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Coevolutionary games on networks
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We study agents on a network playing an iterated Prisoner’s dilemma against their neighbors. The resulting
spatially extended coevolutionary game exhibits stationary states which are Nash equilibria. After perturbation
of these equilibria, avalanches of mutations reestablish a stationary state. Scale-free avalanche distributions are
observed that are in accordance with calculations from the Nash equilibria and a confined branching process.
The transition from subcritical to critical avalanche dynamics can be traced to a change in the degeneracy of
the cooperative macrostate and is observed for many variants of this game.

DOI: 10.1103/PhysRevE.66.056118 PACS number~s!: 02.50.Le, 87.23.Kg, 89.75.Hc, 89.75.Da
s
re

of
ing

ria
x

,
nt

ich
in
tw

Bu
th
c

vio
m

a
t

ic

r’

en
tiv
ro
e

an

ro
ly

en
this
lex
for

d

-
he
pt
hy
tem
ct
of

er,
pro-

es,
iza-

ing
net-

rat-
ash
ri-
nd
ria
al
and

lly
ll as
y
ing
nd

and
the
A
ing
-free

y.
I. INTRODUCTION

Much research has been devoted to the statistical phy
of complex systems with game theoretic interactions
cently. One motivation is economic systems composed
large number of agents with simple local interactions giv
rise to complex global structures and dynamics@1#. In par-
ticular, the problem of stability and uniqueness of equilib
in economic systems has been readdressed in the conte
the aggregate behavior of individual agents@2#. Game theory
@3# and the theory of evolutionary games@4# provide a suf-
ficient framework for modeling individual interactions
whereas spatial structures have to be taken into accou
tackle coevolutionary dynamics of real-world systems@5–7#.

Here, we will consider random networks of agents wh
face a social dilemma or, in physical terms, a frustrated
teraction. Imagine a situation where each player can take
actions, saycooperatingor defecting. The optimal global
outcome would be achieved by all players cooperating.
an individual player can gain much more when exploiting
cooperators by defecting. Such a situation is called a so
dilemma or a frustrated interaction. The central question
how social order is possible and how cooperative beha
can emerge. Examples for such spatially extended dilem
are biological networks, where connected plants may or m
not decide to share resources@8#, the analysis of interne
congestion@9#, models for economic communication@10#,
and, of course, many sociological problems from confl
research to public transportation@11,12#.

A simple model system is given by the iterated Prisone
dilemma ~IPD! @11,13# with coevolutionary dynamics. The
Prisoner’s dilemma game is probably the most promin
example of a basic model for the emergence of coopera
behavior in social, economic, and biological systems. It p
vides a frustrated two-particle interaction and has been
tensively studied by physicists, economists, biologists,
mathematicians.

A spatially extended Prisoner’s dilemma was first p
posed by Axelrod who concluded that territoriality strong
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influences the evolution of cooperation@11#. Extensive work
on the spatial Prisoner’s dilemma started in 1992 wh
Nowak and May explored a cellular automaton based on
game on regular lattices. They and others found comp
spatiotemporal dynamics and emergence of cooperation
strategy spaces confined to the strategiesdefectingandcoop-
erating @14–19#. For the Prisoner’s dilemma on lattices an
strategy spaces confined to onlycooperatingand defecting
~and Tit For Tat in Ref.@20#!, methods from theoretical phys
ics, as Monte Carlo simulations, percolation theory, t
theory of~nonequilibrium! phase transitions, and the conce
of self-organized criticality, were used to understand w
cooperators or defectors dominate or coexist in the sys
@20–25#. Lindgren and Nordahl introduced players which a
erroneously sometimes, allowing a complex evolution
strategies in an unbounded strategy space@26#. Others found
that the limitation of a player’s memory to the last encount
which translates to a bounded strategy space, does not
vide a significant drawback for the players@27–29#. Evolu-
tionary games on networks, again with only two strategi
have been studied to ask questions on how spatial organ
tion influences the transition from defecting to cooperat
@30# and how the players themselves may influence the
work topology@31#. In the following, we will study the Pris-
oner’s dilemma on a network with a larger but bounded st
egy space and coevolutionary dynamics that lead to N
equilibria as stationary states. It will be shown both nume
cally and theoretically that payoff matrix, strategy space, a
topology are crucial to answer the question which equilib
will occur and how stable they are. In particular, critic
avalanches of mutations are observed for such games
will be explained in detail.

This paper is organized as follows. In Sec. II, the spatia
extended iterated Prisoner’s dilemma is described as we
its coevolutionary dynamics. This is followed in Sec. III b
numerical investigations of avalanche dynamics show
three distinct regimes due to changes in payoff matrix a
topology. The observed Nash equilibria are described
explained in Sec. IV, which enables us to understand
critical value of the control parameter of the payoff matrix.
confined branching process is introduced in Sec. V, clarify
the relaxation mechanism and the emergence of scale
behavior. Conclusions are drawn in Sec. VI.
©2002 The American Physical Society18-1
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II. A COEVOLUTIONARY SPATIALLY EXTENDED IPD

We start with a network withN players as nodes wher
each player plays an iterated Prisoner’s dilemma ga
against each of its neighbors. The Prisoner’s dilemma
two-person game with two possible actions in each enco
ter. The payoff matrix of the first player for the two strategi
cooperatinganddefecting~denoted byŝ1 andŝ2) is given by

A5S 3 0

5 1D 5~ai j ! i , j P $1,2% , ~1!

with the entriesai j 5p̂1( ŝi ,ŝj ). p̂1( ŝi ,ŝj ) is the payoff of
player 1 if player 1 plays strategyŝi and player 2 playsŝj .
The game is symmetric, i.e.,p̂1( ŝi ,ŝj )5p̂2( ŝj ,ŝi). There-
fore, the corresponding payoff matrix of the second playe
the transpose of the first player’s matrix. The Prisoner’s
lemma game, in general, is defined by the relations

a12,a22,a11,a21 and a121a21,2a11. ~2!

Hence, in one encounter of the Prisoner’s dilemma, defec
is the strategy that yields the best payoff regardless of
opponent’s strategy. This is no longer the case in the itera
game where mutual cooperation is more favorable than b
players defecting or switching between defecting and co
erating. That is the reason why this system is a frustra
system. In each encounter, defecting would maximize a p
er’s payoff. But in the long run, when players will anticipa
each other’s action, cooperation will, in general, do mu
better.

A. IPD with memory on a network

Let us further specify the strategy space and payoff fu
tion of the spatial game. A strategy is viewed as a mappin
an agent’s ‘‘knowledge’’ to an ‘‘action.’’ ‘‘Knowledge’’ of an
agent is given by the previous moves the agent can take
account to decide which action it will take next. We defi
the memory lengthm of a player as the number of thes
previous moves and confine the memory of the agents tm
51, i.e., an agent remembers only its opponent’s last act
If one player encounters another player there is no prev
move and the player has to decide on its first move with
any information about the opponent. Accordingly, the op
ing move is a part of the strategy, too, which can be rep
sented as a lookup table or a binary string~Table I!. After the

TABLE I. Representation of the strategy of one agent w
memorym51 ~0, defection; 1, cooperation!. The agent determined
by the above strategy is an unconditioned cooperator. It coope
no matter whether its opponent has cooperated or defected in
last move.

History Action

0 1
1 1

First move 1
05611
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opening move, the action of a player is determined by
lookup table of its strategy and the respective previous m
of its opponent. The finite number of moves of one encoun
is not known by any agent. In the course of the game,
player has to play against each of its neighbors on the
work. Thereafter, its payoff is given by the average pay
per move~including the opening move! and neighbor ac-
cording to the payoff matrixA.

The strategy space of a playeri consists of up to eight
pure strategiesSi#$0,1,2,3,4,5,6,7% ~cf. Table II for defini-
tion of the strategies!. The pure-strategy space of the game
S53 i PISi with the set of the playersI 5$0,1, . . . ,n%. The
~pure strategy! payoff functionp i :S→R does not depend on
the whole pure strategy profiles5(s1 ,•••,sn) but only on
the strategies of the neighboring nodesp i5p i„si ,neigh(i )…
and, of course, on the payoff matrix of the Prisoner’s
lemma game. Here, the set of the neighbors of a nodei is
denoted neigh(i ). With p(s)5@p1(s), . . . ,pn(s)# the
above defined game (S,I ,p) is a finite normal-form game
Such games, in general, have at least one Nash equilib
@32#. Here, only pure strategies will be considered neglect
possible mixed-strategy equilibria. In this setting,sD
5(0, . . . ,0) andsTFT5(6, . . . ,6) areNash equilibria for
any payoff matrixA obeying Eq.~2! and for a sufficiently
high number of moves, which can be easily verified. T
former equilibrium consists of players always defectin
whereas in the latter state each player repeats its oppon
last move~Tit For Tat! with a cooperative opening move~cf.
Table II!.

B. Coevolutionary dynamics

Let us now introduce mutations of a player’s strategy. T
lookup table determining the strategy is viewed as a
string of length 2m11, wherem is the memory length as
defined above. This bit string will then be mutated during t
iteration of the game.

At the beginning, a random network with a given me
degreê k& is generated@41#. The strategies are assigned ra
domly, too. All agents play against each of their neighb
initially to update their payoffs. Thereafter, the followin
steps are iterated.

~i! One agenti is chosen randomly and its strategy
mutated fromsi to a strategysi8PSi picked out at random.

~ii ! The mutated agent plays again against its neighb
and its payoff is compared with the former result.

The mutation is accepted in the case of a higher p
off, p i(s1 ,s2 , . . . ,si8 , . . . ,sN).p i(s1,s2, . . . ,si , . . . ,sN),
and the payoffs of all neighbors are also updated. This c
responds to the assumptions that accepting any mutatio
combined with some costs to the player and that mutati
occur on a time scale slower than the time scale of the ga
Iteration of this process leads to a stationary state wit
fixed strategy distribution. In the stationary state, no ag
can improve its payoff by changing its strategy whereas
other players’ strategies remain unchanged. This state co
sponds to the game theoretic Nash equilibrium@32,33#. Note
that, for its decisions, no more information than a playe
own payoff is required.
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III. PERTURBATIONS AND AVALANCHES

One essential property of evolutionary games is given
the equilibria or the evolutionarily stable states. All statio
ary states of the game are Nash equilibria. An interes
question is the stability of these equilibria against pertur
tions. In the following, we will study the dynamics of ava
lanches of mutation events following a perturbation of t
Nash equilibrium. After the system has reached a station
state, a new strategy is assigned to a random player.
insertion of a suboptimal strategy offers new opportunit
for mutations to the perturbed player itself and to its neig
bors. Since players are updated randomly, a perturba
leads to an avalanche of mutations until a stationary sta
reached again. One quantity of interest is the avalanche
M given by the number of mutations necessary to reestab
the equilibrium and its dependence on the payoff matrixA.
We will first discuss the numerical results for the case
players on a random network. The second part of this sec
deals with a Prisoner’s dilemma on a ring, which will be t
starting point for the theoretical treatment in the next t
sections.

In the case of sparsely connected random networks,
observes three distinct regimes of the avalanche dynam
with the temptation to defecta21 as control parameter. Fo
small temptations, 3,a21<4, a subcritical regime occur
where large avalanches are suppressed exponentially~Fig.
1!. For a21.4, critical behavior occurs with avalanche siz
distributed according to a power lawP(M )}M 2g with the
scaling exponentg51.3960.10~Fig. 2! and a cutoff scaling
linearly with system sizeN. This critical regime is followed
by a supercritical regime for 4.70<a21,6 with an enhanced
probability of very large events~Fig. 3!.

Thus, above a critical value of the temptation to def
a21

c 54, small perturbations of the system lead to long last
avalanches that affect all players of the whole system wit
mean avalanche size that diverges in the thermodyna

FIG. 1. Probability distributionP(M ) of avalanche sizeM for
the subcritical case. The avalanche sizeM is given by the number of
mutation events necessary to reestablish an equilibrium. With
temptation to defect in the range 3,a21<4, only small avalanches
are necessary to reestablish the cooperative equilibrium. The
diamonds show data obtained for the spatially extended Prison
dilemma averaged over 50 random networks (N5200, ^k&52,
a2153.5). The mechanism of relaxation is a branching process c
fined to the same topology~dashed curve,a50.235, cf. Sec. V!.
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limit. The transition from a regime with small avalanches
a critical one with system-wide avalanches is robust in c
of moderate changes of the strategy spaceS and the mean
degreê k&. It also occurs for smaller strategy spacesSi with
cardinality card(Si)>5 and$0,6,7%,Si . The qualitative be-
havior remains even for indefinitely iterated games or with
very different payoff matrix@42#, which is sometimes used in
the context of the Prisoner’s dilemma,

Â5S 1 0

â21 0D . ~3!

With Si5$0,7% and Â but quite different evolutionary dy-
namics, Lim, Chem, and Jayaprakash found critical a
lanches on a two-dimensional square lattice, too@25#.
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FIG. 2. Probability distributionP(M ) of avalanche sizeM
~number of mutations events! for the critical case on a random
network. The subcritical regime is followed by critical behavi
with 4,a21,4.70. The distribution~open diamonds, average ove
50 networks withN5200, ^k&52, anda2154.5) can be well ap-
proximated by a power lawP(M )}M 2g with g51.3960.10 over
three orders of magnitude~solid line!. The scale-free behavior ca
be explained by a confined branching process~dashed curve,a
50.315, cf. Sec. V!.

FIG. 3. Probability distributionP(M ) of avalanche sizeM
~number of mutation events! in the supercritical regime on a ran
dom network. For high values of the temptation to defect,
<a21,6, a supercritical distribution of the avalanche size is o
served~open diamonds, average over 50 networks,N5200, ^k&
52, a2154.7). Again, a confined branching process appears
match the relaxation dynamics well~dashed curve,a50.390, cf.
Sec. V!.
8-3
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The different regimes of relaxation dynamics can be
plained by a closer look on the structure of the Nash eq
libria involved ~Sec. IV! as well as on the relaxation mech
nism which is given by a confined branching process~Sec.
V!. Before we start these considerations in the next two s
tions, we briefly discuss the case of a coevolutionary Pris
er’s dilemma on a ring, i.e., on the regular network whe
each player’s degree is exactlyki52. Although this is not a
very reasonable model for real spatially extended system
will give some useful insights and will allow us to calcula
some properties of the spatially extended game analytica

Like for random networks, subcritical, critical, and supe
critical regimes occur, with subcritical avalanche distrib
tions in the range of 3,a21<4 and supercritical behavior fo
4.12<a21,6. However, this time the critical avalanche di
tribution has a scaling exponent ofg51.0460.05 which sig-
nificantly differs from the exponent obtained for random n
works ~Fig. 4!.

IV. NASH EQUILIBRIA AND THEIR DEPENDENCE
ON THE PAYOFF MATRIX

The set of possible stationary states of the coevolution
Prisoner’s dilemma is the set of Nash equilibria which,
has been shown above, contains for alla21P(3,6) the defec-
tive equilibrium sD5(0, . . . ,0) and the Tit-For-Tat equilib-
rium sTFT5(6, . . .,6). One canalso consider the mac
rostates of the system corresponding to the aggreg
behavior of the agents. Identifying cooperative moves w
‘‘spin up’’ and defecting moves with ‘‘spin down’’ the mac
roscopic behavior at one instant of time is the magnetiza
of the system. Thus, the strategy profilesD of all agents
playing strategy 0 corresponds to the minimal magnetiza
21 whereas the Tit-For-Tat equilibriumsTFT leads to the
maximal magnetization11.

A. Equilibria on rings and random networks

Starting with the experimental findings for a ring topo
ogy, one observes three regimes in terms of adopted equ
ria that are exactly matched by the three different regime
avalanche dynamics. In the subcritical regime, the station
states are a mixture of the strategies 6 and 7, i.e., gener
Tit-For-Tat ~gTFT! players and unconditioned cooperato
respectively~Table II!. Only generous Tit For Tat prevails i
the critical regime. With the onset of supercritical behavi
the defective equilibriumsD turns up. Its fraction of the equi
libria reached by the game grows very fast with further
creasing temptation to defect. The first transition can be
plained by a simple calculation of the Nash equilibria. W
a21<4, the cooperative macrostate is degenerated in m
Nash equilibria since unconditioned cooperators are st
lized by neighbors with the strategy gTFT. Consider a pla
i with its neighbors playingsi 2157 ~i.e., generous cooperat
or gC! and si 1156 ~gTFT!. Then playeri has to find a
strategy being a compromise between exploiting the co
erator at i 21 and maintaining cooperation with its oth
neighbor, the smarter Tit-For-Tat player ati 11. However,
for a21<4, there is no such strategy yielding a better pay
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than gTFT or even gC. This stabilization of the credulou
cooperating agents gives rise to a degeneracy of the coop
tive macrostate in many different strategy profiles that
Nash equilibria, diverging faster than 22N/3 with the size of
the ring. However, ifa21.4 there always exists such a com
promise strategy and the degeneracy vanishes. That m
that below the critical valuea21

c 54 the macrostate with mag
netization11 is strongly degenerated in many Nash equil
ria whereas abovea21

c there is only one Nash equilibrium
with maximal magnetization left regardless of system s
(sTFT). The other macrostate with minimal magnetization
never degenerated sincesD is the only Nash equilibrium tha
leads to such a defective macrostate. In case of regular
tices with different numbers of next neighborsk, the critical
valuea21

c is given by

a21
c ~k!54

2k11

k13
. ~4!

TABLE II. The strategy space of each player consists of up
eight different pure strategies comprehending all possible strate
for a memory of one move. The first lowercase letter of the ac
nym describes the first move: ‘‘s’’ for defecting~suspicious! and
‘‘g’’ for cooperating ~generous!. If the strategy is coded as a b
string the assigned numbers correspond to the respective b
numbers.

No. Strategy Acronym Bit string

0 Always defect sD 000
1 Suspicious anti-Tit-For-Tat sATFT 001
2 Suspicious Tit For Tat sTFT 010
3 Suspicious cooperate sC 011
4 Generous defect gD 100
5 Generous anti-Tit-For-Tat gATFT 101
6 Generous Tit For Tat gTFT 110
7 Always cooperate gC 111

FIG. 4. Probability distributionP(M ) of avalanche sizeM
~number of mutation events! on a ring in the critical regime. In the
range 4.01<a21<4.11, critical behavior in terms of the avalanch
distribution is also observed for the Prisoner’s dilemma on a r
(N5200, a2154.1). The scale-free distributionP(M )}M 2g has
an exponent ofg51.0460.05 which is significantly smaller than
the scaling exponent observed for the same game on a ran
network with identical mean degreêk&. The experimental data
agree very well with the behavior of a branching process confi
to a ring ~dashed curve,a50.512, cf. Sec. V!.
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For example, in the case of a two-dimensional lattice w
periodic boundary conditions and a von Neumann neighb
hood, we find subcritical, critical, and supercritical behavi
with a21

c '5.14 and a critical exponent ofg51.360.2. Of
course, for every payoff matrixA satisfying Eq.~2! there
exists a finite value for the number of next neighborsk above
which the cooperative macrostate is always degenera
However,a11 anda21 can be adjusted to increase this bord
to arbitrarily large values. Nonetheless, there is a reason w
for every payoff matrix, true critical behavior can only tak
place in sparsely connected networks, which will be d
cussed in the following section. Why are only cooperat
equilibria observed in both the subcritical and the critic
range ofa21? Looking closer at the way to the equilibrium
there are@s2(s11)(s21)#/2 transition probabilities for a
player i changing its strategy, withsªcard(Si). When in-
creasing the temptation to defect,a21, some of these rules
change from 0 to a finite value and the respective inve
rule vice versa. At the transition to the supercritical regim
where the defective equilibrium is reached for the first tim
exactly those rules change which govern the stability of
border between cooperative and defective domains. Be
that threshold, the cooperative domains grow and abov
defecting strategies can spread.

The situation is slightly different on a random networ
Since there are always some nodes with a degree higher
the mean degreêk&, a small degeneracy of the cooperati
macrostate can exist even fora21.a21

c (^k&). Moreover, dis-
connected compounds may be in different equilibria at
same time. The highly connected nodes stabilize the co
erative equilibrium so that even fora21&6 cooperating strat-
egies predominate. Yet this degeneracy does not compen
for the loss of cooperative equilibrium profiles for tempt
tions larger thana21

c , which is the reason for the transitio
from subcritical to critical behavior. The supercritical pha
is again caused by the change of transition rules leadin
increasing defective domains with their growth hindered
highly connected cooperative nodes.

B. Nash equilibria and evolutionarily stable states

As we are dealing with an evolutionary game, the qu
tion arises if any of the Nash equilibria is also evolutionar
stable. A strategy profile is called an evolutionarily stab
state~ESS! if it is stable against the insertion of a small b
finite fraction of mutants playing a different strategy@34,35#.
Therefore, an ESS is a strict Nash equilibrium or a nonst
Nash equilibrium with the additional condition that oth
best replies play worse against themselves than the
strategy against them. Note that this concept is formula
for two-person games where two players encounter e
other by chance. In this sense, both Nash equilibriasD
5(0, . . . ,0) and sTFT5(6, . . . ,6) are no ESS forSi
5$0,1,2,3,4,5,6,7% since other best replies score equally w
as the equilibrium strategy~strategies 2 and 7, respectively!.
With respect to strategy spaces reduced by 2 or 7, the
spective~now strict! Nash equilibrium becomes an ESS. B
does this concept of stability apply to spatially extend
games? Many approaches to evolutionary stability lead to
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equivalence of ESS and strict Nash equilibria. So one m
conjecture that in a game withSi5$0,1,5,6,7% the profilesD
should be an ESS since it is a strict Nash equilibrium. Yet
the experiments show, a small perturbation can cause
system to change from the strict Nash equilibriumsD to the
nonstrict cooperative equilibriumsTFT . Thus, when applying
the notion of evolutionary stability to spatially extended sy
tems, one has to keep in mind that things may be differ
here since it is the local surrounding that decides whethe
invader will overthrow the incumbent strategy or will fa
instead.

V. BRANCHING PROCESSES AS A MODEL
OF THE RELAXATION PROCESS

Having understood the structure of the Nash equilib
and their connection to the transition between different
gimes of avalanche dynamics, the question remains how
explain the distinct form of the probability distribution
P(M ) and, in particular, the scaling exponents of the critic
regimes. In fact, the relaxation process can be described
type of branching process that very well predicts the sca
exponents for the different topologies as well as the subc
cal and supercritical avalanche distributions.

A. The Galton-Watson process

The starting point is a simple branching process, a
known as Galton-Watson process, which will be reform
lated in terms of mutated agents giving rise to future mu
tions of other players. LetZn be the number of mutated
players in thenth generation. Each mutated player can cau
other mutations in the next generation, with the probabi
pm that its mutation is succeeded bym mutations in the next
generation. The stochastic process (Zn)nPN0

is called a
branching process of the Galton-Watson type. Note that
number of generations constitutes a time scale comple
different from the time scale of the game where at each
stant of time one player is chosen to mutate its strategy. W
the initial condition Z051 and the total progenyZ
ª( i 50

` Zi , the quantity of interest is the distributionP(Z
5r ) of total progeny or, in other words, the avalanche si
So far there is no spatial constraint to this process, i.e.,Zi is
not bounded by the system size, and mutations independe
give birth to new mutations. The probabilitypm that a muta-
tion of a player withk neighbors will be followed bym
mutations in the next generation is given by

pm5S k11

m Dam~12a!k112m, ~5!

being the simplest choice if a player’s mutation can on
affect its neighborhood including itself. Using generati
functions@36# we calculateP(Z5r ) for this special Galton-
Watson process with the sameki5k for all players to

P~Z5r !5
a21

ak
Ak11

2pk S kk

a~12a!k~k11!k11D 2r

r 23/2.

~6!
8-5



n’

ch
1
va

ts
re
la

i

he
ry
e
te
xp

tw

e
ch

its

of
e

s
h

-

ded
t-
re

bet-

a
o-
ich
re-
e to
he
end

ially
ed

ex-
in

gy

era-
e
fer-
-
ions
ult.

l

bor-

H. EBEL AND S. BORNHOLDT PHYSICAL REVIEW E66, 056118 ~2002!
It is useful to introduce the mean number of a mutatio
‘‘children’’ m̄5a(k11)5EZ0 and approximate~6! for m̄
&1,

P~Z5r !5Cr23/2e2r /r 0, ~7!

with

r 05
k11

2k

1

~12m̄!2
, ~8!

and a constant

C5
m̄2k21

km̄
Ak11

2pk
. ~9!

If the expectation of the numbers of descendants approa
1, i.e., m̄↑1, the exponential cutoff diverges with (
2m̄)22. The process becomes critical with a scale-free a
lanche distributionP(Z5r )}r 23/2. If m̄.1, the probability
is finite thatZ does not converge at all@37#. The branching
process described above, which has no spatial constrain
characterized by a subcritical, critical, and supercritical
gime of its avalanche dynamics. Although this is very simi
to the IPD on a random network, in the case of a ring
yields a wrong scaling exponent ofg53/2. Such behavior
could be gained equally well from a random walk of t
number of mutated sites with drift to a reflecting bounda
In the following, we will show that it is the restriction of th
branching process to the network topology that comple
explains the dynamics and leads to the correct scaling e
nents.

B. Confined branching processes

The confinement of the branching process leads to
effects. First,Zn will be bounded by the system sizeN; sec-
ond, the mutation events caused by mutated players ar
longer stochastically independent. We will denote a bran
ing process as confined or restricted to a network~i! if there
exists a one-to-one mapping of players and nodes and~ii ! if
a mutated player can only give birth to mutations in
neighborhood including itself@Fig. 5~a!#. This corresponds to
the fact that if a player changes its strategy only the pay
of its neighbors and of the player itself will be affected. W
assume that each neighbor and the mutated site itself ha
same probabilitya of mutation in the next generation. Wit
the random variableXn

(n) being 1 if the player at noden is
mutated in generationn and 0 otherwise, the confined pro
cess (Zn8)nPN0

is defined by

Zn85 (
n51

N

Xn
(n) . ~10!

The probability of a mutation at siten in generationn is

P~Xn
(n)51!512~12a!l, ~11!
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l5 (
mPneigh(n)ø$n%

Xm
(n21) . ~12!

The confined branching process (Zn8) can now be used to
calculate the avalanche distributions of the spatially exten
Prisoner’s dilemma numerically. Applying it to random ne
works, both the subcritical and supercritical distributions a
matched well~dashed curves in Fig. 1 and Fig. 3!. The dis-
tribution of the confined branching process agrees even
ter with the experimental data in the critical regime~dashed
curves in Fig. 2!. The same is true for the Prisoner’s dilemm
on a ring~Fig. 4!. In both critical cases, the branching pr
cess shows the correct finite-size scaling of the cutoff wh
is proportional to the system size. Note that the critical
gimes of the game have different scaling exponents du
network topology which are both correctly obtained by t
confined branching process. The critical exponents dep
only on the topology rather than on the parametera of the
process. Therefore, the relaxation mechanism of the spat
extended coevolutionary Prisoner’s dilemma is a confin
branching process.

Mean-field approaches can be applied successfully to
plain the parametera of the confined branching process
the subcritical and critical regime~Table III!. To calculate a

FIG. 5. The branching process on a ring. Each node~circle! is
occupied by a player with the circle filled if the player’s strate
has mutated in the respective generation.~a! The initially mutated
player causes its neighbors and itself to mutate in the next gen
tion with probabilitya ~arrows!. No more players are affected sinc
only its neighborhood and the player itself can experience a dif
ent payoff due to the mutation.~b! The progenies of mutated play
ers, in general, are not independent of each other. Two mutat
can influence the same site making the analytical treatment diffic

TABLE III. The branching parametera, determined with mean-
field approaches. The parametera, obtained for the experimenta
distributions of the different regimes on a random network~Figs. 1,
2, 3!, is compared to mean-field results using a random neigh
hood and absorbing stable equilibrium states (amf1) or averaged
over realizations of the game (amf2).

Dynamics amf1 amf2 a

Subcritical 0.290 0.234 0.235
Critical 0.340 0.306 0.315
Supercritical 0.320 0.308 0.390
8-6
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mean-field approximationamf1 of the branching paramete
the transition probabilities of a mutated agent’s neighbors
determined using a random neighborhood for both the pla
and its neighbors. The structure of the game is taken
account only by assuming that the stable strategies are
sorbing states. A second approach is to average the trans
probabilities over game realizations numerically, yieldi
amf2. Both values,amf1 and amf2, agree well with the pa-
rametera obtained from the avalanche distributions of t
subcritical and critical regime. This corresponds to the exp
nation that this transition occurs solely because of the cha
in the degeneracy of the cooperative macrostate at the cri
value a21

c . The supercritical case is not matched by t
mean-field approaches, which may be due to the fact
here the dynamics are governed by local effects, i.e.,
competitive growth at the boundaries between coopera
and defective domains. The dynamics on a ring topology
be explained by a similar mean-field approach, too, if o
assumes that the effective maximal number of a player’s
scendants is approximately two and not three. This reduc
of potential progeny is caused by the strong overlap of
neighborhoods in this regular lattice@Fig. 5~b!#.

Although the definition of the confined Galton-Watso
process is quite intuitive and simple, its analytical treatm
is not. The reason is that mutation events have become
pendent on each other. Two mutations can affect the s
site in the next generation@Fig. 5~b!#, leading to dependen
recursive equations~11!, ~12! for the mutation probability.
With the simplification that theZn8 mutated sites of genera
tion n are randomly distributed over the network, one c
shed some light on the critical behavior of the confin
branching process. The conditional expectations of the n
ber of mutated players are, with this assumption,

E~Zn118 uZn8!5m̄ Zn8~11j! ~13!

with

j5S m̄
Zn8

N D 21F12S 12
1

k11
m̄

Zn8

N D k11

2m̄
Zn8

N G . ~14!

If j!1 andm̄'1 the confined process approximately is
martingale for all values ofZn8 and should show critical be

havior. Form̄!1 the avalanche dynamics are subcritical
n,

.
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the process becomes a supermartingale. Withm̄@1 obvi-
ously resulting in supercritical dynamics, the remaining ca
of interest ism̄'1. In the event of highly connected ne
works with ^k&@1 the correctionj is of the order21 sup-
pressing large avalanches. Thus, critical avalanche dyna
are expected only for sparsely connected networks, for
strong dependency on mutation events leads to either
critical or supercritical distributions of avalanche sizes.

VI. CONCLUSIONS

In this paper, we have introduced a spatially extend
Prisoner’s dilemma game with coevolutionary dynamics t
lead to Nash equilibria as stationary states. We have sh
that critical avalanche dynamics are characteristic for a br
range of these games. The observed intermittent evolu
with sudden avalanches of activity is reminiscent of se
organized criticality@38,39#. Depending on the payoff ma
trix, subcritical, critical, and supercritical regimes can be o
served. Calculating the Nash equilibria and introducing
confined branching process, we were able to quantitativ
explain the critical value of the control parameter, i.e., t
temptation to defect, and the avalanche distributions. Th
fore, investigations on the spatially extended Prisoner’s
lemma, which has become a widely used toy model for
emergence of cooperation, have to take into account the
bility of possible equilibria depending on chosen payoff m
trix, strategy space, and topology. Complex behavior sho
only be found for subcritical or critical dynamics whereas
the supercritical regime small perturbations will totally m
up the whole system, preventing the evolution of local str
tures. The results on the stability of the Nash equilibria a
their connection to evolutionarily stable states indicate t
the concept of equilibrium, originating from classical m
chanics and brought into the fields of game theory and e
lution @40#, has to be further specified to take into accou
coevolution on networks and other spatial structures.
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