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Fractional Schrödinger equation
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Some properties of the fractional Schro¨dinger equation are studied. We prove the Hermiticity of the frac-
tional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As
physical applications of the fractional Schro¨dinger equation we find the energy spectra of a hydrogenlike atom
~fractional ‘‘Bohr atom’’! and of a fractional oscillator in the semiclassical approximation. An equation for the
fractional probability current density is developed and discussed. We also discuss the relationships between the
fractional and standard Schro¨dinger equations.
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I. INTRODUCTION

The Feynman path integral approach to quantum mech
ics @1,2# is in fact integration over Brownian-like quantum
mechanical paths. Brownian motion is a special case o
Lévy a-stable random process. In the mid-1930s Le´vy and
Khintchine posed the question: When does the sum oN
independent identically distributed quantitiesX5X11X2¯

1XN have the same probability distributionpN(X) ~up to a
scale factor! as the individual stepspi(Xi), i 51,...,N? The
traditional answer is that eachpi(Xi) should be a Gaussian
because of the central limit theorem. In other words, a s
of N Gaussians is again a Gaussian. Le´vy and Khintchine
proved that there exists the possibility of generalizing
central limit theorem@3,4#. They discovered a class of non
Gaussian Le´vy a-stable~stable under summation! probabil-
ity distributions. Eacha-stable probability distribution has
stability index a often called the Le´vy index, 0,a<2.
Whena52 the Lévy a-stable distribution is transformed t
the well-known Gaussian probability distribution or, in oth
words, the Le´vy motion is transformed to Brownian motio
@5,6#.

The possibility of developing the path integral over t
paths of the Le´vy motion was discussed by Kac@7#, who
pointed out that the Le´vy path integral generates the fun
tional measure in the space of left~or right! continued func-
tions having only discontinuities of the first kind.

It was shown by Montroll@8# that for a free quantum
mechanical particle the chain condition for the kernel can
solved exactly and leads in general to a kernel that is
quantum analog of the classical Le´vy transition probability.1

A recent review of Montroll’s paper can be found in@9#,
where the fractional differential equation for a free kern
was derived.

In Refs. @10,11# it was shown that the path integral ov
Lévy-like quantum mechanical paths allows one to develo
generalization of quantum mechanics; namely, if the p
integral over Brownian trajectories leads to the well kno
Schrödinger equation, then the path integral over Le´vy tra-

*FAX: 1~416! 978 4711. Email address:
nlaskin@rocketmail.com

1Thanks to M. F. Shlesinger, who pointed out Montroll’s pape
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jectories leads to the fractional Schro¨dinger equation. The
fractional Schro¨dinger equation includes a space derivati
of ordera instead of the second order (a52) space deriva-
tive in the standard Schro¨dinger equation. Thus, the frac
tional Schro¨dinger equation is a fractional differential equ
tion in accordance with modern terminology~see, for
example,@12–17#!. This is the main point of the term ‘‘frac-
tional Schro¨dinger equation’’ or of the more general ter
fractional quantum mechanics~FQM! @11#. As mentioned
above, ata52 the Lévy motion becomes Brownian motion
Thus, FQM includes the standard QM as a particular Gau
ian case ata52. The quantum mechanical path integral ov
the Lévy paths ata52 becomes the well known Feynma
path integral@1,2#.

The non-Gaussian path integral over the Le´vy paths de-
veloped in@10,11# captures the important physical proper
of self-similarity of the quantum mechanical path. Se
similarity means that the whole object looks like any of
parts, and we can partition the quantum mechanical path
smaller and smaller parts and each part will have the sa
statistical structure. Self-similarity constrains the possi
choice of the kinematic~momentum-dependent! part of the
Hamilton function; namely, the termDaupua @herep is the
particle momentum; see Eq.~2!# is in general a possible
choice for the kinematic part of the Hamilton function. In th
special Gaussian case whena52 we get the quadratic kine
matic termp2/2m wherem is the particle mass@11#.

Another type of non-Gaussian path integral is the integ
over paths of a truncated Le´vy distribution. For the definition
of the truncated Le´vy distribution see, for example,@18#. The
truncated Le´vy distribution is widely applied to model option
pricing. The path integral over truncated Le´vy paths has been
developed and applied to model financial dynamics for as
with non-Gaussian price fluctuations@19# ~see also@20#,
Chap. 20!. However, the procedure of truncation destroys
a-stable property and self-similarity of the original Le´vy dis-
tribution. As a result the path integral developed in@19# does
not capture the important physical property of self-similari
In addition, the ‘‘Hamiltonian function’’ resulting from the
truncation procedure@see Eq.~3! of Ref. @19## leads to a
nonlocal Schro¨dinger-like equation@see Eq.~17! of Ref.
@19##, while the standard Schro¨dinger equation@1,21# and the
developed fractional Schro¨dinger equation are local quantum
mechanical equations.
©2002 The American Physical Society08-1
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The paper is organized as follows. In Sec. II the quant
mechanical path integral over the Le´vy paths is discussed
and the three-dimensional~3D! fractional Schro¨dinger equa-
tion is derived in term of the Riesz fractional derivative.
Sec. III we prove the Hermiticity of the fractional Hamilto
operator in Hilbert space with a scalar product defined in
same way as for conventional quantum mechanics. The
ity conservation law for fractional quantum mechanics is
tablished.

The time-independent fractional Schro¨dinger equation is
introduced and its properties are studied in Sec. IV. As ph
cal applications of the time-independent fractional Sch¨-
dinger equation we have found~i! the energy spectrum an
equation for the orbit radius of a hydrogenlike atom, t
fractional ‘‘Bohr atom,’’ and~ii ! the energy spectrum of a 1D
fractional oscillator in the semiclassical approximation.
Sec. V an equation for the fractional probability current de
sity is derived and discussed. In the Conclusions we disc
the relationship between the fractional and the well-kno
Schrödinger equation.

II. PATH INTEGRAL

A. Path integral over the Lévy paths

If a particle at an initial timeta starts from the pointra
and goes to a final pointrb at time tb , we will say simply
that the particle goes froma to b, and its pathr (t) has the
property thatr (ta)5ra and r (tb)5rb . In quantum mechan
ics, then, we have a quantum mechanical kernel, often ca
a kernel, to get from the pointa to the pointb. This will be
the sum over all of the trajectories that go between these
points and of a contribution from each. If we have the qu
tum particle moving in the potentialV(r ) then the fractional
quantum mechanical kernelKL(rbtburata) may be written as
@11#

KL~rbtburata!5E
r ~ ta!5ra

r ~ tb!5rb
Dr ~t!E Dp~t!

3expH i

\ E
ta

tb
dt@p~t! ṙ ~t!

2Ha„p~t!,r ~t!…#J , ~1!

where\ is Planck’s constant,ṙ denotes the time derivative
Ha(p(t),r (t)… is the fractional Hamiltonian given by

Ha~p,r !5Daupua1V~r !, 1,a<2, ~2!

with the replacementp→p(t), r→r (t), and$p(t),r (t)% is
the particle trajectory in phase space. The quantityDa has
the physical dimension

@Da#5erg12a3cma3sec2a.

The phase space path integral* r (ta)5ra

r (tb)5rb Dr (t)*Dp(t)¯

in Eq. ~1! is defined by
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r ~ ta!5ra

r ~ tb!5rb
Dr ~t!E Dp~t!¯

5 lim
N→`

E
2`

`

dr1¯drN21

1

~2p\!3N E
2`

`

dp1¯dpN

3expH i
p1~r12ra!

\
2 i

Dazup1ua

\ J 3¯

3expH i
pN~rb2rN21!

\
2 i

DazupNua

\ J¯ , ~3!

herez5(tb2ta)/N.
The exponential in Eq. ~1! can be written as

exp$(i/\)Sa(p,r )% if we introduce the classical mechanic
action for the trajectory$p(t),r (t)% in phase space:

Sa~p,r !5E
ta

tb
dt@p~t! ṙ ~t!2Ha~p~t!,r ~t!,t…#. ~4!

Whena52, Da51/2m (m is the mass of a particle! Eq.
~2! is transformed into the well known Hamiltonian wit
kinetic energyp2/2m and Eq.~1! becomes the definition o
the Feynman path integral in the phase space representa
see, for example,@20#.

B. Fractional Schrödinger equation

The kernelKL(rbtburata) which is defined by Eq.~1! de-
scribes the evolution of the quantum mechanical system

c f~rb ,tb!5E draKL~rbtburata!c i~ra ,ta!, ~5!

wherec i(ra ,ta) is the wave function of the initial state~at
t5ta) and c f(rb ,tb) is the wave function of the final stat
~at t5tb).

In order to obtain the differential equation for the wa
function c(r ,t) we apply Eq.~5! in the special case that th
time differs only by an infinitesimal intervale from ta :

c~r ,t1e!5E dr 8KL~r ,t1eur 8,t !c~r 8,t !.

Using Feynman’s approximation * t
t1edt V„r (t),t…

.eV„(r1r 8)/2,t… and the definition given by Eq.~1! we
have

c~r ,t1e!5E dr 8
1

~2p\!3 E
2`

`

dp expH i
p~r 82r !

\

2 i
Daeupua

\
2

i

\
eVS r1r 8

2
,t D J c~r 8,t !.

We may expand the left-hand and the right-hand side
power series:
8-2
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c~r ,t !1e
]c~r ,t !

]t
5E dr 8

1

~2p\!3E
2`

`

dp

3expH i
p~r 82r !

\ J S 12 i
Daeupua

\ D
3F12

i

\
eVS r1r 8

2
,t D Gc~r 8,t !. ~6!

Then, taking into account the definitions of the Fourier tra
forms

c~r ,t !5
1

~2p\!3 E dp eipx/\w~p,t !,

w~p,t !5E dp e2 ipx/\c~r ,t !,

and introducing the 3D quantum Riesz fractional derivati2

(2\2D)a/2,

~2\2D!a/2c~r ,t !5
1

~2p\!3 E d3p eipr /\upuaw~p,t !,

~7!

~hereD5]2/]r2 is the Laplacian!, we obtain from Eq.~6!

c~r ,t !1e
]c~r ,t !

]t
5c~r ,t !2 i

Dae

\
~2\2D!a/2c~r ,t !

2
i

\
eV~r ,t !c~r ,t !.

This will be true to ordere if c(r ,t) satisfies the differentia
equation

i\
]c~r ,t !

]t
5Da~2\2D!a/2c~r ,t !1V~r ,t !c~r ,t !. ~8!

This is the fractional Schro¨dinger equation. The space d
rivative in this equation is of fractional~noninteger! ordera.

The above consideration is in fact a generalization of
well-known Feynman approach to reduce the path integra
a differential equation@1,2#.

Equation ~8! may be rewritten in the operator form
namely,

i\
]c

]t
5Hac, ~9!

whereHa is the fractional Hamiltonian operator

Ha5Da~2\2D!a/21V~r ,t !. ~10!

By definition ~10! and introducing the momentum operat
p5 i\“ one may obtain the fractional HamiltonianHa in the
form given by Eq.~2!.

2The Riesz fractional derivative was originally introduced in@22#.
05610
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Since the kernelKL(rbtburata) thought of as a function of
variablesrb ,tb is a special wave function~namely, that for a
particle which starts atra ,ta), we see thatKL must also
satisfy a fractional Schro¨dinger equation. Thus for the quan
tum system described by the fractional Hamiltonian Eq.~10!
we have

i\
]

]tb
KL~rbtburata!5Da~2\2Db!a/2KL~rbtburata!

1V~rb ,t !KL~rbtburata!, ~11!

wheretb.ta , and the subscriptb on Db means that the frac
tional derivative acts on the variablerb .

III. QUANTUM RIESZ FRACTIONAL DERIVATIVE

A. Hermiticity of the fractional Hamilton operator

The fractional HamiltonianHa given by Eq.~10! is the
Hermitian operator in the space with scalar product

~f,x!5E
2`

`

dr f* ~r ,t !x~r ,t !, ~12!

where the superscript* means as usual the complex conj
gate.

To prove the Hermiticity of the fractional HamiltonHa let
us note that in accordance with the definition of the quant
Riesz fractional derivative given by Eq.~7! there exists the
formula for integration by parts

„f,~2\2D!a/2x…5„~2\2D!a/2f,x…. ~13!

The average energy of a fractional quantum system w
HamiltonianHa is

Ea5E
2`

`

dr c* ~r ,t !Hac~r ,t !. ~14!

Taking into account Eq.~13! we have

Ea5E
2`

`

dr c* ~r ,t !Hac~r ,t !

5E
2`

`

dr ~Ha
†c~r ,t !…* c~r ,t !

5Ea* ,

and as a physical consequence the energy of the syste
real. Thus, the fractional HamiltonianHa defined by Eq.~10!
is a Hermitian or self-adjoint operator in the space with t
scalar product defined by Eq.~12!:

~Ha
†f,x!5~f,Hax!. ~15!

B. Parity conservation law for fractional quantum mechanics

It follows from the definition~7! of the quantum Riesz
fractional derivative that
8-3
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~2\2D!a/2 expH i
p•x

\ J 5upua expH i
p•x

\ J . ~16!

Thus, the function exp$ip•x/\% is the eigenfunction of the
3D quantum Riesz fractional operator (2\2D)a/2 with ei-
genvalueupua.

The operator (2\2D)a/2 is a symmetrized fractional de
rivative, that is,

~2\2D r !
a/2

¯5~2\2D2r !
a/2

¯ . ~17!

Because of the property~17! the fractional Hamiltonian
Ha given by Eq. ~10! remains invariant underinversion
transformation. Inversion, or, to be precise, spatial invers
consists in the simultaneous change of sign of all three s
tial coordinates:

r→2r , x→2x, y→2y, z→2z. ~18!

Let us denote the inversion operator byP̂. The inverse
symmetry is the fact thatP̂ and the fractional Hamiltonian
Ha commute,

P̂Ha5HaP̂. ~19!

We can divide the wave functions of quantum mechan
states with a well-defined eigenvalue of the operatorP̂ into
two classes:~i! functions that are not changed when act
upon by the inversion operator,

P̂c1~r !5c1~r !

~the corresponding states are called even states!; and ~ii !
functions that change sign under the action of the invers
operator,

P̂c2~r !52c2~r !

~the corresponding states are called odd states!.
Equation~19! expresses the ‘‘parity conservation law;’’

the state of a closed fractional quantum mechanical sys
has a given parity~i.e., if it is even or odd!, then this parity
is conserved.

IV. TIME-INDEPENDENT FRACTIONAL
SCHRÖDINGER EQUATION

The special case when the HamiltonianHa does not de-
pend explicitly on the time is of great importance for phy
cal applications. It is easy to see that in this case there e
a special solution of the fractional Schro¨dinger equation~8!
of the form

c~r ,t !5e2~ i /\!Etf~r !, ~20!

wheref(r ) satisfies

Haf~r !5Ef~r !, ~21!

or
05610
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Da~2\2D!a/2f~r !1V~r !f~r !5Ef~r !,

1,a<2. ~22!

We call Eq. ~22! the time-independent~or stationary! frac-
tional Schro¨dinger equation.

A. Fractional Bohr atom

The hydrogenlike potential energyV(r ) is

V~r !52
Ze2

ur u
.

Then the fractional Schro¨dinger equation~22! has the form

Da~2\2D!a/2f~r !2
Ze2

ur u
f~r !5Ef~r !, ~23!

and can be treated as fractional eigenvalue problem.
The total energy of the considered quantum mechan

system is

E5Ekin1V,

whereEkin is the kinetic energy

Ekin5Daupua, ~24!

andV is the potential energy

V52
Ze2

ur u
. ~25!

It is well known that if the potential energy is a homog
neous function of the coordinates and the motion takes p
in a finite region of space, there exists a simple relation
tween the time averaged values of the kinetic and poten
energies, known as thevirial theorem ~see @23#, p. 23!. It
follows from the virial theorem that between the avera
kinetic energy~24! and the average potential energy~25!
there exists the relation

aĒkin52V̄, ~26!

where the average valuef̄ of any function of time is defined
as

f̄ 5 lim
T→`

1

T E
0

`

dt f~ t !.

In order to evaluate the energy spectrum of the fractio
hydrogenlike atom let us recall theNiels Bohr postulates
@24#.

~1! The electron moves in orbits restricted by the requi
ment that the angular momentum be an integral multiple
\, that is, for circular orbits of radiusan , the electron mo-
mentum is restricted by

pan5n\ ~n51,2,3,...!, ~27!
8-4
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and furthermore the electrons in these orbits do not radiat
spite of their acceleration. They are said to be in station
states.

~2! Electrons can make discontinuous transitions from o
allowed orbit corresponding ton5n2 to another correspond
ing to n5n1 , and the change in energy will appear as rad
tion with frequency

v5
En22En1

\
, ~n2.n1!. ~28!

An atom may absorb radiation by having its electrons m
a transition to a higher energy orbit.

Using the first Bohr postulate and Eq.~26! yields

aDaS n\

an
D a

5
Ze2

an
,

from which follows the equation for the radius of the fra
tional Bohr orbits

an5a0na/~a21!, ~29!

herea0 is the fractional Bohr radius~the radius of the lowest
n51 Bohr orbit! defined as

a05S aDa\a

Ze2 D 1/~a21!

. ~30!

By using Eq.~26! we find for the total average energyĒ,

Ē5~12a!Ēkin .

Thus, for the energy levels of the fractional hydrogenli
atom we have

En52~a21!E0n2a/~a21!, 1,a<2, ~31!

whereE0 is the binding energy of the electron in the lowe
Bohr orbit, that is, the energy required to put it in a state w
E50 corresponding ton5`,

E05S ~Ze2!a

a2Da\aD 1/~a21!

. ~32!

The energy (a21)E0 can be considered as a generaliz
tion of the Rydberg constant of standard quantum mechan
It is easy to see that ata52 the energy (a21)E0 is trans-
formed into the well-known expression for the Rydberg co
stant, Ry5me4/2\2.

The frequency of the radiationv associated with the tran
sition, say, for example fromk to n, k→n, is

v5
~a21!E0

\ F 1

na/~a21!2
1

ka/~a21!G ~k.n!. ~33!

Equations~29!–~33! give a generalization of the Boh
atom theory. In the special Gaussian case,a52 ~standard
quantum mechanics!, Eqs. ~29!–~33! reproduce the well-
known results of the Bohr theory@24,25#. The existence of
05610
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Eqs. ~29!–~33! is a result of deviation of the fractal dimen

sion dfractal
(Lévy) of the Lévy-like quantum mechanical path from

2, dfractal
(Lévy)5a,2.

B. Spectrum of the 1D fractional oscillator
in the semiclassical approximation

The fractional oscillator introduced in@10# is the model
with the fractional Hamiltonian operatorHa,b ,

Ha,b5Da~2\2D!a/21q2ur ub,

1,a<2, 1,b<2, ~34!

where r is the 3D vector,D5]2/]r2 is the Laplacian, the
operator (2\2D)a/2 is defined by Eq.~7! andq is a constant
with physical dimension@q#5erg1/23cm2b/2.

The 1D fractional oscillator with the Hamilton functio
Ha,b5Daupua1q2uxub poses an interesting problem fo
semiclassical treatment. We set the total energy equal toE, so
that

E5Daupua1q2uxub, ~35!

whence

upu5S 1

Da
~E2q2uxub! D 1/a

.

At the turning pointsp50. Thus, classical motion is pos
sible in the rangeuxu<(E/q2)1/b.

A routine use of the Bohr-Sommerfeld quantization ru
@21# yields

2p\S n1
1

2D5 R p dx54E
0

xm
p dx

5
4

Da
1/a E

0

xm
~E2q2uxub!1/adx, ~36!

where the notationr means the integral over one comple
period of the classical motion, andxm5(E/q2)1/b is the turn-
ing point of classical motion. To evaluate the integral on t
right hand side of Eq.~36! we introduce a new variabley
5x(E/q2)21/b. Then we have

E
0

xm
~E2q2uxub!1/adx5

1

q2/b E1/a11/bE
0

1

dy~12yb!1/a.

~37!

The integral overdy can be expressed in terms of theB
function.3 Indeed, the substitutionz5yb yields

3TheB(a,b) function has the familiar integral representation@26#
B(a,b)5*0

1du ua21(12u)b21.
8-5
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E
0

1

dy~12yb!1/a5
1

b E
0

1

dz z1/b21~12z!1/a

5
1

b
BS 1

b
,

1

a
11D . ~38!

With the help of Eqs.~37! and~38! we rewrite Eq.~36! as

2p\S n1
1

2D5
4

Da
1/aq2/b E1/a11/b

1

b
BS 1

b
,

1

a
11D .

The above equation gives the values of the energies of
tionary states for a 1D fractional oscillator,

En5S p\bDa
1/aq2/b

2B~1/b,1/a11!
D ab/~a1b!S n1

1

2D ab/~a1b!

.

~39!

This equation generalizes the well-known energy spect
of the standard quantum mechanical oscillator~see, for ex-
ample,@21#! and is transformed to it in the special casea
52, b52.

It follows from Eq. ~39! that at

ab

a1b
51 ~40!

the energy spectrum becomes equidistant. When 1,a<2
and 1,b<2 the condition given by Eq.~40! occurs fora
52 andb52 only. This means that only the standard qua
tum mechanical oscillator has an equidistant energy sp
trum.

V. CURRENT DENSITY

By multiplying Eq. ~8! from the left byc* (r ,t) and the
conjugate complex of Eq.~8! by c(r ,t) and subtracting the
two resulting equations, we finally obtain

]

]t E d3r @c* ~r ,t !c~r ,t !#

5
Da

i\ E d3r @c* ~r ,t !~2\2D!a/2c~r ,t !

2c~r ,t !~2\2D!a/2c* ~r ,t !#. ~41!

From this integral relationship we are led to the followin
well-known differential equation:

]r~r ,t !

]t
1div j ~r ,t !50, ~42!

where

r~r ,t !5c* ~r ,t !c~r ,t ! ~43!

is the probability density and the vectorj (r ,t) can be called
the fractional probability current density vector:
05610
ta-

m
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j ~r ,t !5
Da\

i
@c* ~r ,t !~2\2D!a/221

“c~r ,t !

2c~r ,t !~2\2D!a/221
“c* ~r ,t !#, ~44!

where we use the notation

“5
]

]r
.

Introducing the momentum operatorp̂5(\/ i )“ we can
write the vectorj in the form

j5Da@c~ p̂2!a/221p̂c* 1c* ~ p̂* 2!a/221p̂* c#,

1,a<2. ~45!

Whena52, Da51/2m Eqs.~44! and~45! become the well-
known equations of standard quantum mechanics~see, for
example,@21#!. Thus we conclude that Eqs.~44! and~45! are
the fractional generalization of the well-known equations
the probability current density vector of standard quant
mechanics.

To this end, we express Eq.~45! in terms of the velocity
operator, which is defined as usual:

v̂5
d

dt
r̂ ,

wherer̂ is the operator of the coordinates. Using the gene
quantum mechanical rule for differentiation of the operat

d

dt
r̂5

i

\
@Ha ,r #,

we have

v̂5
i

\
~Har2rHa!.

Further, with the help of the equation

f ~ p̂!r2r f ~ p̂!52 i\
] f

]p
;

which holds for any functionf (p̂) of the momentum opera
tor, and taking into account Eq.~2! for the Hamiltonian we
find the equation for the velocity operator

v̂5aDaup̂2ua/221p̂, ~46!

here p̂ is the momentum operator. By comparing Eqs.~45!
and ~46! we finally conclude that

j5
1

a
~c v̂c* 1c* v̂c!, 1,a<2. ~47!

To get the probability current density equal to 1~the cur-
rent when one particle passes through unit area per unit ti!
the wave function of the free particle has to be normalized
follows:
8-6
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c~r ,t !5Aa/2v expH i

\
p•r2

i

\
EtJ ,

E5Daupua, 1,a<2, ~48!

where v is the particle velocity,v5aDapa21. Indeed, by
substituting Eq.~48! into Eq. ~45! we find

j5
v

v
, v5aDaup2ua/221p, ~49!

that is, the vectorj is the unit vector.
Equations~44!, ~45!, and~47! are the fractional generali

zation of the well-known equations for the probability cu
rent density vector of standard quantum mechanics@21#.

VI. CONCLUSIONS

The fractional generalization of the Schro¨dinger equation
has been studied. We have established the formula for i
gration by parts of the quantum Riesz fractional derivat
and used it to prove the Hermiticity of the fractional Ham
ton operator. A parity conservation law for fractional qua
h

i.

-

ta

-

05610
e-
e

-

tum mechanics was observed. The time-independent f
tional Schro¨dinger equation was introduced. As physic
applications of the time-independent fractional Schro¨dinger
equation we found the energy spectrum and equation for
orbit radius of a hydrogenlike atom, the fractional Bo
atom. The energy spectrum of the 1D fractional oscilla
was obtained in the semiclassical approximation.

The generalization of the fractional probability curre
density was derived and discussed.

The generalized equations~8!, ~22!, ~29!–~33!, ~39!, ~44!,
~45!, and~47! are transformed into the well-known equatio
of conventional quantum mechanics if we put the Le´vy index
a52. In other words, fractional quantum mechanics includ
standard quantum mechanics as the particular Gaussian
at a52. The quantum mechanical path integral over t
Lévy paths ata52 becomes the well-known Feynman pa
integral and the fractional Schro¨dinger equation becomes th
Schrödinger equation.

The fractional Schro¨dinger equation provides us with
general point of view on the relationship between the sta
tical properties of the quantum mechanical path and
structure of the fundamental equations of quantum mech
ics.
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