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Largest and second largest cluster statistics at the percolation threshold of hypercubic lattices

C. R. da Silva, M. L. Lyra,* and G. M. Viswanathan
Departamento de Fı´sica, Universidade Federal de Alagoas, Maceio´ –AL 57072-970, Brazil

~Received 23 April 2002; published 13 November 2002!

We investigate the scale invariance of the average ratio between the masses of the largest and second largest
clusters at percolation. We employ a finite size scaling method to estimate percolation thresholds based on the
simulations of relatively small lattices, and report on estimates forpc in hypercubic lattices withd52 – 7, in
full agreement with the best literature estimates. Also, we find the critical mass ratio to be strongly dependent
on the boundary conditions, decreasing with the lattice dimension. Further, we compute several relevant mass
distribution functions associated with the two largest clusters, which approach to limiting distributions ford
.6. Finally, we discuss the main relevant features of the mass distributions in light of the relative role played
by the spanning and nonspanning clusters.
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I. INTRODUCTION

A classic problem in statistical physics concerns the st
of percolation in randomly diluted systems. Usually the e
istence of a percolating process is associated with the p
ence of an infinite cluster that spans the whole system.
colation concepts have been widely applied to seve
phenomena in physics, as for example in fluid flow in ra
dom media, dielectric breakdown, and diffusion in diso
dered media. Moreover, the scaling properties of percola
clusters have also been exploited in order to better un
stand some features of many chemical, biological, and so
phenomena@1#. As such, percolation is a deeply studied ph
nomenon, and both ‘‘static’’ and ‘‘dynamical’’@2# variations
~i.e., directed percolation! of the problem continue to pos
interesting challenges.

Percolation models employed over diluted continuous m
dia are appropriate for describing specific features of r
systems that exhibit percolation behavior. However, a la
amount of information regarding the scaling of percolati
clusters can be captured by simple lattice models that
more suited to extensive studies by means of computati
techniques. In random site percolation, every site of a la
lattice of linear sizeL in d dimensions is randomly occupie
with probability p, giving rise to clusters of neighborin
sites. When the occupation probability is larger than a criti
valuepc , a dense infinite cluster arises whose mass~number
of connected sites! scales asm;Ld. In contrast, for p
,pc , the cluster masses grow only logarithmically@3–6#
with L. At the critical concentrationpc , fractal infinite clus-
ters emerge withm;Ldf with a fractal dimensiondf,d.

Although many properties of percolating systems are w
understood, many questions remain to be addressed. Fo
ample, the distribution of ranked cluster masses at the pe
lation threshold has become a subject of renewed inte
among the computational statistical physics commun
@4,5,7–14#. Recently, it has been shown that all the rank
clusters~largest, second largest, third largest, and so on! have
identical fractal dimensionsdf @4,11,15#. Therefore, the larg-
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est and second largest clusters, for example, are proporti
in mass atpc . In a previous paper, we have numerica
demonstrated that the average ratio of the largest and se
largest clusters is drastically dependent on the impo
boundary conditions ind52, and showed the relevance o
mass fluctuations at criticality@12#. It is known that the
boundary conditions also influence the fraction of spann
clusters atpc @16,17#. More recently, the universality of the
mass distribution of ranked clusters ind52 has also been
investigated@13#. It was found that the distribution for an
rank shows a universal behavior, but that only in the la
rank limit is there a universal Gaussian size distribution. F
ther, the nature of the largest cluster size distribution w
shown to have distinct contributions from the spanning a
nonspanning clusters@14#. In d52, the superposition of
these contributions results in a well-defined two-peak str
ture for the size distribution. A single-peak distribution
observed at higher dimensions. The average ratio betw
the masses of spanning and nonspanning clusters was s
to be roughly independent of the lattice size, dimensiona
and boundary conditions.

Here, we numerically study the relevant quantities rela
to the scaling behavior of the mass distribution of the larg
and second largest clusters at percolation. By defining s
able zero-exponent scaling quantities, we employ a finite s
scaling analysis of the data to obtain precise estimates for
percolation threshold up tod57. We also use scaling analy
sis to determine the average ratio between the largest
second largest clusters, thus allowing us to explore its dep
dence on dimensionality and on boundary conditions. F
ther, we report on some mass distribution functions ass
ated with the two largest clusters for distinct bounda
conditions and spatial dimension. These results provid
more complete picture concerning the general scaling beh
ior of mass distribution functions at percolation, and ho
they evolve to the mean-field distributions at high dime
sions.

II. METHODS

We focus our computational efforts towards the study
the traditional site percolation problem on a hypercubic l
©2002 The American Physical Society07-1
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tice in d dimensions, under either open or periodic bound
conditions~BC!. Specifically, in our numerical simulations
we randomly distribute active sites with probabilityp in a
hypercubic lattice with linear sizeL. In order to identify the
largest and second largest clusters, we employ standard
dom percolation algorithms. For a given disorder distrib
tion, we measure the size of the largest clusterM1 and of the
second largest clusterM2. A configurational average over th
disorder is then performed. Hence we effectively meas
^M1&, ^M2&, and^M1 /M2& as a function ofp andL.

The same random distribution of active sites can repre
distinct cluster distributions when different BC are cons
ered. This is because two clusters at opposite extremes
open BC may become a single larger cluster if periodic
are used instead. Therefore, the largest clusters masse
be significantly affected by the imposed BC even in the th
modynamic limitL→`.

According to the finite size scaling hypothesis, the av
age size of the largest cluster near the percolation thres
scales as

^M1&;Ld2b/n. ~1!

As has been recently demonstrated@4,11#, the same scaling
behavior stands for̂M2&. The ratio^M1 /M2& behaves as a
zero-exponent critical quantity scaling as

^M1 /M2&5g@~p2pc!L
1/n#. ~2!

A similar scaling relation also holds for^M1&/^M2&. Accord-
ing to the above scaling behavior these ratios are size in
pendent at the critical percolation threshold.

In a previous work, we employed the above scaling h
pothesis to analyze data from the site percolation problem
a square lattice. We showed that a very precise estimat
the percolation threshold can be achieved with a relativ
small computational effort, and that^M1 /M2& is strongly
dependent on the imposed boundary condition@12#. Here, we
extend our results by considering high-dimensional latti
up to d57, which is above the upper critical dimensiondc
56 for the percolation problem. Further, we will also me
sure the mass distribution function of the two largest clus
at pc , as well as the distribution functions of the mass ra
M1 /M2, exploring their sensitivity on BC and convergen
to the mean-field behavior.

III. RESULTS

In our simulations, we measured the size of the two la
est clusters for each disordered configuration with a conc
trationp of active sites. In order to obtain good statistics,
generated 104 distinct configurations for each concentratio
in hypercubic lattices with periodic BC. For lattices wi
open boundaries, we needed to perform a more exten
statistical analysis~with 105 configurations! since larger fluc-
tuations are present in this case. The largest lattice sizeLmax
simulated for each dimensiond contained about 106 sites
(Lmax51000, 100, 40, 20, 11, 9; ford52, 3, 4, 5, 6, 7,
respectively!. To measure the probability distribution of th
two largest clusters and the ratio between the largest
05610
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second largest cluster sizes atp5pc for each dimension, we
ran 53104 configurations of sizeLmax to obtain the mass
distributions for open and periodic BC.

As a first step, we performed the finite size scaling ana
sis of the average ratiôM1 /M2&. According to Eq.~2!, this
ratio is size independent at the percolation threshold. Th
fore, the curveŝM1 /M2& versusp, as obtained from distinc
lattice sizes, must intersect at a common point that definepc
and the average ratio at criticality. In Fig. 1, we show t
result of the above analysis ford56 and periodic BC. From
this we estimatepc50.109 10(5) and̂ M1 /M2&53.27(3),
for d56. In these estimates we are not considering any p
sible correction to scaling. We notice that our estimate forpc
is relatively above the previous numerical estimatepc(d
56)50.107(1) @1#, but is quite close to the value obtaine
from the conjecture of Galam and Mauger@18#. From d
52 –7, all estimated values are in fully agreement with t
best ones previously reported in the literature@1,18–21#.

In Table I, we summarize our best estimates for the cr
cal concentration and the critical values of^M1 /M2& and
^M1&/^M2&. These results confirm the strong dependence
the imposed BC of the average mass ratio of the two larg
clusters. These averages monotonically decrease with the
tice dimensiond, and seem to saturate aboved56. The fact
that ^M1 /M2&Þ^M1&/^M2& reflects the relevance of mas
fluctuations at criticality. These fluctuations decrease w
increasingd and are larger for periodic BC.

In Fig. 2, we report on the mass distribution of the larg
cluster at the percolation threshold for periodic@Fig. 2~a!#
and open@Fig. 2~b!# BC. For periodic BC@Fig. 2~a!#, the
shape of the distribution ind52 is quite distinct from those
at higher dimensions. This feature was previously obser
by Sen@14#, and related to the distinct scaling behavior
the spanning and nonspanning cluster distributions. We
served that ind52, the distribution has a peak near th
average cluster size and rapidly decreases for larger clus
At higher dimensions, the distributions evolve to a broad
one peaked around̂M1&/2 with a slowly decaying tail. No-

FIG. 1. ^M1 /M2& versusp for d56 and periodic BC. Data were
obtained after a configurational average over 10 000 samples. E
bars are much smaller than symbols size. The common point d
minespc and the scale invariant average mass ratio at percolat
7-2
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TABLE I. Summary of the dependence on BC of the ratio between the masses of the first and second largest clusters. The
behavior is nonuniversal with respect to the BC.

Periodic boundary Open boundary
Dimension pc6Dp ^M1 /M2&6D ^M1&/^M2&6D ^M1 /M2&6D ^M1&/^M2&6D

2 0.5927260.00005 25.160.1 10.160.1 6.760.1 3.5160.07
3 0.3116160.00003 7.5160.04 4.3860.04 2.5060.05 2.1260.04
4 0.1968760.00006 4.6860.03 3.3060.06 1.8460.02 1.7460.04
5 0.1408160.00004 3.7260.03 2.7960.05 1.6260.02 1.5760.07
6 0.1091060.00005 3.2760.03 2.6160.05 1.4960.03 1.4660.03
7 0.0888860.00006 3.2060.06 2.5360.07 1.4460.01 1.4260.01
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tice also that, in all dimensions, the distribution is vanis
ingly small for M1,0.15̂ M1&. For open boundaries, th
distinction between thed52 distribution is not very much
pronounced, given that the spanning probability atpc is
smaller than in the periodic case. However, a two-peak st
ture is still clearly identified in agreement with Ref.@14#. The
distribution is wider and therefore larger deviations from t
mean are more probable to occur than in the periodic latti
At higher dimensions, the largest cluster distribution in l
tices with open and periodic BC has similar trends. The d

FIG. 2. The mass distribution of the largest cluster at the pe
lation threshold is shown ford52, 3, 4, and 7 with~a! periodic BC
and ~b! open BC. We performed 50 000 measures for each dim
siond simulated withLmax51000, 100, 40, and 9, respectively. O
data indicate that the convergence to the limiting distribution
high dimensions is faster for periodic BC.
05610
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tinct features that can be observed in open BC as comp
with periodic BC concern the peak position~closer to the
average value! and a rapidly decaying tail.

In Fig. 3, the distribution of the second largest cluster s
is reported. For periodic BC@Fig. 3~a!#, thed52 distribution
is also quite distinct from those of higher dimensions. T

-

n-
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FIG. 3. The mass distribution of the second largest cluster at
percolation threshold is shown ford52,3,4, and 7 with~a! periodic
BC and~b! open BC. We performed 50 000 measures for each
mensiond simulated withLmax51000, 100, 40, and 9, respectivel
Notice that at high dimensions, these distributions are similar
those for the largest cluster. However, at low dimensions~specially
at d52) and periodic BC, the largest and second largest clus
have quite distinct mass distributions, once the spanning and
spanning clusters have well-distinguishable distributions in t
case.
7-3
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finding is related to the very small probability of the seco
largest cluster to span the lattice ind52 @17#. This feature
makesP(M2) to become wider and to show a peak at
typical cluster size considerably smaller than the aver
size. At higher dimensions, the distribution of the seco
largest cluster is more similar to the largest cluster size
tribution. For open BC@Fig. 3~b!#, the second largest cluste
in d52 has a higher probability to span the lattice and
distribution shows a two-peak structure. As the lattice dim
sionality grows, the second largest cluster size distribut
becomes sharper.

To further characterize the above trends of the cluster
statistics, we measured the normalized probability den
distribution of the ratio between the largest and second la
est cluster sizes~see Fig. 4!. For periodic BC, we clearly se
that the probability of the second largest cluster to hav
size of the order of the largest one is significantly smaller
d52 as shown in Fig. 4~a!. Thus, it corroborates the pro
posed relation between the sharp peak depicted
P(M2 /^M2&) and the predominant nonspanning characte
the second largest cluster ind52. The mass ratio distribu
tion converges with increasing lattice dimensionality to
power-law distribution for small ratios in the form
P(M1 /M2)}(M1 /M2)23/2 crossing over to an exponentia
decay for large size ratios. With open BC, the size ratio d
tribution is narrower and the initial power-law regime at hi
dimensions is not well characterized, as shown in Fig. 4~b!.
Also, for the two-dimensional lattice,P(1) is larger than in
the corresponding distribution for periodic BC, which agre
with the shift of the peak ofP(M2 /^M2&) to a larger cluster
size as reported in Fig. 3~b!.

IV. CONCLUSION

In summary, we have reported on several statistical pr
erties related to the mass distribution of the largest and
ond largest clusters at the percolation threshold in hyperc
lattices up tod57. We have explored the scale invariance
the average mass ratio at percolation to provide accurate
timates of the critical percolation threshold and the criti
average mass ratio. By comparing the critical values
^M1 /M2& with ^M1&/^M2&, we showed that size fluctua
tions progressively decrease, with increasing lattice dim
sionality, and are larger for periodic boundary conditions.
also reported on the probability density for the largest a
second largest cluster sizes, as well as for the mass
between the two largest clusters. We identified several pe
liar features in the two-dimensional distributions and rela
them with the very small probability of coexistence of mo
than one spanning cluster ind52. Furthermore, we showe
how these distributions evolve to limiting distributions cha
E.
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acterizing the main behavior above the upper critical dim
sion d56. To the best of our knowledge, the analytical e
pressions for these limiting distributions are still unknow
We hope that the present work can stimulate future effo
along this direction.
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FIG. 4. The distribution of the ratio between the masses of
largest and second largest clusters at the percolation threshol
shown ford52,3,4, and 7 with~a! periodic BC and~b! open BC.
We performed 50 000 measures for each dimensiond simulated
with Lmax51000, 100, 40, and 9, respectively. Notice also that
convergence to the high-d limiting distribution is faster for periodic
BC. The insets show the same data in log–log scale. The solid
in ~a! corresponds to a fit from an initial power lawP(x)}x23/2

crossing over to an exponential decay
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