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Large scale cross-correlations in Internet traffic
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The Internet is a complex network of interconnected routers, and the existence of a collective behavior such
as congestion suggests that the correlations between the different connections play a crucial role. It is thus
critical to measure and quantify these correlations. We use methods of random matrix(Riedryto analyze
the cross-correlation matri€ of information flow changes of 650 connections between 26 routers of the
French scientific network “Renater.” We find th& has the universal properties of the Gaussian orthogonal
ensemble of random matrices: The distribution of eigenvalues—up to a rescaling that exhibits a typical
correlation time of the order of 10 min—and the spacing distribution follow the predictions of RMT. There are
some deviations for large eigenvalues which contain network-specific information and which identify genuine
correlations between the connections. The study of the most correlated connections reveals the existence of
“active centers” that are exchanging information with a large number of routers thereby inducing correlations
between the corresponding connections. These strong correlations could be a reason for the observed self-
similarity in the world-wide web traffic.

DOI: 10.1103/PhysReVE.66.056110 PACS nun)er89.75.Hc, 89.20.Hh, 05.45.Tp, 84.40.Ua

[. INTRODUCTION complex energy levels of heavy nuclegdl], and more re-
cently it has also been used in the study of correlations of
The Internet connects different routers and servers usingtocks[22,23 or statistics of atmospheric correlatiof5].
different operating systems and transport protocols. This in- We first demonstrate the validity of the universal predic-
trinsic heterogeneity of the network added to the unpredicttions of RMT for the eigenvalue statistics of the cross-
ability of human practicegL], making the Internet inherently correlation matrix. However, we observe some deviations
unreliable and its traffic compld2—6]. Recently, there have compared to the minimal hypothesis of random independent
been major advances in our understanding of the generféme series. These deviations from the universal predictions
aspects of the Interngf—10] and the welj11-14 structure ~ of RMT identify system-specific, nonrandom properties of
and development, revealing that these networks can exhibifie network providing clues about the nature of the underly-
emergent collective behavior characterized by scaling. Coning interactions. This result allows one to distinguish the
cerning data transport, most of the studies focus on propege_nuine correlations in the network, which are not just due to
ties at short time scalgsisually <1 min) or at the level of NOISE.
individual connection§2,17,18. In particular, it has been
shown that for wide- and local-area networks the self- Il. EMPIRICAL RESULTS
similarity (for time correlations applies. The possible rea-

. . . A. Data studied
sons for this behavior were shown to [d€7] the underlying ata studie

distribution of world-wide wel(WWW) documents, the ef- ~ We use data from the French network Ren§2éi which
fects of user “think time,” and the addition of many such has about X 10° users, and which consists of about 30 in-
transfers. terconnected router$-ig. 1). Most research institutes, tech-

The studies on statistical flow properties at a large scal@ological or educational institutions, are connected to
[3,4,6,19 concentrate essentially on the phase transitiorRenater.
from a “fluid” regime to a “congested” one for which the The data consist of the real exchange flsum of ftp,
average packet travel time is very lar0]. The existence telnet, mail, web browsing, eicbetween all routers even if
of such a collective behavior indicates the importance of spathere is no directphysica) link between all of them. For a
tial correlations between connections at a large scale in theonnection {,j) between routers andj (i#j), Fi;(t) (in
system. In order to be able to understand and to model thieytes per 5 mihis the effective information flow at time
traffic in the network, it is thus important to measure and togoing out fromi to j (the flow going fromi to k via j is
quantify the correlations between the flows in different con-excluded fromF;;). For technical reasons, data for a few
nections. routers were not reliable and we analyzed data for 26 routers

In this paper, we analyze the correlations between differwhich amounts in 2826 matricesF;;(t) given for every
ent connections of a wide-area network which is the Frenctsampling time scale=5 min during a 2-week period. We
scientific network “Renater.” We use random matrix theory also exclude from the present study the internal flgyy,
(RMT) to study the corresponding empirical correlation ma-and the nights for which the flow is essentially due to ma-
trix. RMT has been developed in the fifties for studying thechine activity. We thus studied data for da@90-1800 I
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FIG. 2. Probability distribution for the correlation coefficient
calculated from 5-min flows in the Renater network for a 14-day
period. The average value is positive indicating strong correlations
among the whole network.
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FIG. 1. Map of the Renater network. There is a total of about 30
interconnected router&f which 26 are effectively studigdwWe  Where o= \/<gij>_<gij>2 is the standard deviation of the
show on this map the physical connections. The measured daffow growth rate of the connection,(), and(- - -) denotes
consist in a flow matrix&;;(t) (with t=7m, m=0,...L—1, and a time average over the period studied. The correlation ma-
i,j=1,...,26) which gives the effective flow exchange betweentrix is real symmetric and its elements are comprised be-
routersi andj. For more details on this network, see the web pagetween —1 (anticorrelated connectionsand 1 (correlated
http:/iwww.renater.fr and for an animated version of flows, seeconnectiong while a null value denotes statistical indepen-
http://barthes.ens.fr/metrologie/Renater01 dence.

_ ) The quantities;; /oy; have (by construction a variance
which amounts to a total dil=26X 25=650 different con- equa| to 1 and a zero meafm)r a Sufﬁcienﬂy |Ong t|mé§_ Itis
nections given folL =12x10X 14 days=1680 time counts. thus natural to compare our empirical results with a mutual
We choose as a measure of the magnitude of the time-seriggdependent time series—the “null” hypothesis—described
fluctuations the growth rate defined as the logarithm of theyy the correlation matrix

ratio of successive counts,
1

Fij(t+7) R=EAAt, 3
gij(t)=In F N
i
_ _ where A (the so-called random Wishart matriis a NXL
fort=0,...,L—1)7. This measure has several nice prop-matrix containingN times series oL random independent

erties. First, any multiplicative, time-independent sampleslements with zero mean and unit varianéd denotes the
bias cancels in the ratio. Second, this measure has a natutghnspose ofA). Each element ofR can be written as
interpretation in terms of relative growth since for a Sma"R(ij)(kI):<aijakl>v wherea;;(t) is a time series of indepen-
increaseg;; (t)=[F;(t+At) —F;;()J/F;(t) is simply the  dent elements with zero meafa(;)=0) and unit variance
relative increment. A large value of this quantity reflects (g =1).

large activity (i.e., a large flow variation while a small

value corresponds to an almost constant flow. This measure 1. Eigenvalues

is thus independent from the volume of information ex- de
changed and thus does not eliminate the “small” routers. Th%hal—hrﬁogzoobfatt;:gtyeIilritgrt:ti“g?eOfotgi(taiggemzimv?/h?:r? r:r?é\lls
study of volume flow exchange will be published elsewhere P 9. 2,

[32], and in the present paper the quaninallows us to cates a strong correlation among the whole network. For

study more subtle effects, such as the activity of a regionaignmtg?ends(Zj?s’,ttr?t?uSgenmviir:rt]szaefrzr?nggglt\)lvtteegoe\l;csct)lrﬁjlngthtg ‘;a_
router, independent of its “size” measured in terms of ex- . y

: : tistical properties o by applying RMT techniques. We first
changed information volume. diagonalizeC and obtain its eigenvalues, (k=1,... N),
which we sort from the largest to the smallest. We then cal-
culate the eigenvalue distribution and compare it with the
The simplest measure of correlations between differenanalytical result for a cross-correlation matrix generated
connections i(j) and () is the equal-time cross- from finite uncorrelated time seri¢28] in the limit N— oo,
correlation matrixC which has elements L—co, whereQ=L/N=1 is fixed,

B. Correlation matrix
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FIG. 3. (a) The probability density of the eigenvalues of the normalized cross-correlation r@afiixthe 650 connections for a 2-week
period. The results are reasonably fitted by the analytical result obtained for cross-correlation matrices generated from uncorrelated time
serieq solid line, obtained from Eq4) with Q* =1.1]. There are, however, very large eigenval(rext shown, the largest one being of the
order 200.(b) Nearest-neighbor spacing distribution of the eigenvalues after unfolding using the Gaussian broadening procefRifg
The solid line is the RMT prediction for the spacing distribution for the GOE.

SN
Prm()\):%\/()\ )\)3( = (4) PGOE(S):%SeXF<_;SZ)y (6)

with N e[\ _ A, ] and where which indicates a “level repulsion” existing in our system
o and means that the eigenvalues are correlated.

M- (Q)=1+1/Q+2/\Q. (5) 2. Eigenvectors and inverse participation ratio

We now analyze the eigenvectors ©f We denote by,

The eigenvalue distribution of is very different from Eq. the eigenvector associated to the eigenvalyeand if we
(4) which predicts a finite range of eigenvalues depending omormalize the eigenvectors such thﬁt= N, it can be shown
the ratio Q. The theoretical value iQ=2.58 and we can that in the Wishart case the componentsf the eigenvectors
reasonably fit the empirical curve with an effective valueare distributed according to the so-called Porter-Thomas dis-
Q*=1.1[Fig. 3@]. This effective value can be explained as tribution
resulting from time correlations in the traffic of the order of
(Q/Q*)7=11 min. However, even this fit cannot reproduce 1
the large eigenvalues observed: kgt =1.1 the theoretical P(u)= e U2, (7)
eigenvalues are distributed in the interval 210 3<\, V2w
=3.82 while few—a total of order 20—measured eigenval-
ues(not all shown on the graphare found above. | (Q*) In agreement with this result, we find that the eigenvectors
=3.82. The largest eigenvalue is of ordgr=200, namely, corresponding to most eigenvalues in the “bulk” of the spec-
approximately hundred times larger than the maximum eitrum (A not too large follow this prediction[Fig. 4(a)].
genvalue predicted for uncorrelated time series. As we will On the other hand, the eigenvectors with eigenvalues out-
see, the empirical distribution of eigenvector components foside the bulkf A=\, (Q*)] show marked deviations from
the large eigenvalues is “flat,” all components being of thethe Gaussian distributiofFigs. 4b) and 4c)]. In particular,
same order. This suggests that the largest eigenvalues dtfee vector corresponding to the largest eigenvalyalevi-
associated with strong correlations among the network.  ates significantly from the Gaussian distribution predicted by

We also calculate the distribution of the nearest-neighboRMT [Fig. 4(b)]. This eigenvector is the signature of a col-
spacingss= A\, 1—Ax. We compare the empirical distribu- lective behavior—the network itself—for which all connec-
tion of nearest-neighbor spacings with the RMT predictiongions are correlated. This effect was already observed in the
for real symmetric random matrices. This class of matricedramework of stock correlations, the largest eigenvalue being
shares universal properties with the ensemble of matricei this case the entire markg22—-24.
whose elements are distributed according to a Gaussian The distribution of the components of an eigenvector con-
probability measure—the Gaussian orthogonal ensembl&ins information about the number of connections contrib-
(GOB). We find good agreemeffig. 3(b)] between the em- uting to it. In order to distinguish between one eigenvector
pirical data and Wigner’s surmise, with approximately equal components and another with a
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FIG. 4. Eigenvector component distributiqia) For eigenvalues in the center of the spectrum. In this case, the empirical results are in
agreement with the results of RMT which is the Porter-Thomas distribution represented by a solib) JiogFor large eigenvalues there
is a clear deviation compared to RMT predictions represented by the solidPlimer-Thomas distributionFor the largest eigenvalue, most
of the components is nonzero and positive, which indicates correlations among the whole network.

1000
small number of large components, we use the inverse par- '
ticipation ratio(IPR) introduced in the context of localization . Control
theory[29,30, 750 |
LN 650 — 'Ih Illl% 1'11‘ hl"l’{t ’1

l=— uil?, 8 s 'ﬂ N I

K Nz;[kl] (8) S M“ ; JF “
whereu,;, i=1,... N=650 are the components of eigen- 250 _' j ym— -'i|
vectoru, . When the components of a vector are of the same -
order and distributed according to K@), the average IPR is : I
small and equal to BI; whereas a vector with only few i
nonzero components leads to an IPR of order unity. The . 0 ' oo 00 §00
quantity Y',= 3/l is thus a measure of the number of vector rank of eigenvalue

components significantly different from zero. We compared FIG. 5. (Color onling Reciprocal inverse participation ratio for

Y| for our empirical results and for uncorrelated time series,ach of the 650 eigenvectdisorted for decreasing eigenvaliiess

with the same values of\[L) (Fig. 5. For the latter case, 4 control case, we show the corresponding result for uncorrelated
Y has small fluctuations arourld= 650 indicating that all  jndependent time series of the same length as the data. Empirical
the vectors are extendg@0], which means that almost all data show small values at both edges of the spectrum, whereas the
connections contribute to them. On the other hand, the entontrol shows only small fluctuations around the average value

pirical data show deviations of , from N for the smallest  3/1)=N=650.
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and largest eigenvalugsxcept for the largest eigenvajuén  identify the most correlated indices; for<1, u;=(1,1,0)
these cases, the number of contributing connections is mudmd for »>1, one obtainsi;c(0,1,1).
smaller thanN ranging from a few connections to a few  This remark shows that the eigenvectors are indeed im-
hundreds. These deviations of few orders of magnitudg of portant for identifying the most correlated connections in the
from its average suggest that the vectors are locali3éfl  network. We note that the large correlations are also reflected
and that only a few connections contribute to them. As it willin the components—but with a relative minus sign—of the
be illustrated on a simple example in the following section,eigenvectors for small eigenvalues.
these results have a clear meaning in the case of large eigen-In the case of Renater, we have seen in the preceding
values for which the connections are correlated. In additionsection that all the components af are positive, which
it was also showr(see Ref[24] and below that strongly indicates a correlation among the whole network. Even if all
correlated pairs of routersvhich correspond to large com- the components ofi; indicate correlations existing in the
ponents in the eigenvectgralso appear with a relative nega- network, the simple example above shows that its largest
tive sign in the eigenvector femall eigenvalues. This ex- components correspond to the most correlated connections.
plains why the lower band edge also displays localizedVe thus looked at the largest components pfA first fact is
vectors, but there is no clear connection with the spectrunthat a connectioni(j) is always(strongly correlated with
observed in localization in electronic systef@§)]. the connection j(,i). This result is not surprising since for
In addition, our empirical results exhibit “quasiextended” most operationgweb browsing, telnet, etg.there is always
states in the center of the band. These states consist esseinr “outgoing” flow which is a significant part of the “in-
tially of a group of=300—-400 connections corresponding to coming” flow.
eigenvalues of order 0.2-0.4. In order to look for other causes of correlations, we plot
The physical picture which emerges is thus the following.on Fig. 6 the histogram of occurrende@) of the routeri in
The largest eigenvalue has an eigenvector for whigh, is  the set of then most correlated connections, ) which are
of the orderN and thus represents the whole network. Thegiven by the firstn components of the eigenvectoy corre-
eigenvectors that correspond to eigenvalues that deviate frogponding to the largest eigenvalue. We compared the empiri-
a pure random matrix theory correspond to genuine correlagal results with the control case for increasing values of
tions in the network. We have shown that these “deviating”(for n approaching the total number of componeNts 650
eigenvectorgof the order of 2D have a small value of ,,  all the connections appear and the histogram of occurrences
which means that these important correlations are localizef flat). We observe marked differences between these two
and that a relatively small number of connections conceneases. In particular, in the control case the histogram tends to

trate most of the activity31]. be uniform, while for Renater we observe persistent peaks.
. ' . On the last plo{Fig. 6(c)], it is apparent that there are still
3. Nonuniversal properties: Active centers some fluctuations in the control case but much less than in

The details of the components of the “deviating” eigen- the empirical one. The persistency of peaks and the fact that
vectors give us information about the important correlationghey appear to be much larger than the average value suggest
in the network. In particular, the largest components of thethat it is very unlikely that they are just fluctuations due to

eigenvectors correspond to the most correlated connection8oise. Therefore, not all routers appear in the most correlated
This can be seen on the simple following example of aconnections and the peaks can thus be identified as important

3% 3 correlation matrix “active centers.” These centers are exchanging information
with many other routers thereby inducing correlations be-
1 ¢ O tween these connections.
c 1 ¢ ©) It is interesting to note th_at pe.aks also appear in the com-
' ponents of the other deviating eigenvectors, and would thus
0 ¢ 1 also correspond to active centers but at a lower level of cor-
relation.
wherec (c’) denotes the strength of the (1[4R,3)] corre- At this stage, we would like to emphasize that this analy-

lation. If we denote the ratio of the correlation strengths bysjs highlights active center independently of the volume of
— ! H 1 . . . .
n=c’lc, the eigenvectors;, U,, andug are, respectively, jnformation exchanged. Indeed, in a volume flow analysis
even the very active “small” routers are completely hidden

1 -7 1 by the “big” routers that are receiving and emitting huge
Vi 2|, o |,| —Vi+a?], (100  amounts of bytes.
n 1 7

) ) . Ill. CORRELATIONS AND SELF-SIMILARITY
and correspond, respectively, to the eigenval(sgsted in IN THE WWW

decreasing order _
The Internet is an example of a complex network that

1+cyi+7%,1,1—cyl+ 72 (11 shows existence of a collective behavior such as a phase
transition to a congested regirfig]. An important discovery
We thus see on this simple example that the components afas also the power-law decay of time correlatip2f This
the eigenvectou, (corresponding to the largest eigenvalue self-similarity is usually explained on the basis of underlying
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distributions of WWW document sizes, effect of user “think
time,” and the addition of many such effects in a network
[27].

The present study shows that the strong correlations be-
tween different connections exist in the traffic network. This
result together with the existence of a phase transition, the
existence of a power-law decay of time correlation, suggests
that the large-scale data traffic dynamics could be described
by a set of simple coupled stochastic differential equation,
such as the Langevin equations with random interactions
[33]. The equation for the Internet activity on a given con-
nection ,j) would thus be

hfi)

&_#ZF(gij(t))"_sij(t)'f'% Jipwng(t), (12
15 -
(b) hd where the functiorf is usually expanded for smailas[34]

F(g)=-rg—ug® (13

and describes the relaxation of a single isolated connection.
The random noise is associated to the effect of users and
the quantityd ;) is the coupling between connectiorig)(

and Kl). In the absence of interaction, the correlation func-
tion (g(t)g(t+ 7)) decreases exponentially with a typical
correlation time of the order d/(for u=0). When the cou-
pling is strong enough, the system described by @Q)
undergoes a transition to an ordered state wherg'slare
centered around a nonzero value. At the transition point the
30 . ] , ] , — correlation function is decaying as a power |g®4].

In this model[Eq. (12)], the observed self-similarity in
time is a consequence of the strong correlation existing in the
network. This is in contrast with previous studies that ex-
plained the self-similarity as an effect of existing local
power-law distribution(such as the file size distributinn
However, more data are needed for testing this hypothesis
and the validity of Eq(12) for the Internet traffic.

k(i)

hii)

IV. CONCLUSIONS

In summary, the largest part of the correlation matrix of
connections is random, but also contains statistical informa-
tion distinct from pure noise. The eigenvectors that corre-
0 10 20 spond to eigenvalues outside of the RMT predictions contain

router's number i information about genuine traffic correlation. In particular,
the largest components of eigenveatgriwhich corresponds
, ) to the largest eigenvaluiéndicate the most correlated con-
FIG. 6. (Color onling Number of occurrences of routers inthe o +ions “We found different origins for the observed corre-

most correlated connection@here is a total of 26 routers lati . S
. ions. Fir nnecti is alw rong| rrel
=1,...,27, the router 24 is excluded of the present study for tech-at ons. First, a connectioni () is always strongly correlated

. - —with (j,i), which is expected since for each process—such
nical reasons In each plot, we compared the empirical results with . . L -
the control caséhistogram in red online The arrows indicate the as Web. broy\/smg, for example—lnformatlor! Is exchanged in
two most frequent routers for Renater. In ca&aisn=230 and(b) both directions. Second, it appears _that in the set of the
n=50, it is clear that not all routers are participating equaly. strorjgly correlated connections there |s'0nly a small number
Casen=100. The control case still fluctuates around its average? different routers, which participates in different connec-
(which is 200/26-7.70), but much less than the empirical case.ions thereby inducing correlations. This supports the idea of
This fact and the observed persistency for increasisgggest that  the existence of active centers that are either very active or
it is very unlikely that the empirical peaks are just fluctuations dueVvery Vvisited. More work and data—on larger space and time
to noise. These peaks correspond probably to routers which are veBgales—are needed in order to understand more thoroughly
active and which are exchanging information with many other rout-the existence of such centers that seem to play an important
ers, thereby inducing correlations in the network. role in the network traffic.
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The approach presented in this study thus seems to allogimilar to a spin glass close to the critical point. In this hy-
one to extract relevant correlations between different connegothesis, the self-similarity appears naturally as the result of
tions, and might have potential applications to traffic man-a collective behavior without resorting to preexisting power
agement and optimization. In particular, this analysis focusekws.
on activity independent of the volume of information ex-
changed_and can thL_Js reveal some very active routers that are ACKNOWLEDGMENTS
usually hidden by “big” routers exchanging very large flows.

Finally, the existence of strong correlations together with  We thank F. Baccelli for stimulating and interesting dis-
the existence of a phase transition and power-law decayingussions. This work was supported by the Equipe Reseaux,
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