PHYSICAL REVIEW E 66, 056105 (2002
Geography in a scale-free network model
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We offer an example of a network model with a power-law degree distribugi¢k)~k~ ¢, for nodes, but
which nevertheless has a well-defined geography and a nonzero threshold percolation probabilit fahe
range of real-world contact networks. This is different frpg=0 for «<<3 results for the original well-mixed
scale-free networks. In odattice-based scale-free networikdividuals link to nearby neighbors on a lattice.
Even considerable additional small-world links do not change our conclusion of nonzero thresholds. When
applied to disease propagation, these results suggest that random immunization may be more successful in
controlling human epidemics than previously suggested if there is geographical clustering.
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[. INTRODUCTION To model such behavior, Pastor-Sattoras and Vespignani
[4] as well as May and Lloy@5] have proposed a scale-free
The idea that a scale-free network has a zero percolationetwork with preferential attachment to the already highly
threshold[1,2], p.=0, has sparked a good deal of interestconnected nodes, or hubs. In the original model due to Bara-
lately [3—6]. In this paper, we offer an example of a scale-basi and Alber{12], the network grows sequentially: Each
free network(in the sense of a power-law degree distribu-newly introduced node brings proper bonds; each of them
tion) that has very different properties than the originalis attached to one of the nodes already existing; and the
Barabasi-Albert(BA) network. We find that replacing the Pprobability of attachment is proportional to the numbgof
preferential attachment and well-mixed structure of the BAthe already existing bonds of this node. This model leads
network with two-dimensional2D) clustering makes the naturally to a power-law probability distribution of th.e de-
percolation threshold nonzero. Further, percolation on oufree of the nodénumber of its bonds P(k) <k . Infection
network can be mapped onto the problem of susceptiblgl™oPagation on a scale-free network was considered by
infected-recoveredSIR) epidemic propagatiofi7,g]. Thus, T astor-Sattoras and Vespigng,6]. They found that a
these percolation results have practical implications for thescale-free _networ_k IS very robust agamst_the random re-
control of real-world epidemics. Specifically, in contrast to moval, or immunization, of the nodes. A giant component

. ) L . still persists even if almost all the nodes in the system are
recent claimg6,9], a random immunization program might ~. : - _
successfully eradicate an epidemic on a scale-free networl?“mmated’ l.e., the critical threshoftt =0 for all a<3.

y P ' Asserting that the network of human sexual contacts has

such as a sexually .transm|tte.d disease. Furthermore, we W'tlll19 scale-free construction and the structure of the BA model
show that the addition of a S|zable.number of random links,, 14 have important consequences for controlling the epi-
or small-worlds bonds, to the lattice does not change thgjemics of sexually transmitted diseases: The immunization
result of a nonzero percolation threshold in our network.  f 4 |arge part of the population would be a useless measure.
In our network model, nodes are embedded on a 2D latistead, one would have to concentrate on the most active
tice. They asymptotically have a power-law distribution of agents, which may be hard to identify.
degreek, P(k)~k™“, but they connect tdhe k nearest Although it may be a reasonable model for growing tech-
neighbors on the latticenot randomly chosen nodes. The pojogical networks, such as the Worldwide web, where
relevance of this to disease propagation is that for epidemicghysical distance is not an issue, the scale-free construction

such as sexually transmitted diseases and many other humggpears to be unnatural as a model for disease transmission.
diseases, it is known that the number of contacts of differenjts “well-mixed” spanning character and the absence of any

individuals differs over a wide range. The distributions of theyngerlying metric(i.e., the impossibility of definition of a

numbers of sexual contacts have been traced in several StUGeographical “neighborhood” are unrealistic.(In simple

ies [10] and are known to show fat tails that approximateterms, although some people often use airplanes, a large por-

power-law behavior: The number of sexual partners of arjon of the Earth’s population does noSexual contacts may

individual k during a year is distributed according to a powerhave well-mixed propertietocally within a neighborhood,

law with 2<a<3 [11]. These distributions possess a meanown or city, but, in general, not globally. For nearly the

value,k<<oo, but they lack a dispersion and thus show largeentire population, physical distance at some scale matters.

universal fluctuations. There is no reason that the topolo@y structure of connec-
tions) of a network of sexual contacts should be the same as
that for the Worldwide web.

*Electronic address: warrencp@umich.edu Eguiluz and Klemn{13] recently offered a different ex-
"Electronic address: Isander@umich.edu ample of a scale-free network with nonzero susceptible-
*Electronic address: igor.sokolov@physik.hu-berlin.de infected-susceptibl€SIS) epidemic thresholds fow=3. In
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our model, the nonzero thresholds are present for any where Sy is the surface of thel-dimensional unit sphere
>2, so it addresses the region of interest. Also, in thei(S;=1, S,=2m, etc). In general, taking II(R;)
model, nodes with a particular degree, or number of links~R; 4**4~1
are more likely to mix with those of an unlike degree. In

their otherwise well-mixed network, highly connected nodes MRizRfd(“_z),

are more likely to connect with sparsely connected nodes,

and vice versa. This is a disassortative, or degreewhich tends to zero for largg; , as long as the mean number
anticorrelated, network. In our model, because the node®f bonds per node existse., «>2). Note that the number
and not the bonds, are chosen randomly, our model is slightlz==,_,nq, (whereq, is the probability that a node con-
disassortative as well. As discussed later on, Newfidh sidered has exactlp bonds outsideR) is larger than the
argues that social interaction networks are assortdtiee  probability Qr=37_,q, to have at least one bond coming
degree-correlated However, in our network, the nonzero from outsideR, and thus fora>2, Qg tends to zero af
threshold comes from the underlying local 2D clusteringgrows. This means that the probability distribution of the
structure that would seem naturally present in real epidemiCs yumber of the “proper” bonds and the actual number of
structure that is not present in EgUilUZ and Klemm’s mOde'.bondS of a node follow the same asymptotic patternkfor

Rozenfeld, Cohen, ben-Avraham, and Hawltb] have @ 506 The mean number of bonds per node is giverk by
method of embedding a scale-free network into a 2D lattice [ZIS4R 1+ M(R) T (R)dR and converges fou>2
O .

that is similar to ours but not identical, in that there is a Now, consider bond percolation on this network. Begin-

natural cutoff in their power-law distribution even for a very . . :
large lattice. Also, these authors do not address the questiﬁggdiggg[?ezDcﬁggzgergg%gﬂgg%?ggeznEja?iﬁol:glﬁhidd
R} | |

of percolation on the network, which is our main mterestproper bonds to the nodes that do not yet have ihéror

here. what « will there be a nonzero percolation threshofs,
>07?
Il. MODEL: BOND PERCOLATION WITH A VARIABLE We note that the percolation on our network differs from
NUMBER OF LINKS conventional lattice percolation or continuum percolation, in

The basic version of our model of a lattice preserves thdhat for any finite lattice, there is a possibility of a node
local geometrical properties of a 2D lattice. For this reasonh@ving a radius of action so large that it spans the eitire
we call it alattice-based scale-free networ®ur model is a XL lattice. The probability of drawing such a giant disk
variant of an old two-dimensional circle model of continuum Scales asPgian= Prob=L)~L""~. The average number
percolation[a lattice-based “inverse Swiss cheese” modelOf disks put down before such a giant disk is encountered
(percolation model with randomly placed uniform spherical@nd is approximately Bian,. In d dimensions, that number
voids) [16] with a variable radius of “holes]. Starting from  corresponds t@*L¢ disks, wherep* is the average thresh-
the sites on the lattice, we assign each node its nuikqbefr ~ 0ld for adding a giant disk on ah? lattice. Thus, Pg;an
proper bonds defining it@dius of action Rand connectitto =P*L¢ and solving for the average threshqsd for an L
all the nodes within the raditR The distribution of the radii XL lattice, we obtain
is taken so that the number of proper bonds, the bonds put % | p-1-d_ d(a—2)
down within R, follows thek ™ ¢ law for largek and cuts off pr~L =L ' @
at the nearest neighbor distancedldimensions, if the num-
ber of proper bonds of a site is to be distributed according t
P(k)=k™ ¢, it follows that II(R)=R# with R=1 and g
=d(a—1)+1. Nodes having a bond in common are consid-
ered connected. The borigd connecting nodes and j is
counted only once, whether it belongs to the set of the propey;
bonds of node, of nodej, or both. Note that in our moded
and B are parameters; they do not arise naturally as in th
BA network.

so thatp* —0 asL—o for «<2. Since adding a giant disk
Ps only one of the several ways of spanning the lattiejs

an upper bound for the percolation probabiljy. Thus,
p.(L)—0 asL—o for <2 as well.

The general SIR model of the infection propagation on a
mple lattice can be mapped on to the percolation problem
on that same latticg7,8,17. The bonds present in the per-
Colation problem correspond to successful propagation of the
.disease from an infected individual to a susceptible. Thus, a
. U€ 1R peritical cluster in the percolation problem corresponds to
our model has the same asymptotic power-law behavior a3 subcritical epidemic, an epidemic that dies out. Infection

the distribution of the number of the proper bondsyif2. ropbagation is possiblé.e.. a giant component of a araph
We calculate the mean number of bonds connectingahodep pagation is possiblé.e., a gi P grap

; . o ) exist9 if a finite fraction of the individuals is infected.
to nodeg outsideR; . This is also given by the mean number Nodes without disks might be thought of as “immune,”
of the nodes at a distanae>R; from the given one, for

. ", ) _ but the analogy is not complete. Since we are considering
which R;>r. The probability to findR; larger thanr is  pong percolation, nodes are always present. Immune nodes

[7TI(r")dr". Thus, the mean number of nodes connected tQyj|| |ack the proper bonds, but they can still have outside

i from outside is bonds, which would not be the case for a truly immune in-
B B dividual. Thus, our model will actuallyunderestimatethe

MR-:f drsdrd—lf M(R)dR;, true epidemic threshold. Consider the difference in the

IR r simple example of two disks shown in Fig. 1. In our model,
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FIG. 2. Percolation threshold on an< L lattice as a function of

FIG. 1. An example of the basic model. One disk with radR4s . . .
P - 1/L for various powersa in the lattice-based scale-free model

is centered around nod® and another with radiuRg is centered howi t ch in behavionat?  F tob to bot
aboutB. All nodes within each disk are attached to the central node>"°W!NY an apparent change in behaviowats. From top to bot-

The bonds of these two disks span thx 8 lattice from left to tom, .the dgta are for=2.5, 2.3, and 2.'O5as a guide to the eye,
right. the simulation results are connected with a dashed;lthe next set

is for «=2, connected by a solid line, and the next four sets are
Below our predicted thresholdi=1.95, 1.9, 1.75, and 1.%on-
nected by dashed lings2000 simulations were run fdr<1024

—1/32. In th idemi del id d data points, and 1000 were run fbe>1024 data points. For the
N - 1N h€ proper epidemic model, one would neead an,., belowa=2, we tested Eq1): the solid straight lines have the

additional susceptible node in the overlap of the two disks o slope ap* (L) for the presence of giant spanning disks, and

for the epidemic to be able to span the lattice. ThoS,  re fitted either td. = 1024 orl = 2048.(They are nop*, which is
>1/32. The correspondence of our disk model to an episjgnificantly large.

demic on a scale-free network is not perfect, but adequate for

our purposes. as it were. SupposBlp disks are present along withpg¢
random links as well. How do these additional links affect
ll. SIMULATION the percolation threshold? On a lattice with small-world
links, the simple spanning criterion of conventional lattice
percolation is not appropriate. Random links may possibly

%L latti ¢ diff L sit il a clust d the latti connect two sites on opposite boundaries at a low concentra-
attice at difierent sites until a cluster spanned the 1atlCeyq n \yith no infections in between, but this hardly captures

Figur.e 2 shows the average percolation threslpxg(dt.) aSa the idea of a sustained epidemic. As we argued previously
function of 1L. It appears from the plot that there is a finite g the proper criterion for the percolation threshold is when
percolation threshold for not just>3 but 2<a<3 aswell,  he fraction of the lattice occupied by the largest cluster
the region of interest for real-world epidemics. Thus, if theseM(p) becomes a finite fraction of thex L lattice aslL

real-world epidemics are not well mixed but rather domi- _ . “\va use finite size scaling dvl (p,L) to find this value

nated by local geometry, they will have a finite threshold. For,q i, Ref[8]. Figure 3 shows simulation results for the per-
a<2, the results are consistent with=0 and seem to scale

. > . 279 colation thresholdpgy( @) for the disk lattice with small-
accgrdllng to Eq(1) for sufficiently largeL.. The transition is world bonds as a finction of the fraction of added random
gradual.

links ¢. Clearly, for a>2, the addition of izabl
Comparing simulations, we find that*(L) is signific > ¢ Clearly, fora © addiion of even a sizabie

v h forq— number of small-world links does not resultjn=0.
cantly larger tharpc(L), even fora=1.6. However, as one 54 anproach to finding the percolation threshold on a
can see from Fig. 2, the slopes p§{(L) and p*(L) as a

) . . , small-world lattice is to ignore the random links and consider
function of lattice size match fairly well for<1.9. the subcritical clusters of the lattice as nodes on a random
network[8,17]. The random links become the links for this

IV. SMALL-WORLD LINKS random network. Using this approach, the percolation thresh-
Consider now the same model with small-world links, ©!d for @ random network witi nodes ands bonds isA
bonds that connect two randomly chosen nodes, added &52B. If n is the average subcritical cluster size, there

well. In the context of disease propagation, this is included tawill be A= N/n nodes on such a network arBi=Npg¢
model infrequent, distant contacts—occasional airline travelbonds. The subcritical percolation clusters will scale as

just the presence of those two disks would mean that th
epidemic spans. Thus, for this simple exampbe=2/64

We found the percolation thresholds using the Newman
Ziff algorithm [18]. Disks were randomly added to dn
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A I DL I I proximation is the assumption that the subcritical islands are
equally likely to be chosen by the random links. However, if
there are several large subcritical islands on the lattice, this
assumption apparently breaks down. These large islands gain
more attachments but not enough to reduce the percolation
threshold to zero.

0.25

0.2

2015 V. DISCUSSION

The primary reason for the difference between the BA
model and our model is the distance and number of connec-
tions between the highly connected hubs. With the preferen-
tial attachment of the BA model, nodes are more likely to
attach to hubs and particularly connect two hubs, offering
numerousvery shortnetwork paths between hubs, and thus
to a sizable portion of the population. These numerous path-
ways in between make percolation more likely.

In contrast, the local clustering of geography in our model
¢ lengthens the network pathways between hubs. A disease on
our network would be much easier to control. Similarly, as

were added to the lattice-based scale-free model. These infinite Ia?—ISO mlf nﬂpr;ﬁ'd by New”éa{d‘ﬂ In-a degree'lint;corret:amd
tice thresholds were extrapolated from finite lattice simulations.net\’vOr , highly connected nodes are more likely to be con-

Solid lines are predictions from the nodes-on-a-random-graph estl€Cted to sparsely connected nodes, thus lengthening the net-
mate with the giant cluster exponemt= y,q~2.39. Each line is WOrk distance between the hubs. A moderate number of ran-

fitted to the =0.316 value. The dashed line uses a calculated dom links in our model will not change these results even
=1.94 value and is fitted to thé=0.1 value. though these links are effectively preferentially attached.
This is because the bulk of the attachments are made through
local clustering, and not by preferential attachment. At any
4ate, in order to characterize the percolation properties of a
scale-free network, one needs to know more than the degree
distribution and the degree-correlation distribution.
Newman[14] notes that social networks tend to be assor-
K|psw—Pcl” tative or degree correlated, and he concludes that because of
¢:T' (2)  this, they may not be conducive to immunization efforts.
w However, the networks that he cites are career-related col-
whereK is a nonuniversal constant. Whatj€ For conven- laborations such as movies and co-authorships, which may
tional 2D lattice percolationy=43/18~2.39. As shown in hot reflect the nature of the network of physical interaction
Fig. 3, Eq.(2) with the 2D value fory works quite well for ~ that would be relevant to disease propagation. In addition,
a=3. Thed): 0.316 data point was used to calcul&éte with 2D local CIUStering, we have pI’OVided an alternative
For smallera, specifically the measured exponentef r€ason why immunization efforts may indeed be fruitful as in
=2.5 for females in the Swedish sexual netwild], this  the case of other highly infectious diseases such as polio and
approximation breaks down. One possibility for this break-Smallpox.
down is an incorrect value of. Perhaps the presence of
more large d!sks changeg. Using the »=0.0316 and¢ ACKNOWLEDGMENTS
=0.1 data points, a value of=1.94 was calculated, but the
fit is still inadequate. Some crossover seems to be occurring C.P.W. is supported by a Rackham Interdisciplinary and
which we do not understand. We believe that the most likelyCollaborative Research grant. Special thanks to the Center
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FIG. 3. Average percolation thresholddp¢ small-world links

noc|p—pe| ~ 7 [19], wherep, is the threshold without random
links and y is a characteristic exponent. We can estimate
new thresholdogy(¢) for the small-world lattice implicitly
from the relation
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