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Largest and second largest cluster statistics at the percolation threshold of hypercubic lattices
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We investigate the scale invariance of the average ratio between the masses of the largest and second largest
clusters at percolation. We employ a finite size scaling method to estimate percolation thresholds based on the
simulations of relatively small lattices, and report on estimatepfan hypercubic lattices witid=2-7, in
full agreement with the best literature estimates. Also, we find the critical mass ratio to be strongly dependent
on the boundary conditions, decreasing with the lattice dimension. Further, we compute several relevant mass
distribution functions associated with the two largest clusters, which approach to limiting distributiaths for
>6. Finally, we discuss the main relevant features of the mass distributions in light of the relative role played
by the spanning and nonspanning clusters.
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[. INTRODUCTION est and second largest clusters, for example, are proportional
in mass atp.. In a previous paper, we have numerically
A classic problem in statistical physics concerns the studylemonstrated that the average ratio of the largest and second
of percolation in randomly diluted systems. Usually the ex-largest clusters is drastically dependent on the imposed
istence of a percolating process is associated with the presoundary conditions im=2, and showed the relevance of
ence of an infinite cluster that spans the whole system. Pemass fluctuations at criticality12]. It is known that the
colation concepts have been widely applied to severaboundary conditions also influence the fraction of spanning
phenomena in physics, as for example in fluid flow in ran-clusters atp. [16,17]. More recently, the universality of the
dom media, dielectric breakdown, and diffusion in disor-mass distribution of ranked clusters @2 has also been
dered media. Moreover, the scaling properties of percolatiomvestigated 13]. It was found that the distribution for any
clusters have also been exploited in order to better underank shows a universal behavior, but that only in the large
stand some features of many chemical, biological, and sociaknk limit is there a universal Gaussian size distribution. Fur-
phenomendl]. As such, percolation is a deeply studied phe-ther, the nature of the largest cluster size distribution was
nomenon, and both “static” and “dynamical2] variations  shown to have distinct contributions from the spanning and
(i.e., directed percolationof the problem continue to pose nonspanning clustergl4]. In d=2, the superposition of
interesting challenges. these contributions results in a well-defined two-peak struc-
Percolation models employed over diluted continuous meture for the size distribution. A single-peak distribution is
dia are appropriate for describing specific features of reabbserved at higher dimensions. The average ratio between
systems that exhibit percolation behavior. However, a largéghe masses of spanning and nonspanning clusters was shown
amount of information regarding the scaling of percolationto be roughly independent of the lattice size, dimensionality,
clusters can be captured by simple lattice models that arand boundary conditions.
more suited to extensive studies by means of computational Here, we numerically study the relevant quantities related
techniques. In random site percolation, every site of a largéo the scaling behavior of the mass distribution of the largest
lattice of linear sizel in d dimensions is randomly occupied and second largest clusters at percolation. By defining suit-
with probability p, giving rise to clusters of neighboring able zero-exponent scaling quantities, we employ a finite size
sites. When the occupation probability is larger than a criticakcaling analysis of the data to obtain precise estimates for the
valuep., a dense infinite cluster arises whose massnber  percolation threshold up t= 7. We also use scaling analy-
of connected sitésscales asm~LY In contrast, forp  sis to determine the average ratio between the largest and
<p., the cluster masses grow only logarithmical~6]  second largest clusters, thus allowing us to explore its depen-
with L. At the critical concentratiop,, fractal infinite clus- dence on dimensionality and on boundary conditions. Fur-
ters emerge withn~ L% with a fractal dimensiom;<d. ther, we report on some mass distribution functions associ-
Although many properties of percolating systems are welbated with the two largest clusters for distinct boundary
understood, many questions remain to be addressed. For esenditions and spatial dimension. These results provide a
ample, the distribution of ranked cluster masses at the percanore complete picture concerning the general scaling behav-
lation threshold has become a subject of renewed interesor of mass distribution functions at percolation, and how
among the computational statistical physics communitythey evolve to the mean-field distributions at high dimen-
[4,5,7-14. Recently, it has been shown that all the rankedsions.
clusters(largest, second largest, third largest, and sphave
identical fractal dimensiond; [4,11,13. Therefore, the larg- Il METHODS
We focus our computational efforts towards the study of
*Electronic address: marcelo@fis.ufal.br the traditional site percolation problem on a hypercubic lat-
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tice ind dimensions, under either open or periodic boundary 100
conditions(BC). Specifically, in our numerical simulations, :ifﬁ
we randomly distribute active sites with probabiljyin a — L9
hypercubic lattice with linear size. In order to identify the 1 e L=10
largest and second largest clusters, we employ standard ran- —— —L=11
d_om percolation algori_thms. For a given disorder distribu- A — //
tion, we measure the size of the largest cludgrand of the 2 10l ///:
second largest clustdf,. A configurational average over the S 01088 07080 ooeT  0Tosz 0088 //./j//
disorder is then performed. Hence we effectively measure Vv /{:////;éi
(My), {(My), and{M;/M,) as a function op andL. e

The same random distribution of active sites can represent e g
distinct cluster distributions when different BC are consid- =
ered. This is because two clusters at opposite extremes with
open BC may become a single larger cluster if periodic BC d106 0107 0108 04109 0410 0411 0112
are used instead. Therefore, the largest clusters masses can p
be significantly affected by the imposed BC even in the ther-
modynamic limitL — oo, FIG. 1.(M,/M,) versusp for d=6 and periodic BC. Data were

According to the finite size scaling hypothesis, the aver-obtained after a configurational average over 10 000 samples. Error

age size of the largest cluster near the percolation threshoRfrs are much smaller than symbols size. The common point deter-
scales as minesp, and the scale invariant average mass ratio at percolation.

(Mp)~L9 A, (1) second largest cluster sizesgst p. for each dimension, we
ran 5x 10% configurations of size ., to Obtain the mass
distributions for open and periodic BC.
As a first step, we performed the finite size scaling analy-
sis of the average ratidM,/M,). According to Eq.(2), this
_ _ v ratio is size independent at the percolation threshold. There-
(M1/M2)=gl(p=pe)L "], @ fore, the curvegM /M) versusp, as obtained from distinct

A similar scaling relation also holds féM)/(M,). Accord-  lattice sizes, must intersect at a common point that defiges
ing to the above scaling behavior these ratios are size indénd the average ratio at criticality. In Fig. 1, we show the
pendent at the critical perco|ati0n threshold. result of the above analyS|S fdr=6 and perIOdIC BC. From

In a previous work, we employed the above scaling hy-this we estimatep.=0.10910(5) andM;/M,)=3.273),
pothesis to analyze data from the site percolation problem ifor d=6. In these estimates we are not considering any pos-
a square lattice. We showed that a very precise estimate &fble correction to scaling. We notice that our estimatepfor
the percolation threshold can be achieved with a relativelys relatively above the previous numerical estimaigd
small computational effort, and th&M,/M,) is strongly ~=6)=0.107(1)[1], but is quite close to the value obtained
dependent on the imposed boundary condifij. Here, we  from the conjecture of Galam and Mauget8]. From d
extend our results by considering high-dimensional lattices=2—7, all estimated values are in fully agreement with the
up tod=7, which is above the upper critical dimensidp ~ best ones previously reported in the literat{te18-21.
=6 for the percolation problem. Further, we will also mea- In Table I, we summarize our best estimates for the criti-
sure the mass distribution function of the two largest cluster§al concentration and the critical values @¥,/M,) and
atp., as well as the distribution functions of the mass ratio(M1)/{M5). These results confirm the strong dependence on
M, /M,, exploring their sensitivity on BC and convergence the imposed BC of the average mass ratio of the two largest

As has been recently demonstrafddll], the same scaling
behavior stands fofM,). The ratio(M;/M,) behaves as a
zero-exponent critical quantity scaling as

to the mean-field behavior. clusters. These averages monotonically decrease with the lat-
tice dimensiord, and seem to saturate abade 6. The fact
IIl. RESULTS that (M, /My)y#(M)/{M,) reflects the relevance of mass

fluctuations at criticality. These fluctuations decrease with
In our simulations, we measured the size of the two largincreasingd and are larger for periodic BC.

est clusters for each disordered configuration with a concen- In Fig. 2, we report on the mass distribution of the largest
trationp of active sites. In order to obtain good statistics, wecluster at the percolation threshold for periofiiig. 2(a)]
generated 1Ddistinct configurations for each concentration and open[Fig. 2(b)] BC. For periodic BC[Fig. 2(a)], the
in hypercubic lattices with periodic BC. For lattices with shape of the distribution id=2 is quite distinct from those
open boundaries, we needed to perform a more extensiva higher dimensions. This feature was previously observed
statistical analysigwith 10° configurationgsince larger fluc- by Sen[14], and related to the distinct scaling behavior of
tuations are present in this case. The largest latticelsizg  the spanning and nonspanning cluster distributions. We ob-
simulated for each dimensiot contained about fOsites  served that ind=2, the distribution has a peak near the
(Lmax=1000, 100, 40, 20, 11, 9; fod=2, 3, 4, 5, 6, 7, average cluster size and rapidly decreases for larger clusters.
respectively. To measure the probability distribution of the At higher dimensions, the distributions evolve to a broader
two largest clusters and the ratio between the largest andne peaked aroun@M)/2 with a slowly decaying tail. No-
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TABLE I. Summary of the dependence on BC of the ratio between the masses of the first and second largest clusters. The observed

behavior is nonuniversal with respect to the BC.
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Periodic boundary Open boundary
Dimension p.=Ap (M1/My)=A (MDI{(My)+=A (M1/My)=A (M)/(My) A
2 0.59272-0.00005 25.+0.1 10.:-0.1 6.7:0.1 3.510.07
3 0.31161-0.00003 7.5%0.04 4.38-0.04 2.50:0.05 2.12£0.04
4 0.19687 0.00006 4.680.03 3.30:0.06 1.84-0.02 1.74-0.04
5 0.14081-0.00004 3.720.03 2.79£0.05 1.62-0.02 1.570.07
6 0.10910-0.00005 3.2%0.03 2.610.05 1.49-0.03 1.46:0.03
7 0.08888-0.00006 3.26:0.06 2.53£0.07 1.44-0.01 1.42-0.01

tice also that, in all dimensions, the distribution is vanish-tinct features that can be observed in open BC as compared
ingly small for M;<0.15M,). For open boundaries, the with periodic BC concern the peak positidoloser to the
distinction between thel=2 distribution is not very much average valueand a rapidly decaying tail.

pronounced, given that the spanning probability patis In Fig. 3, the distribution of the second largest cluster size
smaller than in the periodic case. However, a two-peak struds reported. For periodic B{rFig. 3(@)], thed=2 distribution

ture is still clearly identified in agreement with REf4]. The  is also quite distinct from those of higher dimensions. This
distribution is wider and therefore larger deviations from the
mean are more probable to occur than in the periodic lattices.

. . : CEs T 15
At higher dimensions, the largest cluster distribution in lat- . . d2
tices with open and periodic BC has similar trends. The dis- .e . d3
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L0 - ";f*? FIG. 3. The mass distribution of the second largest cluster at the
0'00_0 1.0 20 percolation threshold is shown fd=2,3,4, and 7 with(a) periodic
(b) M,/<M,> BC and(b) open BC. We performed 50 000 measures for each di-

mensiond simulated withL ,,,,=1000, 100, 40, and 9, respectively.
FIG. 2. The mass distribution of the largest cluster at the percoNotice that at high dimensions, these distributions are similar to
lation threshold is shown fat=2, 3, 4, and 7 witha) periodic BC  those for the largest cluster. However, at low dimensi@pecially
and (b) open BC. We performed 50 000 measures for each dimenat d=2) and periodic BC, the largest and second largest clusters
siond simulated withL ,,,,=1000, 100, 40, and 9, respectively. Our have quite distinct mass distributions, once the spanning and non-
data indicate that the convergence to the limiting distribution forspanning clusters have well-distinguishable distributions in this
high dimensions is faster for periodic BC. case.
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finding is related to the very small probability of the second 1.0 pye
largest cluster to span the lattice d=2 [17]. This feature *+d=2
makesP(M,) to become wider and to show a peak at a 0.8 i S
typical cluster size considerably smaller than the average ' . de7
size. At higher dimensions, the distribution of the second -~ 06| * 10°
largest cluster is more similar to the largest cluster size dis- 3 T e
tribution. For open BQFig. 3(b)], the second largest cluster =) 04l C . 10° e -
in d=2 has a higher probability to span the lattice and the = et
distribution shows a two-peak structure. As the lattice dimen- 02 e .
sionality grows, the second largest cluster size distribution | el . .
becomes sharper. Tttete it e e 0 4 4 308
To further characterize the above trends of the cluster size 0'01 0 20 3.0 4.0 5.0

statistics, we measured the normalized probability density (a) M,/M,
distribution of the ratio between the largest and second larg-
est cluster size&see Fig. 4. For periodic BC, we clearly see 3.0
that the probability of the second largest cluster to have a vae @
size of the order of the largest one is significantly smaller in 25 +d=3
d=2 as shown in Fig. @). Thus, it corroborates the pro- @ d=

: : 20 ¢ =7
posed relation between the sharp peak depicted by -
P(M,/(M,)) and the predominant nonspanning character of 2_ 15 !
the second largest cluster th=2. The mass ratio distribu- = 0
tion converges with increasing lattice dimensionality to a S0l -
power-law distribution for small ratios in the form T
P(M1/M,)=(M;/M,) 3?2 crossing over to an exponential 05¢. .t
decay for large size ratios. With open BC, the size ratio dis- R ¢ .
tribution is narrower and the initial power-law regime at high 00,5 15 20 o5 30
dimensions is not well characterized, as shown in Fip).4 (b) M,/M,

Also, for the two-dimensional latticd?(1) is larger than in
the corresponding distribution for periodic BC, which agrees FIG. 4. The distribution of the ratio between the masses of the
with the shift of the peak oP(M,/(M,)) to a larger cluster largest and second largest clusters at the percolation threshold are
size as reported in Fig.(B). shown ford=2,3,4, and 7 with(a) periodic BC andb) open BC.

We performed 50000 measures for each dimensissimulated

with L,,,=21000, 100, 40, and 9, respectively. Notice also that the

V. CONCLUSION convergence to the higthdimiting distribution is faster for periodic
L BC. The insets show the same data in log—log scale. The solid line
In summary, we have reported on several statistical prop- Zan

. R in (@) corresponds to a fit from an initial power lalR(x) o x
erties related to the mass distribution of the largest and se%—ro(sling oveF; to an exponential decay P ()

ond largest clusters at the percolation threshold in hypercubic

lattices up tad=7. We have explored the scale invariance of

the average mass ratio at percolation to provide accurate eseterizing the main behavior above the upper critical dimen-
timates of the critical percolation threshold and the criticalsiond=6. To the best of our knowledge, the analytical ex-
average mass ratio. By comparing the critical values opressions for these limiting distributions are still unknown.
(M1/M5) with (M{)/{M,), we showed that size fluctua- We hope that the present work can stimulate future efforts
tions progressively decrease, with increasing lattice dimenalong this direction.

sionality, and are larger for periodic boundary conditions. We
also reported on the probability density for the largest and
second largest cluster sizes, as well as for the mass ratio
between the two largest clusters. We identified several pecu- We would like to thank D. Stauffer for fruitful comments
liar features in the two-dimensional distributions and relatedvhich led us to proceed with the present work. We also ac-
them with the very small probability of coexistence of more knowledge the partial financial support provided by the Bra-
than one spanning cluster éh=2. Furthermore, we showed zilian research agencies CNPq and CAPES and by the Ala-
how these distributions evolve to limiting distributions char- goas state research agency FAPEAL.
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