
PHYSICAL REVIEW E 66, 056105 ~2002!
Geography in a scale-free network model
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We offer an example of a network model with a power-law degree distribution,P(k);k2a, for nodes, but
which nevertheless has a well-defined geography and a nonzero threshold percolation probability fora.2, the
range of real-world contact networks. This is different frompc50 for a,3 results for the original well-mixed
scale-free networks. In ourlattice-based scale-free network, individuals link to nearby neighbors on a lattice.
Even considerable additional small-world links do not change our conclusion of nonzero thresholds. When
applied to disease propagation, these results suggest that random immunization may be more successful in
controlling human epidemics than previously suggested if there is geographical clustering.
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I. INTRODUCTION

The idea that a scale-free network has a zero percola
threshold@1,2#, pc50, has sparked a good deal of intere
lately @3–6#. In this paper, we offer an example of a sca
free network~in the sense of a power-law degree distrib
tion! that has very different properties than the origin
Barabasi-Albert~BA! network. We find that replacing th
preferential attachment and well-mixed structure of the
network with two-dimensional~2D! clustering makes the
percolation threshold nonzero. Further, percolation on
network can be mapped onto the problem of suscepti
infected-recovered~SIR! epidemic propagation@7,8#. Thus,
these percolation results have practical implications for
control of real-world epidemics. Specifically, in contrast
recent claims@6,9#, a random immunization program migh
successfully eradicate an epidemic on a scale-free netw
such as a sexually transmitted disease. Furthermore, we
show that the addition of a sizable number of random lin
or small-worlds bonds, to the lattice does not change
result of a nonzero percolation threshold in our network.

In our network model, nodes are embedded on a 2D
tice. They asymptotically have a power-law distribution
degreek, P(k);k2a, but they connect tothe k nearest
neighbors on the lattice, not randomly chosen nodes. Th
relevance of this to disease propagation is that for epidem
such as sexually transmitted diseases and many other hu
diseases, it is known that the number of contacts of differ
individuals differs over a wide range. The distributions of t
numbers of sexual contacts have been traced in several
ies @10# and are known to show fat tails that approxima
power-law behavior: The number of sexual partners of
individual k during a year is distributed according to a pow
law with 2,a,3 @11#. These distributions possess a me
value,k̄,`, but they lack a dispersion and thus show lar
universal fluctuations.
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To model such behavior, Pastor-Sattoras and Vespign
@4# as well as May and Lloyd@5# have proposed a scale-fre
network with preferential attachment to the already high
connected nodes, or hubs. In the original model due to B
basi and Albert@12#, the network grows sequentially: Eac
newly introduced node bringsm proper bonds; each of them
is attached to one of then nodes already existing; and th
probability of attachment is proportional to the numberki of
the already existing bonds of this node. This model lea
naturally to a power-law probability distribution of the de
gree of the node~number of its bonds!, P(k)}k23. Infection
propagation on a scale-free network was considered
Pastor-Sattoras and Vespignani@4,6#. They found that a
scale-free network is very robust against the random
moval, or immunization, of the nodes. A giant compone
still persists even if almost all the nodes in the system
eliminated, i.e., the critical thresholdpc50 for all a<3.

Asserting that the network of human sexual contacts
the scale-free construction and the structure of the BA mo
would have important consequences for controlling the e
demics of sexually transmitted diseases: The immuniza
of a large part of the population would be a useless meas
Instead, one would have to concentrate on the most ac
agents, which may be hard to identify.

Although it may be a reasonable model for growing tec
nological networks, such as the Worldwide web, whe
physical distance is not an issue, the scale-free construc
appears to be unnatural as a model for disease transmis
Its ‘‘well-mixed’’ spanning character and the absence of a
underlying metric~i.e., the impossibility of definition of a
geographical ‘‘neighborhood’’! are unrealistic.~In simple
terms, although some people often use airplanes, a large
tion of the Earth’s population does not.! Sexual contacts may
have well-mixed propertieslocally within a neighborhood,
town or city, but, in general, not globally. For nearly th
entire population, physical distance at some scale mat
There is no reason that the topology~a structure of connec
tions! of a network of sexual contacts should be the same
that for the Worldwide web.

Eguiluz and Klemm@13# recently offered a different ex
ample of a scale-free network with nonzero susceptib
infected-susceptible~SIS! epidemic thresholds fora53. In
©2002 The American Physical Society05-1
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our model, the nonzero thresholds are present for ana
.2, so it addresses the region of interest. Also, in th
model, nodes with a particular degree, or number of lin
are more likely to mix with those of an unlike degree.
their otherwise well-mixed network, highly connected nod
are more likely to connect with sparsely connected nod
and vice versa. This is a disassortative, or degr
anticorrelated, network. In our model, because the no
and not the bonds, are chosen randomly, our model is slig
disassortative as well. As discussed later on, Newman@14#
argues that social interaction networks are assortative~i.e.,
degree-correlated!. However, in our network, the nonzer
threshold comes from the underlying local 2D clusteri
structure that would seem naturally present in real epidem
structure that is not present in Eguiluz and Klemm’s mod
Rozenfeld, Cohen, ben-Avraham, and Havlin@15# have a
method of embedding a scale-free network into a 2D lat
that is similar to ours but not identical, in that there is
natural cutoff in their power-law distribution even for a ve
large lattice. Also, these authors do not address the que
of percolation on the network, which is our main intere
here.

II. MODEL: BOND PERCOLATION WITH A VARIABLE
NUMBER OF LINKS

The basic version of our model of a lattice preserves
local geometrical properties of a 2D lattice. For this reas
we call it a lattice-based scale-free network. Our model is a
variant of an old two-dimensional circle model of continuu
percolation@a lattice-based ‘‘inverse Swiss cheese’’ mod
~percolation model with randomly placed uniform spheric
voids! @16# with a variable radius of ‘‘holes’’#. Starting from
the sites on the lattice, we assign each node its numberki of
proper bonds defining itsradius of action R, and connect it to
all the nodes within the radiusR. The distribution of the radii
is taken so that the number of proper bonds, the bonds
down within R, follows thek2a law for largek and cuts off
at the nearest neighbor distance. Ind dimensions, if the num-
ber of proper bonds of a site is to be distributed according
P(k)}k2a, it follows that P(R).R2b with R>1 and b
5d(a21)11. Nodes having a bond in common are cons
ered connected. The bondij connecting nodesi and j is
counted only once, whether it belongs to the set of the pro
bonds of nodei, of nodej, or both. Note that in our model,a
and b are parameters; they do not arise naturally as in
BA network.

First, we show that the mean number of bonds per nod
our model has the same asymptotic power-law behavio
the distribution of the number of the proper bonds ifa.2.
We calculate the mean number of bonds connecting a noi
to nodesj outsideRi . This is also given by the mean numb
of the nodes at a distancer .Ri from the given one, for
which Rj.r . The probability to findRj larger thanr is
* r

`P(r 8)dr8. Thus, the mean number of nodes connected
i from outside is

MRi
5E

Ri

`

drSdr d21E
r

`

P~Rj !dRj ,
05610
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where Sd is the surface of thed-dimensional unit sphere
(S151, S252p, etc.!. In general, taking P(Rj )
.Rj

2da1d21 ,

MRi
.Ri

2d(a22) ,

which tends to zero for largeRi , as long as the mean numbe
of bonds per node exists~i.e., a.2). Note that the numbe
MR5(n51

` nqn ~whereqn is the probability that a node con
sidered has exactlyn bonds outsideR) is larger than the
probability QR5(n51

` qn to have at least one bond comin
from outsideR, and thus fora.2, QR tends to zero asR
grows. This means that the probability distribution of t
number of the ‘‘proper’’ bonds and the actual number
bonds of a node follow the same asymptotic pattern fok

large. The mean number of bonds per node is given bk̄
5*0

`@SdRd211M (R)#P(R)dR and converges fora.2.
Now, consider bond percolation on this network. Beg

ning with a 2D square grid ofN bare nodes, randomly ad
Np disks @i.e., choose radiiRi from P(Ri) and fill up the
proper bonds to the nodes that do not yet have them#. For
what a will there be a nonzero percolation threshold,pc
.0?

We note that the percolation on our network differs fro
conventional lattice percolation or continuum percolation,
that for any finite lattice, there is a possibility of a nod
having a radius of action so large that it spans the entirL
3L lattice. The probability of drawing such a giant dis
scales asPgiant5Prob(r>L);L12b. The average numbe
of disks put down before such a giant disk is encounte
and is approximately 1/Pgiant . In d dimensions, that numbe
corresponds top* Ld disks, wherep* is the average thresh
old for adding a giant disk on anLd lattice. Thus, 1/Pgiant
5p* Ld and solving for the average thresholdp* for an L
3L lattice, we obtain

p* ;Lb212d5Ld(a22), ~1!

so thatp* →0 asL→` for a,2. Since adding a giant disk
is only one of the several ways of spanning the lattice,p* is
an upper bound for the percolation probabilitypc . Thus,
pc(L)→0 asL→` for a,2 as well.

The general SIR model of the infection propagation on
simple lattice can be mapped on to the percolation prob
on that same lattice@7,8,17#. The bonds present in the pe
colation problem correspond to successful propagation of
disease from an infected individual to a susceptible. Thu
subcritical cluster in the percolation problem corresponds
a subcritical epidemic, an epidemic that dies out. Infect
propagation is possible~i.e., a giant component of a grap
exists! if a finite fraction of the individuals is infected.

Nodes without disks might be thought of as ‘‘immune
but the analogy is not complete. Since we are conside
bond percolation, nodes are always present. Immune no
will lack the proper bonds, but they can still have outsi
bonds, which would not be the case for a truly immune
dividual. Thus, our model will actuallyunderestimatethe
true epidemic threshold. Consider the difference in
simple example of two disks shown in Fig. 1. In our mod
5-2
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just the presence of those two disks would mean that
epidemic spans. Thus, for this simple example,pc52/64
51/32. In the proper epidemic model, one would need
additional susceptible node in the overlap of the two di
for the epidemic to be able to span the lattice. Thus,pc
.1/32. The correspondence of our disk model to an e
demic on a scale-free network is not perfect, but adequate
our purposes.

III. SIMULATION

We found the percolation thresholds using the Newm
Ziff algorithm @18#. Disks were randomly added to anL
3L lattice at different sites until a cluster spanned the latti
Figure 2 shows the average percolation thresholdpc(L) as a
function of 1/L. It appears from the plot that there is a fini
percolation threshold for not justa.3 but 2,a,3 as well,
the region of interest for real-world epidemics. Thus, if the
real-world epidemics are not well mixed but rather dom
nated by local geometry, they will have a finite threshold. F
a,2, the results are consistent withpc50 and seem to scal
according to Eq.~1! for sufficiently largeL. The transition is
gradual.

Comparing simulations, we find thatp* (L) is signifi-
cantly larger thanpc(L), even fora51.6. However, as one
can see from Fig. 2, the slopes ofpc(L) and p* (L) as a
function of lattice size match fairly well fora<1.9.

IV. SMALL-WORLD LINKS

Consider now the same model with small-world link
bonds that connect two randomly chosen nodes, adde
well. In the context of disease propagation, this is included
model infrequent, distant contacts—occasional airline tra

FIG. 1. An example of the basic model. One disk with radiusRA

is centered around nodeA, and another with radiusRB is centered
aboutB. All nodes within each disk are attached to the central no
The bonds of these two disks span the 838 lattice from left to
right.
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as it were. SupposeNp disks are present along withNpf
random links as well. How do these additional links affe
the percolation threshold? On a lattice with small-wo
links, the simple spanning criterion of conventional latti
percolation is not appropriate. Random links may possi
connect two sites on opposite boundaries at a low concen
tion with no infections in between, but this hardly captur
the idea of a sustained epidemic. As we argued previou
@8#, the proper criterion for the percolation threshold is wh
the fraction of the lattice occupied by the largest clus
M (p) becomes a finite fraction of theL3L lattice asL
→`. We use finite size scaling onM (p,L) to find this value
as in Ref.@8#. Figure 3 shows simulation results for the pe
colation thresholdpSW(f) for the disk lattice with small-
world bonds as a function of the fraction of added rand
links f. Clearly, for a.2, the addition of even a sizabl
number of small-world links does not result inpc50.

One approach to finding the percolation threshold on
small-world lattice is to ignore the random links and consid
the subcritical clusters of the lattice as nodes on a rand
network @8,17#. The random links become the links for th
random network. Using this approach, the percolation thre
old for a random network withA nodes andB bonds isA

52B. If n̄ is the average subcritical cluster size, the
will be A5N/n̄ nodes on such a network andB5Npf
bonds. The subcritical percolation clusters will scale

.

FIG. 2. Percolation threshold on anL3L lattice as a function of
1/L for various powersa in the lattice-based scale-free mod
showing an apparent change in behavior ata52. From top to bot-
tom, the data are fora52.5, 2.3, and 2.05~as a guide to the eye
the simulation results are connected with a dashed line!; the next set
is for a52, connected by a solid line, and the next four sets
below our predicted threshold:a51.95, 1.9, 1.75, and 1.7~con-
nected by dashed lines!. 2000 simulations were run forL<1024
data points, and 1000 were run forL.1024 data points. For the
data belowa52, we tested Eq.~1!: the solid straight lines have th
same slope asp* (L) for the presence of giant spanning disks, a
are fitted either toL51024 orL52048.~They are notp* , which is
significantly larger.!
5-3
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n̄}up2pcu2g @19#, wherepc is the threshold without random
links andg is a characteristic exponent. We can estimat
new thresholdpSW(f) for the small-world lattice implicitly
from the relation

f5
KupSW2pcug

pSW
, ~2!

whereK is a nonuniversal constant. What isg? For conven-
tional 2D lattice percolation,g543/18'2.39. As shown in
Fig. 3, Eq.~2! with the 2D value forg works quite well for
a>3. Thef50.316 data point was used to calculateK.

For smallera, specifically the measured exponent ofa
52.5 for females in the Swedish sexual network@11#, this
approximation breaks down. One possibility for this brea
down is an incorrect value ofg. Perhaps the presence
more large disks changesg. Using thef50.0316 andf
50.1 data points, a value ofg51.94 was calculated, but th
fit is still inadequate. Some crossover seems to be occur
which we do not understand. We believe that the most lik
explanation implicit in the nodes-on-a-random-graph

FIG. 3. Average percolation threshold asNpf small-world links
were added to the lattice-based scale-free model. These infinite
tice thresholds were extrapolated from finite lattice simulatio
Solid lines are predictions from the nodes-on-a-random-graph
mate with the giant cluster exponentg5g2d'2.39. Each line is
fitted to thef50.316 value. The dashed line uses a calculateg
51.94 value and is fitted to thef50.1 value.
e

tt
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proximation is the assumption that the subcritical islands
equally likely to be chosen by the random links. However
there are several large subcritical islands on the lattice,
assumption apparently breaks down. These large islands
more attachments but not enough to reduce the percola
threshold to zero.

V. DISCUSSION

The primary reason for the difference between the
model and our model is the distance and number of conn
tions between the highly connected hubs. With the prefer
tial attachment of the BA model, nodes are more likely
attach to hubs and particularly connect two hubs, offer
numerousvery shortnetwork paths between hubs, and th
to a sizable portion of the population. These numerous p
ways in between make percolation more likely.

In contrast, the local clustering of geography in our mod
lengthens the network pathways between hubs. A diseas
our network would be much easier to control. Similarly,
also mentioned by Newman@14# in a degree-anticorrelate
network, highly connected nodes are more likely to be c
nected to sparsely connected nodes, thus lengthening the
work distance between the hubs. A moderate number of
dom links in our model will not change these results ev
though these links are effectively preferentially attach
This is because the bulk of the attachments are made thro
local clustering, and not by preferential attachment. At a
rate, in order to characterize the percolation properties o
scale-free network, one needs to know more than the de
distribution and the degree-correlation distribution.

Newman@14# notes that social networks tend to be ass
tative or degree correlated, and he concludes that becau
this, they may not be conducive to immunization effor
However, the networks that he cites are career-related
laborations such as movies and co-authorships, which m
not reflect the nature of the network of physical interacti
that would be relevant to disease propagation. In addit
with 2D local clustering, we have provided an alternati
reason why immunization efforts may indeed be fruitful as
the case of other highly infectious diseases such as polio
smallpox.
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