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Slow relaxation in a constrained Ising spin chain: Toy model for granular compaction
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We present detailed analytical studies on the zero-temperature coarsening dynamics in an Ising spin chain in
the presence of a dynamically induced field that favors locally thé phase compared to the+ " phase. We
show that the presence of such a local kinetic bias drives the system into a late time state with average
magnetizatiorm equal to— 1. However the magnetization relaxes into this final value extremely slowly in an
inverse logarithmic fashion. We further map this spin model exactly onto a simple lattice model of granular
compaction that includes the minimal microscopic moves needed for compaction. This toy model then predicts
analytically an inverse logarithmic law for the growth of density of granular particles, as seen in recent
experiments and thereby provides a mechanism for the inverse logarithmic relaxation. Our analysis utilizes an
independent interval approximation for the particle and the hole clusters and is argued to be exact at late times
(supported also by numerical simulatipns
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[. INTRODUCTION the dynamics in more detail, and also elaborate its connec-
tion to other systems such as granular material and reaction-
Slow relaxation dynamics naturally occurs in systemsdiffusion systems. _

with quenched disordesuch as spin glasses and has re- [N this paper, we study the zero-temperature dynamics of
mained a subject of long-standing interglst However, sys- &0 Ising chain in the presence of a specific type of kinetic
tems without quenched disorder such as structural glassgiSorder, namely, a dynamically induced magnetic field. If a
also exhibit slow dynamics. It is believed that the slow re-Small uniform external fieldsay in the down directionis
laxation in the latter systems is due kinetic disordey in-  PUt On in an lIsing system following a rapid quench from
duced by the dynamics itsdl2]. Another important class of infinite tempergture thO, the system. rapidly relaxes into
systems without quenched disorder is granular materia Pure state with all spins down. In this case, the symmetry
where once again kinetic disorders are responsible for slof€tween the two ordered pure states is broken globally. In-
relaxation. In a recent experimefi8], a cylinder packed teresting physics occurs when, instead of a global external
loosely with glass beads was tapped mechanically and it wad@S, the symmetry between the pure states is broken locally
found that the system gets more and more compact witRY th.e dyna}mlcs |t§elf.'|nt'h|s paper, we mvestlgate'the effect
time. However, the density(t) compactified rather slowly of this particular kinetic disorder and show that this system
with time as () — p(t) ~ 1/In(t). How robust is this inverse /SO gives rise to a very slow dynamics. In particular, it gives
logarithmic relaxation? Is it only specific to granular systems'1S€ {0 inverse logarithmic relaxatidfLR) of magnetization,

or does this also occur in other out-of-equilibrium systems i’y Similar to the density compaction in granular systems.
the presence of kinetic disorders? Our study therefore suggests that the ILR is a very robust

In this paper we study, in detail, the effect of kinetic dis- P"enomenon and is not just limited to granular systems or
orders on the relaxation dynamics of an Ising systentPECIfiC types of kinetic disorders. .
guenched from a high-temperature disordered phase into a The paper IS organized as foI!ows. In S?C' ll, we define
low-temperature ordered phase. In the absence of kinetic diQur model precisely and summarize the main results. In Sec.
orders, the dynamics of such a system is well undersiiabd M, we establish the connection betw_een our spin model and
As time progresses, domains of equilibrium low-temperaturé® 1atticeé model of granular compaction. We also show that
ordered phasefconsisting predominantly of up and down OUr model can be viewed as a one-dimensiof#D)
spins, respectivelyform and grow. The average linear size react|on-d|ffu3|_on model when the_dynam|cs |s_descr|bed in
of a domain grows with time ad(t)~t¥2 for zero- terms of the kmks between domains of opposite phases. In
temperature nonconserved dissipative dynamics. How do%ec' IV, We.derlv_e some exact result;. In Sec. V, we gnalyze
disorder,quenchedor kinetic, affect this simple dynamics? e dynamics via an independent interval approximation
The effect of quenched ferromagnetic disorder on this phas IA). Ir! S_ec. Vi, we argue that the 1A re?“"s become exact
ordering kinetics has been studied extensivigl, Essen- in the Ilmlt when the initial volume fract!on of one of the
tially the quenched disorder tends to pin the domain wallsP@ses is small. In Sec. VI, we extend this argument to other
leading to complete freezing &t=0. However, at small volume fractions as well. In Sec. VIII, we present a heurlst]c
nonzero temperatures, the domains still coarsen via activat proach to support the IIA results. Finally we conclude in
dynamics but extremely slowly &ét)~ (In t)*[4]. The pur- ec. IX.
pose of this paper is to explore the effectkafietic disorder
on the phase ordering dynamics. A shorter version of this
paper with the main analytical results and their numerical We consider a simple Ising spin chain with spiBs
confirmation has appeared elsewhgbé Here we explore ==+1. Starting from a given initial configuration the system

Il. THE MODEL AND THE OVERVIEW OF RESULTS
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evolves by single spin flip continuous time dynamics. Theerage domain sizes of both+” and “ —” domains grow as
rate of flipping of a given spin depends on the its neighbord .. (t) ~t'? at late timeg7]. Thus the average magnetization
ing spins. We denote the rate of spin flg——S by m(t)=(,—1_)/(I.+1_) is a constant of motiofi6]) and
W(S;S_1,S 1) whereS;_; and S, ; are the two neigh- stays fixed at its initial value. In particular, if we start from
boring spins. In our model the rates are specified as followsan initial state where the spins are rand@nfinite tempera-
ture), the initial average magnetization is zero and stays zero
W(+;++)=W(—;-—-)=0, at all subsequent times. In contrast, for the 0 case where
the symmetry is dynamically broken, we find the following
W(+;=+)=W(+;+—)=W(—;+—)=W(—;—+)=3, results.
(1) For =0, while domains of both phases continue to

W(+;—-—)=1, grow with time, they have different growth laws. The aver-
age domain sizes of the phaseqdenoted byl , (t)] and
W(—;++)=a. (1) — phaseddenoted byl _(t)] coarsen at late times in the

following manner: (i) |, (t)~ =t at late times andii)
Note that the casexr=1 co_rresponds to the usual zero- I_(t)~t1/2In(bt) whereb is a number depending on the ini-
temperature Glauber dynamid3 that preserves the symme- o[ yolume fraction of the “ " spins which we will calcu-
try between the up and down phases. However<fl, the  |ate explicitly (see below: In fact, the main result we show

flipping of a down-spin sandwiched between two up-spins i)e|ow is that the ratio of the two length scales behaves at late
not as likely as the flipping of an up-spin sandwiched be+jmes as

tween two down-spins. Thug<1 clearly breaks the sym-

metry between the up and down phases. However this sym- |_ 1 In(bt/ty)

metry is broken only dynamically, i.e., not everywhere but e T

only at the location of the triplets«,—,+). Thus the iso-

lated “~" spins (surrounded on both sides by &) tend  hare s the initial volume fractiorineed not be smaland

to b‘I‘oc!’< th? coalescence of*” domains and Ioca}IIy favor' to is some initial time after which scaling starts holding.

the “—" spins. One can argue that the asymptotic dynamiCszqy,ation(3) explicitly reflects the effect of broken symme-

at late times Is S|m|la( for ang<1. In otheryvordsazo IS try. Thus due to the dynamically generated local bias, the

an attractive fixed point. We therefore restrict ourselves only. ~_» domains grow slightly faster than the" domains.

to the casar=0. _ _ We also point out that in contrast to the spin models studied
To see the effect of the local dynamical constraint MOr&n, the context of glassy systenig,g], the dynamics in our

precisely, we derivéfollowing Glauber's calculation forr — 1,de| does not freeze at zero temperature, rather the do-
=1 [6]) the exact evolution equation for the magnetization5ins coarsen indefinitely in an infinite system.

1, 3

I. € Inb

m(t)=(S) for the «=0 case: (2) Consequently, the magnetizationm(t)=(l.
d —1_)/(I,+1_) decays at late times as
—(S)=—2P(1,~1,1), 2
dt<Si> ( ) @ I 2elnb 4
MO ==1+ bty @

where P(oi-1,07,0i:1)(t)=((1+0i-1S_-1)(1+0;S)(1

+ 04151+ 1))/8 is the three-point probability to find the se-
guence of spinsd;_,,0;,0i, 1) about the sité and we have
used translational invariance. HenB¢1,—1,1)(t) denotes
the probability of the occurrence of the triplett*—+" at
time t. We note that for the case=1, d(S;)/dt=0 [6],

(3) Evidently the number of 4" domains is the same as
the number of “=" domains since they alternate on the 1D
lattice. The density of domains of either-” or “ —" type
per unit lengthN(t)=1/[1_+1,] decays as

indicating that the magnetization does not evolve with time. N(t) - Inb

In our case, due to the triplet defects-“- +,” the average = \ﬁ . (5)
magnetization decays with time. If. (t) denote the frac- N(to) tIn(bt)

tions of “+"and “ —" spins, then usind-. = (1+m)/2 we - .

find from Eq. (2), dL. /dt=FR,(t) where Ry(t) is the We also compute explicitly two other densities that play a

somewhat central role in our analysis.
(4) rq(t): Given that a =" domain has occurred, the
probability that it is of length 1. We show below that

number density of the triplets of type+(—+) per unit
length, clearly exhibiting the asymmetry generated by the
(+ —+) triplets. We also note that unlike the=1 case, the

evolution equation(2) for the single-point correlation func- J7
tion involves two- and three-point correlatiopga R4(t)]. r(t)= _ (6)
This hierarchy makes an exact solution difficult fer=0. ﬁln(bt/to)

It is useful at this point to summarize the main results
obtained in this paper. Let us first highlight the contrast be-Note that the amplitude/r is universal and is independent
tween thea=1 (no kinetic disorder and thea=0 (with of volume fraction.
kinetic disordey cases. Forr=1, due to the preserved sym-  (5) p.(t): Given that a “+” domain has occurred, the
metry between the up and down phases at all times, the aprobability that it is of length 1. We show that
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1 1 [ ] rolling off tapping up TeServoir
. @ — e
0 layer
| | e
Once again the amplitude 1 of the correction term is also ¢
universal and is independent of volume fraction. FIG. 1. Picture of rolling off(left domain and tapping ugright
The constanb in the above equations can also be com-domain in the granular interpretation of the spin model; the solid
puted exactly, and we show that squares represent particles.
;{ Jr ) middle hole with rate 1/2. This is the “rolling” off move to
b=exp ——=]. (8)  the right at the edge of a cluster, as discussed above. Simi-
ri(to) \/E larly W(+; + —)=1/2 signifies the “rolling” off move to the
left. The rateW(—;+ —)=1/2 implies that when we have
I1l. CONNECTION TO GRANULAR COMPACTION three consecutive sites in the active layer consisting, respec-
AND REACTION DIEFUSION SYSTEMS tively, of a hole, particle, and a particle, the middle particle

) can disappea(into the layers abovewith rate 1/2. This is

We now establish a one-to-one mapping between our spithe “tapping” up move to the right from the edge of a cluster
model (with «=0) and a simple lattice model of granular as discussed above. Similay(—;—+)=1/2 signifies the
compaction. Let us consider a {11)-dimensional granular  rate of “tapping” up to the left from the edge of a cluster.
packing where the grains are represented by square blockghe ratew(+;— —)=1 indicates that if we have a sequence
The pack consists of horizontal layers consisting of blocksy particle, hole, particle in the active layer, the middle hole
and voids(see Fig. 1. We focus on the "active” layer, i.e., can be filled up with a particle with rate 1. This is simply the
the first horizontal layer that is not fully compact with blocks gqgition of two “rolling” off rates from the left and the right
as we go up from the bottom of the pile. Below this active of the middle hole. Finally the raté/(—;+ +)=a=0 im-
layer, all layers are compact and remain compact under Vejies that if we have a sequence of hole, particle, hole in the
tical tapping, i.e., their dynamics is completely frozen. All active layer, the middle particle cannot disappear. This is
the activities take place in or above the “active” layer. We pecause an isolated particle has no place to move or “tap” up

identify this “active” layer with the one-dimensional lattice 45 giscussed above. This last rate indeed breaks the particle-
of the spin model. This active layer consists of sequences gfgle symmetry.

blocks(particleg and voids(holes. We identify a unit block Note that the rates W(+;—+)=W(+;+—)

or a particle in the active layer as a" spin of our spin =W(—;+-)=W(—;—+)=1% correspond to the diffusion
model. Similarly a hole is identified as at+* spin of the o gomain walls in the spin model. In the compaction model,
spin model. these are indeed the moves induced by the mechanical tap-
As the system is tapped vertically, the particles in theping. If these rates were zero, i.e., no tapping, then the dy-
active layer can undergo the following moves. namics in the active layer would freeze after all the isolated

(2) In the interior of a row of consecutive particles in the_ holes are filled up and the system will be stuck in a meta-
active layer, there is no effect of tapping as the system igtaple configuration and hence the compaction will stop.
completely jammed there. The effect of vertical tapping isThese diffusion moves that lift the system out of a metastable
felt only at the edges of a particle cluster. The particles at th%onfiguration and the system continues to compactify, though
edges, under tapping, can move up or “tap” up from thegyiremely slowly. Identifying the “” ( +) spins with par-
active layer to the layers above the active lajgme Fig. 1 ticles (holeg in the granular model, it is easy to see that the
However, if the cluster consists of an isolated particle Sand_average magnetizatiom in the spin model is related to the
wiched between two holes, it has no place to move up, so ifyerage particle density(t) in the granular model via the
stays at its original location. simple relationm(t)=1—2p(t). Thus the result in Eq4)

(2) Tapping also can “roll” off a particle residing in a for the magnetization indicates that the density will grow to
layer above the active layer, into the active layer, at the edgegs ylly compact value 1 as

of the supporting clusteisee Fig. 1

Let us now see what the rates of spin flips in Eq.in the elnb
spin model imply for the compaction model. The raté P(t)zl—my (€)
(+;++)=0 implies that if we have three consecutive holes 0
in the active layer, then a particle cannot be deposited in that very late times, as observed in experiments on mechani-
middle site under tapping. This is because a new particle cagally tapped granular med[&].
appear into the active layer only at the edges of the clusters Other one-dimensional lattice models, notably the “car
of particles, but not in the middle of a cluster of voids. The parking” model, have been previously used to explain the
rate W(—;— —)=0 implies that if we have three consecu- logarithmic relaxation in granular materia]8]. The local
tive particles in the active layer, the middle particle cannotrules for the dynamics of particles in the car parking model
move up under tapping since it is completely jammed. Theare, however, quite different from those in our model. In the
rateW(+;— +)=1/2 signifies that if we have three consecu- parking model, the rules for the particle motion éijea new
tive sites in the active layer consisting, respectively, of aparticle can be absorbed only at sites containing a hole at a
particle, hole, and a hole, then a particle can appear in theate proportional to the number of neighboring particles and
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(i) a particle evaporates with a small rdthus leaving be- dP(1)
hind a hole if it has one and only one neighboring hole. T=P(—1,—l,1)—|°(—l,1.— 1)-P(1,1,-1),
While this model also exhibits an inverse logarithmic growth (12)

of the density, the dynamical movém particular, the fact

that the desorption rate is infinitesimally smalte chosen in  where we have used the evident left to right symmetries
a somewhaad hocmanner. In contrast, as explained via thep(—1,—1,1)=P(1,-1,—1) and P(1,1-1)=P(—1,1,1).
mapping detailed above, our model incorporates the basig/e now observe thaP(—1,—1,1)+P(1,—1,1)=P(—1,1)
minimal microscopic moves of the particles that are ob-and P(—1,1,—1)+P(1,1,—1)=P(1,—1)=P(-1,1) and

served in the compaction process. thus find
In terms of the motion of the domain walls betweet ™
and “—" phases, our model can also be considered a model dP(1)
of two species reaction diffusion in one dimension. We note dt P(1,-1.D. (13

that in the casexr=1, the domain walls diffuse and annihi-
late upon contact. This corresponds to the prockssA  We note thatP(1,—1,1) is simply the probability that at a
—0 [7]. In the casewn=0, we need to distinguish between given site the spin is a*" spin and its two neighbors are
the two types of domain walls- +=A and + —=B. Note  “ +"spins, that is to say there is at — + " defect at the site
that by definition(originating from a spin configuratigrihe  considered. If we now sum this equation over each site on an
A’s andB’s always occur alternately. Here boftls andB'’s interval of unit length on the lattice and recall tHa is the
diffuse as before; however when @and aB meet, they density of the “+ — + " triplets per unit length, we obtain
annihilate only ifA is to the left ofB, otherwise there is hard
core repulsion between them. We will show below that this dL.
hard core repulsion between the particles is a relevant inter- dt Ri, (14
action that changes the late time dynamics considerably. Re-
cently the relevance of hard core repulsion between particleshereL ;. is the fraction of the “” spins. Note thatlL ,
in reaction-diffusion systems has been explored in a numbetL_=1, whereL _ is the fraction of the “-” spins. From
of contexts[10]. Eqg. (14) we obtain Eq.(2) for the evolution of the average
magnetizatiomm. Physically it is easy to see the origin of Eq.
(14) as, on an average, the fraction of-” spins can de-
crease only due to the blockage by-“ +" triplets.

To start with we write down two exact relations that are  Writing Eq. (14) in terms ofr,;=R;/N and the average
derived directly from the Glauber dynami¢we shall see length of the “+” domains| =L /N, we obtain
later that these exact relations are in fact respected by the IIA .
approximation. N | +ry

Let N(t) be the number of domains of either+" or N T, (15
“ —"spins per unit length. The density of kinks is therefore
2N(t). Let P, be the density of the triplets =+ —" per  \yherex=dx/dt. This equation can be integrated starting at
unit length, then clearlyp,=P;/N. We note also that the gome arbitrary time, to give
only way in which a domain can be destroyed in an infini-

IV. SOME EXACT RESULTS

tesimal time step is by flipping an isolatedt+” spin in a N(t) 1 (to) try(t))
triplet “ — + —.” This gives = X —f dt’ (16
N(to) 14(t) to |4 (t")
d_N: —P,. (10) Furthermore, if the volume fraction of the+*” phase is
dt L. (tg)=¢, then, using the relatiohl(t)=1/[1_(t)+1,(t)]
in Eq. (16), we find

If P(S;) denotes the probability that the spin at ditekes

the valueS;, the evolution ofP(S) depends only on the l_(t) 1 try(t’) dt’

rates in Eq.(1) and the three-point probability distribution L.(t) € X tol L (1) -1 (17

P(Si_1,S,S+1). The evolution ofP(S) is then given by

clearly showing that the ratib_(t)/l, (t) is growing due to
dP(S) the presence of the tripletst*— +.” Note that the asymme-
dt :Sﬂzﬁq W(=Si:S-1,5+0)P(S-1.75.S+1) try between the growth of =" and “ +” domains is evident
due to the presence of the triplet defects ~ + " with den-
S|ty R]_: I’lN.

_Sa+12371 W(S5S-1,S+1)P(S-1,5,S+1)- All the results presented above are exact. To derive the
late time behavior of the model, we first consider below the
11 IIA. We solve the IIA equations self-consistently and show
that the IIA precisely predicts the results mentioned in Sec.
SubstitutingS;=1 in the above equation we find Il. Besides we shall argue that in the case where the initial
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volume fraction of the “” domains is small, i.e.,e<1, The negativeloss terms in Eq.(19) for domains of sizen
correlations do not develop between the domains if no cor=2 may be understood as follows. A domain of lengtmay
relations are present in the initial conditions and hence thée lost by the domain wall at either end jumping inwards
[IA is exact to leading order ire. At the end, we present a with rate 1/2. This term is the second term in EtP) and as
very simple heuristic argument which is also in agreementhere are two domain walls we have a factor of 2. A domain

with these results.

V. IA ANALYSIS

of lengthn may also be lost by a domain wall hopping out-
wards. This happens with rate 1/2 if the neighboring domain
is not a triplet “— + —.” The third term of Eq.(19) corre-
sponds to this event, the fact¢l—P,(t)/N(t)] is the

In this section we consider the IIA where correlations be-probabilty of the absence of a triplet“+ —" as a neigh-
tween neighboring domains are neglected. The IIA was useBoring domain. There is again a factor of 2 coming from the

previously for theaw=1 cas€/11], yielding results in agree-

fact that there are two domain walls. However if a neighbor-

ment, qualitatively as well as quantitatively to a fair degreeing domain is of type “ + —" the outward jump towards

of accuracy, with the exact results availaf#el2]. Let P,(t)

this domain occurs with rate fas the central- spin flips

and Ry(t) denote, respectively, the number density of thewjth rate 1). The term corresponding to these two events

“+"and “ —" domains of lengthn at timet. Note thatR,(t)
is the density of the triplet +—+" as before. LetN(t)
=>,P,=2,R, denote the domain density of the+” or
“ —"spins. Also the fractiond. ..(t) of “ +"and “ —" spins
are given byL (t)=2,nP, and L _(t)=2,nR, with
L,(t)+L_(t)=1. During an infinitesimal time stept,
P,(t) evolves as

(from the right and left domain wallds the fourth term in

Eq. (19). The two first gain terms come from identical argu-
ments and the last convolution term represents domain coa-
lescence, where a domain of lengths formed with rate 1
from two “—" domains of lengthi andn—i—1 (where 1
<i=n-2) if they are separated by a+ — " triplet. Equa-

tion (20) is obtained in a similar fashion with the exception
that the hard core repulsion generates a reflecting boundary

. Ra(t) condition. Taking the limiAt— 0 in the above equations, we
Pn(t+At)—Pn(t)—AtPn(t)—AtPn(t)[l— N(t)} obtain the IIA equations for the evolution of the domain
densities
+AtP t)+AtP t 1—R1—(t)
n+1( ) nfl( ) N(t) . dPn Rl
W:Pn+l+Pn—l_2Pn+ W(Pn_Pn—l) (21
(18

The right hand side of the above equation includes the varifor all n=1 with P,=0 (absorbing boundary conditipand
ous loss and gain terms. The second and the third terms dR b

describe, respectively, the loss due to the hopping inward and Y0 _ 1

the hopping gutvvardyof the domain walls at Ft)rl?e thO ends of gt~ Roert R = 2R = (Ret Ry )

a “+"domain of sizen. An outward hop can occur provided
the neighboring domain in the direction of the hop is not an
isolated “—” spin and this is ensured by the prefactor (1
—R;/N) in the third term. The fourth and the last term de-
scribe similarly the corresponding gains. One can similarly dR; P,

write down the evolution equation for thi,(t)’s. During an ot R R R (22
infinitesimal time step\t, R,(t) evolves as

p. -2
+7 > RRyi_1; n=2
N® =1

P.(t It is somewhat convenient to use the normalized variables
R, (t+At)=R,(t) — AtR,(t) — AtR,(t)| 1— L)} pn="P,/N andr,=R,/N. The average domain lengths are
N(t) then given byl . (t)==np, and|_(t)=3nr, and the do-
R.(1) main densityN(t) =11, (t) +1_(t)]. In terms of these nor-
—2AtP (1) Nn(t) +AtRn+1(t)+AtRn1(t)[l malized variables, the IlA equations are given by
_ dp
Pi(O] Pa(t) . " =Pne 1t Pro1— 2P FT1(Pr— Pa1) + P1Pn (23)
~ N % N2 Z,l R(1)Ry_i_1(t);n=2 dt
(190  for all n=1 with p,=0 (absorbing boundary conditipand
and dr, n-2
Ezrn+1+rn—l_2rn_plrn—1+plZl rifp—i—1; N=2
Ri(t+At)=R;(t) — AtR4(t) 1—P1—(t) —2AtP (t)Rl—(t) -
1 - 1 N(t) 1 N(t) dr
—=r,— 24)
+AtRy(1). (20) TS (
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It is easy to check that the normalization conditidfp,  Thus, for self-consistency in neglecting the drift term, we

=3r,=1 is satisfied by these two equations. We note thaneed to show that ¥2>N(t)/t. We will again see that this

Eq. (23) or more clearly its unnormalized version in Eg1), condition is indeed also satisfied once we obtain the expres-

i.e., P,=P,,1+P,_1—2P,+r,(P,—P,_;), just repre- sion forN(t). From this form ofp,(t), we thus obtain, to

sents the motion of a random walker on the positive side ofeading order for large, I, (t)==np,~t"?/7xf(x)dx. Us-

a 1D lattice with a sink at the originR,=0) and a time ing f(x)=(x/2)exp(-x*/4), and doing the integral we finally

dependent drift terniproportional tor ;). To calculateN(t)  find I, (t)~ \/art for larget.

using Eq.(16), we need to evaluate two quantities from the  Using these two result) r(t) =ry(tg) N(t)/N(ty) and

[IA equations:(i) r(t)=R;/N and(ii) | . (t)=2np,. (i) 1, (t)= /=t in the exact equation, Eq16), and differ-
The two IIA equations above are coupled nonlinear equaentiating with respect tg we find a differential equation for

tions with infinite number of variables and hence exact soluN(t),

tion of Egs.(23) and(24) are difficult. Our approach will be

a combination of a scaling assumption and then rechecking d rito)

this assumption for self-consistency. Consider first the m[\/EN(t)F—\/—— (). (27)

equation, i.e., Eq(24). On the right hand side, we will first 7N(to)

ignore the diffusion term, solve for the rest, and show that . . . .

indeed neglecting the diffusion term was justified in the first"troducing the dimensionless variable

place. This is self-consistency. Ignoring the diffusion term,

we have the following equation: _ t_O N(t)

S(t)= N(to)

(28)
dr, n?
E=p1 21 lifh—i—1— -1/, (25 in Eq. (27) we find
. . L . ds ?
with the reflecting boundary conditiony=r . It is now easy —~ = —In(b)—, (29)
to see that Eq.(25 admits a scaling solutiony (t) dt t

~\(t)exd —n\(t)], where\ (t) = —p;(t)\(1). Using the ex- ] ]
act( r)elaii{on d(N)/]dt=—p1lEl,) weplg(;e)t 5\()t)=)\('?o)N(t)/ where Inp)=/7/(r 1(to) Vto). Integrating Eq(29) we find
N(tp). Note that we still do not know whai(t) is. Now let

us substitute this solution to estimate the diffusion term that S(t) = In(b) (30)
had been neglected in the first place. Clearly, the diffusion In(bt/ty)’

term Tgifr=rps1+rno1—2r,~OM3(t)), whereas the other

terms[for example, the left hand side of E(@4)] typically =~ we thus obtain the result

scale as~O(\ (t))~O(py(t)A(t)). Thus, in order to be self-

consistent in neglecting the diffusion term, we need to have N(t) \/% In(b) 31
D1()>\2(t)~N2(t). We will see that this condition is ac- Nty ~ VTin(btty) (3D

tually satisfied once we derive the expressionNgt). This
just means that the diffusion terms only contribute to thesupstituting this result in the expressiom (t)

corrections to the leading scaling behavior. ~r1(to)N(t)/N(t,), we get
From the above analysis, we find to leading order
for large t, ri=~A(t)=A(tg)N(t)/N(tg), i.e., rq(t) Jr
~r4(tg) N(t)/N(ty). We now need to evaluate the other re- r{ty=————. (32
maining quantity] , (t)=2=np,. For this we now turn to the \/fln(bt/to)

p, equation, Eq(23). In this equation, we will again first ) )
ignore the drift termr,(p,—p,_1), solve for the rest, and Next we use the Ia_te time result, E®1), in the exact rela-
check that indeed the neglect of the drift term was justifiedtion. Ed.(10), and find
Ignoring the drift term, we get 1 1
dp P1=2t " tin(btity)
qp = Pne1tPao1= 2P0t PaPy (26) ’

(33

Let us check the two self-consistency conditiorta)
with the absorbing boundary conditigp=0. This equation  p;(t)>\?(t)~N?(t) and (b) t~¥%>N(t)/t. Using the ex-
can be solved exactly. Indeed it also admits a scaling solutiopression fop,; from Eq.(33) and that ofN(t) from Eq.(31),
pn(t) =t~ Y2f(nt~Y?), where the scaling functiotnormal- it is immediately evident that indeed these two conditions are
ized to unity is given byf(x)=(x/2)exp(x4/4). Now letus  satisfied for large. Thus our whole approach has been com-
estimate the drift term that was neglected. Clearly the drifppletely self-consistent and the IIA results are precisely those
term ry(Pp—Pn_1)~O(r/t)~O(N(t)/t) since r;~N(t) mentioned in the Introduction. Note also thigt must be
from above. The other terms in the Eg3) [for example, the sufficiently large such that both scaling langt) ~N(t) and
left hand side of Eq(23)] is of ordert™>2 at late times. |, (t)~/at start holding fort>t,.
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VI. ZERO VOLUME FRACTION LIMIT with the absorbing boundary conditid®y=0. The normal-
ized conditional probabilityp,=P,/N with N=XP, then

In this section, we show that the IIA results essentially ~_.. .. .
satisfies the equation

become exact in the zero volume fraction limit of the *
phase, i.e., in the limige—0. Suppose we start from an ini- dp
tial condition such that,(0)=e(1—¢€)" and p,(0)= 6, ;. —”:pn+l+ Pr—1—2Pn+ P1Pn . (37
This means that in the initial condition, the average length of dt

L e e mtaly e g e ST 35 EQ20. T eation 1as (0 be sl wih e
mains, in the limite—0. Also initially all the domains are '”'F'?" condition pn_(0)=1_. It can t_)e solved_exactly. Without
completely uncorrelated. So the picture is as follows. weVrting the gxphcﬂ solution, we just ”?e”t'on th? result for
have little droplets of the +” phase in a sea of the *” Znp,. We find that for large and leading order ir,
phase. Besides, one can also compute the initial density of
domains of either *+” or “ —" types. It is given byN(0) I+(t)=2 np,~ \/ﬁ+ O(e). (38)
=1/e(1—€)~1/e to leading order ire.

Now let us consider the time evolution of the system start-
ing from this initial condition. As time increases, the-* .. .
dogmains will certainly grow in size. But a typicaH” do- :N(t).+o(62) and (i) I+(t)%.\/ﬁ+ O(e) in the exact
main will disappear(via the absorbing boundary condition equation, Eq(.16), we once again recover all the IIA results
much before encountering other-” domains, i.e., before Of the preceding section, with= Vale. o o
feeling the presence of the constraint due to triplets Hence IIA becomes exact in the—0 limit. This is not
“ 4 —+." The probability of such an event i©(e). Thus  SUrPrising as the dynamics in this I_m_n_t does not generate
effectively, the dynamics of the system will proceed via eat.correlations if there are none in the initial condition.
ing up of the “+" domains. Hence, if there is no correlation
between domains in the initial condition, the dynamics is not VIl. OTHER VOLUME FRACTIONS
going to generate correlations between them. This is pre-
cisely what happens in the zero-temperature dynamics of th
q state Potts model in 1D in the limi— 1" [13,11].

Thus in this limit, the evolution of the " domains is
governed by the exact equation

Using the results from Eq$35) and (38), i.e., (i) rq(t)

For finite initial volume fraction of the %+ phase, the
TA cannot be exact since the diffusion of kinks correlates the
domains as time progresses, even if the domains had no cor-
relations to start with. However, the volume fraction of the
“ +” phase decreases monotonically with time according to
oo the exact eqyation, Eq14). Thus at very late t!mes_ when 'Fhe
2 ey } (34 volume fractionL . (t) is very small, the effective fixed point
&) in=iml In=dp picture of the system is very similar to tke—0 limit pic-
ture, i.e., small +” domains immersed in the sea of~”
domains. The only difference is that the big-* domains
may now be correlated. However, it is very likéthough we
cannot prove this rigorousiythat the correlations between
domains are very small at very late times and therefore the
IIA results summarized in the point4) to (5) of the Intro-
duction become asymptotically exact. The numerical results
reported in Ref[5] appear to confirm this fact.

drn_
H_pl

which is same as the IIA equation, E4), without the
diffusion term. Starting from the initial conditiom,(0)
=¢€(1—¢€)", one can solve the above equation for d@rex-
actly to leading order ire. It turns out that, to leading order
in e, Eq. (34) admits a solutiorr ,(t) = w(t)[1— x(t)]" 1,
where,u(t)=eexr[—fgpl(t’)dt’]. Using once again the ex-
act ec%uatlondN/dt=2— PN, we find w(t)=eN(t)/N(0) Actually if this late time fixed point picture is correct,
+O(€2):N(t)+o(f ) where we have usetN(0)=1/e  {hen one can derive all the results from a very simple heu-
+0(€%). Thus we get ristic argument, as is presented below.

r(t)=u(t)=N(t)+O(€?). (35 VIIl. HEURISTIC APPROACH

The heuristic picture is as follows. Due to the facts that
“ +” domains can grow only by diffusion and the—" do-
mains grow by diffusion and coalescence, one expects that at
late times the ratid , (t)/ _(t)—0; this is also clear from
Eq. (14). Therefore at late times one expects to fing ™
domains sandwiched between much largefr ™ domains.
Consequently the 4+” domains, to a first approximation,
never encounter the+ — + " triplets at late times and hence
diffuse freely and annihilate via the disappearance of the
“ —+ =" triplets. Therefore the length of a +” domain
ﬁ_ P 4P . op (36) behaves as a diffusion with a killing boundary condition at
dt  nttoont n the origin. Solving the discrete diffusion equation corre-

Now, let us consider the evolution of thet” domains.
Since a typical 4" domain never encountero leading
order ine€) any other “+” domain and hence does not feel
the constraint due to,’s, the effective dynamics of a+"
domain is that of a single+ " domain immersed in a sea of
the “—" phase. LetP, denote the probability that such a
domain is of lengthn. Then, to leading order i, P,’s

clearly evolve by the simple diffusion equation
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sponding to this picturésee Eq.(37)], one finds that at late argument based on an analogy with car parking models with

times the somewhatad hoc assumption that the cars “depark”
from a lane at an infinitesimal ra{®]. In contrast, in this
L (1)~ . (39  paper we have mapped our kinetic Ising modieéctly to a

lattice model of granular compaction that incorporates the
basic minimal microscopic moves in the compaction process.
The average magnetization(t) in the Ising model, via this

mains occasionally interrupted by+” domains that are ... : PR
) . . pping, gets related to the density of compaciigt) in
now shrunk to a single point when viewed from the lengthy, . granular model as(t) = (1—m)/2. Hence, besides hav-

scale of the *—" domains. The rate of occurrence of these j, o nontrivial behavior and yet analytically solvable, our toy
points per unit length\(t) is clearly proportional taN(t),

! . ) L] o model of granular compaction correctly reproduces the in-
I.e., the kink density. Note that, is simply the conditional ,grse |ogarithmic time dependence seen in the experiments

probability: Given that a =" domain has occurred, what is 3] and thereby proposes an entirely different mechanism for
the probability that it is of length. Now if one assumes that s sjow compaction, quite different from the previous mod-
these punctual " domains (or the point$ are distributed |5 sych as the car parking models. It is also interesting to
randomly, one finds that, is simply given by the geometric note a study of compaction in the tetris mo@l&6] shows
distributionr,=\()[1—A(t)]" , whereX(t)=cN(t) for  that at late times the activity of the system, leading to com-
some constant. We therefore find paction, occurs at boundaries between domains that can be
identified in the system. The image of compaction as a ki-

9 6

If one now views the system at the length scale of the’
domainsl _(t)>1,(t), one sees long stretches of-" do-

ra(H=cN(), (40 netically hindered coarsening process thus appears to be
for late times. Furthermore, if we denote hya large time ~ Quite robust. _
after which this picture becomes valid, we may write From a somewhat broader perspective, our work ad-
dresses a general question: what is the effect of kinetically
N(t) generated disorders on the coarsening dynamics in domain
rl(t)%rl(to)m. (4)  growth problems? In the present work, we have studied a

specific type of kinetic disorder, namely, a dynamically gen-
These two expressions for, and |, (t) once again are erated local magnetic field. This field acts locally on the
same as obtained by a more careful analysis of the IIA equédopological defects responsible for the coarsening progess
tions and when substituted in E(L6), they give the same this case, simple domain wallur study suggests that such
IIA results once again. Thus the basic assumption of thikinetic disorders, while slowing down the dynamics drasti-
heuristic picture is that the +” domains occur randomly, cally, do not altogether inhibit the coarsening process as
which seems like an accurate description at late times. ~ found in other constrained kinetic Ising mod¢®. The do-
main growth problems are rather common and occur in vari-
IX. CONCLUSIONS ous physical systenigl]. Our work, therefore, opens up the
ossibility of studying the slowing down in coarsening dy-
In this paper, we have presented detailed analytical stuthamics due to kinetic disorders in many of these systems.
ies on a simple one-dimensional kinetically constrained Ising-or example, it would be interesting to study the effect of
model that was introduced in R¢5]. The kinetic constraints  dynamically generated local fields in higher-dimensional
in this model are local and dynamically generated. The eﬁecﬁsing models, ifO(n) vector spin models and in liquid crys-
of these constraints was shown to slow down the dynamicg|s, to mention a few. It is possible to have other types of
rather dramatically. We have shown that the average magnggcal kinetic disorders than the one studied here and it would

tization in this model decays extremely slowly with time in also be interesting to study their effect in coarsening systems.
an inverse logarithmic fashion to its final saturation value.

This kind of inverse logarithmic law was observed in the
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