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Fractional Schrodinger equation
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Some properties of the fractional ScHimger equation are studied. We prove the Hermiticity of the frac-
tional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As
physical applications of the fractional Schinger equation we find the energy spectra of a hydrogenlike atom
(fractional “Bohr atom”) and of a fractional oscillator in the semiclassical approximation. An equation for the
fractional probability current density is developed and discussed. We also discuss the relationships between the
fractional and standard Sclinger equations.
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[. INTRODUCTION jectories leads to the fractional Scdinger equation. The
fractional Schrdinger equation includes a space derivative

The Feynman path integral approach to quantum mecharof order « instead of the second ordet € 2) space deriva-
ics [1,2] is in fact integration over Brownian-like quantum tive in the standard Schdinger equation. Thus, the frac-
mechanical paths. Brownian motion is a special case of &onal Schralinger equation is a fractional differential equa-
Lévy a-stable random process. In the mid-1930syr@and  tion in accordance with modern terminologisee, for
Khintchine posed the question: When does the sunNof example[12-17). This is the main point of the term “frac-
independent identically distributed quantitigs= X;+ X, - tional Schralinger equation” or of the more general term
+ Xy have the same probability distributigny(X) (up to a  fractional quantum mechanio$QM) [11]. As mentioned
scale factor as the individual stepp;(X;), i=1,...N? The above, atlu=2 the Lery motion becomes Brownian motion.
traditional answer is that eaqh(X;) should be a Gaussian, Thus, FQM includes the standard QM as a particular Gauss-
because of the central limit theorem. In other words, a sunian case ate=2. The quantum mechanical path integral over
of N Gaussians is again a Gaussianvy@nd Khintchine the Levy paths ate=2 becomes the well known Feynman
proved that there exists the possibility of generalizing thepath integral1,2].
central limit theoreni3,4]. They discovered a class of non-  The non-Gaussian path integral over thevy.gaths de-
Gaussian [ey a-stable(stable under summatipmprobabil-  veloped in[10,11] captures the important physical property
ity distributions. Eache-stable probability distribution has a of self-similarity of the quantum mechanical path. Self-
stability index « often called the [ey index, O<a<2. similarity means that the whole object looks like any of its
Whena=2 the Levy a-stable distribution is transformed to parts, and we can partition the quantum mechanical path into
the well-known Gaussian probability distribution or, in other smaller and smaller parts and each part will have the same
words, the Lgy motion is transformed to Brownian motion statistical structure. Self-similarity constrains the possible
[5,6]. choice of the kinemati¢momentum-dependenpart of the

The possibility of developing the path integral over the Hamilton function; namely, the ter® ,|p|* [herep is the
paths of the Ley motion was discussed by Kd@], who particle momentum; see Eq2)] is in general a possible
pointed out that the hwy path integral generates the func- choice for the kinematic part of the Hamilton function. In the
tional measure in the space of léfr right) continued func-  special Gaussian case wher-2 we get the quadratic kine-
tions having only discontinuities of the first kind. matic termp?/2m wherem is the particle masgl1].

It was shown by Montroll[8] that for a free quantum Another type of non-Gaussian path integral is the integral
mechanical particle the chain condition for the kernel can bever paths of a truncated i distribution. For the definition
solved exactly and leads in general to a kernel that is thef the truncated Ley distribution see, for examplg]8]. The
quantum analog of the classical\etransition probability.  truncated Ley distribution is widely applied to model option
A recent review of Montroll's paper can be found [ifi], pricing. The path integral over truncatedvygpaths has been
where the fractional differential equation for a free kerneldeveloped and applied to model financial dynamics for assets
was derived. with non-Gaussian price fluctuatiod9] (see also[20],

In Refs.[10,1] it was shown that the path integral over Chap. 20. However, the procedure of truncation destroys the
Levy-like quantum mechanical paths allows one to develop ax-stable property and self-similarity of the originaluyedis-
generalization of quantum mechanics; namely, if the pathribution. As a result the path integral developed 18] does
integral over Brownian trajectories leads to the well knownnot capture the important physical property of self-similarity.
Schralinger equation, then the path integral ovéwvyéra-  In addition, the “Hamiltonian function” resulting from the

truncation procedur¢see Eq.(3) of Ref. [19]] leads to a
nonlocal Schrdinger-like equation[see Eq.(17) of Ref.
*FAX: 1(416) 978 4711. Email address: [19]], while the standard Schadinger equatiofil,21] and the
nlaskin@rocketmail.com developed fractional Schdinger equation are local quantum
Thanks to M. F. Shlesinger, who pointed out Montroll's paper. mechanical equations.
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The paper is organized as follows. In Sec. Il the quantum r(tp)=rp
mechanical path integral over the \Wyepaths is discussed J . DV(T)J Dp(7)--
and the three-dimensionéD) fractional Schrdinger equa- ta)=ra
tion is derived in term of the Riesz fractional derivative. In _ % 1 w0
Sec. Il we prove the Hermiticity of the fractional Hamilton = lim f dfl"‘di—l—st dp;---dpy
A . i . Neood — (27h) —
operator in Hilbert space with a scalar product defined in the -
same way as for conventional quantum mechanics. The par- _ D @
. X ) o  Pa(ri—ra) «£lpal
ity conservation law for fractional quantum mechanics is es- Xexp i 7 i 7 .
tablished. )
~ The time-independent fractional Schiger equation is PN(Te—Tn_1) . DaZlpal®
introduced and its properties are studied in Sec. IV. As physi- xXexp i 7 —i 7 - 3

cal applications of the time-independent fractional Sehro

dinger equation we have fourid the energy spectrum and

equation for the orbit radius of a hydrogenlike atom, theherel=(tp—ta)/N.
fractional “Bohr atom,” and(ii) the energy spectrumofa 1D ~ The exponential in Eq.(1) can be written as
fractional oscillator in the semiclassical approximation. In€xp{(i/7)S,(p,r)} if we introduce the classical mechanical
Sec. V an equation for the fractional probability current den-action for the trajectoryp(t),r(t)} in phase space:

sity is derived and discussed. In the Conclusions we discuss

the relationship between the fractional and the well-known th .
Schidlinger equation. S.(0.0)= | "B ()~ B ()7 (@

Il. PATH INTEGRAL Whena=2, D,=1/2m (m is the mass of a particleEq.
A. Path integral over the Lévy paths (2) is transformed into the well known Hamiltonian with
kinetic energyp?/2m and Eq.(1) becomes the definition of
the Feynman path integral in the phase space representation;
see, for exampld,20].

If a particle at an initial timet, starts from the point,
and goes to a final point, at timet,, we will say simply
that the particle goes frora to b, and its pathr(t) has the
property thatr(t,) =r, andr(t,) =ry. In quantum mechan- .
ics, then, we have a quantum mechanical kernel, often called B. Fractional Schrodinger equation
a kernel, to get from the poirat to the pointb. This will be The kernelK (rpty|rata) Which is defined by Eq(1) de-

the sum over all of the trajectories that go between these enstribes the evolution of the quantum mechanical system
points and of a contribution from each. If we have the quan-

tum particle moving in the potentid(r) then the fractional _
quantum mechanical kernkl, (rptp|r,ta) may be written as Yi(ro to)= | draKy(rotplrata) ¢i(ra,ta), ®)
[11]
f(ty)=Tp where ¢;(r,,ty) is the wave function of the initial stat@t
K,_(rbtblrata)=J Dr(r)f Dp(7) t=ty) and ¢(rp,tp) is the wave function of the final state
f(ta)=ra (att=ty).
it In order to obtain the differential equation for the wave
Xexp[—f drp(7)i(7) function ¢(r,t) we apply Eq.(5) in the special case that the
il time differs only by an infinitesimal intervad from t,:

—H ), r(7 , 1
a(P(7).1( ))]] @ zp(r,t+e)=f dr/ K (r,t+e€[r’,t)g(r',t).

where# is Planck’s constant, denotes the time derivative,

H.(p(7),r(7)) is the fractional Hamiltonian given by Using Feynman's approximation [{"“d7V(r(7),7)
=eV((r+r')/2t) and the definition given by Eql) we
Hao(p.1)=D,|p|*+V(r), 1<ae<2, (2 have

with the replacemenp—p(7), r—r(7), and{p(7),r(7)} is 1 o p(r'=r)
the partiple trgjector_y in phase space. The quaridify has lﬁ(r:Hf):J dr mﬁmdp exXp =
the physical dimension

D,€lp|® i r+r’ )
[D,]=erg*Xcm*xsec “. Tl g eV 5 Y.
. r(ty)=r
The phase space path Integ[@it2)=rz Dr(7)JDp(7) - We may expand the left-hand and the right-hand sides in

in Eq. (1) is defined by power series:
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AY(r,t) 1 o Since the kerneK (rptp|rat,) thought of as a function of
P(rt)+e ot :f df'm@j dp variablesry, ,t, is a special wave functiothamely, that for a
o particle which starts at,,t,), we see thatK, must also
p(r'=r) D,elp|® satisfy a fractional Schdinger equation. Thus for the quan-
XEXP{I T]( -1 7 ) tum system described by the fractional Hamiltonian @)
we have

X

i r+r’
1——eV(—,t”¢(r’,t). 6) 4
h 2 ih Tty KL(Pptp|rata) = Dol —2A0) “2K | (rpty|rata)

Then, taking into account the definitions of the Fourier trans-

forms +V(rb ,t)KL(rbtblrata), (11)
1 _ wheret,>t,, and the subscrigi on A, means that the frac-
P(r,t)= Wf dpeP’te(p,t), tional derivative acts on the variabig.

_ 11l. QUANTUM RIESZ FRACTIONAL DERIVATIVE
cp(p,t)=f dpe Py t),

A. Hermiticity of the fractional Hamilton operator

and introducing the 3D quantum Riesz fractional derivdtive  1he fractional HamiltoniarH,, given by Eq.(10) is the
(—h2A)2 Hermitian operator in the space with scalar product

1 _ _ [~ x
(—hZA)alzw(r,t)= (Zﬂ.h)3 J d3p elpr/ﬁ|p|a(P(p,t), (¢!X)— f_mdr ¢ (r,t))((r,t), (12)

@ where the superscrigt means as usual the complex conju-
(hereA=g?/9r? is the Laplaciah we obtain from Eq(6) gate.
To prove the Hermiticity of the fractional Hamiltd#, let
aP(r,t) D,e 2 ral2 us note that in accordance with the definition of the quantum
YO+ e——=¢(r,H) -1 == (=A"A)“%Y(r,1) Riesz fractional derivative given by E@7) there exists the
formula for integration by parts

i
—%GV(r,t)lJ/(l’,t). ((:bv(_ﬁzA)a/ZX):((_th)alzd’aX)- (13)
This will be true to ordek if ¢(r,t) satisfies the differential The average energy of a fractional quantum system with
equation HamiltonianH , is
aP(r,t o
i l//;t LD~ R2A) Ry 0+ VDY, (®) E.= f_wdr U* (1 OH L (r ). (14)

This is the fractional Schainger equation. The space de- Taking into account Eq(13) we have
rivative in this equation is of fractionahonintegey order a.

The above consideration is in fact a generalization of the - "
well-known Feynman approach to reduce the path integral to Ea= f,wdr Y OH(r.Y
a differential equatiofl,2].

Equation (8) may be rewritten in the operator form, :f dr(HT g(r D) g(r 1)
namely, —w “
d —E*,
in a—lf =H,¢, 9 “

and as a physical consequence the energy of the system is

whereH , is the fractional Hamiltonian operator real. Thus, the fractional Hamiltoniat, defined by Eq(10)
is a Hermitian or self-adjoint operator in the space with the

H =D (—A2A)*2+ V(1 t). (10)  scalar product defined by E¢L2):
By definition (10) and introducing the momentum operator (Hl ¢, x)=(h,Hx). (15)

p=iAV one may obtain the fractional Hamiltoni&h), in the

form given by Eq.(2).
g y Ea(2) B. Parity conservation law for fractional quantum mechanics

It follows from the definition(7) of the quantum Riesz
°The Riesz fractional derivative was originally introduced2a]. fractional derivative that
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X -X D (—12A)2p(r)+V(r)p(r)=E¢(r),
(_ﬁgA)wzeX4i9%_}:|maex4i9%_} 18 (=h28) (1) + V(1) $(r)=E(r)
1<as<2. (22)
Thus, the function eXpp-x/A} is the eigenfunction of the o )
3D quantum Riesz fractional operator fi2A)%2 with ei- We call Eq.(22) the time-independertor stationary frac-
genvaluelp|®. tional Schralinger equation.
The operator € 7%2A)*? is a symmetrized fractional de-
rivative, that is, A. Fractional Bohr atom
(—H2A,)2 .= (—f2A_ )al2... 17 The hydrogenlike potential energ¥(r) is
r - -r .
Zée?
Because of the propert§l7) the fractional Hamiltonian V(r)=-—

H, given by Eqg.(10) remains invariant undemversion r]
transformation. Inversion, or, to be precise, spatial inversionT
consists in the simultaneous change of sign of all three spa-

tial coordinates: 2

Ze
Da(—ﬁZA)“’Zqﬁ(r)—Wqﬁ(r):Ecﬁ(r), (23

hen the fractional Schdinger equatior{22) has the form

r——r, X—-—X, y—-Yy, z—--—2Z (19

and can be treated as fractional eigenvalue problem.

Let us o-lenote the Inversion operator. By The |r-1ver.se The total energy of the considered quantum mechanical
symmetry is the fact thaP and the fractional Hamiltonian system is

H, commute,
N ~ E= Ekin+ V,
PH,=H,P. (19
whereE,;, is the kinetic energy
We can divide the wave functions of quantum mechanical
states with a well-defined eigenvalue of the operdtdnto Exin=Dalp| (24)
two classesf{i) functions that are not changed when acted

upon by the inversion operator, andV is the potential energy

- ze?

Py (r)=d¢ . (r) VZ—W. (25
(the corresponding states are called even statawd (ii) ) ) . )
functions that change sign under the action of the inversion It is well known that if the potential energy is a homoge-

operator, neous function of the coordinates and the motion takes place
in a finite region of space, there exists a simple relation be-
Py _(r)=—_(r) tween the time averaged values of the kinetic and potential
energies, known as therial theorem (see[23], p. 23. It
(the corresponding states are called odd states follows from the virial theorem that between the average

Equation(19) expresses the “parity conservation law;” if kinetic energy(24) and the average potential ener¢35)
the state of a closed fractional quantum mechanical systeffiere exists the relation
has a given parityi.e., if it is even or odgl then this parity

is conserved. aEkm: -V, (26)
IV. TIME-INDEPENDENT FRACTIONAL where the average valifeof any function of time is defined
SCHRODINGER EQUATION as
The special case when the Hamiltonidr, does not de- — 1=
pend explicitly on the time is of great importance for physi- f=lim ?f dtf(t).
cal applications. It is easy to see that in this case there exists Tl 0
a special solution of the fractional Schiinger equatiorn(8) .
of the form In order to evaluate the energy spectrum of the fractional
hydrogenlike atom let us recall thiiels Bohr postulates
p(ry=e (MEG (D), (20 [24] - _ _
(1) The electron moves in orbits restricted by the require-
where ¢(r) satisfies ment that the angular momentum be an integral multiple of
h, that is, for circular orbits of radiua,,, the electron mo-
Hap(r)=Eé(r), (21)  mentum is restricted by
or pa,=nfa (n=1,2.3,.), (27

056108-4



FRACTIONAL SCHRODINGER EQUATION PHYSICAL REVIEW E66, 056108 (2002

and furthermore the electrons in these orbits do not radiate iEgs. (29)—(33) is a result of deviation of the fractal dimen-
spite of their acceleration. They are said to be in stationargjon d(L&%) of the Levy-like quantum mechanical path from
states. . . - d(LéVy) —g<?

(2) Electrons can make discontinuous transitions from ong’ fractal )
allowed orbit corresponding to=n, to another correspond-

ing ton=n,, and the change in energy will appear as radia- B. Spectrum of the 1D fractional oscillator
tion with frequency in the semiclassical approximation
E._E The fractional oscillator introduced if10] is the model
w= % (n,>n;). (28)  with the fractional Hamiltonian operatét,, 4,

.. . . Ha B:Da(_th)a/2+q2|r|B;
An atom may absorb radiation by having its electrons make ’
a transition to a higher energy orbit.

Using the first Bohr postulate and E@6) yields l<es<2, 1<p=2, (34)
nh\® Ze? wherer is the 3D vectorA=4%/dr? is the Laplacian, the
aD, al " a operator (- #%2A)*? is defined by Eq(7) andq is a constant

with physical dimensiofiq]= erg"2x cm™#2,
from which follows the equation for the radius of the frac- The 1D fractional oscillator with the Hamilton function

tional Bohr orbits H, 3=D.lp|*+0%x|? poses an interesting problem for
semiclassical treatment. We set the total energy equal$o
ap,=agn®(@ b, (29  that
herea, is the fractional Bohr radiughe radius of the lowest, E=D |pl®+q?|x|8 35
n=1 Bohr orbi) defined as alpl“+a7x1%, (39
aD A%\ e whence
%07 ?) 40 Ve

1
_ . — |p|=(—(E—q2|X|ﬁ)
By using Eq.(26) we find for the total average ener@y D.

E=(1—a)Ep. At the turning pointp=0. Thus, classical motion is pos-
. _ sible in the rangex|<(E/q?)YA.
Thus, for the energy levels of the fractional hydrogenlike A routine use of the Bohr-Sommerfeld quantization rule

atom we have [21] yields
E,=—(a—1)Eon @Y 1<a=<2, (31 1 y
. - . 2mhi[n+>|= dpdx=4| pd
whereE, is the binding energy of the electron in the lowest T 2 % pax fo pax
Bohr orbit, that is, the energy required to put it in a state with 4
E=0 corresponding tm=, Xm »
poneing =Dwajo (E=q?Ix|?)"dx,  (36)
(ZeZ)a U a—1)
EOZ(W) - 32 - -
a™D, where the notatiod means the integral over one complete

_ _period of the classical motion, ang,= (E/q?)*# is the turn-
_ The energy &—1)E, can be considered as a generaliza-jng noint of classical motion. To evaluate the integral on the
tion of the Rydberg constant of standard quantum mechan|c§-rght hand side of Eq(36) we introduce a new variablg
It is easy to see that at=2 the energy ¢—1)E, is trans- =x(E/q?)~YE. Then we have

formed into the well-known expression for the Rydberg con-
stant, Ry=me*/242.
- . . Xm 1 1
The frequency of the radiatio@ associated with the tran- f (E— q2|x|3)1’“dx= o gEla+ llﬁf dy(1—yB)Ye,
sition, say, for example frork to n, k—n, is 0 q 0
(37)

(a—1)Eg 1 1
= 7 nal(a=1) yal(a—1)

(k>n). (33 The integral overdy can be expressed in terms of tBe

function® Indeed, the substitution=y* yields
Equations(29)—(33) give a generalization of the Bohr
atom theory. In the special Gaussian case;2 (standard
quantum mechanigs Eqgs. (29)—(33) reproduce the well-  3TheB(a,b) function has the familiar integral representatj@6]
known results of the Bohr theorfy24,25. The existence of B(a,b)=/3du w*~(1—u)® L.

056108-5



NICK LASKIN

fldy(l—yﬁ)l/azifldz Z’L/ﬁ—l(l_z)lla
0 BJo
:EB(E 1
B \Ba

With the help of Eqs(37) and(38) we rewrite Eq.(36) as

. (38

1 4 1 /11
Sl Vat+1 - p| = =
2mh n+2 ﬁ—Dian/ﬁE ,BB<,3’LY+1)'
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j(r,= Di—JL[t//*(f,t)(—ﬁZA)"/Z_lVlﬂ(r.t)

—g(r, (=A%) PTIV Y (r,0)], (44)

where we use the notation

Introducing the momentum operatpr=(#/i)V we can
write the vectorj in the form

The above equation gives the values of the energies of sta-

tionary states for a 1D fractional oscillator,

apl(a+p) 1 apl(a+p)
n+ =

2

2B(1/B8,1la+1)

n

(39

=D L(PH) 2 1y + g+ (p*H) 2 1p* ],
1<a<2. (45)

Whena=2, D _,=1/2m Eqgs.(44) and(45) become the well-
known equations of standard quantum mechaisee, for

This equation generalizes the well-known energy spectrur§Xample[21]). Thus we conclude that Eqgt4) and(45) are

of the standard quantum mechanical oscilldee, for ex-
ample,[21]) and is transformed to it in the special case

=2, B=2.
It follows from Eq. (39) that at
af
oy =1 (40

the energy spectrum becomes equidistant. Wherw& 2
and 1< B=<2 the condition given by Eq40) occurs fora

=2 andB=2 only. This means that only the standard quan

the fractional generalization of the well-known equations for
the probability current density vector of standard quantum
mechanics.

To this end, we express E¢5) in terms of the velocity
operator, which is defined as usual:

wheref is the operator of the coordinates. Using the general
guantum mechanical rule for differentiation of the operator,

tum mechanical oscillator has an equidistant energy spec- d i

trum.

V. CURRENT DENSITY
By multiplying Eq. (8) from the left by * (r,t) and the

conjugate complex of Eq8) by (r,t) and subtracting the

two resulting equations, we finally obtain

J
= v couen

a

“in
—P(r, (= A%A) 2y (r,0)].

d¥r[¢* (r,t)(—h2A) 2y(r,t)

(41)

From this integral relationship we are led to the following

well-known differential equation:

9P | divicr.n—o, (42)
ot
where
p(r,t)=¢™(r,t)y(r,t) (43

is the probability density and the vectgdrr,t) can be called
the fractional probability current density vector:

—tr:g[Ha,r],

we have
v —i H H
V= i ( ol =l a)'

Further, with the help of the equation

R o of
f(p)r—rf(p)——lho,)—p

which holds for any functiorf(p) of the momentum opera-
tor, and taking into account E@2) for the Hamiltonian we
find the equation for the velocity operator

V=aD,|p*“**p, (46)

herep is the momentum operator. By comparing EG5)
and (46) we finally conclude that

1
j=;(¢\7¢*+¢*\7¢), 1<a<2. (47)

To get the probability current density equal tdthe cur-
rent when one particle passes through unit area per unij time
the wave function of the free particle has to be normalized as
follows:
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i
)

1<a=2,

P(r,t)=al2v exp[;—Lp«r—

E=D./p|* (48)
wherev is the particle velocityp =aD,p* L. Indeed, by
substituting Eq(48) into Eq. (45) we find

v
j= . v=aD,[pf“* T, (49
that is, the vectoy is the unit vector.

Equations(44), (45), and(47) are the fractional generali-

zation of the well-known equations for the probability cur-

rent density vector of standard quantum mechaff2ds.

VI. CONCLUSIONS

The fractional generalization of the ScHinger equation

PHYSICAL REVIEW E66, 056108 (2002

tum mechanics was observed. The time-independent frac-
tional Schralinger equation was introduced. As physical
applications of the time-independent fractional Sclmger
equation we found the energy spectrum and equation for the
orbit radius of a hydrogenlike atom, the fractional Bohr
atom. The energy spectrum of the 1D fractional oscillator
was obtained in the semiclassical approximation.

The generalization of the fractional probability current
density was derived and discussed.

The generalized equatiofi®), (22), (29)—(33), (39), (44),
(45), and(47) are transformed into the well-known equations
of conventional quantum mechanics if we put they endex
a=2. In other words, fractional quantum mechanics includes
standard quantum mechanics as the particular Gaussian case
at «=2. The quantum mechanical path integral over the
Lévy paths ate=2 becomes the well-known Feynman path
integral and the fractional Schiimger equation becomes the
Schralinger equation.

The fractional Schrdinger equation provides us with a

has been studied. We have established the formula for integeneral point of view on the relationship between the statis-
gration by parts of the quantum Riesz fractional derivativetical properties of the quantum mechanical path and the

and used it to prove the Hermiticity of the fractional Hamil-

structure of the fundamental equations of quantum mechan-

ton operator. A parity conservation law for fractional quan-ics.
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