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Slow relaxation in a constrained Ising spin chain: Toy model for granular compaction

Satya N. Majumdar and David S. Dean
Laboratoire de Physique Quantique (UMR 5626 du CNRS), Universite´ Paul Sabatier, 31062 Toulouse Cedex, France

~Received 22 July 2002; published 19 November 2002!

We present detailed analytical studies on the zero-temperature coarsening dynamics in an Ising spin chain in
the presence of a dynamically induced field that favors locally the ‘‘2 ’’ phase compared to the ‘‘1 ’’ phase. We
show that the presence of such a local kinetic bias drives the system into a late time state with average
magnetizationm equal to21. However the magnetization relaxes into this final value extremely slowly in an
inverse logarithmic fashion. We further map this spin model exactly onto a simple lattice model of granular
compaction that includes the minimal microscopic moves needed for compaction. This toy model then predicts
analytically an inverse logarithmic law for the growth of density of granular particles, as seen in recent
experiments and thereby provides a mechanism for the inverse logarithmic relaxation. Our analysis utilizes an
independent interval approximation for the particle and the hole clusters and is argued to be exact at late times
~supported also by numerical simulations!.
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I. INTRODUCTION

Slow relaxation dynamics naturally occurs in syste
with quenched disordersuch as spin glasses and has
mained a subject of long-standing interest@1#. However, sys-
tems without quenched disorder such as structural gla
also exhibit slow dynamics. It is believed that the slow
laxation in the latter systems is due tokinetic disorder, in-
duced by the dynamics itself@2#. Another important class o
systems without quenched disorder is granular mate
where once again kinetic disorders are responsible for s
relaxation. In a recent experiment@3#, a cylinder packed
loosely with glass beads was tapped mechanically and it
found that the system gets more and more compact w
time. However, the densityr(t) compactified rather slowly
with time as,r(`)2r(t);1/ln(t). How robust is this inverse
logarithmic relaxation? Is it only specific to granular syste
or does this also occur in other out-of-equilibrium systems
the presence of kinetic disorders?

In this paper we study, in detail, the effect of kinetic d
orders on the relaxation dynamics of an Ising syst
quenched from a high-temperature disordered phase in
low-temperature ordered phase. In the absence of kinetic
orders, the dynamics of such a system is well understood@4#.
As time progresses, domains of equilibrium low-temperat
ordered phases~consisting predominantly of up and dow
spins, respectively! form and grow. The average linear siz
of a domain grows with time asl (t);t1/2 for zero-
temperature nonconserved dissipative dynamics. How d
disorder,quenchedor kinetic, affect this simple dynamics?
The effect of quenched ferromagnetic disorder on this ph
ordering kinetics has been studied extensively@4#. Essen-
tially the quenched disorder tends to pin the domain wa
leading to complete freezing atT50. However, at small
nonzero temperatures, the domains still coarsen via activ
dynamics but extremely slowly asl (t);(ln t)1/4 @4#. The pur-
pose of this paper is to explore the effect ofkinetic disorder
on the phase ordering dynamics. A shorter version of
paper with the main analytical results and their numeri
confirmation has appeared elsewhere@5#. Here we explore
1063-651X/2002/66~5!/056114~9!/$20.00 66 0561
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the dynamics in more detail, and also elaborate its conn
tion to other systems such as granular material and reac
diffusion systems.

In this paper, we study the zero-temperature dynamics
an Ising chain in the presence of a specific type of kine
disorder, namely, a dynamically induced magnetic field. I
small uniform external field~say in the down direction! is
put on in an Ising system following a rapid quench fro
infinite temperature toT50, the system rapidly relaxes int
a pure state with all spins down. In this case, the symme
between the two ordered pure states is broken globally.
teresting physics occurs when, instead of a global exte
bias, the symmetry between the pure states is broken loc
by the dynamics itself. In this paper, we investigate the eff
of this particular kinetic disorder and show that this syst
also gives rise to a very slow dynamics. In particular, it giv
rise to inverse logarithmic relaxation~ILR! of magnetization,
very similar to the density compaction in granular system
Our study therefore suggests that the ILR is a very rob
phenomenon and is not just limited to granular systems
specific types of kinetic disorders.

The paper is organized as follows. In Sec. II, we defi
our model precisely and summarize the main results. In S
III, we establish the connection between our spin model a
a lattice model of granular compaction. We also show t
our model can be viewed as a one-dimensional~1D!
reaction-diffusion model when the dynamics is described
terms of the kinks between domains of opposite phases
Sec. IV, we derive some exact results. In Sec. V, we anal
the dynamics via an independent interval approximat
~IIA !. In Sec. VI, we argue that the IIA results become ex
in the limit when the initial volume fraction of one of th
phases is small. In Sec. VII, we extend this argument to ot
volume fractions as well. In Sec. VIII, we present a heuris
approach to support the IIA results. Finally we conclude
Sec. IX.

II. THE MODEL AND THE OVERVIEW OF RESULTS

We consider a simple Ising spin chain with spinsSi
561. Starting from a given initial configuration the syste
©2002 The American Physical Society14-1
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evolves by single spin flip continuous time dynamics. T
rate of flipping of a given spin depends on the its neighb
ing spins. We denote the rate of spin flipSi→2Si by
W(Si ;Si 21 ,Si 11) whereSi 21 and Si 11 are the two neigh-
boring spins. In our model the rates are specified as follo

W~1;11 !5W~2;22 !50,

W~1;21 !5W~1;12 !5W~2;12 !5W~2;21 !5 1
2 ,

W~1;22 !51,

W~2;11 !5a. ~1!

Note that the casea51 corresponds to the usual zer
temperature Glauber dynamics@6# that preserves the symme
try between the up and down phases. However, ifa,1, the
flipping of a down-spin sandwiched between two up-spin
not as likely as the flipping of an up-spin sandwiched b
tween two down-spins. Thusa,1 clearly breaks the sym
metry between the up and down phases. However this s
metry is broken only dynamically, i.e., not everywhere b
only at the location of the triplets (1,2,1). Thus the iso-
lated ‘‘2 ’’ spins ~surrounded on both sides by a ‘‘1 ’’ ! tend
to block the coalescence of ‘‘1 ’’ domains and locally favor
the ‘‘2 ’’ spins. One can argue that the asymptotic dynam
at late times is similar for anya,1. In other words,a50 is
an attractive fixed point. We therefore restrict ourselves o
to the casea50.

To see the effect of the local dynamical constraint m
precisely, we derive~following Glauber’s calculation fora
51 @6#! the exact evolution equation for the magnetizati
m(t)5^Si& for the a50 case:

d

dt
^Si&522P~1,21,1!, ~2!

where P(s i 21 ,s i ,s i 11)(t)5^(11s i 21Si 21)(11s iSi)(1
1s i 11Si 11)&/8 is the three-point probability to find the se
quence of spins (s i 21 ,s i ,s i 11) about the sitei and we have
used translational invariance. HenceP(1,21,1)(t) denotes
the probability of the occurrence of the triplet ‘‘121 ’’ at
time t. We note that for the casea51, d^Si&/dt50 @6#,
indicating that the magnetization does not evolve with tim
In our case, due to the triplet defects ‘‘121, ’’ the average
magnetization decays with time. IfL6(t) denote the frac-
tions of ‘‘1 ’’ and ‘‘ 2 ’’ spins, then usingL65(16m)/2 we
find from Eq. ~2!, dL6 /dt57R1(t) where R1(t) is the
number density of the triplets of type (121) per unit
length, clearly exhibiting the asymmetry generated by t
(121) triplets. We also note that unlike thea51 case, the
evolution equation~2! for the single-point correlation func
tion involves two- and three-point correlations@via R1(t)].
This hierarchy makes an exact solution difficult fora50.

It is useful at this point to summarize the main resu
obtained in this paper. Let us first highlight the contrast
tween thea51 ~no kinetic disorder! and thea50 ~with
kinetic disorder! cases. Fora51, due to the preserved sym
metry between the up and down phases at all times, the
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erage domain sizes of both ‘‘1 ’’ and ‘‘ 2 ’’ domains grow as
l 6(t);t1/2 at late times@7#. Thus the average magnetizatio
m(t)5( l 12 l 2)/( l 11 l 2) is a constant of motion@6#! and
stays fixed at its initial value. In particular, if we start fro
an initial state where the spins are random~infinite tempera-
ture!, the initial average magnetization is zero and stays z
at all subsequent times. In contrast, for thea50 case where
the symmetry is dynamically broken, we find the followin
results.

~1! For a50, while domains of both phases continue
grow with time, they have different growth laws. The ave
age domain sizes of the1 phases@denoted byl 1(t)] and
2 phases@denoted byl 2(t)] coarsen at late times in th
following manner: ~i! l 1(t)'Apt at late times and~ii !
l 2(t);t1/2ln(bt) whereb is a number depending on the in
tial volume fraction of the ‘‘1 ’’ spins which we will calcu-
late explicitly ~see below!. In fact, the main result we show
below is that the ratio of the two length scales behaves at
times as

l 2

l 1
5

1

e

ln~bt/t0!

ln b
21, ~3!

wheree is the initial volume fraction~need not be small! and
t0 is some initial time after which scaling starts holdin
Equation~3! explicitly reflects the effect of broken symme
try. Thus due to the dynamically generated local bias,
‘‘ 2 ’’ domains grow slightly faster than the ‘‘1 ’’ domains.
We also point out that in contrast to the spin models stud
in the context of glassy systems@2,8#, the dynamics in our
model does not freeze at zero temperature, rather the
mains coarsen indefinitely in an infinite system.

~2! Consequently, the magnetizationm(t)5( l 1

2 l 2)/( l 11 l 2) decays at late times as

m~ t !5211
2e ln b

ln~bt/t0!
. ~4!

~3! Evidently the number of ‘‘1 ’’ domains is the same as
the number of ‘‘2 ’’ domains since they alternate on the 1
lattice. The density of domains of either ‘‘1 ’’ or ‘‘ 2 ’’ type
per unit length,N(t)51/@ l 21 l 1# decays as

N~ t !

N~ t0!
5At0

t

ln b

ln~bt!
. ~5!

We also compute explicitly two other densities that play
somewhat central role in our analysis.

~4! r 1(t): Given that a ‘‘2 ’’ domain has occurred, the
probability that it is of length 1. We show below that

r 1~ t !5
Ap

At ln~bt/t0!
. ~6!

Note that the amplitudeAp is universal and is independen
of volume fraction.

~5! p1(t): Given that a ‘‘1 ’’ domain has occurred, the
probability that it is of length 1. We show that
4-2



ls

m

sp
r

r
c

ck

ks
ve
ve
ll
e

e
s

h

e

i
th
he

nd
o

g

les
th
c
te
he
u-
o
h
u-
f
th

imi-

pec-
le

er

r.
ce
le
e

the
is

’ up
ticle-

el,
tap-
dy-
ted
ta-
op.
ble

ugh

he
e

to

ani-

ar
he

del
he

at a
nd

lid

SLOW RELAXATION IN A CONSTRAINED ISING SPIN . . . PHYSICAL REVIEW E66, 056114 ~2002!
p1~ t !5
1

2t
1

1

t ln~bt/t0!
. ~7!

Once again the amplitude 1 of the correction term is a
universal and is independent of volume fraction.

The constantb in the above equations can also be co
puted exactly, and we show that

b5expS Ap

r 1~ t0!At0
D . ~8!

III. CONNECTION TO GRANULAR COMPACTION
AND REACTION DIFFUSION SYSTEMS

We now establish a one-to-one mapping between our
model ~with a50) and a simple lattice model of granula
compaction. Let us consider a (111)-dimensional granula
packing where the grains are represented by square blo
The pack consists of horizontal layers consisting of blo
and voids~see Fig. 1!. We focus on the ‘‘active’’ layer, i.e.,
the first horizontal layer that is not fully compact with bloc
as we go up from the bottom of the pile. Below this acti
layer, all layers are compact and remain compact under
tical tapping, i.e., their dynamics is completely frozen. A
the activities take place in or above the ‘‘active’’ layer. W
identify this ‘‘active’’ layer with the one-dimensional lattic
of the spin model. This active layer consists of sequence
blocks~particles! and voids~holes!. We identify a unit block
or a particle in the active layer as a ‘‘2 ’’ spin of our spin
model. Similarly a hole is identified as a ‘‘1 ’’ spin of the
spin model.

As the system is tapped vertically, the particles in t
active layer can undergo the following moves.

~1! In the interior of a row of consecutive particles in th
active layer, there is no effect of tapping as the system
completely jammed there. The effect of vertical tapping
felt only at the edges of a particle cluster. The particles at
edges, under tapping, can move up or ‘‘tap’’ up from t
active layer to the layers above the active layer~see Fig. 1!.
However, if the cluster consists of an isolated particle sa
wiched between two holes, it has no place to move up, s
stays at its original location.

~2! Tapping also can ‘‘roll’’ off a particle residing in a
layer above the active layer, into the active layer, at the ed
of the supporting cluster~see Fig. 1!.

Let us now see what the rates of spin flips in Eq.~1! in the
spin model imply for the compaction model. The rateW
(1;11)50 implies that if we have three consecutive ho
in the active layer, then a particle cannot be deposited in
middle site under tapping. This is because a new particle
appear into the active layer only at the edges of the clus
of particles, but not in the middle of a cluster of voids. T
rate W(2;22)50 implies that if we have three consec
tive particles in the active layer, the middle particle cann
move up under tapping since it is completely jammed. T
rateW(1;21)51/2 signifies that if we have three consec
tive sites in the active layer consisting, respectively, o
particle, hole, and a hole, then a particle can appear in
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middle hole with rate 1/2. This is the ‘‘rolling’’ off move to
the right at the edge of a cluster, as discussed above. S
larly W(1;12)51/2 signifies the ‘‘rolling’’ off move to the
left. The rateW(2;12)51/2 implies that when we have
three consecutive sites in the active layer consisting, res
tively, of a hole, particle, and a particle, the middle partic
can disappear~into the layers above! with rate 1/2. This is
the ‘‘tapping’’ up move to the right from the edge of a clust
as discussed above. SimilarlyW(2;21)51/2 signifies the
rate of ‘‘tapping’’ up to the left from the edge of a cluste
The rateW(1;22)51 indicates that if we have a sequen
of particle, hole, particle in the active layer, the middle ho
can be filled up with a particle with rate 1. This is simply th
addition of two ‘‘rolling’’ off rates from the left and the right
of the middle hole. Finally the rateW(2;11)5a50 im-
plies that if we have a sequence of hole, particle, hole in
active layer, the middle particle cannot disappear. This
because an isolated particle has no place to move or ‘‘tap’
as discussed above. This last rate indeed breaks the par
hole symmetry.

Note that the rates W(1;21)5W(1;12)
5W(2;12)5W(2;21)5 1

2 correspond to the diffusion
of domain walls in the spin model. In the compaction mod
these are indeed the moves induced by the mechanical
ping. If these rates were zero, i.e., no tapping, then the
namics in the active layer would freeze after all the isola
holes are filled up and the system will be stuck in a me
stable configuration and hence the compaction will st
These diffusion moves that lift the system out of a metasta
configuration and the system continues to compactify, tho
extremely slowly. Identifying the ‘‘2 ’’ ( 1) spins with par-
ticles ~holes! in the granular model, it is easy to see that t
average magnetizationm in the spin model is related to th
average particle densityr(t) in the granular model via the
simple relation,m(t)5122r(t). Thus the result in Eq.~4!
for the magnetization indicates that the density will grow
its fully compact value 1 as

r~ t !512
e ln b

ln~bt/t0!
, ~9!

at very late times, as observed in experiments on mech
cally tapped granular media@3#.

Other one-dimensional lattice models, notably the ‘‘c
parking’’ model, have been previously used to explain t
logarithmic relaxation in granular materials@9#. The local
rules for the dynamics of particles in the car parking mo
are, however, quite different from those in our model. In t
parking model, the rules for the particle motion are~i! a new
particle can be absorbed only at sites containing a hole
rate proportional to the number of neighboring particles a

FIG. 1. Picture of rolling off~left domain! and tapping up~right
domain! in the granular interpretation of the spin model; the so
squares represent particles.
4-3
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~ii ! a particle evaporates with a small rate~thus leaving be-
hind a hole! if it has one and only one neighboring hol
While this model also exhibits an inverse logarithmic grow
of the density, the dynamical moves~in particular, the fact
that the desorption rate is infinitesimally small! are chosen in
a somewhatad hocmanner. In contrast, as explained via t
mapping detailed above, our model incorporates the b
minimal microscopic moves of the particles that are o
served in the compaction process.

In terms of the motion of the domain walls between ‘‘1 ’’
and ‘‘2 ’’ phases, our model can also be considered a mo
of two species reaction diffusion in one dimension. We n
that in the casea51, the domain walls diffuse and annih
late upon contact. This corresponds to the processA1A
→0 @7#. In the casea50, we need to distinguish betwee
the two types of domain walls21[A and 12[B. Note
that by definition~originating from a spin configuration! the
A’s andB’s always occur alternately. Here bothA’s andB’s
diffuse as before; however when anA and aB meet, they
annihilate only ifA is to the left ofB, otherwise there is hard
core repulsion between them. We will show below that t
hard core repulsion between the particles is a relevant in
action that changes the late time dynamics considerably.
cently the relevance of hard core repulsion between parti
in reaction-diffusion systems has been explored in a num
of contexts@10#.

IV. SOME EXACT RESULTS

To start with we write down two exact relations that a
derived directly from the Glauber dynamics~we shall see
later that these exact relations are in fact respected by the
approximation!.

Let N(t) be the number of domains of either ‘‘1 ’’ or
‘‘ 2 ’’ spins per unit length. The density of kinks is therefo
2N(t). Let P1 be the density of the triplets ‘‘212 ’’ per
unit length, then clearlyp15P1 /N. We note also that the
only way in which a domain can be destroyed in an infi
tesimal time step is by flipping an isolated ‘‘1 ’’ spin in a
triplet ‘‘ 212. ’’ This gives

dN

dt
52P1 . ~10!

If P(Si) denotes the probability that the spin at sitei takes
the valueSi , the evolution ofP(Si) depends only on the
rates in Eq.~1! and the three-point probability distributio
P(Si 21 ,Si ,Si 11). The evolution ofP(Si) is then given by

dP~Si !

dt
5 (

Si 11 ,Si 21

W~2Si ;Si 21 ,Si 11!P~Si 21 ,2Si ,Si 11!

2 (
Si 11 ,Si 21

W~Si ;Si 21 ,Si 11!P~Si 21 ,Si ,Si 11!.

~11!

SubstitutingSi51 in the above equation we find
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dP~1!

dt
5P~21,21,1!2P~21,1,21!2P~1,1,21!,

~12!

where we have used the evident left to right symmetr
P(21,21,1)5P(1,21,21) and P(1,1,21)5P(21,1,1).
We now observe thatP(21,21,1)1P(1,21,1)5P(21,1)
and P(21,1,21)1P(1,1,21)5P(1,21)5P(21,1) and
thus find

dP~1!

dt
52P~1,21,1!. ~13!

We note thatP(1,21,1) is simply the probability that at a
given site the spin is a ‘‘2 ’’ spin and its two neighbors are
‘‘ 1 ’’ spins, that is to say there is a ‘‘121 ’’ defect at the site
considered. If we now sum this equation over each site on
interval of unit length on the lattice and recall thatR1 is the
density of the ‘‘121 ’’ triplets per unit length, we obtain

dL1

dt
52R1 , ~14!

where L1 is the fraction of the ‘‘1 ’’ spins. Note thatL1

1L251, whereL2 is the fraction of the ‘‘2 ’’ spins. From
Eq. ~14! we obtain Eq.~2! for the evolution of the average
magnetizationm. Physically it is easy to see the origin of E
~14! as, on an average, the fraction of ‘‘1 ’’ spins can de-
crease only due to the blockage by ‘‘121 ’’ triplets.

Writing Eq. ~14! in terms of r 15R1 /N and the average
length of the ‘‘1 ’’ domains l 15L1 /N, we obtain

Ṅ

N
52

l̇ 11r 1

l 1
, ~15!

whereẋ5dx/dt. This equation can be integrated starting
some arbitrary timet0 to give

N~ t !

N~ t0!
5

l 1~ t0!

l 1~ t !
expS 2E

t0

t r 1~ t8!

l 1~ t8!
dt8D . ~16!

Furthermore, if the volume fraction of the ‘‘1 ’’ phase is
L1(t0)5e, then, using the relationN(t)51/@ l 2(t)1 l 1(t)#
in Eq. ~16!, we find

l 2~ t !

l 1~ t !
5

1

e
expS E

t0

t r 1~ t8!

l 1~ t8!
dt8D 21, ~17!

clearly showing that the ratiol 2(t)/ l 1(t) is growing due to
the presence of the triplets ‘‘121. ’’ Note that the asymme-
try between the growth of ‘‘2 ’’ and ‘‘ 1 ’’ domains is evident
due to the presence of the triplet defects ‘‘121 ’’ with den-
sity R15r 1N.

All the results presented above are exact. To derive
late time behavior of the model, we first consider below t
IIA. We solve the IIA equations self-consistently and sho
that the IIA precisely predicts the results mentioned in S
II. Besides we shall argue that in the case where the in
4-4
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volume fraction of the ‘‘1 ’’ domains is small, i.e.,e!1,
correlations do not develop between the domains if no c
relations are present in the initial conditions and hence
IIA is exact to leading order ine. At the end, we present
very simple heuristic argument which is also in agreem
with these results.

V. IIA ANALYSIS

In this section we consider the IIA where correlations b
tween neighboring domains are neglected. The IIA was u
previously for thea51 case@11#, yielding results in agree
ment, qualitatively as well as quantitatively to a fair degr
of accuracy, with the exact results available@6,12#. Let Pn(t)
and Rn(t) denote, respectively, the number density of t
‘‘ 1 ’’ and ‘‘ 2 ’’ domains of lengthn at timet. Note thatR1(t)
is the density of the triplet ‘‘121 ’’ as before. LetN(t)
5(nPn5(nRn denote the domain density of the ‘‘1 ’’ or
‘‘ 2 ’’ spins. Also the fractionsL6(t) of ‘‘ 1 ’’ and ‘‘ 2 ’’ spins
are given by L1(t)5(nnPn and L2(t)5(nnRn with
L1(t)1L2(t)51. During an infinitesimal time stepDt,
Pn(t) evolves as

Pn~ t1Dt !5Pn~ t !2DtPn~ t !2DtPn~ t !F12
R1~ t !

N~ t ! G
1DtPn11~ t !1DtPn21~ t !F12

R1~ t !

N~ t ! G .
~18!

The right hand side of the above equation includes the v
ous loss and gain terms. The second and the third te
describe, respectively, the loss due to the hopping inward
the hopping outward of the domain walls at the two ends
a ‘‘1 ’’ domain of sizen. An outward hop can occur provide
the neighboring domain in the direction of the hop is not
isolated ‘‘2 ’’ spin and this is ensured by the prefactor (
2R1 /N) in the third term. The fourth and the last term d
scribe similarly the corresponding gains. One can simila
write down the evolution equation for theRn(t)’s. During an
infinitesimal time stepDt, Rn(t) evolves as

Rn~ t1Dt !5Rn~ t !2DtRn~ t !2DtRn~ t !F12
P1~ t !

N~ t ! G
22DtP1~ t !

Rn~ t !

N~ t !
1DtRn11~ t !1DtRn21~ t !F1

2
P1~ t !

N~ t ! G1
P1~ t !

N2~ t ! (
i 51

n22

Ri~ t !Rn2 i 21~ t !;n>2

~19!

and

R1~ t1Dt !5R1~ t !2DtR1~ t !F12
P1~ t !

N~ t ! G22DtP1~ t !
R1~ t !

N~ t !

1DtR2~ t !. ~20!
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The negative~loss! terms in Eq.~19! for domains of sizen
>2 may be understood as follows. A domain of lengthn may
be lost by the domain wall at either end jumping inwar
with rate 1/2. This term is the second term in Eq.~19! and as
there are two domain walls we have a factor of 2. A dom
of lengthn may also be lost by a domain wall hopping ou
wards. This happens with rate 1/2 if the neighboring dom
is not a triplet ‘‘212. ’’ The third term of Eq.~19! corre-
sponds to this event, the factor@12P1(t)/N(t)# is the
probabilty of the absence of a triplet ‘‘212 ’’ as a neigh-
boring domain. There is again a factor of 2 coming from t
fact that there are two domain walls. However if a neighb
ing domain is of type ‘‘212 ’’ the outward jump towards
this domain occurs with rate 1~as the central1 spin flips
with rate 1). The term corresponding to these two eve
~from the right and left domain walls! is the fourth term in
Eq. ~19!. The two first gain terms come from identical arg
ments and the last convolution term represents domain
lescence, where a domain of lengthn is formed with rate 1
from two ‘‘2 ’’ domains of lengthi and n2 i 21 ~where 1
< i<n22) if they are separated by a ‘‘212 ’’ triplet. Equa-
tion ~20! is obtained in a similar fashion with the exceptio
that the hard core repulsion generates a reflecting boun
condition. Taking the limitDt→0 in the above equations, w
obtain the IIA equations for the evolution of the doma
densities

dPn

dt
5Pn111Pn2122Pn1

R1

N
~Pn2Pn21! ~21!

for all n>1 with P050 ~absorbing boundary condition! and

dRn

dt
5Rn111Rn2122Rn2

P1

N
~Rn1Rn21!

1
P1

N2 (
i 51

n22

RiRn2 i 21 ; n>2

dR1

dt
5R22R12

P1

N
R1 . ~22!

It is somewhat convenient to use the normalized variab
pn5Pn /N and r n5Rn /N. The average domain lengths a
then given byl 1(t)5(npn and l 2(t)5(nrn and the do-
main densityN(t)51/@ l 1(t)1 l 2(t)#. In terms of these nor-
malized variables, the IIA equations are given by

dpn

dt
5pn111pn2122pn1r 1~pn2pn21!1p1pn ~23!

for all n>1 with p050 ~absorbing boundary condition! and

drn

dt
5r n111r n2122r n2p1r n211p1(

i 51

n22

r i r n2 i 21 ; n>2

dr1

dt
5r 22r 1 . ~24!
4-5
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It is easy to check that the normalization condition(pn
5(r n51 is satisfied by these two equations. We note t
Eq. ~23! or more clearly its unnormalized version in Eq.~21!,
i.e., Ṗn5Pn111Pn2122Pn1r 1(Pn2Pn21), just repre-
sents the motion of a random walker on the positive side
a 1D lattice with a sink at the origin (P050) and a time
dependent drift term~proportional tor 1). To calculateN(t)
using Eq.~16!, we need to evaluate two quantities from t
IIA equations:~i! r 1(t)5R1 /N and ~ii ! l 1(t)5(npn .

The two IIA equations above are coupled nonlinear eq
tions with infinite number of variables and hence exact so
tion of Eqs.~23! and~24! are difficult. Our approach will be
a combination of a scaling assumption and then rechec
this assumption for self-consistency. Consider first ther n
equation, i.e., Eq.~24!. On the right hand side, we will firs
ignore the diffusion term, solve for the rest, and show t
indeed neglecting the diffusion term was justified in the fi
place. This is self-consistency. Ignoring the diffusion ter
we have the following equation:

drn

dt
5p1F (

i 51

n22

r i r n2 i 212r n21G , ~25!

with the reflecting boundary condition,r 25r 1. It is now easy
to see that Eq.~25! admits a scaling solution,r n(t)
'l(t)exp@2nl(t)#, wherel̇(t)52p1(t)l(t). Using the ex-
act relation dN/dt52p1N, we get l(t)5l(t0)N(t)/
N(t0). Note that we still do not know whatN(t) is. Now let
us substitute this solution to estimate the diffusion term t
had been neglected in the first place. Clearly, the diffus
termTdi f f5r n111r n2122r n;O„l3(t)…, whereas the othe
terms@for example, the left hand side of Eq.~24!# typically
scale as;O„l̇(t)…;O„p1(t)l(t)…. Thus, in order to be self
consistent in neglecting the diffusion term, we need to h
p1(t)@l2(t);N2(t). We will see that this condition is ac
tually satisfied once we derive the expression forN(t). This
just means that the diffusion terms only contribute to
corrections to the leading scaling behavior.

From the above analysis, we find to leading ord
for large t, r 1'l(t)5l(t0)N(t)/N(t0), i.e., r 1(t)
'r 1(t0)N(t)/N(t0). We now need to evaluate the other r
maining quantity,l 1(t)5(npn . For this we now turn to the
pn equation, Eq.~23!. In this equation, we will again firs
ignore the drift termr 1(pn2pn21), solve for the rest, and
check that indeed the neglect of the drift term was justifi
Ignoring the drift term, we get

dpn

dt
5pn111pn2122pn1p1pn ~26!

with the absorbing boundary conditionp050. This equation
can be solved exactly. Indeed it also admits a scaling solu
pn(t)5t21/2f (nt21/2), where the scaling function~normal-
ized to unity! is given byf (x)5(x/2)exp(2x2/4). Now let us
estimate the drift term that was neglected. Clearly the d
term r 1(pn2pn21);O(r 1 /t);O„N(t)/t… since r 1;N(t)
from above. The other terms in the Eq.~23! @for example, the
left hand side of Eq.~23!# is of order t23/2 at late times.
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Thus, for self-consistency in neglecting the drift term, w
need to show thatt23/2@N(t)/t. We will again see that this
condition is indeed also satisfied once we obtain the exp
sion for N(t). From this form ofpn(t), we thus obtain, to
leading order for larget, l 1(t)5(npn't1/2*0

`x f(x)dx. Us-
ing f (x)5(x/2)exp(2x2/4), and doing the integral we finally
find l 1(t)'Apt for large t.

Using these two results~i! r 1(t)5r 1(t0)N(t)/N(t0) and
~ii ! l 1(t)5Apt in the exact equation, Eq.~16!, and differ-
entiating with respect tot, we find a differential equation for
N(t),

d

dt
@AtN~ t !#52

r 1~ t0!

ApN~ t0!
N2~ t !. ~27!

Introducing the dimensionless variable

S~ t !5At0

t

N~ t !

N~ t0!
~28!

in Eq. ~27! we find

dS

dt
52 ln~b!

S2

t
, ~29!

where ln(b)5Ap/(r 1(t0)At0). Integrating Eq.~29! we find

S~ t !5
ln~b!

ln~bt/t0!
, ~30!

we thus obtain the result

N~ t !

N~ t0!
5At0

t

ln~b!

ln~bt/t0!
. ~31!

Substituting this result in the expressionr 1(t)
'r 1(t0)N(t)/N(t0), we get

r 1~ t !5
Ap

At ln~bt/t0!
. ~32!

Next we use the late time result, Eq.~31!, in the exact rela-
tion, Eq. ~10!, and find

p15
1

2t
1

1

t ln~bt/t0!
. ~33!

Let us check the two self-consistency conditions,~a!
p1(t)@l2(t);N2(t) and ~b! t23/2@N(t)/t. Using the ex-
pression forp1 from Eq.~33! and that ofN(t) from Eq.~31!,
it is immediately evident that indeed these two conditions
satisfied for larget. Thus our whole approach has been co
pletely self-consistent and the IIA results are precisely th
mentioned in the Introduction. Note also thatt0 must be
sufficiently large such that both scaling lawsr 1(t);N(t) and
l 1(t);Apt start holding fort.t0.
4-6
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VI. ZERO VOLUME FRACTION LIMIT

In this section, we show that the IIA results essentia
become exact in the zero volume fraction limit of the ‘‘1 ’’
phase, i.e., in the limite→0. Suppose we start from an in
tial condition such thatr n(0)5e(12e)n and pn(0)5dn,1 .
This means that in the initial condition, the average length
the ‘‘2 ’’ domains, l 2(0);1/e, whereasl 1(0)51. Thus the
‘‘ 2 ’’ domains are typically much larger than the ‘‘1 ’’ do-
mains, in the limite→0. Also initially all the domains are
completely uncorrelated. So the picture is as follows.
have little droplets of the ‘‘1 ’’ phase in a sea of the ‘‘2 ’’
phase. Besides, one can also compute the initial densit
domains of either ‘‘1 ’’ or ‘‘ 2 ’’ types. It is given byN(0)
51/e(12e);1/e to leading order ine.

Now let us consider the time evolution of the system sta
ing from this initial condition. As time increases, the ‘‘1 ’’
domains will certainly grow in size. But a typical ‘‘1 ’’ do-
main will disappear~via the absorbing boundary condition!
much before encountering other ‘‘1 ’’ domains, i.e., before
feeling the presence of the constraint due to tripl
‘‘ 121. ’’ The probability of such an event isO(e). Thus
effectively, the dynamics of the system will proceed via e
ing up of the ‘‘1 ’’ domains. Hence, if there is no correlatio
between domains in the initial condition, the dynamics is
going to generate correlations between them. This is p
cisely what happens in the zero-temperature dynamics o
q state Potts model in 1D in the limitq→11 @13,11#.

Thus in this limit, the evolution of the ‘‘2 ’’ domains is
governed by the exact equation

drn

dt
5p1F (

i 51

n22

r i r n2 i 212r n21G , ~34!

which is same as the IIA equation, Eq.~24!, without the
diffusion term. Starting from the initial conditionr n(0)
5e(12e)n, one can solve the above equation for anyt ex-
actly to leading order ine. It turns out that, to leading orde
in e, Eq. ~34! admits a solutionr n(t)5m(t)@12m(t)#n21,
wherem(t)5e exp@2*0

t p1(t8)dt8#. Using once again the ex
act equationdN/dt52p1N, we find m(t)5eN(t)/N(0)
1O(e2)5N(t)1O(e2) where we have usedN(0)51/e
1O(e2). Thus we get

r 1~ t !5m~ t !5N~ t !1O~e2!. ~35!

Now, let us consider the evolution of the ‘‘1 ’’ domains.
Since a typical ‘‘1 ’’ domain never encounters~to leading
order ine) any other ‘‘1 ’’ domain and hence does not fee
the constraint due tor 1’s, the effective dynamics of a ‘‘1 ’’
domain is that of a single ‘‘1 ’’ domain immersed in a sea o
the ‘‘2 ’’ phase. Let Pn denote the probability that such
domain is of lengthn. Then, to leading order ine, Pn’s
clearly evolve by the simple diffusion equation

dPn

dt
5Pn111Pn2122Pn , ~36!
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with the absorbing boundary conditionP050. The normal-
ized conditional probabilitypn5Pn /N with N5(Pn then
satisfies the equation

dpn

dt
5pn111pn2122pn1p1pn , ~37!

same as Eq.~26!. This equation has to be solved with th
initial condition pn(0)51. It can be solved exactly. Withou
writing the explicit solution, we just mention the result fo
(npn . We find that for larget and leading order ine,

l 1~ t !5( npn'Apt1O~e!. ~38!

Using the results from Eqs.~35! and ~38!, i.e., ~i! r 1(t)
5N(t)1O(e2) and ~ii ! l 1(t)'Apt1O(e) in the exact
equation, Eq.~16!, we once again recover all the IIA resul
of the preceding section, withb5Ap/e.

Hence IIA becomes exact in thee→0 limit. This is not
surprising as the dynamics in this limit does not gener
correlations if there are none in the initial condition.

VII. OTHER VOLUME FRACTIONS

For finite initial volume fraction of the ‘‘1 ’’ phase, the
IIA cannot be exact since the diffusion of kinks correlates
domains as time progresses, even if the domains had no
relations to start with. However, the volume fraction of t
‘‘ 1 ’’ phase decreases monotonically with time according
the exact equation, Eq.~14!. Thus at very late times when th
volume fractionL1(t) is very small, the effective fixed poin
picture of the system is very similar to thee→0 limit pic-
ture, i.e., small ‘‘1 ’’ domains immersed in the sea of ‘‘2 ’’
domains. The only difference is that the big ‘‘2 ’’ domains
may now be correlated. However, it is very likely~though we
cannot prove this rigorously! that the correlations betwee
domains are very small at very late times and therefore
IIA results summarized in the points~1! to ~5! of the Intro-
duction become asymptotically exact. The numerical res
reported in Ref.@5# appear to confirm this fact.

Actually if this late time fixed point picture is correc
then one can derive all the results from a very simple h
ristic argument, as is presented below.

VIII. HEURISTIC APPROACH

The heuristic picture is as follows. Due to the facts th
‘‘ 1 ’’ domains can grow only by diffusion and the ‘‘2 ’’ do-
mains grow by diffusion and coalescence, one expects th
late times the ratiol 1(t)/ l 2(t)→0; this is also clear from
Eq. ~14!. Therefore at late times one expects to find ‘‘1 ’’
domains sandwiched between much larger ‘‘2 ’’ domains.
Consequently the ‘‘1 ’’ domains, to a first approximation
never encounter the ‘‘121 ’’ triplets at late times and hence
diffuse freely and annihilate via the disappearance of
‘‘ 212 ’’ triplets. Therefore the length of a ‘‘1 ’’ domain
behaves as a diffusion with a killing boundary condition
the origin. Solving the discrete diffusion equation corr
4-7
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sponding to this picture@see Eq.~37!#, one finds that at late
times

l 1~ t !'Apt. ~39!

If one now views the system at the length scale of the ‘‘2 ’’
domainsl 2(t)@ l 1(t), one sees long stretches of ‘‘2 ’’ do-
mains occasionally interrupted by ‘‘1 ’’ domains that are
now shrunk to a single point when viewed from the leng
scale of the ‘‘2 ’’ domains. The rate of occurrence of thes
points per unit lengthl(t) is clearly proportional toN(t),
i.e., the kink density. Note thatr n is simply the conditional
probability: Given that a ‘‘2 ’’ domain has occurred, what is
the probability that it is of lengthn. Now if one assumes tha
these punctual ‘‘1 ’’ domains ~or the points! are distributed
randomly, one finds thatr n is simply given by the geometric
distribution r n5l(t)@12l(t)#n21, wherel(t)5cN(t) for
some constantc. We therefore find

r 1~ t !'cN~ t !, ~40!

for late times. Furthermore, if we denote byt0 a large time
after which this picture becomes valid, we may write

r 1~ t !'r 1~ t0!
N~ t !

N~ t0!
. ~41!

These two expressions forr 1 and l 1(t) once again are
same as obtained by a more careful analysis of the IIA eq
tions and when substituted in Eq.~16!, they give the same
IIA results once again. Thus the basic assumption of
heuristic picture is that the ‘‘1 ’’ domains occur randomly,
which seems like an accurate description at late times.

IX. CONCLUSIONS

In this paper, we have presented detailed analytical s
ies on a simple one-dimensional kinetically constrained Is
model that was introduced in Ref.@5#. The kinetic constraints
in this model are local and dynamically generated. The ef
of these constraints was shown to slow down the dynam
rather dramatically. We have shown that the average ma
tization in this model decays extremely slowly with time
an inverse logarithmic fashion to its final saturation valu
This kind of inverse logarithmic law was observed in t
behavior of the density of granular material in experime
on granular compaction@3# and was also saw in numerica
simulations of various lattice based and ‘‘tetris-’’ like mode
@14#. There have been some theoretical arguments propo
various mechanisms responsible for this slow compac
@15,9#. These include the free volume argument@15# and the
.
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argument based on an analogy with car parking models w
the somewhatad hoc assumption that the cars ‘‘depark
from a lane at an infinitesimal rate@9#. In contrast, in this
paper we have mapped our kinetic Ising modeldirectly to a
lattice model of granular compaction that incorporates
basic minimal microscopic moves in the compaction proce
The average magnetizationm(t) in the Ising model, via this
mapping, gets related to the density of compactionr(t) in
the granular model asr(t)5(12m)/2. Hence, besides hav
ing nontrivial behavior and yet analytically solvable, our to
model of granular compaction correctly reproduces the
verse logarithmic time dependence seen in the experim
@3# and thereby proposes an entirely different mechanism
this slow compaction, quite different from the previous mo
els such as the car parking models. It is also interesting
note a study of compaction in the tetris model@16# shows
that at late times the activity of the system, leading to co
paction, occurs at boundaries between domains that ca
identified in the system. The image of compaction as a
netically hindered coarsening process thus appears to
quite robust.

From a somewhat broader perspective, our work
dresses a general question: what is the effect of kinetic
generated disorders on the coarsening dynamics in dom
growth problems? In the present work, we have studie
specific type of kinetic disorder, namely, a dynamically ge
erated local magnetic field. This field acts locally on t
topological defects responsible for the coarsening proces~in
this case, simple domain walls!. Our study suggests that suc
kinetic disorders, while slowing down the dynamics dras
cally, do not altogether inhibit the coarsening process
found in other constrained kinetic Ising models@2#. The do-
main growth problems are rather common and occur in v
ous physical systems@4#. Our work, therefore, opens up th
possibility of studying the slowing down in coarsening d
namics due to kinetic disorders in many of these syste
For example, it would be interesting to study the effect
dynamically generated local fields in higher-dimension
Ising models, inO(n) vector spin models and in liquid crys
tals, to mention a few. It is possible to have other types
local kinetic disorders than the one studied here and it wo
also be interesting to study their effect in coarsening syste
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