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Coevolutionary games on networks
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We study agents on a network playing an iterated Prisoner’s dilemma against their neighbors. The resulting
spatially extended coevolutionary game exhibits stationary states which are Nash equilibria. After perturbation
of these equilibria, avalanches of mutations reestablish a stationary state. Scale-free avalanche distributions are
observed that are in accordance with calculations from the Nash equilibria and a confined branching process.
The transition from subcritical to critical avalanche dynamics can be traced to a change in the degeneracy of
the cooperative macrostate and is observed for many variants of this game.
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I. INTRODUCTION influences the evolution of cooperatiptl]. Extensive work
on the spatial Prisoner’'s dilemma started in 1992 when
Much research has been devoted to the statistical physiddowak and May explored a cellular automaton based on this
of complex systems with game theoretic interactions regame on regular lattices. They and others found complex
cently. One motivation is economic systems composed of apatiotemporal dynamics and emergence of cooperation for
large number of agents with simple local interactions givingstrategy spaces confined to the stratedgiefectingandcoop-
rise to complex global structures and dynandit§ In par-  erating[14—19. For the Prisoner’s dilemma on lattices and
ticular, the problem of stability and uniqueness of equi"briastra’[egy spaces confined to ordgoperatingand defecting
in economic systems has been readdressed in the context @ind Tit For Tat in Ref[20]), methods from theoretical phys-
the aggregate behavior of individual ageffty Game theory jcs, as Monte Carlo simulations, percolation theory, the
[3] and the theory of evolutionary gampé] provide a suf-  theory of(nonequilibrium phase transitions, and the concept
ficient framework for modeling individual interactions, f self-organized criticality, were used to understand why
whereas spatial structures have to be taken into account {Q,onerators or defectors dominate or coexist in the system

taclljle coevolu_tlilonary_gynamigs of TE?\J\;Wiﬂd ?yste[l‘i;sﬂ.h_ 1[20-29. Lindgren and Nordahl introduced players which act
ere, we will consider random NEtworks of agents whic erroneously sometimes, allowing a complex evolution of

face a social dylemmq or, I physical terms, a frustrated In'strategies in an unbounded strategy sg2é¢ Others found
teraction. Imagine a situation where each player can take t

W o )
actions, saycooperatingor defecting The optimal global that the limitation of a player’s memory to the last encounter,

outcome would be achieved by all players cooperating. Bu\NhICh translates to a bounded strategy space, does not pro-

an individual player can gain much more when exploiting theVide a significant drawback for the playeis7—29. Evolu-

cooperators by defecting. Such a situation is called a socidlon@ry games on networks, again with only two strategies,
dilemma or a frustrated interaction. The central question @€ been studied to ask questions on how spatial organiza-
how social order is possible and how cooperative behaviofion influences the transition from defecting to cooperating
can emerge. Examples for such spatially extended dilemmds$0] and how the players themselves may influence the net-
are biological networks, where connected plants may or mayork topology[31]. In the following, we will study the Pris-
not decide to share resourcfg), the analysis of internet oner’s dilemma on a network with a larger but bounded strat-
congestion[9], models for economic communicatidi0], egy space and coevolutionary dynamics that lead to Nash
and, of course, many sociological problems from conflictequilibria as stationary states. It will be shown both numeri-
research to public transportati¢hl,12. cally and theoretically that payoff matrix, strategy space, and
A simple model system is given by the iterated Prisoner’'stopology are crucial to answer the question which equilibria
dilemma (IPD) [11,13 with coevolutionary dynamics. The will occur and how stable they are. In particular, critical
Prisoner’s dilemma game is probably the most prominentivalanches of mutations are observed for such games and
example of a basic model for the emergence of cooperativeaiill be explained in detail.
behavior in social, economic, and biological systems. It pro- This paper is organized as follows. In Sec. Il, the spatially
vides a frustrated two-particle interaction and has been exextended iterated Prisoner’s dilemma is described as well as
tensively studied by physicists, economists, biologists, andts coevolutionary dynamics. This is followed in Sec. Il by
mathematicians. numerical investigations of avalanche dynamics showing
A spatially extended Prisoner’s dilemma was first pro-three distinct regimes due to changes in payoff matrix and
posed by Axelrod who concluded that territoriality strongly topology. The observed Nash equilibria are described and
explained in Sec. IV, which enables us to understand the
critical value of the control parameter of the payoff matrix. A
*Electronic address: ebel@theo-physik.uni-kiel.de confined branching process is introduced in Sec. V, clarifying
"Present address: Interdiszipliea Zentrum fu Bioinformatik,  the relaxation mechanism and the emergence of scale-free
Universitd Leipzig, Kreuzstrasse 7b, D-04103 Leipzig, Germany. behavior. Conclusions are drawn in Sec. VI.
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TABLE I. Representation of the strategy of one agent withopening move, the action of a player is determined by the
memorym=1 (0, defection; 1, cooperationThe agent determined |ookup table of its strategy and the respective previous move
by the above strategy is an unconditioned cooperator. It cooperatgss jtg opponent. The finite number of moves of one encounter
no matter whether its opponent has cooperated or defected in tqg not known by any agent. In the course of the game, one
last move. player has to play against each of its neighbors on the net-
work. Thereafter, its payoff is given by the average payoff

History Action per move (including the opening moyeand neighbor ac-
0 1 cording to the payoff matriA.
1 1 The strategy space of a playerconsists of up to eight
First move 1 pure strategie$ C{0,1,2,3,4,5,6,7 (cf. Table Il for defini-

tion of the strategies The pure-strategy space of the game is
S= Xie1§ with the set of the players={0,1, ... n}. The
(pure strategypayoff function; : S— R does not depend on

We start with a network wittN players as nodes where the whole pure strategy profile=(s,,- - -,s,) but only on
each player plays an iterated Prisoner's dilemma gaméhe strategies of the neighboring nodes= 7i(s; ,neigh())
against each of its neighbors. The Prisoner's dilemma is &nd, of course, on the payoff matrix of the Prisoner's di-
two-person game with two possible actions in each encourlémma game. Here, the set of the neighbors of a riode
ter. The payoff matrix of the first player for the two strategiesdenoted neigh. With m(s)=[my(s), ...,my(s)] the

cooperatinganddefectingdenoted by and;) is given by GRS 0 BETTCT T o least one Nath oquibrium

II. A COEVOLUTIONARY SPATIALLY EXTENDED IPD

3 0 [32]. Here, only pure strategies will be considered neglecting
A= ( 5 1 =(&j)ij e 12 (1) possible mixed-strategy equilibria. In this ggtt_ingD
=(0,...,0) andsr=(6,...,6) areNash equilibria for

N m A A a any payoff matrixA obeying Eq.(2) and for a sufficiently
with the entriesa;; = m(s;,s;). m1(s;,s)) is the payoff of  high number of moves, which can be easily verified. The
player 1 if player 1 plays strategg and player 2 playéj . former equilibrium consists of players always defecting,
The game is symmetric, i.em (S ,gj): ;Tz(gj ,S1). There- whereas in _the latter state each play_er repeats its opponent’s
fore, the corresponding payoff matrix of the second player idast move(Tit For Tap with a cooperative opening movef.
the transpose of the first player’s matrix. The Prisoner’s di-Table I)).
lemma game, in general, is defined by the relations

B. Coevolutionary dynamics

17<8z<811<8x and a+ax<2ay. 2) Let us now introduce mutations of a player’s strategy. The

. . - . lookup table determining the strategy is viewed as a bit
Hence, in one encounter of the Prisoner’s dilemma, defectlngtring of length 2+ 1, wherem is the memory length as

s the str?tegy that ylel_ds_ the best payoff regqrdless_ of th efined above. This bit string will then be mutated during the
opponent’s strategy. This is no longer the case in the |terateheration of the game

game where “T'“t“a' cooperation Is more favor_able than bot At the beginning, a random network with a given mean
players defecting or switching between defecting and coopy ree(k) is generated41]. The strategies are assigned ran-
erating. That is the reason why this system is a frustrateg 9 9 ' 9 9

system. In each encounter, defecting would maximize a pla domly, too. All agents play against each of their neighbors
y' ' . ' 9 . >anp initially to update their payoffs. Thereafter, the following
er’s payoff. But in the long run, when players will anticipate

, . ; S steps are iterated.
each other’s action, cooperation will, in general, do much . . .
better. (i) One agenti is chosen randomly and its strategy is
mutated froms; to a strategys{ € S; picked out at random.

(i) The mutated agent plays again against its neighbors
and its payoff is compared with the former result.

Let us further specify the strategy space and payoff func- The mutation is accepted in the case of a higher pay-
tion of the spatial game. A strategy is viewed as a mapping 0bff, 7;(S1,So, - - .,S, - - - SN)>Ti(S1,50, - - - ,Siy - - - SN)»
an agent’s “knowledge” to an “action.” “Knowledge” of an and the payoffs of all neighbors are also updated. This cor-
agent is given by the previous moves the agent can take int@sponds to the assumptions that accepting any mutation is
account to decide which action it will take next. We definecombined with some costs to the player and that mutations
the memory lengthm of a player as the number of these occur on a time scale slower than the time scale of the game.
previous moves and confine the memory of the agenta to Iteration of this process leads to a stationary state with a
=1, i.e., an agent remembers only its opponent’s last actiorfixed strategy distribution. In the stationary state, no agent
If one player encounters another player there is no previousan improve its payoff by changing its strategy whereas the
move and the player has to decide on its first move withoubther players’ strategies remain unchanged. This state corre-
any information about the opponent. Accordingly, the open-sponds to the game theoretic Nash equilibriid®,33. Note
ing move is a part of the strategy, too, which can be reprethat, for its decisions, no more information than a player’s
sented as a lookup table or a binary strifigble ). After the  own payoff is required.

A. IPD with memory on a network
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FIG. 1. Probability distributiorP(M) of avalanche sizé for FIG. 2. Probability distributionP(M) of avalanche sizeM

the subcritical case. The avalanche $¥tés given by the number of  (number of mutations eventdor the critical case on a random
mutation events necessary to reestablish an equilibrium. With theetwork. The subcritical regime is followed by critical behavior
temptation to defect in the range&,,;<4, only small avalanches Wwith 4<a,;<<4.70. The distributiorfopen diamonds, average over
are necessary to reestablish the cooperative equilibrium. The opdi® networks withN=200, (k)=2, anda,;=4.5) can be well ap-
diamonds show data obtained for the spatially extended Prisonergroximated by a power law(M)«<M ~” with y=1.39+0.10 over

dilemma averaged over 50 random network$=200, (k)=2, three orders of magnitudgolid line). The scale-free behavior can
ay=3.5). The mechanism of relaxation is a branching process corbe explained by a confined branching procésashed curveq
fined to the same topologylashed curveg=0.235, cf. Sec. Y. =0.315, cf. Sec. V.

Ill. PERTURBATIONS AND AVALANCHES limit. The transition from a regime with small avalanches to

a critical one with system-wide avalanches is robust in case
One essential property of evolutionary games is given byf moderate changes of the strategy sp8&cnd the mean
the equilibria or the evolutionarily stable states. All station-degregk). It also occurs for smaller strategy spa&esvith
ary states of the game are Nash equilibria. An interestingardinality card§)=5 and{0,6,7,CS;. The qualitative be-
guestion is the stability of these equilibria against perturbahavior remains even for indefinitely iterated games or with a
tions. In the following, we will study the dynamics of ava- very different payoff matri42], which is sometimes used in
lanches of mutation events following a perturbation of thethe context of the Prisoner’s dilemma,
Nash equilibrium. After the system has reached a stationary
state, a new strategy is assigned to a random player. The ~ 1 0
insertion of a suboptimal strategy offers new opportunities A=< ) (€)
for mutations to the perturbed player itself and to its neigh-
bors. Since players are updated randomly, a perturbation R
leads to an avalanche of mutations until a stationary state ¥/ith §={0,7} and A but quite different evolutionary dy-
reached again. One quantity of interest is the avalanche sizgamics, Lim, Chem, and Jayaprakash found critical ava-
M given by the number of mutations necessary to reestablistanches on a two-dimensional square lattice, [).
the equilibrium and its dependence on the payoff maix
We will first discuss the numerical results for the case of
players on a random network. The second part of this section
deals with a Prisoner’s dilemma on a ring, which will be the
starting point for the theoretical treatment in the next two
sections. =~
In the case of sparsely connected random networks, onez
observes three distinct regimes of the avalanche dynamics
with the temptation to defea,, as control parameter. For
small temptations, 8a,;<4, a subcritical regime occurs

ay O

where large avalanches are suppressed exponentkitly . ! ! ! ! I L L 6‘.
1). Foray;>4, critical behavior occurs with avalanche sizes 1 10 103 10® 10 10° 10° 107 108
distributed according to a power laR(M)o=M ™7 with the M

scaling exponeny=1.39+0.10(Fig. 2) and a cutoff scaling 15 3 propaility distributionP(M) of avalanche sizeM
linearly with .S_yStem S'Z(N' This critical reg'me is followed (number of mutation eventsn the supercritical regime on a ran-
by a Su_p_ercrltlcal regime for 4'@21<6 with an enhanced dom network. For high values of the temptation to defect, 4.7
probability of very large eventtFig. 3). , <a,<6, a supercritical distribution of the avalanche size is ob-

Thus, above a critical value of the temptation to defectserved(open diamonds, average over 50 networkss 200, (k)
as,=4, small perturbations of the system lead to long lasting=2, a,;=4.7). Again, a confined branching process appears to
avalanches that affect all players of the whole system with @natch the relaxation dynamics wetlashed curveq=0.390, cf.
mean avalanche size that diverges in the thermodynamisec. V).
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The different regimes of relaxation dynamics can be ex- 1
plained by a closer look on the structure of the Nash equi-
libria involved (Sec. 1V) as well as on the relaxation mecha- 102
nism which is given by a confined branching procéSsc.
V). Before we start these considerations in the next two secg 15—+
tions, we briefly discuss the case of a coevolutionary Prisong
er's dilemma on a ring, i.e., on the regular network where 10-5
each player’s degree is exactty=2. Although this is not a
very reasonable model for real spatially extended systems, i 10-¢
will give some useful insights and will allow us to calculate N B
some properties of the spatially extended game analytically. 1 10 10?
Like for random networks, subcritical, critical, and super- M
critical regimes occur, with subcritical avalanche distribu- FIG. 4. Probability distributionP(M) of avalanche sizeM

tions in the range of§a21§4 f':md superf:!’itical behavior fqr (number of mutation eventsn a ring in the critical regime. In the
4.12<a,,<6. However, this time the critical avalanche dis- ange 4.0%a,,<4.11, critical behavior in terms of the avalanche

tribution has a scaling exponent gf=1.04+0.05 which sig- gistribution is also observed for the Prisoner’s dilemma on a ring
nificantly differs from the exponent obtained for random net-(N=200, a,,=4.1). The scale-free distributioR(M)=<M~” has
works (Fig. 4). an exponent ofy=1.04+0.05 which is significantly smaller than
the scaling exponent observed for the same game on a random
network with identical mean degrefk). The experimental data
agree very well with the behavior of a branching process confined
to a ring(dashed curveg=0.512, cf. Sec. Y.

The set of possible stationary states of the coevolutionaryhan gTET or even gC. This stabilization of the credulously
Prisoner’s dilemma is the set of Nash equilibria which, as

. cooperating agents gives rise to a degeneracy of the coopera-
has been shown above, contains foragli< (3,6) the defec- tivepmacrostate in many different st?ategy profiles that IC:;re
tive equilibriumsp=(0, . .. ,0) and the it-For-Tat equilib-  Nash equilibria, diverging faster thar?"$2 with the size of

rum srer=(6,...,6). One canalso consider the mac- the ring. However, ifi ;>4 there always exists such a com-
rostates of the system corresponding to the aggregatgstomise strategy and the degeneracy vanishes. That means
behavior of the agents. Identifying cooperative moves withthat below the critical valua$,= 4 the macrostate with mag-
“spin up” and defecting moves with “spin down” the mac- npetization+ 1 is strongly degenerated in many Nash equilib-
roscopic behavior at one instant of time is the magnetizationja whereas abova$, there is only one Nash equilibrium

of the system. Thus, the strategy profdg of all agents  wijth maximal magnetization left regardless of system size
playing strategy O corresponds to the minimal magnetizatios,.;). The other macrostate with minimal magnetization is
—1 whereas the Tit-For-Tat equilibriursrer leads to the never degenerated sinsg is the only Nash equilibrium that
maximal magnetization- 1. leads to such a defective macrostate. In case of regular lat-
tices with different numbers of next neighbdssthe critical
valuea$, is given by

.l
10?

o
10t 10°

IV. NASH EQUILIBRIA AND THEIR DEPENDENCE
ON THE PAYOFF MATRIX

A. Equilibria on rings and random networks

Starting with the experimental findings for a ring topol- 2k+1
ogy, one observes three regimes in terms of adopted equilib- -
ria that are exactly matched by the three different regimes of _
avalanche dynamics. In the subcritical regime, the stationary TABLE II. The strategy space of each player consists of up to
states are a mixture of the strategies 6 and 7, i.e., generou‘%‘ght different pure strategies comlprehendlng all possible strategies
Tit-For-Tat (gTFT) players and unconditioned cooperators,fOIr a memory of one move. Thf f,ert Iowerca}se Iett(_er_ of the acro-
respectively(Table 1)). Only generous Tit For Tat prevails in Y™ describes the first move: *s” for defectinguspicious and
the critical regime. With the onset of supercritical behavior, g for cooperating (generous If the strategy is coded as a b.'t

. i . .~ 'string the assigned numbers correspond to the respective binary
the defective equilibriunsy turns up. Its fraction of the equi- numbers
libria reached by the game grows very fast with further in- )
creasing temptation to defect. The first transition can be ex-

4

) . X o ) Strategy Acronym Bit string
plained by a simple calculation of the Nash equilibria. With
a, <4, the cooperative macrostate is degenerated in many 0 Always defect sD 000
Nash equilibria since unconditioned cooperators are stabi- 1 Suspicious anti-Tit-For-Tat SATFT 001
lized by neighbors with the strategy gTFT. Consider a player 2 Suspicious Tit For Tat STFT 010
i with its neighbors playing;_,=7 (i.e., generous cooperate 3 Suspicious cooperate sC 011
or gO ands;,,;=6 (gTFT). Then playeri has to find a 4 Generous defect gD 100
strategy being a compromise between exploiting the coop- 5 Generous anti-Tit-For-Tat gATFT 101
erator ati—1 and maintaining cooperation with its other g Generous Tit For Tat gTFT 110
neighbor, the smarter Tit-For-Tat player iat 1. However, 7 Always cooperate gC 111

for a,;<4, there is no such strategy yielding a better payoff
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For example, in the case of a two-dimensional lattice withequivalence of ESS and strict Nash equilibria. So one may
periodic boundary conditions and a von Neumann neighboreonjecture that in a game wi§={0,1,5,6,% the profilesy
hood, we find subcritical, critical, and supercritical behavior,should be an ESS since it is a strict Nash equilibrium. Yet, as
with a5,~5.14 and a critical exponent of=1.3+0.2. Of the experiments show, a small perturbation can cause the
course, for every payoff matriA satisfying Eq.(2) there  system to change from the strict Nash equilibrisgito the
exists a finite value for the number of next neighbloebove  nonstrict cooperative equilibriusrer. Thus, when applying
which the cooperative macrostate is always degeneratethe notion of evolutionary stability to spatially extended sys-
However,a,; anda,,; can be adjusted to increase this bordertems, one has to keep in mind that things may be different
to arbitrarily large values. Nonetheless, there is a reason whyere since it is the local surrounding that decides whether an
for every payoff matrix, true critical behavior can only take invader will overthrow the incumbent strategy or will fail
place in sparsely connected networks, which will be dis-instead.

cussed in the following section. Why are only cooperative

equilibria observed in both the subcritical and the critical V. BRANCHING PROCESSES AS A MODEL

range ofa,,? Looking closer at the way to the equilibrium, OF THE RELAXATION PROCESS

there ard o?(oc+1)(o—1)]/2 transition probabilities for a

playeri changing its strategy, witkr:=card(S,). When in- Having understood the structure of the Nash equilibria

creasing the temptation to defeet,;, some of these rules and their connection to the transition between different re-
change from O to a finite value and the respective invers@'Mes of avalanche dynamics, the question remains how to

rule vice versa. At the transition to the supercritical regime,explaln the. d|st|nct form of th_e probability dlstrlbuthns
where the defective equilibrium is reached for the first time,P(M) and, in particular, the. scaling exponents of the. critical
exactly those rules change which govern the stability of thd©9imes. In fact, the relaxation process can be described by a
border between cooperative and defective domains. Beloy/P€ Of branching process that very well predicts the scaling

that threshold, the cooperative domains grow and above fyxponents for th_g different toPOIOgie_s as well as the subcriti-
defecting strategies can spread cal and supercritical avalanche distributions.

The situation is slightly different on a random network.
Since there are always some nodes with a degree higher than A. The Galton-Watson process

the mean degregk), a small degeneracy of the cooperative  The starting point is a simple branching process, also
macrostate can exist even fag,>a3,((k)). Moreover, dis-  known as Galton-Watson process, which will be reformu-
connected compounds may be in different equilibria at théated in terms of mutated agents giving rise to future muta-
same time. The highly connected nodes stabilize the coopions of other players. LeE,, be the number of mutated
erative equilibrium so that even fap; <6 cooperating strat- players in thenth generation. Each mutated player can cause
egies predominate. Yet this degeneracy does not compensagher mutations in the next generation, with the probability
for the loss of cooperative equilibrium profiles for tempta-p . that its mutation is succeeded hymutations in the next
tions larger thara$;, which is the reason for the transition generation. The stochastic proces&,),.~ is called a
from subcritical to critical behavior. The supercritical phasebranching process of the Galton-Watson t;pe. Note that the

is again caused by the change of transition rules leading tfiumber of generations constitutes a time scale completely
increasing defective domains with their growth hindered byyitferent from the time scale of the game where at each in-

highly connected cooperative nodes. stant of time one player is chosen to mutate its strategy. With
the initial condition Zo=1 and the total progenyZ
B. Nash equilibria and evolutionarily stable states :=3%;_,Z;, the quantity of interest is the distributid®(Z

As we are dealing with an evolutionary game, the ques-:r) of total progeny or, in other yvords, .the avalanche_t size.
So far there is no spatial constraint to this process,eis

tion arises if any of the Nash equilibria is also evolutionarily . ! ;
stable. A strategy profile is called an evolutionarily stablen.Ot bounded by the system size, and mutations independently

state(ESS if it is stable against the insertion of a small but give birth to new m.utat|on§. The propabnmyn that a muta-
finite fraction of mutants playing a different stratel@#,35. tion qf a player withk nelghtl)ors. W'I.I be followed bym
Therefore, an ESS is a strict Nash equilibrium or a nonstricfnutations in the next generation is given by

Nash equilibrium with the additional condition that other +

best replies play worse against themselves than the ESS pm:( )am(l—a)kﬂm, (5)
strategy against them. Note that this concept is formulated m

for two-person games where two players encounter eac
other by chance. In this sense, both Nash equililsia
=(0,...,0) and ster=(6,...,6) are no ESS forS
={0,1,2,3,4,5,6,7 since other best replies score equally well
as the equilibrium strategigtrategies 2 and 7, respectively
With respect to strategy spaces reduced by 2 or 7, the re- 1 k+1/ Kk —r
spective(now stric) Nash equilibrium becomes an ESS. But P(Z=r)= @t 32
does this concept of stability apply to spatially extended ak N 27k| g(1— a)k(k+1)k+2

games? Many approaches to evolutionary stability lead to the (6)

Being the simplest choice if a player’s mutation can only
affect its neighborhood including itself. Using generating
functions[36] we calculateP(Z=r) for this special Galton-
Watson process with the sarkg=k for all players to
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It is useful to introduce the mean number of a mutation’s @ -O0—0O0—@—0O0—0O Zp=1

“children” m= a(k+1)=EZ, and approximatg6) for m

=t -O0—6—8—0—0 7=
P(Z=r)=Cr 3% ", (7)

with O O—0—0 2=2

k1 1 0 - —O—0—8—0-2,-3

ro= —, 8
2k (1-m)? ® . . o
FIG. 5. The branching process on a ring. Each n(miele) is
occupied by a player with the circle filled if the player’s strategy
has mutated in the respective generati@.The initially mutated
— player causes its neighbors and itself to mutate in the next genera-
m-—k—1 Jk+1 9) tion with probability« (arrows. No more players are affected since
km 2 only its neighborhood and the player itself can experience a differ-
ent payoff due to the mutatioifb) The progenies of mutated play-
If the expectation of the numbers of descendants approach&&: in general, are not independent of each other. Two mutations
. — . . . can influence the same site making the analytical treatment difficult.
1, i.e., mT1l, the exponential cutoff diverges with (1

—m) 2. The process becomes critical with a scale-free avagith
lanche distributiorP(Z=r)or %2 If m>1, the probability

is finite thatZ does not converge at diB7]. The branching
process described above, which has no spatial constraints, is
characterized by a subcritical, critical, and supercritical re-
gime of its avalanche dynamics. Although this is very similarthe confined branching procesg’j can now be used to

to the IPD on a random network, [‘ the case of a ring ite5 0 1ate the avalanche distributions of the spatially extended
yields a wrong scaling exponent gf=3/2. Such behavior prisoner's dilemma numerically. Applying it to random net-
could be gained equally well from a random walk of theyqrks hoth the subcritical and supercritical distributions are
number of mutated sites with drift to a reflecting boundary.,4ched welldashed curves in Fig. 1 and Fig. The dis-

In the fpllowing, we will show that it is the restriction of the (ipution of the confined branching process agrees even bet-
branching process to the network topology that completelye, \yith the experimental data in the critical regirftmshed

explains the dynamics and leads to the correct scaling expQyrves in Fig. 2 The same is true for the Prisoner’s dilemma

nents. on a ring(Fig. 4). In both critical cases, the branching pro-
cess shows the correct finite-size scaling of the cutoff which
B. Confined branching processes is proportional to the system size. Note that the critical re-
The confinement of the branching process leads to tw@imes of the game have different scaling exponents due to
effects. FirstZ, will be bounded by the system sid& sec- netv\(ork topology which are both co_rr.ectly obtained by the
ond, the mutation events caused by mutated players are enfined branching process. The critical exponents depend
longer stochastically independent. We will denote a branch@nly on the topology rather than on the parameteof the
ing process as confined or restricted to a netwiorkf there ~ Process. Therefore_, the rela>§at|on mec.hanlsm Qf the quually
exists a one-to-one mapping of players and nodes(@ni extendgd coevolutionary Prisoner’s dilemma is a confined
a mutated player can only give birth to mutations in itsPranching process. _
neighborhood including itse[Fig. 5a)]. This corresponds to Mean-field approaches can be applied successfully to ex-
the fact that if a player changes its strategy only the payoff®lain the parametea of the confined branching process in
of its neighbors and of the player itself will be affected. We the subcritical and critical regim@able I11). To calculate a
assume that each neighbor and the mutated site itself has the
same probabilityr of mutation in the next generation. With
the random variabl&" being 1 if the player at node is
mutated in generation and O otherwise, the confined pro-
cess Z;)nen, is defined by

and a constant

C=

=~

A= D x(n=1) (12)
weneighp)ufny  *

TABLE Ill. The branching parameter, determined with mean-
field approaches. The parameter obtained for the experimental
distributions of the different regimes on a random netw(iigs. 1,

2, 3), is compared to mean-field results using a random neighbor-
hood and absorbing stable equilibrium states,4) or averaged
over realizations of the gamexf,).

N
r_ (n)
Zn= ;::1 X7 (10 Dynamics i1 A2 a
. . L . . Subcritical 0.290 0.234 0.235
The probability of a mutation at site in generatiom is Critical 0.340 0.306 0.315
Supercritical 0.320 0.308 0.390
P(XM=1)=1—(1—a)*, (11) P
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mean-field approximatiom, of the branching parameter, the process becomes a supermartingale. With1l obvi-

the transition probabilities of a mutated agent’s neighbors areusly resulting in supercritical dynamics, the remaining case
determined using a random neighborhood for both the playess interest ism~1. In the event of highly connected net-
and its neighbors. The structure of the game is taken intQyorks with (k)>1 the correctior¥ is of the order—1 sup-
account only by assuming that the stable strategies are aessing large avalanches. Thus, critical avalanche dynamics
sorbing states. A second approach is to average the transitigfje expected only for sparsely connected networks, for too
probabilities over game realizations numerically, yieldingsirong dependency on mutation events leads to either sub-

ampp- Both values,am and anp, agree well with the pa-  ¢ritical or supercritical distributions of avalanche sizes.
rametera obtained from the avalanche distributions of the

subcritical and critical regime. This corresponds to the expla-
nation that this transition occurs solely because of the change V1. CONCLUSIONS

value a3;. The supercritical case is not matched by theprisoner’s dilemma game with coevolutionary dynamics that
mean-field approaches, which may be due to the fact thagkad to Nash equilibria as stationary states. We have shown
here the dynamics are governed by local effects, i.e., thehat critical avalanche dynamics are characteristic for a broad
competitive growth at the boundaries between cooperativeange of these games. The observed intermittent evolution
and defective domains. The dynamics on a ring topology cagith sudden avalanches of activity is reminiscent of self-
be explained by a similar mean-field approach, too, if oneprganized criticality[38,39. Depending on the payoff ma-
assumes that the effective maximal number of a player’s dexrix, subcritical, critical, and supercritical regimes can be ob-
scendants is approximately two and not three. This reductiogerved. Calculating the Nash equilibria and introducing a
of potential progeny is caused by the strong overlap of theonfined branching process, we were able to quantitatively
neighborhoods in this regular latti¢Eig. S(b)]. explain the critical value of the control parameter, i.e., the
Although the definition of the confined Galton-Watson temptation to defect, and the avalanche distributions. There-
process is quite intuitive and simple, its analytical treatmentore, investigations on the spatially extended Prisoner’s di-
is not. The reason is that mutation events have become dg&mma, which has become a widely used toy model for the
pendent on each other. Two mutations can affect the samgmergence of cooperation, have to take into account the sta-
site in the next generatiojFig. 5b)], leading to dependent ility of possible equilibria depending on chosen payoff ma-
recursive equationsll), (12) for the mutation probability. trix, strategy space, and topology. Complex behavior should
With the simplification that theZ;, mutated sites of genera- only be found for subcritical or critical dynamics whereas in
tion n are randomly distributed over the network, one canthe supercritical regime small perturbations will totally mix
shed some light on the critical behavior of the confinedup the whole system, preventing the evolution of local struc-
branching process. The conditional expectations of the nuntures. The results on the stability of the Nash equilibria and

ber of mutated players are, with this assumption, their connection to evolutionarily stable states indicate that
_ the concept of equilibrium, originating from classical me-
E(Z}4lZp)=m Z)(1+¢) (13 chanics and brought into the fields of game theory and evo-
, lution [40], has to be further specified to take into account
with coevolution on networks and other spatial structures.
o) 1-[1- 1 2 rl‘ 14
&=\ my Iy Ty 4 ACKNOWLEDGMENTS

— ) ) ) We thank Christoph Hauert, Thomas Lux, and UwesRo
If ¢<1 andm~1 the confined process approximately is ajer for useful discussions and comments. H.E. gratefully ac-

martingale for all values o, and should show critical be- knowledges support by the Studienstiftung des Deutschen
havior. Form<1 the avalanche dynamics are subcritical asVolkes (German National Merit Foundatipn

[1] W.B. Arthur, Science284, 107 (1999. [7] 3.N. Thompson and B.M. Cunningham, Natdtendon) 417,
[2] A. Kirman, Econom. J99, 126 (1989. 735(2002. .
[3]J. V. Neumann and O. Morgensterfiheory of Games and [8] B. Oborny, A Kun, T. CZaan, and S. Bokros, Ecolog$1,
Economic Behavior(Princeton University Press, Princeton, 3291(2000.
1953. [9] B.A. Huberman and R.M. Lukose, Scien2&7, 535 (1997).
[4] J. Maynard SmithEvolution and the Theory of GaméSam-  [10] J.H. Miller, C.T. Butts, and D. Rode, J. Econ. Behav. Organ.
bridge University Press, Cambridge, 1982 47, 179 (2002.
[5] L.E. Blume, Games and Economic Behavipr387 (1993. [11] R. K. Axelrod, The Evolution of CooperatiofBasic Books,
[6] A. Nowak, B. Latane, and M. Lewenstein, $ocial Dilemmas New York, 1984.
and Cooperation edited by U. Schulz, W. Albers, and U. [12] Social Dilemmas and Cooperatipedited by U. Schulz, W.
Mueller (Springer, Berlin, 1994 Albers, and U. MuellefSpringer, Berlin, 1994

056118-7



H. EBEL AND S. BORNHOLDT PHYSICAL REVIEW E66, 056118 (2002

[13] R. Axelrod and W.D. Hamilton, Sciencll, 1390(1981J). Economics with Heterogeneous Interacting Ageetdited by
[14] M.A. Nowak and R.M. May, Nature(London 359 826 A. Kirman and J.-B. Zimmerman(Springer, Berlin, 2001L
(1992. [32] D. Fudenberg and J. Tirol&same TheoryMIT Press, Cam-
[15] M.A. Nowak and R.M. May, Int. J. Bifurcation Chaos Appl. bridge, 1998
Sci. Eng.3, 35(1993. [33] J.F. Nash, Proc. Natl. Acad. Sci. U.S.26, 48 (1950).
[16] B.A. Huberman and N.S. Glance, Proc. Natl. Acad. Sci. U.S.A[34] J. Weibull, Evolutionary Game TheoryMIT Press, Cam-
90, 7716(1993. bridge, 1996.

[17] M.A. Nowak, S. Bonhoeffer, and R.M. May, Proc. Natl. Acad. [3g] 3. Hofbauer and K. Sigmundvolutionary Games and Popu-

Sci. U.S.A.91, 4877(1994. ) ) lation Dynamics (Cambridge University Press, Cambridge,
[18] M.A. Nowak, S. Bonhoeffer, and R.M. May, Int. J. Bifurcation

1998.
Chaos Appl. Sci. Eng4, 33 (1994. [ . . .
A 36] T. E. Harris, The Theory of Branching Processé&Springer,
[19] A.V.M. Herz, J. Theor. Biol169, 65 (1994. Berlin, 1963,

[20] G. Szabe T. Antal, P. Szabpand M. Droz, Phys. Rev. B2,
1095 (2000.

[21] G. Szaboand C. Tde, Phys. Rev. 558, 69 (1998.

[22] J.R.N. Chiappin and M.J. de Oliveira, Phys. Re\vb% 6419

[37] P. JagersBranching Processes with Biological Applications
(Wiley, London, 1975
[38] P. Bak, How Nature Works: The Science of Self-Organized

(1999. Criticality (Springer, New York, 1996
[23] M.H. Vainstein and J.J. Arenzon, Phys. Rev.6E 051905 [39] H. J. JensenSelf-Organized Criticality: Emergent Behavior in

(2001). Physical and Biological Systent€ambridge University Press,
[24] M. Tomochi and M. Kono, Phys. Rev. 5, 026112(2002. Cambridge, 1998
[25] Y.F. Lim, K. Chen, and C. Jayaprakash, Phys. Rev6d&  [40] |. Ekeland, NaturéLondon 417, 385(2002.

026134(2002. [41] The resulting number of linkk =(k)N/2>1 (rounded to an
[26] K. Lindgren and M.G. Nordahl, Physica 75, 292 (1994. integer valug is distributed randomly with equal probability
[27] C. Hauert and H.G. Schuster, Proc. R. Soc. London, Ser. B among allN(N—1)/2 possible pairs of nodes leading to a

264, 513(1997. constant probabilityk)/(N— 1) that an arbitrary pair of nodes
[28] C. Hauert and H.G. Schuster, J. Theor. B2, 155(1998. is connected.

[29] C. HauertEvolution of Cooperation—The Prisoner’s Dilemma [42] Sinceélf 522 the game defined bx;\ is not a Prisoner’s di-
and its Applications as an Examp(&haker, Aachen, 1999 lemma in a strict sensef. Eq. (2)]. Furthermore, getting the
[30] G. Abramson and M. Kuperman, Phys. Rev6E& 030901R) same payoff in case of a defecting opponent leads to coexist-

(2001). ence of cooperative and defective domains in the subcritical

[31] M. G. Zimmermann, V. M. Egiuz, and M. S. Miguel, in regime.

056118-8



