FIG. 2. Conical domain@Eq. ~22!# in the (t,l ) half-plane in-
volved in the definition ofv l @Eq. ~20!#.
05612
x-
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Since a simple change in the mean of the stochastic mea
P would lead to the same measure up to a deterministic m
tiplicative factor, we will assume, without loss of generalit
that c satisfies

c~1!50. ~26!

We can consider some generalizations of the previ
construction. The first one consists in changing the funct
f ( l ), i.e., to change the shapeAl the measureP is integrated
on. The second one consists in changing the mea
m(dt,dl), i.e., to change the way the measureP is distrib-
uted in the half-planeS 1. Actually, from Eq.~12! one can
easily show that the construction only depends on the fu
tion m(Al), consequently, changing the shape off ( l ) basi-
cally amounts changingm(dt,dl). A simple example that
illustrates such a freedom is the choicem(dt,dl)5dtdl, i.e.,
m is nothing but the 2D Lebesgue measure. In that ca
m(Al) remains unchanged if one choosesf ( l )51/l in the
definition ~22!. The parameterl is no longer a scale but ca
be interpreted as a frequency and thusS 1 is the time-
frequency half-plane. Therefore, in the following section
without loss of generality, we choose to fixm(dt,dl)
5dtdl/ l 2 ~i.e., to work within the time-scale half-planeS 1)
and we will discuss, in Sec. III F, the consequences wh
rise from other choices than Eq.~22! for the functionf ( l ).

B. Existence of the limit MRM M „dt…

In Ref. @4#, we prove, within the framework of positive
continuous martingales that, almost surely,Ml converges to a
well defined limit measure whenl→01. Moreover, we
prove that if c8(1),1 then there existse.0 such that
c(11e),1 and the moment of order 11e,
E„Ml(@0,t#)11e

…, is finite. Then, using the fact thatc(1)
50, it is straightforward to prove that

E„M ~@0,t# !…5 lim
l→01

E„Ml~@0,t# !…51. ~27!

Consequently the limit measureM (dt) is nondegenerated
~i.e., different from zero!. The overall proof is very technica
and, for this reason, has not been reproduced in this pap

However, if c(2),1, one can prove~see Appendix A!
that suplE(Ml@0,t#2) is bounded and that the sequen
Ml(dt) converges in the mean square sense. Again, using
fact thatc(1)50, it follows thatM (dt) is nondegenerated
~Let us note that, as explained in Sec. III D, one can pro
@4# that assumingc(2),1 basically amounts assuming th
E@M (@0,t#)2#,1`).

C. Exact multifractal scaling of M „dt…

In order to study the scaling properties of the limit me
sureM (dt), let us establish the scale invariance properties
the processv l(t).
1-5
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1. Characteristic function ofv l„t…

Let qPN* , tq5t1 ,t2 , . . . ,tq with t1<t2< . . . <tn and
pq5p1 ,p2 , . . . ,pq . The characteristic function of the vecto
$v l(tm)%1<m<q is defined by

Ql~ tq ,pq!5EH exp(
m51

q

ipmP@Al~ tm!#J . ~28!

Relation ~18! allows us to get an expression for quantiti
like E@exp(m51

q amP(Bm)# where $Bm%m would be disjoint
subsets ofS 1 and am arbitrary numbers. However, th
$Al(tm)%m in Eq. ~28! have no reason to be disjoint subse
We need to find a decomposition of$Al(tm)%m onto disjoint
domains. This is naturally done by considering the differ
intersections between these domains.

Let us define the cone intersection domains as

Al~ t,t8!5Al~ t !ùAl~ t8! ~29!

and

r l~ t !5m@Al~0,t !#. ~30!

Using the definition ofAl(t) with the shape off ( l ) as given
by Eq. ~22!, the expression forr l(t) reads

r l~ t !55
lnS T

l D112
t

l
if t< l

lnS T

t D if T>t> l

0 if t.T.

~31!

Notice thatr l(t) satisfies the remarkable property~for t<T
andl<1):

rl l~lt !5r l~ t !2 ln~l!. ~32!

In Ref. @4#, Ql(tq ,pq) is computed using a recurrence o
q. We obtain the following result:

Ql~ tq ,pq!5e(
j 51

q

(
k51

j

a( j ,k)r l (tk2t j ), ~33!

where

a~ j ,k!5w~r k, j !1w~r k11,j 21!2w~r k, j 21!2w~r k11,j !
~34!

and

r k, j5H (
m5k

j

pm for k< j

0 for k. j .

~35!

Moreover, let us remark that

(
j 51

q

(
k51

j

a~ j ,k!5wS (
k51

q

pkD . ~36!
05612
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2. Multifractal properties of M„dt…

The multifractal scaling properties of the limit MRM
M (dt) result from the scale-invariance property of the pr
cessv l(t) that is itself a direct consequence of previo
exponential expression~33! for the characteristic function o
the processv l and the particular shape of the conical d
mains leading to expression~31!. Indeed, using these equa
tions together with Eq.~36!, it can be proven that;n,
;t1 , . . . tnP@0,T#n, ;p1 . . . pnPRn, one has

Ql l~ltq ,pq!5l2w((
j 51

n

pj )Ql~ tq ,pq!.

It follows that, for l<1, the processv l(t) satisfies, forl
P@0,T#, the following invariance property:

$vl l~ tl!% t 5
law

$Vl1v l~ t !% t , ~37!

whereVl is an infinitely divisible random variable~i.e., it
does not depend ont) which is independent ofv l(t) and
which infinitely divisible law is defined by

E~eipVl!5l2w(p). ~38!

We deduce the following scale-invariance relationship
the sequence of measuresMl(@0,t#):

$Ml l~@0,lt# !% t5H E
0

lt

evl l (u)duJ
t

lH E
0

t

evl l (lu)duJ
t

5
law

leVlH E
0

t

ev l (u)duJ
t

5leVl$Ml~@0,t# !% t

5Wl$Ml~@0,t# !% t , ~39!

whereWl5leVl is independent of$Ml l(@0,lt#)% t .
By taking the limit l→01, one gets the continuous ca

cade equation for MRM as defined in Eq.~6!:

$M ~@0,lt# !% t 5
law

Wl$M ~@0,t# !% t , ;lP@0,1#, ~40!

where ln(Wl) is an infinitely divisible random variable inde
pendent of$M (@0,t#)% t .

The exact multifractal scaling follows immediately:;q
PR, ;t,T, we get

E@M ~@0,t# !q#5Kqtzq, ~41!

were the multifractal spectrum and the prefactor read

zq5q2c~q!, ~42!

Kq5T2zqE@M ~@0,T# !q#. ~43!

Let us notice that the momentE@M (@0,t#)q# in Eq. ~41! can
be infinite. Conditions forE@M (@0,t#)q# to be finite will be
discussed in Sec. III D.
1-6
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3. Multiscaling of correlation functions

The exact~multi!scaling law ~41! for the absolute mo-
ments can be easily extended, along the same line, tn-
points correlation functions. Indeed, let us define the n-po
correlation function, when it exists, as

Cn~ t1 , . . . ,tn ;t1 , . . . ,tn ;p1 , . . . ,pn!5E@M ~@ t1 ,t1

1t1# !p1 . . . M ~@ tn ,tn1tn# !pn#, ~44!

where tk.0, and tk1tk<tk11. It is easy to show that if
tn1tn2t1,T, thenCn is an homogeneous function of de
greez(pk

:

Cn~$ltk%;$ltk%;$pk%!5lzpCn~$tk%;$tk%;$pk%! ~45!

with

p5 (
k51

n

pk . ~46!

This equation extends the scaling law~41! for the moments
to multipoints correlation functions.

D. Algebraic tails of probability density functions

Let us note that, ifq.1,

E@M ~@0,t# !q#5E@~M ~@0,t/2# !1M ~@ t/2,t# !!q#

>2E@M ~@0,t/2# !q#.

Using the multifractal scaling~41!, one getsl zq>2(l /2)zq

leading to 1>212zq. It follows that

Kq,`⇒zq>1. ~47!

Thus, if q.1, the q order moment is infinite ifzq,1. In
Ref. @4#, we show that the ‘‘reverse’’ implication is also tru
i.e.,

zq.1⇒Kq,`. ~48!

Let us notice that this infinite moment conditionzq,1, q
.1, is exactly the same as for discrete multiplicative c
cades established in Refs.@20–22#. Divergence of moments
for multifractals have also been discussed in e.g.,@5,14#.

Therefore, if there exists some value 1,q* ,` such that

zq
*
51 ~49!

then,

Prob$M ~@0,t# !>x%;x2q
* when x→1`. ~50!

The pdf of the measureM (@0,t#) is thus heavy tailed with a
tail exponent that can be, unlike classicala-stable laws, ar-
bitrary large.

E. Examples

In order to illustrate previous considerations let us co
sider some specific examples.
05612
t
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~i! Deterministic case. The simplest situation is when th
Lévy n(dx) measure is identically zero: This case corr
sponds to the self-similar, monofractal situation whe
c(p)5pm. The constraintc(1)50 implies m50, and we
thus get the Lebesgue measure.

~ii ! Log-normal MRM. The log-normal MRM is obtained
when the canonical measures attributes a finite mass a
origin: n(dx)5l2d(x)dx and l2.0. From Eqs.~13! and
~19!, the cumulant generating function is that of a norm
distribution: c(p)5pm1l2p2/2. The conditionc(1)50
implies the relationshipm52l2/2. The log-normalzq spec-
trum is a parabola:

zq
ln5qS 11

l2

2 D2
l2

2
q2. ~51!

Let us note that the so-obtained increasing processM (@0,t#)
is the same as the increasing MRW process mentioned in
conclusion of Ref.@2#. This similarity will be further dis-
cussed in Sec. VI A 1.

~iii ! Log-Poisson MRM. When there is a finite mass a
some finite value x05 ln(d), of intensity l25g(ln d)2:
n(dx)5l2d(x2x0). The corresponding distribution is Pois
son of scale parameterg and intensity ln(d): c(p)5p@m
2sin(ln(d))#2g(12d p). The log-Poissonzq spectrum is
therefore exactly the same as the one proposed by She
Lévêque in their cascade model for turbulence@17#:

zq
lp5qm81g~12dq!, ~52!

where m8 is such thatz151. Notice that in the limitd
→12, g(ln d)2→l2, one recovers the log-normal situatio
In the original She-Le´vêque model,g52 andd52/3 @17#.

~iv! Log-Poisson compound MRM. When the canonica
measuren(dx) satisfies*n(dx)x225C,` @e.g., n(dx) is
concentrated away from the origin#, one can see thatF(dx)
5n(dx)x22/C is a probability measure. In that case,

w~p!5 im8p1CE ~eipx21!F~dx!

is exactly the cumulant generating function associated wi
Poisson process with scaleC and compound with the distri
butionF @24#. Let us now consider a random variableW such
that lnW is distributed according toF(dx). It is easy to see
that *epxF(dx)5E(Wp). It turns out that the log-Poisso
compound MRM has the following multifractal spectrum:

zq
lpc5qm2C@E~Wq!21#. ~53!

This is exactly the spectrum obtained by Barral and Mand
brot in their construction of ‘‘product of cylindrical pulses
@3#. The similarity between our construction and Barra
Mandelbrot construction will be further discussed in Se
VI A 2.

~v! Log-a-stable MRM. Whenn(dx);x12adx for 0,a
,2, one has an log-a-stable MRM:

zq
ls5qm2sauqua. ~54!
1-7
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Such laws have been used in the context of turbulence
geophysics@14,18#. They have been often referred to
‘‘universal multifractals’’ becausea-stable laws are fixed
points of infinitely divisible laws under a suitable renorma
ization procedure.

Many other families ofzq spectra can be obtained~e.g.,
log-G, log-Hyperbolic, . . . ) for other choices of the Le´vy
measure. Let us remark that in the case of a normal ran
variablev l , the functionr l(t) is nothing but the covarianc
of the process as introduced in Refs.@1,2#. This function, that
measures the areas of domainsAl intersections, is therefore
the analog of the covariance for general infinitely divisib
distributions. The Eq.~33! shows that our construction ca
be seen as a natural extension of Gaussian processes~or mul-
tivariate Gaussian laws! within the class of infinitely divis-
ible processes~multivariate infinitely divisible laws! in the
sense that it is completely characterized by a cumulant g
erating functionw(p) ~specifying the mean and the varian
parameters in the Gaussian case! and a two-points ‘‘covari-
ance’’ functionr(t) ~or covariance matrix!.

F. Asymptotic scaling and universality

In the last section, we have seen that the choice~22! for
f ( l ) leads to exact scaling of the moments of the associa
MRM. In this section we study the scaling behavior of t
moments for other choices off ( l ).3 Let us remark thatf ( l )
is defined up to a multiplicative constant. This just amou
to a choice in the scale ofc(p).

In the following, f (e)( l ) will refer to the ‘‘exact scaling’’
choice~22! that was made in the previous sections. The
obtained sets in theS 1 half-plane will be referred to as
A l

(e)(t), the v process asv l
(e)(t) and the associated MRM

asM (e)(dt).

1. Large scale perturbation of f„ l …

Rigorous mathematical proofs can be found in Ref.@4#.
Let us first study the case when one builds an MRM us

a function f ( l ) which differs from f (e)( l ) only for scales
larger than a large~fixed! scaleL, i.e.,

f ~ l !5H f (e)~ l ! for l<L

g~ l ! for l>L.
~55!

For the measureMl(dt) to remain finite,r l(t) must be
finite and thus we must have* l

1` f (u)u22du,`. Therefore,
the large scale behaviorg( l ) must be such that, for somee
.0, g( l )5O( l 12e) as l→1`. An example of such large
scale modification is the function defined by Eq.~17!, where
g5g(s) whereg(s)( l )50 andL5T. This function is the one
which was used by Barral and Mandelbrot in Ref.@3#. Let us
first choose the particular caseg5g(s) (L being any strictly

3We recall that we do not consider other choices for the unifo
measurem(dt,dl) in the half spaceS 1 becausef ( l ) andm(dt,dl)
are involved in the properties of the limit measureM (dt) only
through the functionr l(t)5m@Al(0,t)#. Hence, up to a change o
variablel 85h( l ), one can always setm(dt,dl)5dtdl/ l 22.
05612
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positive number!. The so-obtained sets in theS 1 half-plane
will be referred to asA l

(s)(t), the v process asv l
(s)(t) and

the associated MRM asM (s)(dt). Since, ; t,t8,
@A l

(e)(t)\A l
(s)(t)#ùA l

(s)(t8)5B, one has

v l
(e)~ t !5v l

(s)~ t !1dL~ t !,

wheredL(t)5P@A l
(e)(t)\A l

(s)(t)# is a process which is in-
dependent of the processv l

(s)(t) and which does not depen
on the value ofl ~as long asl ,L). It follows that

E~M (e)~@0,t# !q!<E~sup
@0,t#

eqdL(t)!E~M (s)~@0,t# !q!

E~M (e)~@0,t# !q!>E~ inf
[0,t]

eqdL(t)!E~M (s)~@0,t# !q!.

Because the processdL(t) is ~right! continuous,
limt→01sup[0,t]e

qdL(t)5 limt→01inf[0,t]e
qdL(t)5eqdL(0), we

get

E@M (s)~@0,t# !q# ;
t→0

CqE@M (e)~@0,t# !q#. ~56!

Thanks to the exact scaling ofM (e)(@0,t#) @Eq. ~41!#, we see
that,

E@M (s)~@0,t# !q# ;
t→0

Cqtzq, ~57!

wherezq is defined in Eq.~42!. Thus, we find thatM (s)(dt),
corresponding to the specific choiceg( l )5g(s)( l )50, satis-
fies the asymptotic scale invariance property~4!. If one
chooses a different functiong( l ), using exactly the same
arguments as above@in which M (e)(dt) is replaced by
M (dt), i.e., the measure obtained when using the new fu
tion g( l )], one can prove@4# that

E„M ~@0,t# !q
… ;
t→0

DqE„M (s)~@0,t# !q
…, ~58!

and consequently

E„M ~@0,t# !q
… ;
t→0

DqCqtzq. ~59!

Thus, using any functiong( l ) in Eq. ~55! @satisfying g( l )
5O( l 12e) ( l→1`)] leads to an MRM measure which sa
isfies the asymptotic scale invariance property~4!.

2. Small scale perturbation of f„ l …

Let us now study the consequences of a small scale
turbation off (e)( l ). Let us suppose thatf ( l ); l a for l→0. In
that case,

r l~0! ;
l→0

H l a21 if a,1

Cst if a.1

2 ln~ l ! if a51,

~60!

In the first case,a,1, one can show any moment of ord
11e@e.0# cannot be bounded. SinceE@Ml(@0,t#)#51,
1-8
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general martingale arguments can be used to prove
Ml(@0,t#) converges towards the trivial zero measure.

If a.1, the limit measure is proportional to the Lebesg
measure and thus one obtains the trivial asymptotic scal

E@M ~@0,t# !q# ;
t→0

Cqtq.

Let us now consider the marginal case,f ( l )5 l 1o( l ) at
small scales. From the results of previous section, with
loss of generality, as far as the asymptotic scaling is c
cerned, we can suppose that the large scale compone
identical to the exact scaling situation:f ( l )5T for l>T. We
can then show that, once again, the MRM satisfies a m
fractal scaling in the asymptotic sense@Eq. ~4!#:

E@M ~@0,t# !q# ;
t→0

Kq8t
zq. ~61!

Indeed, let us index all the quantities by the cutoff scalel and
the integral scaleT, i.e., we add an explicit reference to th
integral scaleT: r l ,T(t) is the area of domain intersection
and Ml ,T(@0,t#) is the associated MRM. After some littl
algebra, using the definition ofr l ,T(t) and the fact thatf ( l )
5 l 1o( l ), one can show that

rl l ,lT~lt ! →
l→0

r l ,T
(e)~ t !. ~62!

Thus, thanks to Eq.~33!, we have

$vl l ,lT~lt !% t →
law

l→0
$v l ,T

(e)~ t !% t .

Hence, becauseMl ,T(@0,t#)5*0
t ev l ,T(u)du, by taking the

limit l→0,

l21M0,lT~@0,lt# ! →
law

l→0
M0,T

(e)~@0,t# !

and therefore, from Eqs.~41!, ~42!, and~43!,

l2qE@M0,lT~@0,lt# !q# →
l→0

E@M0,T
(e)~@0,T# !q#T2zqtzq.

By choosing T5T8l21 and using the identity
M0,l21T8

(e) (@0,l21T8#)5 lawl21M0,T8
(e) (@0,T8#), we conclude

that

E@M0,T8~@0,lt# !q# ;
l→0

lzq.

This achieves the proof.
We can therefore see, that, as far as asymptotic multif

tality is concerned, the pertinent parameter is the small s
behavior of the functionf ( l ) or equivalently the small time
behavior ofr l 50(t). As pointed out previously, in the case
a Gaussian fieldv(t) ~i.e., the infinitely divisible law has
only a Gaussian component!, r(t) is nothing but the covari-
ance of the process. The previous discussion leads thus t
conclusion thatnontrivial limit multifractal measures arise
05612
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only in the marginal situation when the correlation functio
of the logarithm of the fluctuations decreases as a logar
mic function.

G. An alternative discrete time construction for MRM

In the case*x22n(dx),` ~e.g., the Le´vy measure has no
mass in an interval aroundx50) a realization of the measur
P(dt,dl) is made of dirac functions distributed in theS 1

half-plane. Thus the processMl(@0,t#)5*0
t ev l (t)dt is a jump

process that can be simulated with no approximation.
However, ifx22n(dx) has a nonfinite integral~e.g., it has

a Gaussian component!, this is no longer the case. Thus, on
has to build another sequence of stochastic measuresM̃ l(dt)
that converges in law towardsM (dt) and that can be seen a
a discretized version ofM (dt). We will see, in following
sections, that such a discrete time approach is also intere
for multifractal stochastic processes construction.

We choose M̃ l(dt) to be uniform on each interva
@kl,(k11)l #, ;kPN and with densityev l (kl). Thus, for any
t.0 such thatt5pl with pPN* , one gets

M̃ l~@0,t# !5 (
k50

p21

ev l (kl)l . ~63!

In the same way as for the measureMl(dt), one can prove
@4#, within the framework of positive martingales, that, a
most surely,M̃ l 522n(dt) converges towards a well define
limit measure whenn→1` ~i.e., l→01). Moreover, in the
same way as in Sec. III B, if we supposec(2),1, then one
can show~the proof is very similar as the one in Append
A! that, in the mean square sense,

lim
n→1`

M̃ l 522n~dt!5M ~dt!. ~64!

As long asc(2),1, this construction gives therefore a wa
of generating a measure which is arbitrarily close~by choos-
ing l small enough! to the limit measureM (dt).

IV. LOG INFINITELY DIVISIBLE MULTIFRACTAL
RANDOM WALKS

In this section we build and study a class of multifrac
stochastic processes that are no longer, as before, str
increasing processes~measures!. They can be basically buil
in two different ways: ~i! By subordinating a fractiona
Brownian motion~fBm! with the previously defined MRM
M (t) or ~ii ! by a stochastic integration of a MRM against
fractional Gaussian noise~fGn!. As we will see, most of the
statistical properties of the so-obtained random processe
directly inherited from those of the associated MRM.

A. MRW with uncorrelated increments

In the same spirit as the log-normal MRW constructio
in Refs. @1,2# @see also Ref.@27##, we use a stochastic inte
gration of ev l (t) against the~independent! Wiener measure
dW(t).
1-9
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1. Definition

SinceE(ev l (t))51, one can consider the process

Xl~ t !5E
0

t

e(1/2)v l (u)dW~u!, ~65!

wheredW(t) is a Gaussian white noise independent ofv l .
The MRW is then defined as the limit ofXl(t) when l
→01:

X~ t !5 lim
l→01

Xl~ t !. ~66!

One can easily prove that for fixedt and l, one has

Xl~ t ! 5
law

s l~ t !e, ~67!

wheree is a standardized normal random variable indep
dent ofs l(t) which is itself nothing but the associated MR
as defined previously:

s l
2~ t !5E

0

t

ev l (u)du5Ml~ t !. ~68!

Let us note that the~nondecreasing! increments ofs l
2(t) are

referred to~in the field of mathematical finance@28,29#! as
the stochastic volatility.

Using the same kind of arguments on finite dimensio
laws, one can also prove that the finite dimensional laws
the processXl(t) converge to those of the subordinated p
cessB@M (t)#. Actually, one can show@4# that, as long as
c8(1),1 ~i.e., 'e.0, c(11e),1 which is, as mentioned
in Sec. II B, the condition for the limit measureM (dt) to be
nondegenerated!, one has

X~ t !5 lim
l→01

Xl~ t ! 5
law

lim
l→01

B„s l~ t !…5
law

B„M ~ t !…. ~69!

The so-obtained MRW can be thus understood a
Brownian motion in a ‘‘multifractal time’’M (t). The subor-
dination of a Brownian process with a nondecreasing proc
has been introduced by Mandelbrot and Taylor@30# and is
the subject of an extensive literature in mathematical finan
Multifractal subordinators have been considered by Mand
brot @31# and widely used to build multifractal process
from multifractal measures~see below!. In a forthcoming
section we will see that multifractal subordination and s
chastic integration do not lead to the same processes w
one considers long-range correlated Gaussian noises~fGn!.

2. Expression of the moments and multifractal properties

Thanks to Eq.~69! @assumingc8(1),1], one gets the
expression of the absolute moments ofX(t) @or X(t01t)
2X(t0)]:
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;q, E„uX~ t !uq
…5E~ ueuq!E„M ~@0,t# !q/2

…

5sq

2q/2GS q11

2 D
GS 1

2D E„M ~@0,t# !q/2
…,

where the first factor comes the orderq moment of a cen-
tered Gaussian variable of variances2.

If M (dt) is an exact multifractal stationary random me
sure, then,X(t) obeys the exact multifractal scaling equatio

E„uX~ t !uq…5sq

2q/2GS q11

2 D
GS 1

2D Kq/2t
zq, ~70!

whereKq is defined in Eq.~43! and

zq5q/22c~q/2!. ~71!

Using Eqs.~47!, ~48!, and ~49!, one deduces that, forq
.2,

E„uX~ t !uq
…,1`⇒zq>1, ~72!

and conversely

zq,1⇒E„uX~ t !uq
…,`. ~73!

Moreover, let us note that ifM (dt) verifies only an
asymptotic scaling, so does the MRW processX(t).

3. An alternative discrete time construction for MRW processe

As in Refs.@1,2# or in Sec. III G, one can also try to build
an MRW process using a discrete approach. A discrete c
struction can be useful for numerical simulations. Let us,
instance, choosel n522n. And lete l@k#5*kl

(k11)ldW(u) be a
discrete Gaussian white noise. We define the piece-wise
stant processX̃l n

(t) as (t5pln):

X̃l n
~ t !5 (

k50

p21

e1/2v l n
(kln)e l n

@k#. ~74!

The MRW X̃l n
(t) can be rewritten as

X̃l n
~ t !5 (

k50

p21

AM̃ l n
~@kln ,~k11!l n# !e l n

@k#/ l n , ~75!

whereM̃ l n
is defined by Eq.~63!. One then deduces easil

the convergence ofX̃l n
from the convergence ofM̃ l n

. Thus,

for instance, one can prove@4# that, as long asc(2),1, one
has

lim
n→1`

X̃l n
~ t ! 5

law

B@M ~ t !#. ~76!
1-10
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B. MRW processes with long-range correlations

1. Definitions

In order to construct long-range correlated MRW, it
natural to replace the Wiener noise~Brownian motion! in
previous construction by a fractional Gaussian noise~frac-
tional Brownian motion!. A fBm, BH(t) is a continuous, self-
similar, zero-mean Gaussian process which covariance r
@see, e.g., Ref.@32# for a precise definition and properties#

E„BH~ t !BH~s!…5
s2

2
~s2H1t2H2ut2su2H!, ~77!

where 0,H,1 is often called the Hurst parameter. Standa
Brownian motion corresponds toH51/2.

The simplest approach to construct a long-range co
lated MRW follows the idea of Mandelbrot that simply co
sists in subordinating a fractional Brownian motion of ind
H with the MRM M (t), i.e.,

XH
s ~ t !5BH@M ~ t !#. ~78!

An alternative would consist in building a stochastic in
gral against a fGndWH(t)

Xl ,H
i ~ t !5E

0

t

ev l (t)dWH~ t ! ~79!

and considering some appropriate limitl→0. However, sto-
chastic integrals against fGn cannot be defined as easil
for the white Gaussian noise and the proposed construct
require the complex machinery of Malliavin calculus
Wick products@33,34#. One simple way to define the prev
ous integral could be to see it as the limit of a Riemann s

E
0

t

ev l (t)dWH~ t ![ lim
Dt→0

(
k50

t/Dt

ev l (kDt)eH,Dt@k#, ~80!

where eH,Dt(k)5BH(kDt)2BH((k21)Dt). We have not
proved yet that this is a mathematically sound definitio
However, if one assumes that~79! makes sense, one ca
address the question of the existence of the limit proc
lim l→0Xl ,H

i (t). In the Appendix B, we provide heuristic a
guments for mean square convergence. We obtain a co
tion

H.1/21c~2!/2, ~81!

wherec(p) is the cumulant generating function associa
with v.

2. Multifractal properties

In the case of the subordinated versionXH
s (t) of the

MRW, the scaling properties can be directly deduced by
self-similarity of BH(t) @31#. Since BH(t1t)2BH(t)
5 lawtH@BH(t11)2BH(t)#, and M (t) is independent of
BH , one hasXH@M (t)#5 lawM (t)HBH(1). The scaling of
the absolute moments of the increments ofXH is therefore
05612
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E@ uXH~ t !uq#5E@M ~ t !qH#E@ uB~1!uq#5KqHGqtzq
s

with

zq
s5qH2c~qH!. ~82!

For the second version,XH
i , the scaling of the moments i

determined using the scale invariance of the processv l(t)
and the self-similarity of the fGndWH(t). Using the same
method as for the measureM (t), one obtains

E@ uXH
i ~ t !uq#5Mqtzq

i
~83!

with

zq
i 5qH2c~q!. ~84!

We can see that the multifractal spectra ofXH
s and XH

i are
different: they do not correspond to identical processes a
was the case for the uncorrelated construction. Notice
the existence criterion~81!, can be simply rewritten asz2

i

.1. According to the considerations developed in Sec. III
this condition ensures the existence of the second order
ment of XH

i . Whether the class of processesXH
i (t) can be

extended, in some weak probabilistic sense, to values oH
,1/21c(2)/2 is still an open problem~such processes
would have an infinite variance!. The condition of finite vari-
ance forXH

s (t) is less restrictive since it comes to the co
dition K2H,`, where K2H is defined in Eq.~43!. For H
,1/2 such a moment is always finite.

C. A remark on subordination

Let us remark that, in some sense, the subordination b
MRM M (dt) can be iterated. Indeed, ifM1(@0,t#) and
M2(@0,t#) are two independent MRM, the subordinated me
sure

M ~@ t1 ,t2# !5M1@M2~@0,t1# !,M2~@0,t2# !# ~85!

is well defined. Using the cascade equation~40!, we deduce
that

M ~@0,lt# !5 lawM1@0,Wl
(2)M2~@0,t# !# ~86!

5 lawWW
l
(2)

(1)
M ~@0,t# !, ~87!

where Wl
(1,2) are the ~independent! log infinitely divisible

weights associated with the MRMM1,2. The second equality
is valid only if Wl

(2),1, i.e., when the Le´vy measure asso
ciated with M2 is concentrated on@0,1`#. By computing
the moment of orderq of both sides of the equality, we se
that the mulifractal spectrum of the subordinated meas
reads

zq5zz
q
(1)

(2)
5q2c (2)@q2c (1)~q!#, ~88!

wherezq
( i ) ~respectivelyc ( i )(q)], i 51,2, is the spectrum as

sociated withMi . The Eq.~87! corresponds to a ‘‘random
1-11
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ization’’ of the rescaling factorl that parametrizes the lo
infinitely divisible law of ln(Wl

(1)). It is easy to prove@24#

that the law of ln(WW
l
(2)

(1)
) remains infinitely divisible. The

class of log infinitely divisible MRM is therefore closed un
der subordination. The family of subordinated spectra~88! is
thus included in the family of log infinitely divisible spectr
and the operation~85! does not allow us to build new MRM
with exact scale invariance properties.

V. NUMERICAL SIMULATIONS

A. Principles

In order to generate realizations ofM̃ l n
(dt) @defined by

Eq. ~63!#, one needs to be able to generate realizations
v l n

(kln). However, following the definition ofv l one would

need realizations of the 2D random measureP(dt,dl) for l
> l n . In the case of a compound Poisson process, the pro
Ml(@0,t#)5*0

t ev l (t)dt is a jump process that can be synth
tized easily.

In the general case, we need to find a set of disjoint ‘‘
ementary’’ domains of the half-planeS 1 such that, for anyk,
there exists a subset of this set such thatAl n

(kln) can be
expressed as a union over the elementary domains of
subset. Since, at fixedl n , the boundaries of the domain
Al n

(kln) (kPZ) define a tiling ofS 1, it is natural to con-
sider the elementary cells of this tiling. Each cell is the
tersection between left and right strips limited by left a
right boundaries of conical domains: Let us define the c
Bl(t,t8) ~with t,t8) as

Bl~ t,t8!5@Al~ t !\Al~ t2 l !#ù@Al~ t8!\Al~ t81 l !#.
~89!

Then, by definition the cells$Bl n
(kln ,k8l n)%k,k8 are disjoint

domains and form a partition of the subspace~of S 1)
$(t,l )PS 1, l> l n%. Moreover

Al n
~kln!5 ø

2`< i<k
ø

k< j <1`

Bl n
~ i l n , j l n!. ~90!

On the other hand, for a fixeds> l n , one has

~u,s!PAl~ t !\Al~ t2 l !⇔t2 l 1 f ~s!/2<u<t1 f ~s!/2,

and

~u,s!PAl~ t1 l !\Al~ t !⇔t2 f ~s!/2<u<t1 l 2 f ~s!/2.

Thus settingYi , j5P@Bl n
( i l n , j l n)#, straightforward compu-

tations lead to the following representation of discrete p
cessv l n

(kln):

v l n
~kln!5 (

i 52`

k

(
j 5k

1`

Yi , j , ~91!

where $Yi , j% i , j are independent infinitely divisible random
variables which satisfy

E~epYi , j !5ec(p)r i , j , ~92!
05612
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r i , j5E
s> l n

ds/s2E dtHi , j ,s~ t !, ~93!

whereHi , j ,s(t) is the indicator function

Hi , j ,s~ t !5I[ai , j (s),bi , j (s)]~ t !, ~94!

with

ai , j~s!5max@~ i 21!l n1 f ~s!/2,j l n2 f ~s!/2#, ~95!

and

bi , j~s!5min@ i l n1 f ~s!/2,~ j 11!l n2 f ~s!/2#. ~96!

Let us note that if the functionf is bounded@which is the
case if we are under the hypothesis~22!, i.e., in the case of
‘‘exact’’ scaling#, the number of terms in Eq.~91! is finite.

In the Gaussian case, the situation is simpler becausev l is
completely characterized by its covariance functionr l(t). In
that case, the 2D synthesis problem can be easily transp
as a 1D filtering procedure by finding a filterf l(t) such that

f l* f l5r l , ~97!

where * stands for the convolution product. The process

v l8~ t !5E f l~ t2t8!W~dt8! ~98!

~whereW is here a 1D Wiener noise! will be thus identical to
the normal processv l(t) as defined in Eq.~20!. In the origi-
nal study of Refs.@1,2# the MRW has been defined along th
method.

B. Numerical examples

In Fig. 3 are shown two samples of MRW which are r
spectively log-normal and log-Poisson@see Eqs.~51! and
~52!#. In both cases we have chosenT5512 sample units,
H51/2 (e is a Gaussian white noise!. For the log-normal
process,l250.05 whileg54 andd5e2A0.05/g for the log-
Poisson process. The log-Poisson process has been sy
tized using Eq.~91! while a simple filtering method was use
for the log-normal process. Equation~97! was solved nu-
merically in the Fourier domain. In Fig. 4 are plotted thezq
functions estimated for both processes. These functions h
been obtained from the scaling of the moments estima
using 256 MRW trials of 64 integral scales long. Thezq
values for negativeq have been obtained using the so-call
WTMM method that is a wavelet-based method introduc
to study multifractal functions@35–37#. The superimposed
analytical formulas obtained with Eqs.~71!, ~51!, and ~52!,
fit very well with statistical estimates except a large negat
q values for the log-normal case. This can be explained a
finite statistics effect.
1-12
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VI. CONNECTED APPROACHES

In this section we review some specific results concern
respectively log-normal and log-Poisson compound MRW

A. Log-normal MRW

The log-normal MRW has been originally defined in Re
@1,2#. It corresponds to the simplest situation when the Le´vy
measure has only a Gaussian component. In that case

FIG. 3. MRW signals sampled at rate 1.~a! Log-normal MRW
with T5512 andl250.05. ~b! Log-Poisson sample withT5512,
g54 andg ln(d)250.05. In both signals, the cutoffl has been fixed
to 1/8 for the numerical synthesis.

FIG. 4. zq spectrum estimation for log-normal and log-Poiss
MRWs. The exponents have been directly estimated from lin
regression of increment orderq absolute moments in doubly loga
rithmic representations. These moments have been estimated
a statistical sample of 256 signals of 64 integral scales. The sym
(d) correspond to log-Poisson estimates while (s) correspond to
log-normal estimates. The solid line represents the log-Poisson
lytical spectrum~52! and the dashed line to log-normal analytic
spectrum~51! rescaled using Eq.~71!. The parameters of both pro
cesses are those of Fig. 2 and have been chosen so that the so
intermittency parameter2z9(0), is the same (0.05).
05612
g

.

the

Gaussian processv l(t) can be directly constructed from
1D white noise, without any reference to 2D conical d
mains. This model is interesting because its multifrac
properties are described by only two parameters, the inte
scaleT and the so-called intermittency parameterl2. Some
simple estimators of these quantities have been propose
Ref. @1#. Moreover, many exact analytical expressions can
obtained and notably the value of the prefactorKq in Eq.
~42!. In Ref. @38#, it is shown that this prefactor can be wri
ten as a Selberg integral@39#. Its analytical expression read

Kq5Tq)
k50

q21
G~122l2k!2G~122l2~k11!!

G~222l2~q1k21!!G~122l2!
. ~99!

It is easy to check thatKq is defined only ifq,q* 52/l2.
We recover the finite moment condition~49!, q,q* with
zq

*
51. Notice that, as emphasized by Frisch@40#, the exis-

tence of infinite moments can be a drawback of a log-norm
multifractal as a model for experimental situations like tu
bulence. However, for a typical valuel255.1022, q* 540,
so a log-normal approximation can be very good in a ran
of q values far beyond the limit associated with the finite s
of experimental samples. Let us finally mention that the lo
normal MRW can be naturally generalized to a ‘‘multivaria
multifractal model’’ which is a multifractal vector of pro
cesses characterized by an intermittency matrixL i j @1#. This
notion of ‘‘joint multifractality’’ can be very interesting in
many applications.

B. Multifractal products of cylindrical pulses

In Ref. @3#, Mandelbrot and Barral introduced a positiv
multifractal random measure using products of positive r
dom variables associated with Poisson points within
conical domains. Their construction is a particular case
MRM. It actually reduces to the case wheren(dx) is a Lévy
measure satisfying*n(dx)x22,` ~see Sec. III E! and
where the setAl(t) is delimited by the functionf ( l ) as de-
fined by Eq.~17!. Let us note that, since they have not co
sidered the full domainAl(t) associated with the function
f ( l ) as defined by Eq.~22!, as explained in Sec. III F, this
construction performs asymptotic scaling~4! but not exact
scaling~1!. However, these authors did not study the scal
properties of the random measures. They rather focused
the pathwise regularity properties. More precisely, th
proved the validity of the so-called ‘‘multifractal formalism
@see, e.g., Refs.@35–37,41,42## that relates the functionzq to
the singularity spectrumD(h) associated with~almost! all
realizations of the process. For a given path of the increas
process associated with an MRM,D(h) is defined as the
Hausdorff dimension of the set of ‘‘isoregularity’’ points, i.e
the points where the~Hölder! regularity is h. Barral and
Mandelbrot proved thatD(h) and zq are related by a Leg-
endre transformation. Since we proved thatzq is the scaling
exponent of MRM moments, it follows that one can estima
the singularity spectrum of the MRM paths in the case
log-Poisson compound statistics. It should be interesting
extend the Mandelbrot-Barral theorem to the general log
finitely divisible MRM and MRW paths.
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VII. CONCLUSION AND PROSPECTS

A. Summary and open questions

In this paper, we have constructed a class of station
continuous time stochastic measures and random proce
that have exact or asymptotic multifractal scaling proper
in the sense of Eqs.~1! and ~4!. We have shown how sto
chastic integration of an infinitely divisible noise over con
like domains, as originally proposed in Ref.@19#, naturally
arises when one wants to ‘‘interpolate’’ discrete multiplic
tive cascades over a continuous range of scales within a
struction that is invariant by time translations. The expon
tial of these stochastic integrals (ev l (t)) can be interpreted a
a ‘‘continuous product’’ from coarse to fine scales and thus
the continuous extension of the multiplicative rule involv
in the definition of discrete cascades. We have shown tha
probability density functions associated with MRM an
MRW processes can have, like discrete cascades, fat
with arbitrary large exponents. However, unlike their discr
analog, our ‘‘continuous cascades’’ have stationary fluct
tions, do not involve any particular scale ratio and can
defined in a causal way. This ‘‘sequential’’ formulation,
opposed to the classical ‘‘top to bottom’’ definition of mult
fractals, can be very interesting for modeling dynamical p
cesses~see the next section!. Let us note that we focused i
this study on 1D processes but our construction can easil
extended to higher dimensions.

It is well known @see Refs.@1,2## that the multiscaling~1!
or ~4! with a nonlinear convexzq function cannot extend
over an unbounded range of scales and there necessaril
ists an ‘‘integral scale’’T above which the scaling of th
moments changes. The existence of such an integral s
can be found in the general shape of functionf ( l ) as dis-
cussed in Sec. III F: One must havef ( l ); l when l→0 and
f ( l )5o( l ) when l→1`, so the scaleT is a scale that sepa
rates these two asymptotic regimes. It is remarkable
there exists a particular expression for the functionf ( l ) @Eq.
~22!# for which the moments in the multifractal regimel
<T satisfy anexactscaling. The existence of processes w
such properties was nota priori obvious. In the same sec
tion, we have shown thatf ( l ); l is a necessary and sufficien
condition for the existence of a limit multifractal objec
From a fundamental point of view, one important quest
concerns the unicity of our construction: Can any proc
satisfying~1! be represented within the framework we ha
introduced ?

It remains many open mathematical problems related
the processes which we introduced in this paper. Som
them have been already mentioned, notably the quest
related to the construction of stochastic integrals in S
IV B. As discussed in Sec. VI B, it should be interesting
generalize the results of Ref.@3# in order to link scaling
properties and pathwise regularity within a multifractal fo
malism. Another interesting problem concerns the study
limit probability distributions associated with MRM fo
which very few features are known. Like infinitely divisibl
laws, they appear to be related to some semi-group struc
Finally, one can wonder if log infinitely processes we ha
defined are not the natural candidates to be described w
05612
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the framework of ‘‘Markovian continuous cascades’’ as i
troduced in Refs.@43,44#.

B. Possible applications

One of the main issues of the present work was to c
struct a wide family of multifractal processes~or measures!
that are likely to be pertinent models in many fields whe
multiscaling laws are observed. Naturally, the first applic
tion of which one can think, is fully developed turbulenc
Turbulence and multifractals share a long history and
refer the reader to Ref.@40# for a review on the ‘‘intermit-
tent’’ nature of turbulent fields. Recently, new aspects of t
bulence were studied by considering fluid dynamics from
Lagrangian point of view. This was possible because t
groups developed new experimental devices based on a
imaging system@45# or ultrasound techniques@46,47# allow-
ing for a direct measurement of the velocity of a single tra
in a turbulent flow. In a recent works, Pinton and his collab
rators@46,47# studied the intermittency of Lagrangian traje
tories and related it to the slow~logarithmic! decay of the
particle acceleration correlations@47,48,49#, very much like
for a MRW model. In other words, these authors found t
the turbulent Lagrangian dynamics is very well described
an equation of Langevin type with a driving force amplitu
similar to ev l (t) involved in the MRW definition. The under
standing of the physical origin of such dynamical corre
tions and the link between Lagrangian and Eulerian statis
is a very promising path towards the explanation of the
termittency phenomenon in fully developed turbulence.

Besides turbulence, ‘‘econophysics’’@50–52# is an emerg-
ing field where fractal and multifractal concepts have prov
to be fruitful. Indeed, many recent studies brought empiri
evidences for the multifractal nature of the fluctuations
financial markets@see Ref.@1# and reference therein#. Some
physicists raised an interesting analogy between turbule
and finance@51,53–55#. Logarithmic decaying correlation
and ‘‘1/f’’ power spectrum have been directly observed f
various time series@54,56#, so it is reasonable to think tha
MRW models are well suited for modeling financial tim
series@1#. The versatility of infinitely divisible MRW is very
interesting to account for various stylized facts of financ
times series such that the multiscaling, the power-law
behavior of return pdf and therefore, such models can
very helpful for financial engineering and risk manageme

Among all the remaining disciplines where multifractali
has been observed, one can mention the study of netw
traffic @57–59#, geophysics, and climatology@60–62#, bio-
medical engineering@63#, the modeling of natural image
@64#, . . . On amore theoretical ground, ‘‘continuous branc
ing trees’’ and log-correlated random processes have
been considered in the physics of disordered syste
@65,66#. The study of free energy density in the thermod
namic limit in presence of log-correlated disorder~or equiva-
lently on topologies involving random disordered trees! raise
questions very similar to the study of limit MRM address
in this paper. One can hope that pushing forward this anal
is a promising prospect to get significant results in bo
fields.
1-14
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APPENDIX A: MEAN SQUARE CONVERGENCE
OF A MRM

Let Ml(dt) defined as in Eq.~23!. In this section we
prove that, assumingc(2),1, one has

Ml~@0,t# ! →
m.s.

l→0
M ~@0,t# !. ~A1!

Let us define

Rl ,l 8~t!5E~ev l (u)1v l 8(u1t)!. ~A2!

In order to prove Eq.~A1!, let us first show that, ifl 8< l :

Rl ,l 8~t!5Rl ,l~t!5er l (t)c(2) ~A3!

with r l(t) as defined as in Eqs.~30! and ~31!.
The first equality in Eq.~A3! comes directly from the

assumptionc(1)50 while the second equality is a particul
case of the identity~33!, whereq52, p15p252 i and t1
2t25t.

Let us show, that,;e, ' l 0 , ; l ,l 8, l 0 , E@„Ml(t)
2Ml 8(t)…

2#,e. Let us suppose thatl 8< l . Then,

C~ l ,l 8,t !5E@„Ml~@0,t# !2Ml 8~@0,t# !…2#5E@Ml
2~@0,t# !#

1E@Ml 8
2

~@0,t# !#22E@Ml~@0,t# !Ml 8~@0,t# !#

5E
0

tE
0

t

@E~ev l (u)1v l (v)!1E~ev l 8(u)1v l 8(v)!#dudv

22E
0

tE
0

t

E~ev l (u)1v l 8(v)!dudv.

Thus, thanks to Eq.~A3!, we get, after a little algebra

C~ l ,l 8,t !<DtE
0

t

~Rl 8,l 8~u!2Rl ,l~u!!du,

<DtE
0

l

Rl 8,l 8~u!du,

<DtE
0

l 8
Rl 8,l 8~u!du1DtE

l 8

l

Rl 8,l 8~u!du

<Etl812c(2)1Et~ l 12c(2)2 l 812c(2)!,

whereD and E are positive constants. Sincec(2),1, we
see thatMl(@0,t#) is a Cauchy sequence and thus conver
in mean square sense.

The previous computations also prove the convergenc
all finite dimensional vector$Ml@ t1 ,t11t1#, . . . ,Ml@ tn ,tn
1tn#%. In order to prove the existence of the limitM (@0,t#)
05612
-

s

of

as a stochastic process, one further needs a ‘‘tightness’’ c
dition. Such a condition can be obtained along the same
as for previous computation. Indeed, providedc(2),1, one
can bound the order 2 moment ofMl(@0,t#), ;t,l :

E~Ml~@0,t#2!<Ct22c(2),

whereC does not depend onl. This achieves the proof.

APPENDIX B: MEAN SQUARE CONVERGENCE
OF A MRW WITH A FRACTIONAL GAUSSIAN NOISE eH

In order to simplify the proof and to avoid technical com
plications, let us show the mean square convergence of
process

Xl~ t !5E
0

t

dWH~ t !ev l (t), ~B1!

where dWH is a continuous fGn which covariance is (H
Þ1/2)

gH~t!5s2H~2H21!t2H22. ~B2!

Rigorously speaking the previous integral is not well d
fined but the proof of the convergence of the discrete vers
~80! is very similar. Let us now

Xl~ t ! →
m.s.

l→0
X~ t ! ~B3!

providedH satisfies

H.1/21c~2!/2. ~B4!

We proceed along the same line as in the Appendix A.
order to prove Eq.~B3!, we have to prove, that,; l ,l 8< l ,
E@(Xl(t)2Xl 8(t))

2#→ l→00. Let

E5E@~Xl~ t !2Xl 8~ t !!2#. ~B5!

Thanks to Eq.~A3!, we have

E5E@Xl
2~ t !#1E@Xl 8

2
~ t !#22E@Xl~ t !Xl 8~ t !#

5E
0

tE
0

t

@E~ev l (u)1v l (v)!1E~ev l 8(u)1v l 8(v)!#gH~ uu

2vu!dudv22E
0

tE
0

t

E~ev l (u)1v l 8(v)!gH~ uu2vu!dudv

5E
0

tE
0

t

@Rl 8 l 8~ uu2vu!2Rl ,l~ uu2vu!#gH~ uu2vu!dudv.

The last integral behavior in the limitl→0 can be easily
evaluated. After some simple algebra we get

E@~Xl~ t !2Xl 8~ t !!2#5O~ l 2H2c(2)21!.

Thus if condition~B4! is satisfied, i.e., 2H2c(2)21.0,
Xl(t) is a Cauchy sequence and thus converges in m
square sense.
1-15
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