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Large scale cross-correlations in Internet traffic
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The Internet is a complex network of interconnected routers, and the existence of a collective behavior such
as congestion suggests that the correlations between the different connections play a crucial role. It is thus
critical to measure and quantify these correlations. We use methods of random matrix theory~RMT! to analyze
the cross-correlation matrixC of information flow changes of 650 connections between 26 routers of the
French scientific network ‘‘Renater.’’ We find thatC has the universal properties of the Gaussian orthogonal
ensemble of random matrices: The distribution of eigenvalues—up to a rescaling that exhibits a typical
correlation time of the order of 10 min—and the spacing distribution follow the predictions of RMT. There are
some deviations for large eigenvalues which contain network-specific information and which identify genuine
correlations between the connections. The study of the most correlated connections reveals the existence of
‘‘active centers’’ that are exchanging information with a large number of routers thereby inducing correlations
between the corresponding connections. These strong correlations could be a reason for the observed self-
similarity in the world-wide web traffic.
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I. INTRODUCTION

The Internet connects different routers and servers u
different operating systems and transport protocols. This
trinsic heterogeneity of the network added to the unpred
ability of human practices@1#, making the Internet inherently
unreliable and its traffic complex@2–6#. Recently, there have
been major advances in our understanding of the gen
aspects of the Internet@7–10# and the web@11–16# structure
and development, revealing that these networks can ex
emergent collective behavior characterized by scaling. C
cerning data transport, most of the studies focus on pro
ties at short time scales~usually,1 min) or at the level of
individual connections@2,17,18#. In particular, it has been
shown that for wide- and local-area networks the se
similarity ~for time correlations! applies. The possible rea
sons for this behavior were shown to be@17# the underlying
distribution of world-wide web~WWW! documents, the ef-
fects of user ‘‘think time,’’ and the addition of many suc
transfers.

The studies on statistical flow properties at a large sc
@3,4,6,19# concentrate essentially on the phase transit
from a ‘‘fluid’’ regime to a ‘‘congested’’ one for which the
average packet travel time is very large@20#. The existence
of such a collective behavior indicates the importance of s
tial correlations between connections at a large scale in
system. In order to be able to understand and to model
traffic in the network, it is thus important to measure and
quantify the correlations between the flows in different co
nections.

In this paper, we analyze the correlations between dif
ent connections of a wide-area network which is the Fre
scientific network ‘‘Renater.’’ We use random matrix theo
~RMT! to study the corresponding empirical correlation m
trix. RMT has been developed in the fifties for studying t
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complex energy levels of heavy nuclei@21#, and more re-
cently it has also been used in the study of correlations
stocks@22,23# or statistics of atmospheric correlations@25#.

We first demonstrate the validity of the universal pred
tions of RMT for the eigenvalue statistics of the cros
correlation matrix. However, we observe some deviatio
compared to the minimal hypothesis of random independ
time series. These deviations from the universal predicti
of RMT identify system-specific, nonrandom properties
the network providing clues about the nature of the unde
ing interactions. This result allows one to distinguish t
genuine correlations in the network, which are not just due
noise.

II. EMPIRICAL RESULTS

A. Data studied

We use data from the French network Renater@26# which
has about 23106 users, and which consists of about 30 i
terconnected routers~Fig. 1!. Most research institutes, tech
nological or educational institutions, are connected
Renater.

The data consist of the real exchange flow~sum of ftp,
telnet, mail, web browsing, etc.! between all routers even i
there is no direct~physical! link between all of them. For a
connection (i , j ) between routersi and j ( iÞ j ), Fi j (t) ~in
bytes per 5 min! is the effective information flow at timet
going out from i to j ~the flow going fromi to k via j is
excluded fromFi j ). For technical reasons, data for a fe
routers were not reliable and we analyzed data for 26 rou
which amounts in 26326 matricesFi j (t) given for every
sampling time scalet55 min during a 2-week period. We
also exclude from the present study the internal flowFii ,
and the nights for which the flow is essentially due to m
chine activity. We thus studied data for days~800–1800 h!,
©2002 The American Physical Society10-1
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which amounts to a total ofN5263255650 different con-
nections given forL512310314 days51680 time counts.
We choose as a measure of the magnitude of the time-s
fluctuations the growth rate defined as the logarithm of
ratio of successive counts,

gi j ~ t !5 lnFFi j ~ t1t!

Fi j ~ t ! G ~1!

for t50, . . . ,(L21)t. This measure has several nice pro
erties. First, any multiplicative, time-independent sam
bias cancels in the ratio. Second, this measure has a na
interpretation in terms of relative growth since for a sm
increasegi j (t).@Fi j (t1Dt)2Fi j (t)#/Fi j (t) is simply the
relative increment. A large value of this quantity reflects
large activity ~i.e., a large flow variation!, while a small
value corresponds to an almost constant flow. This mea
is thus independent from the volume of information e
changed and thus does not eliminate the ‘‘small’’ routers. T
study of volume flow exchange will be published elsewh
@32#, and in the present paper the quantityg allows us to
study more subtle effects, such as the activity of a regio
router, independent of its ‘‘size’’ measured in terms of e
changed information volume.

B. Correlation matrix

The simplest measure of correlations between differ
connections (i , j ) and (k,l ) is the equal-time cross
correlation matrixC which has elements

FIG. 1. Map of the Renater network. There is a total of about
interconnected routers~of which 26 are effectively studied!. We
show on this map the physical connections. The measured
consist in a flow matrixFi j (t) ~with t5tm, m50, . . . ,L21, and
i , j 51, . . .,26) which gives the effective flow exchange betwe
routersi and j. For more details on this network, see the web pa
http://www.renater.fr and for an animated version of flows, s
http://barthes.ens.fr/metrologie/Renater01
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C( i j )(kl)5
^gi j gkl&2^gi j &^gkl&

s i j skl
, ~2!

where s i j 5A^gi j
2 &2^gi j &

2 is the standard deviation of th
flow growth rate of the connection (i , j ), and^•••& denotes
a time average over the period studied. The correlation
trix is real symmetric and its elements are comprised
tween 21 ~anticorrelated connections! and 1 ~correlated
connections!, while a null value denotes statistical indepe
dence.

The quantitiesgi j /s i j have ~by construction! a variance
equal to 1 and a zero mean~for a sufficiently long time!. It is
thus natural to compare our empirical results with a mut
independent time series—the ‘‘null’’ hypothesis—describ
by the correlation matrix

R5
1

L
AAt, ~3!

where A ~the so-called random Wishart matrix! is a N3L
matrix containingN times series ofL random independen
elements with zero mean and unit variance (At denotes the
transpose ofA). Each element ofR can be written as
R( i j )(kl)5^ai j akl&, whereai j (t) is a time series of indepen
dent elements with zero mean (^ai j &50) and unit variance
(s i j 51).

1. Eigenvalues

The probability distribution of the elements ofC shows
that most of the elements are positive~Fig. 2!, which indi-
cates a strong correlation among the whole network.
comparison, the elements ofR are distributed according to
centered distribution with zero mean. We now study the s
tistical properties ofC by applying RMT techniques. We firs
diagonalizeC and obtain its eigenvalueslk (k51, . . . ,N),
which we sort from the largest to the smallest. We then c
culate the eigenvalue distribution and compare it with
analytical result for a cross-correlation matrix genera
from finite uncorrelated time series@28# in the limit N→`,
L→`, whereQ5L/N>1 is fixed,

0

ta

e
e

FIG. 2. Probability distribution for the correlation coefficien
calculated from 5-min flows in the Renater network for a 14-d
period. The average value is positive indicating strong correlati
among the whole network.
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FIG. 3. ~a! The probability density of the eigenvalues of the normalized cross-correlation matrixC for the 650 connections for a 2-wee
period. The results are reasonably fitted by the analytical result obtained for cross-correlation matrices generated from uncorre
series@solid line, obtained from Eq.~4! with Q* 51.1]. There are, however, very large eigenvalues~not shown!, the largest one being of the
order 200.~b! Nearest-neighbor spacing distribution of the eigenvalues ofC after unfolding using the Gaussian broadening procedure@27#.
The solid line is the RMT prediction for the spacing distribution for the GOE.
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Q

2p

A~l12l!~l2l2!

l
~4!

with lP@l2 ,l1# and where

l6~Q!5111/Q62/AQ. ~5!

The eigenvalue distribution ofC is very different from Eq.
~4! which predicts a finite range of eigenvalues depending
the ratio Q. The theoretical value isQ52.58 and we can
reasonably fit the empirical curve with an effective val
Q* 51.1 @Fig. 3~a!#. This effective value can be explained
resulting from time correlations in the traffic of the order
(Q/Q* )t.11 min. However, even this fit cannot reprodu
the large eigenvalues observed: ForQ* 51.1 the theoretical
eigenvalues are distributed in the interval 2.1731023<lk
<3.82 while few—a total of order 20—measured eigenv
ues~not all shown on the graph! are found abovel1(Q* )
53.82. The largest eigenvalue is of orderl1.200, namely,
approximately hundred times larger than the maximum
genvalue predicted for uncorrelated time series. As we
see, the empirical distribution of eigenvector components
the large eigenvalues is ‘‘flat,’’ all components being of t
same order. This suggests that the largest eigenvalues
associated with strong correlations among the network.

We also calculate the distribution of the nearest-neigh
spacingss5lk112lk . We compare the empirical distribu
tion of nearest-neighbor spacings with the RMT predictio
for real symmetric random matrices. This class of matri
shares universal properties with the ensemble of matr
whose elements are distributed according to a Gaus
probability measure—the Gaussian orthogonal ensem
~GOE!. We find good agreement@Fig. 3~b!# between the em-
pirical data and Wigner’s surmise,
05611
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s2D , ~6!

which indicates a ‘‘level repulsion’’ existing in our system
and means that the eigenvalues are correlated.

2. Eigenvectors and inverse participation ratio

We now analyze the eigenvectors ofC. We denote byuk
the eigenvector associated to the eigenvaluelk and if we
normalize the eigenvectors such thatuk

25N, it can be shown
that in the Wishart case the componentsu of the eigenvectors
are distributed according to the so-called Porter-Thomas
tribution

P~u!5
1

A2p
e2u2/2. ~7!

In agreement with this result, we find that the eigenvect
corresponding to most eigenvalues in the ‘‘bulk’’ of the spe
trum (lk not too large! follow this prediction@Fig. 4~a!#.

On the other hand, the eigenvectors with eigenvalues
side the bulk@lk>l1(Q* )# show marked deviations from
the Gaussian distribution@Figs. 4~b! and 4~c!#. In particular,
the vector corresponding to the largest eigenvaluel1 devi-
ates significantly from the Gaussian distribution predicted
RMT @Fig. 4~b!#. This eigenvector is the signature of a co
lective behavior—the network itself—for which all conne
tions are correlated. This effect was already observed in
framework of stock correlations, the largest eigenvalue be
in this case the entire market@22–24#.

The distribution of the components of an eigenvector c
tains information about the number of connections contr
uting to it. In order to distinguish between one eigenvec
with approximately equal components and another with
0-3
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FIG. 4. Eigenvector component distribution.~a! For eigenvalues in the center of the spectrum. In this case, the empirical results
agreement with the results of RMT which is the Porter-Thomas distribution represented by a solid line.~b!,~c! For large eigenvalues ther
is a clear deviation compared to RMT predictions represented by the solid line~Porter-Thomas distribution!. For the largest eigenvalue, mo
of the components is nonzero and positive, which indicates correlations among the whole network.
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small number of large components, we use the inverse
ticipation ratio~IPR! introduced in the context of localizatio
theory @29,30#,

I k5
1

N2 (
i 51

N

@uki#
4, ~8!

whereuki , i 51, . . . ,N5650 are the components of eige
vectoruk . When the components of a vector are of the sa
order and distributed according to Eq.~7!, the average IPR is
small and equal to 3/N; whereas a vector with only few
nonzero components leads to an IPR of order unity. T
quantityYk53/I k is thus a measure of the number of vec
components significantly different from zero. We compar
Yk for our empirical results and for uncorrelated time ser
with the same values of (N,L) ~Fig. 5!. For the latter case
Yk has small fluctuations aroundN5650 indicating that all
the vectors are extended@30#, which means that almost a
connections contribute to them. On the other hand, the
pirical data show deviations ofYk from N for the smallest
05611
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FIG. 5. ~Color online! Reciprocal inverse participation ratio fo
each of the 650 eigenvectors~sorted for decreasing eigenvalues!. As
a control case, we show the corresponding result for uncorrel
independent time series of the same length as the data. Emp
data show small values at both edges of the spectrum, wherea
control shows only small fluctuations around the average va
3/̂ I &5N5650.
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LARGE SCALE CROSS-CORRELATIONS IN INTERNET . . . PHYSICAL REVIEW E 66, 056110 ~2002!
and largest eigenvalues~except for the largest eigenvalue!. In
these cases, the number of contributing connections is m
smaller thanN ranging from a few connections to a fe
hundreds. These deviations of few orders of magnitude oI k
from its average suggest that the vectors are localized@30#
and that only a few connections contribute to them. As it w
be illustrated on a simple example in the following sectio
these results have a clear meaning in the case of large e
values for which the connections are correlated. In addit
it was also shown~see Ref.@24# and below! that strongly
correlated pairs of routers~which correspond to large com
ponents in the eigenvectors! also appear with a relative nega
tive sign in the eigenvector forsmall eigenvalues. This ex
plains why the lower band edge also displays localiz
vectors, but there is no clear connection with the spectr
observed in localization in electronic systems@30#.

In addition, our empirical results exhibit ‘‘quasiextende
states in the center of the band. These states consist e
tially of a group of.300–400 connections corresponding
eigenvalues of order 0.2–0.4.

The physical picture which emerges is thus the followin
The largest eigenvalue has an eigenvector for whichYk51 is
of the orderN and thus represents the whole network. T
eigenvectors that correspond to eigenvalues that deviate
a pure random matrix theory correspond to genuine corr
tions in the network. We have shown that these ‘‘deviatin
eigenvectors~of the order of 20! have a small value ofYk ,
which means that these important correlations are local
and that a relatively small number of connections conc
trate most of the activity@31#.

3. Nonuniversal properties: Active centers

The details of the components of the ‘‘deviating’’ eige
vectors give us information about the important correlatio
in the network. In particular, the largest components of
eigenvectors correspond to the most correlated connect
This can be seen on the simple following example o
333 correlation matrix

S 1 c 0

c 1 c8

0 c8 1
D , ~9!

wherec (c8) denotes the strength of the (1,2)@(2,3)# corre-
lation. If we denote the ratio of the correlation strengths
h5c8/c, the eigenvectorsu1 , u2, andu3 are, respectively,

S 1

A11h2

h
D ,S 2h

0

1
D ,S 1

2A11h2

h
D , ~10!

and correspond, respectively, to the eigenvalues~sorted in
decreasing order!

11cA11h2,1,12cA11h2. ~11!

We thus see on this simple example that the componen
the eigenvectoru1 ~corresponding to the largest eigenvalu!
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identify the most correlated indices; forh!1, u1.(1,1,0)
and forh@1, one obtainsu1}(0,1,1).

This remark shows that the eigenvectors are indeed
portant for identifying the most correlated connections in
network. We note that the large correlations are also reflec
in the components—but with a relative minus sign—of t
eigenvectors for small eigenvalues.

In the case of Renater, we have seen in the preced
section that all the components ofu1 are positive, which
indicates a correlation among the whole network. Even if
the components ofu1 indicate correlations existing in th
network, the simple example above shows that its larg
components correspond to the most correlated connecti
We thus looked at the largest components ofu1. A first fact is
that a connection (i , j ) is always~strongly! correlated with
the connection (j ,i ). This result is not surprising since fo
most operations~web browsing, telnet, etc.!, there is always
an ‘‘outgoing’’ flow which is a significant part of the ‘‘in-
coming’’ flow.

In order to look for other causes of correlations, we p
on Fig. 6 the histogram of occurrencesh( i ) of the routeri in
the set of then most correlated connections (i , j ) which are
given by the firstn components of the eigenvectoru1 corre-
sponding to the largest eigenvalue. We compared the em
cal results with the control case for increasing values on
~for n approaching the total number of componentsN5650
all the connections appear and the histogram of occurren
is flat!. We observe marked differences between these
cases. In particular, in the control case the histogram tend
be uniform, while for Renater we observe persistent pea
On the last plot@Fig. 6~c!#, it is apparent that there are sti
some fluctuations in the control case but much less tha
the empirical one. The persistency of peaks and the fact
they appear to be much larger than the average value sug
that it is very unlikely that they are just fluctuations due
noise. Therefore, not all routers appear in the most correla
connections and the peaks can thus be identified as impo
‘‘active centers.’’ These centers are exchanging informat
with many other routers thereby inducing correlations b
tween these connections.

It is interesting to note that peaks also appear in the co
ponents of the other deviating eigenvectors, and would t
also correspond to active centers but at a lower level of c
relation.

At this stage, we would like to emphasize that this ana
sis highlights active center independently of the volume
information exchanged. Indeed, in a volume flow analy
even the very active ‘‘small’’ routers are completely hidd
by the ‘‘big’’ routers that are receiving and emitting hug
amounts of bytes.

III. CORRELATIONS AND SELF-SIMILARITY
IN THE WWW

The Internet is an example of a complex network th
shows existence of a collective behavior such as a ph
transition to a congested regime@3#. An important discovery
was also the power-law decay of time correlations@2#. This
self-similarity is usually explained on the basis of underlyi
0-5
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FIG. 6. ~Color online! Number of occurrences of routers in then
most correlated connections~there is a total of 26 routersi
51, . . .,27, the router 24 is excluded of the present study for te
nical reasons!. In each plot, we compared the empirical results w
the control case~histogram in red online!. The arrows indicate the
two most frequent routers for Renater. In cases~a! n530 and~b!
n550, it is clear that not all routers are participating equally.~c!
Casen5100. The control case still fluctuates around its avera
~which is 200/26.7.70), but much less than the empirical cas
This fact and the observed persistency for increasingn suggest that
it is very unlikely that the empirical peaks are just fluctuations d
to noise. These peaks correspond probably to routers which are
active and which are exchanging information with many other ro
ers, thereby inducing correlations in the network.
05611
distributions of WWW document sizes, effect of user ‘‘thin
time,’’ and the addition of many such effects in a netwo
@17#.

The present study shows that the strong correlations
tween different connections exist in the traffic network. Th
result together with the existence of a phase transition,
existence of a power-law decay of time correlation, sugge
that the large-scale data traffic dynamics could be descr
by a set of simple coupled stochastic differential equati
such as the Langevin equations with random interacti
@33#. The equation for the Internet activity on a given co
nection (i , j ) would thus be

]gi j

]t
5F„gi j ~ t !…1« i j ~ t !1(

kl
J( i j )(kl)gkl~ t !, ~12!

where the functionF is usually expanded for smallg as@34#

F~g!.2rg2ug3 ~13!

and describes the relaxation of a single isolated connect
The random noise« is associated to the effect of users a
the quantityJ( i j )(kl) is the coupling between connections (i j )
and (kl). In the absence of interaction, the correlation fun
tion ^g(t)g(t1t)& decreases exponentially with a typic
correlation time of the order 1/r ~for u50). When the cou-
pling is strong enough, the system described by Eq.~12!
undergoes a transition to an ordered state where allg’s are
centered around a nonzero value. At the transition point
correlation function is decaying as a power law@34#.

In this model@Eq. ~12!#, the observed self-similarity in
time is a consequence of the strong correlation existing in
network. This is in contrast with previous studies that e
plained the self-similarity as an effect of existing loc
power-law distribution~such as the file size distribution!.
However, more data are needed for testing this hypoth
and the validity of Eq.~12! for the Internet traffic.

IV. CONCLUSIONS

In summary, the largest part of the correlation matrix
connections is random, but also contains statistical inform
tion distinct from pure noise. The eigenvectors that cor
spond to eigenvalues outside of the RMT predictions con
information about genuine traffic correlation. In particula
the largest components of eigenvectoru1 ~which corresponds
to the largest eigenvalue! indicate the most correlated con
nections. We found different origins for the observed cor
lations. First, a connection (i , j ) is always strongly correlated
with ( j ,i ), which is expected since for each process—su
as web browsing, for example—information is exchanged
both directions. Second, it appears that in the set of
strongly correlated connections there is only a small num
of different routers, which participates in different conne
tions thereby inducing correlations. This supports the idea
the existence of active centers that are either very active
very visited. More work and data—on larger space and ti
scales—are needed in order to understand more thorou
the existence of such centers that seem to play an impo
role in the network traffic.
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The approach presented in this study thus seems to a
one to extract relevant correlations between different conn
tions, and might have potential applications to traffic ma
agement and optimization. In particular, this analysis focu
on activity independent of the volume of information e
changed and can thus reveal some very active routers tha
usually hidden by ‘‘big’’ routers exchanging very large flow

Finally, the existence of strong correlations together w
the existence of a phase transition and power-law deca
autocorrelation function suggest that the Internet traffic
,
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similar to a spin glass close to the critical point. In this h
pothesis, the self-similarity appears naturally as the resu
a collective behavior without resorting to preexisting pow
laws.
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