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The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust
grains, is an essential process in the evolution of chemical complexity in interstellar clouds. Molecular hydro-
gen plays an important role in absorbing the heat that emerges during gravitational collapse, thus enabling the
formation of structure in the universe. The Fbrmation process has been studied theoretically, and in recent
years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The
parameters of the surface that are relevant fddimation were obtained and used in order to calculate the
recombination rate under interstellar conditions. However, it turned out that, due to the microscopic size of the
dust grains and the low density of H atoms, the rate equations may not always apply. A master equation
approach that provides a good description of theédimation process was proposed. It takes into account both
the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we
present a comprehensive analysis of thefétmation process, under steady state conditions, using an exact
solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and
its dependence on the flux, the surface temperature, and the grain size. The results are compared with those
obtained from the rate equations. The relevant length scales in the problem are identified and the parameter
space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency
of H, formation. In the other domain, characterized by second order kinetics, the efficiengyfahihtion is
low. In each of these domains we identify the range of parameters in which, due to the small size of the grains,
the rate equations do not account correctly for the recombination rate and the master equation is needed.
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[. INTRODUCTION unsuitable for the study of hydrogen recombination in the
interstellar medium due to the small grain size and low flux
The recombination of hydrogen on the surfaces of micro{34-3§. Under these conditions the number of H atoms on
scopic dust grains in the interstellar medium has attractethe surface of a grain may be very small and fluctuations are
much interest in recent years. This process is essential sinexpected to be significant. Attempts to resolve this difficulty
gas-phase reactions cannot account for the abundance of lhcluded the use of modified rate equations in which param-
in interstellar cloud41-4]. Theoretical[5-12] and experi- eters are changed to account for the finite grain [S2e-38.
mental[13—-18 techniques have been used in order to evaluMonte Carlo methods were also used, to simulate the surface
ate the rate of Klformation on relevant dust materials under diffusion and reaction processes on small gré8%40. The
interstellar conditions. Quantum mechanical calculations andlass of Monte Carlo methods that are suitable for such ac-
molecular dynamics simulations were performed, in attemptsivated processes on the surface, away from thermal equilib-
to identify the diffusion and reaction rates on the sur-rium, are the continuous time or kinetic Monte Carlo tech-
faces of various astrophysically relevant materialsniques[41]. In these simulations, at each time step, the next
[2-4,6,7,12,19,2D Experimental results were also obtained move is picked with a probability proportional to its rate.
for the activation energies of the relevant diffusion and de-The elapsed time is given, according to the theory of stochas-
sorption processes on various surfagE3—15. tic processes, by the inverse of the sum of the rates of all
Rate equations are an essential tool in the modeling oprocesses that could have occurred at that time. The kinetic
chemical reactions in the interstellar mediuf@1-32. Monte Carlo approach can be directly related to the underly-
Chemical models based on the rate equation approach takeg master equation that describes the time evolution of the
into account a large number of reactions in the gas phase gsobabilities of all the microscopic states of the sysf{é®].
well as reactions that take place on the surfaces of dusWlonte Carlo simulations typically require large computa-
grains. Rate equations were recently used in order to analyz®nal resources. For example, the calculation of averages for
the results of laboratory experiments on Fbrmation on  quantities such as the,Hormation rate is done by collecting
dust-analog surfacd83]. The analysis provided the surface large amounts of statistical informati¢89,40. To study the
parameters that are essential for the evaluation of the Hchemistry of interstellar clouds one needs a model that
formation rate on dust grains in the interstellar medium. Thecouples the gas-phase and grain-surface reactions. It was
rate equations used in Ré¢B3] describe the diffusion, reac- found that the use of Monte Carlo methods in this context is
tion, and desorption processes on the surface. They providmpractical, while rate equations for surface chemistry can-
the time evolution of the average densities of atoms anahot account correctly for reaction rates on small grains.
molecules on the surface, while fluctuations are neglected. Recently it was shown that the,Hormation process on
Such rate equations are expected to provide good results femall grains can be described by a master equation approach
macroscopic surfaces. However, it turns out that they may bp43,44). The master equation takes into account both the dis-
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crete nature of the H atoms as well as the fluctuations. Itsleposited on top of already adsorbed atoms is neglected here
dynamical variables are the probabilitie¢n) that there are since it is assumed that the coverage is Jlohhe second

n atoms on a grain at time The time derivative®(n), n  termin Eq.(1) represents the desorption of H atoms from the
=0,1,2... areexpressed in terms of the adsorption, reac-Surface. The desorption coefficient is

tion, and desorption terms. The master equation provides the _ B

time evolution of the probabilitie(n), from which the W=vexp(—Ei/kgT), @

recombination rate can be calculated. It was used in conjunGynerev is the attempt ratéusually taken to be #8s°1), E,

tion with .surface parameters obtained experlm_enta_llly angs the activation energy barrier for desorptiohaoH atom,
computationally to explore the hydrogen recombination anchnq T js the temperature. The third term in Ed) accounts
other chemical reactions on small grains under interstellafy, the depletion of the H population on the surface due to

conditions[43—43. _ , recombination into K molecules, where
In this paper we present a comprehensive analysis of the
H, formation process under steady state conditions as a func- a=vexp —Eqy/kgT) 3)

tion of the physical parameters. These parameters include the

flux of H atoms, the grain size, and surface temperatures the hopping rate of H atoms on the surface &qgds the
They also include properties of the surface, namely, the derfctivation energy barrier for hopping. Here we assume that
sity of adsorption sites as well as the activation energies fofliffusion occurs only by thermal hopping, in agreement with
H diffusion and desorption. The analysis is based on an exa&xperimental result§33]. We also assume that there is no
analytical solution of the master equation. In this solution,energy barrier for recombination. The, lroduction rater

the steady state distributioR(n) is expressed in terms of (MLs™') is given by

two dimensionless quantities, composed of the physical pa-
rameters mentioned above. Using this solution we identify
the relevant length scales in the problem. The parameter
space is then divided into two domains. One domain, chara
acterized by first order kineticeamely, the H formation
rate is linearly proportional to the flux of H atom®xhibits
high efficiency of H formation. In the other domain, char-
acterized by second order kinetigemely, the H formation
rate is proportional to the square of the incoming fJuke

r=a p (4)

or simplicity we assume here that all the Rholecules are
esorbed from the surface upon formation. Even if on real
surfaces some of the molecules may remain on the surface
and desorb thermally later, under steady state conditions, at
low coverage, this will not affect the recombination rate.

A (more completemodel, based on Eql) was used33]
o T . to analyze the results of temperature programmed desorption
eﬁ|c.|ency of H, formation is low. In eaqh of t_hese domains experiment13—15. The values o, andE;, (as well as
we |de_nt|fy the range of parameters in which, due to thet 0 additional parametershat best fit the experimental re-
small size of the grains, the rate equations do not apply angl\:lts were obtained. The steady state behavior under astro-

theTrrr:aster equ_atlon IS ne%ded' foll h . physically relevant conditions was then studied and the re-
e paper is organized as follows. The rate equatior., . 1ination efficiency

model is described in Sec. Il Aand analyzed in Sec. || B. The

master equation is introduced in Sec. Ill A. The exact solu- r

tion of the master equation is given in Sec. lll B. The analy- =i )
sis of the H formation process on small grains that is based

discussed in Sec. IV and summarized in Sec. V. and temperature. Note that under steady state condifjdas
limited to the range & »=<1. It was found that the recom-
Il. H, FORMATION ON MACROSCOPIC SURFACES bination efficiency is highly temperature dependent. It exhib-

its a narrow window of high efficiency along the temperature

. o ) axis, which slowly shifts to higher temperatures as the flux is
Consider a flux of H atoms that are irradiated and stick tqncreased33].

a macroscopic surface. The atoms perform hops as random
walkers on the surface and recombine intg Holecules

when they encounter one another. lt) [in monolayers ] i
(ML)] be the coverage of H atoms on the surface at tiniis Consider a macroscopic surface exposed to a constant flux

time dependence is described by the following rate equatiorPf H atoms, as described by E@). Under steady state con-
ditionsdp/dt=0 and the coverage is given by

A. The rate equation model

B. Analysis and results

d
d—’:=f—Wp—2ap2- (1) 1 W)[ [ (fIw)
p=7l5]| 1+ 1+8(W/a) . (6)

The first term on the right hand side of H@) represents the
flux of H atoms. The parametérepresents theffectiveflux ~ The recombination efficiency =2 (a/f)p? takes the form
of atoms(in units of ML s™1), namely, thetemperature de-

pendent sticking coefficient¢(T) is absorbed intdf [the _ 1 (Wia)
Langmuir-HinshelwoodLH) rejection procesg46] of atoms "3 (f/IW)

2

f/wW
(/W) = @

-1+ 1+8(W/a)
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First Order

Second Order

05
Wia
FIG. 1. The phase diagram of hydrogen recombination on mac-
roscopic surfaces in tha\(/a,f/W) plane, as described by Ed.).

The parameter space is divided into two domains: the first order
domain, above the diagonal and the second order domain below it.

/4

To obtain a better understanding of the recombination pro-

cess we will try to identify the length and time scales in-
volved. Consider the ratia/W between the hopping rate and
the desorption rate. This ratio {gn averaggthe number of
hops a H atom makes before it desothsglecting recombi-
nation. It is also (up to a constant multiplicative factor of
order unity and a logarithmic correctipthe number of sites
that the atom visits before it desorp47]. We will denote
this number by

8

Consider the ratioV/f between the desorption rate and the
flux. Neglecting the recombination term we obtaVi/f
=1/p, namely, this is approximately the average number o
vacant sites around each H atom. We denote it by

Svisit= a/W.

Svacant= W/ f. (9

e05

() © T4 nl/z
FIG. 2. (a) The coverage given by Eq.(6) as a function of the
angled, given by Eq.(10) (see Fig. ], without LH rejection(solid
line) and with LH rejection(dashed ling The results shown are for
points along the curve given by E@Ll). (b) The recombination

efficiency » [Eq. (7)] vs 6, without LH rejection(solid line) and

1With LH rejection (dashed ling along the same curve. Note that

without LH rejection» depends only or®, namely, it is indepen-
dent of the specific curve.

and sy,cant (the length scales are obtained by dividiag;

The properties of the recombination process can thus be plofNd Svacantby the density of adsorption sites and taking the

ted on a two-dimensional parameter space, nanfély, vs
W/a (Fig. 1). The coverage depends on these two param-
eters, whilen depends only on the ratio

(/W)

tan =m,

0 0= 9= =/2. (10)

The coveragep and the recombination efficiency as a
function of 6 along the curve

square rogt In the casef/W=W/a, namely,Syisi> Syacant

the typical number of sites that an atom visits is much larger
than the number of vacant sites around it. Therefore, it is
most likely to find a second H atom and recombine. In the
opposite limitf/W<W/a, namely,S,isit<Syacant MOSt atoms
visit only vacant sites around their initial adsorption site and
desorb before having a chance to form molecules. As a re-
sult, the recombination efficiency is low. Evaluating the
coverage in both limits we obtai#8]

f W 1 1 \ﬁ f w
V_V_C g , (11) \/E a’ W> a’
p= (12

wherec=1/2, are shown in Figs.(2) and Zb), respectively. i i< V_V
The solid lines in Figs. @) and 2b) show the results with- W’ W a’
out LH rejection, while the dashed lines show the results fonl_h ducti e —ap? is ai b
similar conditions but including LH rejection. In these fig- e K, production rata =ap*® is given by
ures we identify a domain of high coverage and high effi- 1 f W
ciency forf/W>W/a and a domain of low coverage and low Ef’ V_V> a’
efficiency for f/W<W/a, separated by the diagonal line in [= (13)
Fig. 1. We will now analyze the limits, deep in each of these a £2 l< V_V
domains, in terms of the length scales associated 8yjth w2 w o a’
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In the first limit, r is linear in the fluxf; thus we denote this
limit as first order kinetics. In the second casé propor-
tional to f2 and we thus denote it as second order kinetics.
The regime of first order kinetics is characterized by high
recombination efficiencyp=1, since the desorption of H
atoms is negligible. In the second order kinetics, desorption
of H atoms (before they form molecul¢ss the dominant
process. Therefore, the efficienayis low. More precisely,
the recombination efficiency is

1 f w
, —>—
W™ a
= 14
) 2a f w (4
w W a FIG. 3. The phase diagram of hydrogen recombination on mac-

For a given surface it is convenient to plot the coverageoscopic surfaces under LH kinetics. The high efficiency domain is
and recombination rate as a function of the flux and the surbounded to the gray area, on the left side of the curve given by Eq.
face temperaturg33]. The boundary between the first and (17).
second order domains is given by

fu(W/ia) W
(15 W flow(W/a) "
For a given surface, for whicky, E;, andv are known,

. ' . : we can draw a diagram for the recombination process in the
with the first order domain for temperatures below this curve : . .
T,log;of) plane(Fig. 4). For a given flux, the temperature in

and the second order domain above it. For parameters on th’ﬁﬁe domain of high efficiencygray area is now bounded

boundary line the recombination efficiency#4s=1/2.
Note that in Eq.(1) the coverage is not limited to the from above by Eq(15) and from below by

range G=p=<1. In the LH kinetics, the coverage is bounded

2E,—E, (18)

Tl D= =

from above due to the rejection of atoms deposited on top of Tiow(f)= Eo . (19)
other H atoms that are already adsorbed. To include this ef- kg(Inv—Inf)

fect, the flux ternf in Eq. (1) is replaced byf(1—p). Solv-

ing the new equation at steady state we obtain Therefore, in order for a given surface to exhibit a domain of

, high efficiency, the conditiof ,(f) > T, (f) must be satis-

1 (W+f)la fI(W+T) fied. This condition is satisfied &E,;>E,, namely, the acti-
=8 H(WLT) -1+ 1+8—(W+f)/a ., (18 vation energy for desorption is higher than for diffusion.

A further constraint on the high efficiency domain may

which is similar to Eq(7) except that nowV is replaced by ~appear due to the existence of Fholecules on the surface.
(W+f). The LH rejection introduces further constraints on These molecules may reject some of the deposited atoms
the domain of high efficiency of Hformation. This is due to  through the LH mechanism and thus reduce the effective
the fact that at low temperature the coverage approachd!x. The H, molecules on the surface may be either mol-
unity and newly deposited atoms are rejected. For simplicity

we will define the high efficiency domain as the set of points T T 7 ]
in parameter space for which=1/2. The boundary of this |
domain, namely, the curve in th&Wa, f/W) plane on which

n=1/2, is given by 10k i
G
S
fIW ~ 151 i
— o0
Wia= w2 (7 =5

In Fig. 3 we show the high efficiency domaigray areaand

the low efficiency domain in the parameter space for the LH |
kinetics. Forf/W<1 the boundary between them coincides s
with the diagonal line that separates the first and second or- 0 B 0 T I(SK) A & P
der domains without the LH rejection. For any given value of

W/a in the range 8<W/a<1/4, the high efficiency domain FIG. 4. The phase diagram of the hydrogen recombination pro-
is bounded from above and below By, (W/a)/W<f/W  cess on macroscopic surfaces in tielf f) plane under LH kinet-
<fu(W/a)/W, wheref (W/a) and f,,(W/a) are deter- ics. The strip of high efficiency is now bounded from both sides,
mined by Eq.(17). The two boundaries are related to eachnamely, for any given flux there is a range of temperatures that
other according to exhibits high recombination efficiency.
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ecules that formed on the surface and did not desorb upon=0,1,2...,S. The probability that there ara hydrogen

formation [33], or ones that were adsorbed from the gassioms on the grain is given B9(n), where

phase. In both cases the condition for the existence of a high

efficiency domain is thaE,<2E;—E,, whereE, is the ac- s

tivation energy for desorption of Hnolecules from the sur- E P(n)=1. (21

face. Thus, surfaces that do not satisfy this conditjoar- n=0

ticularly surfaces on which fimolecules are adsorbed more

strongly than H atomsare not expected to efficiently cata- The master gquation provides the time derivatives of these

lyze the H formation process, unless molecules are desorbegrobabilities,P(n), namely, the gain or loss of the probabili-

upon formation and their density in the gas phase is too lowties of the different states. These derivatives are linear in the

to saturate the adsorption sites on the surface. probabilities themselves. The equations include three terms.
For small grains and low flux one may reach the situatioriThe first term describes the effect of the incoming fkix

in which the average number of H atoms on a grain is ofThe probabilityP(n) increases whea H atoms is adsorbed

order unity or even less. Under these conditions the raten a grain that already has- 1 adsorbed atonist a rate of

equation model, which takes into account only average derFP(n—1)], anddecreases when a new atom is adsorbed on

sities, ignoring the fact that H atoms are discrete entitiesa grain withn atoms on ifat a rate ofFP(n)]. The adsorp-

does not account correctly for the recombination rate. This ision process is considered as completely rand@uisson

due to the fact that the recombination process requires arocesy and is fully characterized bff. The second term

least two atoms on the surface and the fluctuations in théncludes the effect of desorption. A H atom desorbed from a

number of H atoms on different grains become dominant. Agrain with n adsorbed atoms decreases the probaldflity)

more complete description of the recombination process ifat a rate oW P(n), where the facton is due to the fact

needed. Such description is provided by the master equatiafat each of the atoms can desotpand increases the prob-

presented below. ability P(n—1) at the same rate. The third term describes
the effect of recombination. The production of one molecule
ll. H , FORMATION ON SMALL DUST GRAINS reduces the number of adsorbed atoms frolmn—2. For a
) given pair of H atoms, the recombination rate is proportional
A. The master equation model to the sweeping rat& multiplied by 2 since both atoms are

We will now consider the formation of Hmolecules on mobile simultaneously. This rate is multiplied by the number
small dust grains. In this case it is more convenient to rescalef possible pairs of atoms, namely(n—1)/2. The master
the parameters such that instead of using quantities per uréuation exhibits the Markov property, namely, no memory
area the total amount per grain will be used. The number oéffects are included42]. This property emerges from the
H atoms on the grain is denoted hylts expectation value is fact that the incoming flux keeps washing out any spatial
given by(n)=Sp whereSis the number of adsorption sites correlations that may develop due to recombination events
on the grain. The incoming flux of H atoms onto the grainbetween adjacent atoms. The master equation thus takes the
surface is given by =Sf (atoms s?). The desorption rate form
W remains unchanged. The hopping rat¢hopss?) is re-

placed byA=a/S, which is approximately the inverse of the P(0)=—FP(0)+WP(1)+2X1XAP(2),
time ts required for an atom to visit nearly all the adsorption

sites on the grain surface. This is due to the fact that in two : _ _ _
dimensions the number of distinct sites visited by a random P(L)=FLP(0)=P(1)]+W2P(2)~P(1)]
walker is linearly proportional to the number of steps, up to +3X2XAP(3),

a logarithmic correctiori47]. The H, production rate of a

single grain is given byR=Sr (moleculess'). The rate : _ B B
equation will now take the form P(2)=FIP(1)=P(2)]+WI3P(3)~2P(2)]+ A[4X3

d(n) 2
T:F—W<n>—2A(n> . (20)

XP(4)—2X1xP(2)],

Under given flux and surface temperature, for grains that are.
large enough to hold many H atoms, EQO) provides a  P(M=F[P(n=1)=P(n)]+W[(n+1)P(n+1)—nP(n)]
good description of the recombination process. However, for +A[(N+2)(n+1)P(n+2)—n(n—1)P(n)]
small enough grainé) becomes of order unity and E@0)
becomes unsuitable, because it neglects the fluctuations in
the number of atoms on a grain.
We will now introduce the master equation, which pro- .
vides a correct description of the recombination process evenP(S)=F[P(S—1)—P(S)]-SWRS)—S(S—1)AP(S).
in the limit of small grain sizes and low flux. Consider a (22
grain that is exposed to a flux of H atoms. At any given ) )
time the number of H atoms adsorbed on the grain may bé&lote that the equations fét(0) andP(1) do not include all
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the terms, because at least one H atom is required for desorp- R
tion to occur and at least two for recombination. Similarly, n= (Fl2)° (25

the equation forP(S) does not include all the terms since
there is no room for more tha®atoms on the grain surface.
The expectation value for the number of H atoms on the B. Exact solution of the master equation
gran s When a grain is maintained at a constant temperature

S (namely, W and A are fixed, and is exposed to a constant
(n)= E nP(n). (23) flux F, the recombination process on its surface approaches a
n=0 steady state. Under steady state conditions the time deriva-
tives on the left hand side of Eq22) are zero. We thus
obtain a homogeneous set of coupled linear equations in the
variablesP(n), n=0,1,2...,S. This set can be expressed in

The rate of formation of imoleculesR (moleculess?), is
thus given by

s a matrix form as
R=A n(n—1)P(n). 24 s
nZZ ( )P(n) 24 MP=0, (26)
The hydrogen recombination efficiency on the grains is
given by where
—-F W 2A 0 s 0
F -F-W 2W 3. 2A c 0
0 F —-F-2(W+A) 3w S(S—-1)A
M= (27)
0 0 F -F-3(W+2A) ... SwW
0 0 0 F ... —F=9W+(S-1)A]

andP consists of the componen(n), n=0,1,...S. The  M(s,s), which represents the additiofi@H atom to a grain
matrix elements are denoted byM(n,m), n,m thatalready includesatoms, is also removed. The modified
=0,1,2...,S. The only nonvanishing matrix elements are term will be M(s,s)= —s[W+(s—1)A].
We proceed by performing linear operations on the rows
M(nn) =—[F+nW+n(n—1)A], of the matrixM. Starting from the top, we add each element
M(0m), m=0,... s, of the first row to the corresponding
elementM (1,m) in the second row. We then proceed down-

M(n+1n)=F, ward, adding the elements of tiéh row to the correspond-
ing elements of ther(+ 1)th row. Each row of the resulting
M(n,n+1)=(n+1)W, matrix includes one diagonal term and two off-diagonal

terms of the form M’'(n,n)=-F, M’'(n,n+1)=(n
+1)(W+nA), and M'(n,n+2)=(n+2)(n+1)A (except
M(n,n+2)=(n+2)(n+1)A. (28 for the last row in which all the elements are zero and the
next to the last row in which the second off-diagonal element
is removed. In order to remove the second off-diagonal
For a finite grain the set of equatio(®2) is truncated byn  termsM’(n,n+2), n=0,... s—2, we now perform a sec-
<S. However, under interstellar conditions we expect lowond set of operations, this time starting at the bottom rows.
coverage of H atoms on the grain, namely)<S. There- We first subtract from each elemer’(s—2m), m
fore, one can impose a cutoff at some vas#eS such that =0,... s, of the (s—2)th row the corresponding element
P(n)=0 for n>s and the normalization of probabilities now M’(s—1,m) of the (s—1)th row, multiplied by M’(s
takes the forn=;_,P(n)=1. The terms in the matrix that —2,5)/M’(s—1,s). We then proceed in a similar fashion all
represent flow of probabilities betwedd(n), n<s, and the way up. Each line in the resulting matrix has only one
P(n), n>s, are removed. Three of these terms disappeadiagonal and one off-diagonal term. The diagonal elements
since they are outside thes{1)X(s+1) size matrix that take the formM"(n,n)=—-F, n=0,...s5—1 andM”(s,s)
we now consider. The term—F) in the matrix element =0. The off-diagonal elements will be

056103-6



EXACT RESULTS FOR HYDROGEN RECOMBINATION ON . ..

M"(s—18)=M'(s—1),

M'(s—25)
M"(s—2s—1)=M'(s—2s—-1)— —
M"(s—1,8)
XM'(s—1s—1),
M’(s—35—1)
M"(s—3s—2)=M'(s—3s—2)— ——
M”"(s—25—1)

XM'(s—2,5—2),

M”"(s—n,s—n+1)=M’(s—n,s—n+1)

M'(s—n,s—n+2)
M"(s—n+1s—n+2)

XM’(s—n+1s—n+1),

M’(0,2)

M”(0,1)=M"(0,1)— L2

M”(1,1). (29)

By combining the operations in ER9) we express the non-

vanishing off-diagonal elements of the mathk’ as contin-
ued fractions. Their reduced form is

M”(n,n+1) \/K W
—————=1\/=| —+n
(n+1)VAF FLA
1
+
\/K w 1
- —+n+1|+
FlA 1
B
VA
—|—+s
FlA
(30)

for n=0,...s—1. The equationM”P=0 now takes the

form of a set of recursion equations:

—M"(n,n
( )P

Pin+1)= M”(n,n+1)

(n), n=0,...5—1. (3}

Using these equations we can express all the probabilities iB

terms of P(0) according to

n—1

P(m=(-1)"P0)[]

1=0

M”(i i)
_—, n=1,...,s.
M”(i,i+1)

(32

PHYSICAL REVIEW E 66, 056103 (2002

by the normalization condition, provides an exact solution of
the master equation under steady state conditions for any
finite cutoff s<S. Since the master equation is of use when
the coverage is very low, the tail &(n) already decays for
somen<S. Therefore, in evaluating’(0) it is sensible to
ignore the cutoff as<S and write the infinite sum instead.

In this case, the solution of the master equation can be ex-
pressed in terms of Bessel functions. The connection to the
Bessel functions can be obtained from {l&inite) contin-

ued fraction expression in E@30), obtained whers—oe.
Using the continued fraction expansion of the ratio
J,(2)13,-1(2) in Ref.[49] (Eg. 9.1.73 on p. 363and the
relationl (2)/1,_4(2)=—1i3,(iz)/J,_4(iz) we obtain that

M”(n,n+1)  lwa+n-1(2VF/A)

(N+1)VFA  lwaen(2VFIA)

We thus obtain an expression fB(n) of the form

1 \ﬁ)“lw,Mnl(zJF/A)
P(n)_mp(o)( Al a2 Y

The normalization factoP(0) can be expressed in terms of
Bessel functions, using Rg#49] (Eq. 9.6.51 on p. 377, with

A=42), as

(33

QURWA-D (2 ﬁ)

P(0)= (35
lwia-1(2V2F/A)
Therefore,
2| 28R
P(n)= — ,
nt Al lwa-1(2V2FIA)
(36)

in agreement with Ref44], where the solution was obtained
using a generating function. To examine the effect of the
cutoff ats<S, we compared the distributiori®(n) obtained
from Egs.(32) for different values of, as well as the distri-
bution expressed in terms of the Bessel functions for which
s—o, Under the conditions of low coverage studied here we
observe a very fast convergence of E8R) to Eq.(36) ass
increases. We have also performed direct numerical integra-
tion of the master equation and found that the solution given
by Eq. (32) is stable and the convergence of the integration
process is fast.

Using similar summations, we can now find exact expres-
sions for the first and second moments of the distribution
(n). The average number of H atoms on the grain is given

by

F lwa(2V2F/A)

— . 3
2A 1 \wa-1(2V2FIA) 7

(M=

The probabilityP(0) is then determined by the normaliza- The rate of formation of K molecules is given byR
tion condition=;_,P(n)=1. Equation(32), complemented =A(n(n—1)), where
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(-1} F lwas1(2V2F/A) a8 4
n(n—1))=— ,
2A 1yya-1(2V2FIA) 3.5
First order
and the recombination efficiency is 3r s
2.5}
lwia+1(2V2F/A) 39 =
n= . |
lwia_1(2V2F/A) = 2
The second momerfn?) can be obtained as the sum of the 19 Second order
right hand sides of Eq$37) and(38). The fluctuations in the

number of H atoms on different grains can be quantified by !

the standard deviation of the distributié¥{(n), given by 05 S

_'_—-———"/' B
a=(n%)—(n)?. (40) 0 fo—a—e . . . . .
0 05 1 15 25 3 35 4

2
The limits of first and second order kinetics for large W/A
grains can now be reproduced from E§9). The extreme

limit of first order kinetics is characterized by negligible de- FIG. 5. T.he phase dnagrar_n of the. hydrogen recom_bmatlgn pro-
cess on grains without LH rejection, in terms of the dimensionless

s_or_ptlon, narr_1e|_yW/A<1, and fqr "'?‘rg_e eno_ugh grains this parameter®V/A andF/W. The diagonal line separates between the
limit also sat!sf|e§/W>1. In this limit the indices Qf the domains of first ordefon the lefy and second order recombination
Bessel functions in Eq(39) W/A=1—=*1, respectively, (on the right, respectively. Theéunit) square near the origin is the
and due to the symmetry_,(z)=1,(z) of the Bessel func-  gomain in which the hydrogen recombination efficiency on grains
tions[49] (Eq. 9.6.6 on p. 376y— 1, in agreement with the  (optained from the master equatjaieviates significantly from the
rate equations. The extreme limit of second order kinetics ORate equation results. In the case of first order processes, the condi-
large grains is characterized BW<W/A. Assuming that tion for such deviation i§/W< 1, while in second order processes
the geometric mean &&/W andW/A satisfiesyF/A<1 we the condition isSW/A<1. Also included are two axes, in the first

obtain and the second order domains, that under given physical conditions
(fixed values off and T) represent the variation in the grain size.
2F 1 The behavior ofp, (n), ando/(n) along these axes is shown in
n= W m (41 Figs. 6 and 7 for the first and second order cases, respectively.
In the case of very large grains, nameW/A>1 we thus The finite size of the grain introduces a third length scale
obtain 7=2AF/W?=2af/W?, which is in agreement with {0 the problem. We will now examine how small the grain
the rate equation results. _ o should be in order for the recombination efficiency to deviate
Using Egs.(23) and(22) to express the time derivative of gjgnificantly from the rate equation results. To this end we
(n) we obtain calculaten as a function of the grain siz& using the exact
d(n) s_olution of thg master equat?on, presented_ abpve. The _effi-
T:f_w<n>_2A<n(n_ 1)). (42) ciency » vs Sin the case of first order kinetics is shown in

Fig. 6(@. The recombination efficiency obtained from the
master equatiofsolid line) coincides with the rate equation
result(dashed lingfor large grains but declines below some
grain size. In the first order case, such deviations typically
occur only for extremely small grains of a few thousands
%gsorption sites. The average number of atoms on the grain
vs Sis shown in Fig. ). The S axis in Fig. 6 corresponds
to the arrow drawn in the first order domain of Fig. 5. lden-
tifying the corresponding symbols, we observe that the sig-
nificant decline inyn starts wherF/W<1, namely, wher
Consider the recombination process on a small grain with< W/f. The fluctuations in the number of H atoms on a grain
Sadsorption sites under steady state conditions. The boundan be quantified by the standard deviatierof the distri-
ary between the first order and the second order regimes cdution P(n), given by Eq.(40). The standard deviatiour,
be expressed in terms Bf=fS andA=a/S, taking the form  divided by (n), is shown in Fig. €c) as a function of the
F/W=WI/A (neglecting the LH rejection In the first order grain sizeS. Clearly, as the grain size decreases, the fluctua-
regimeF/W=W/A, while in the second order regintlfW  tions become more pronounced.
<W/A. The domains of first and second order kinetics are Using the notation introduced above, in the domain of
shown in Fig. 5, separated by the diagonal lirRéW  first order kinetics the rate equation results start to deviate
=W/A. from the correct value of; for grain sizes that satisfy

This equation resembles the rate equat@®) except for the
recombination term in whicRn)? was replaced byn?)
—(n). In the limit of small grains, wherén) is small while
the fluctuations represented bybecome dominant, the rate
equation becomes unsuitable and overestimates the rate
H, production.

C. Analysis and results
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FIG. 6. The hydrogen recombination efficiengy(a) and the
average number of atoms on the gréin (b) for first order kinetics  average number of atoms on the grdim (b) for second order
as a function of the number of adsorption sifsn the grain. The kinetics as a function of the number of adsorption skesn the
solid line (with the symbols on )tshows the results obtained from grain. The solid lingwith the symbols on jtshow the results ob-
the master equation, and the dashed line shows the rate equatigiined from the master equation, and the dashed line show the rate
results. The symbols correspond to those in Fig. 5, and indicate thafguation results. The symbols correspond to those in Fig. 5, and
the deviations between the master equation and the rate equatiofglicate that the deviation between the master equation and the rate
become significant below/W=1. (c) The standard deviatiom of  equations become significant beldW/A=1. (c) The standard de-
the distributionP(n) (normalized by(n)). It increases sharply as viation o of the distributionP(n) (normalized by(n)). It increases
the grain size is reduced entering the range in wHidhV<1, sharply as the grain size is reduced entering the range in which
indicating that in this range fluctuations play an important role. ~ W/A<1, indicating that in this range fluctuations play an important

role.

FIG. 7. The hydrogen recombination efficiengy(a) and the

S<s, < Syigit 43 . .
vacant==visit “3 atom to recombine with. It thus desorbs before it has a

chance to recombine.
Under these conditions there is typically no atom or only a The efficiencyz in the case of second order kinetics is
single H atom on the grain, which is unlikely to find a secondshown in Fig. Ta). Again, the master equation efficiency
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1 —— T needed when the grain size becomes smaller than the two
length scales involved in the recombination process. In the
. case of first order kinetics this occurs wher W/ f<a/W,

] while in second order desorption it occurs whgra/W

| <WIf.

0.8

0.6

= Consider the case of first order kinetics. When the grain
R a i becomes smaller thaw/f the typical number of atoms on
the grain is smaller than (even if we consider the depletion

02 ) of the H atoms on the surface due to desorption alone and

neglect recombination Therefore, the rate in which atoms
find each other on the surface is no longer determined by the
10 hopping ratea, or the corresponding length scaéWw, but
by the grain sizeS Therefore, the recombination term in Eq.
FIG. 8. The distributiorP(n) at three points along the arrow in (20) should be modified to reflect the changéN—S, or
the second order domain of Fig. 5, namely, for a small grain withequivalentlyA/W—1. This is achieved by replacingby W.
S=2513(solid line), a medium size grain witl$=56 705(dashed In the case of second order kinetics, when the grain size
line), and a large grain witls= 141 372(dotted line. becomes smaller thaad W the atom is typically able to per-
form more than a full sweep of the entire grain before it
(solid ling) coincides with the rate equation restitashed  desorbs. However, when an atom visits the same sites for the
line) for large grains but declines below some grain sizesecond time, the probability of finding another H atom there
typically of a few tens of thousands of adsorption sites. Thes greatly reduced. Therefore, the recombination rate is de-
average number of atoms on the grainS/s shown in Fig.  termined bySrather than bya/W, requiring the modification
7(b). The deviations between the rate equations and the mag/W—S, or the replacement ok by W in Eq. (20), exactly
ter equation results are accompanied by large fluctuations igs in the case of first order kinetics. The modified rate equa-
the number of atoms on a grain, as can be seen in F). 7 tions thus takes the form
The S axis in Fig. 7 corresponds to the arrow drawn in the

second order domain of Fig. 5. Identifying the corresponding d(n) A W )
symbols, we observe that the significant declineyirstarts T=F—W<”>—29 W' E (n)?, (45
when W/A<1, namely,S<a/W. Thus, in the domain of
second order kinetics, deviations between the rate equationg, e
and the master equation occur for a range of grain sizes
given by A w
A, W<1 or E<1
S< Svisit< Svacant (44) AW _

. . . W’ F A w

In this case, the grain surface area is smaller than the area W, V—V>1 and F> 1.

that an atom can scan before it desorbs. As a result the atom

tends to perform several sweeps of the grain surface visiting_ N ) .
again the same vacant sites it has already visited. The proghe modified rate equations take into account correctly the

ability of finding a second atom in these sites is much lower€ngth scales involved in the recombination process on small
than predicted by the rate equation that does not include sudains. They provide results f¢n) that are in significantly
return visits. The recombination efficiency is thus sharplyPetter agreement with the master equation, compared to the
reduced as the grain size further decreases. unmodified rate equations. They also improve the results for
In conclusion, we observe that in both the first and secondhe recombination efficiency. However, the modified rate
order kinetics the recombination efficiency on a grajiven ~ equations still involve only the average number of atoms on
by the master equatigrstarts to deviate from the rate equa- @ grain and do not take into account the discreteness of the H
tion result when the grain sizeepresented by) becomes atoms and the fluctuations, quantified by the second moment
the smallest length scale in the problem. In the first ordefn EQ. (42). Since the fluctuations dominate the recombina-
case this happens Wh&x s, . While in the second order tion process on small grains, the results of the modified rate
case it happens wheB< s, . equations fory are not expected to coincide with those of the
The distributionP(n) at three points along th axis, in ~ Master equation, but only to approximate them better than
the second order domain, are shown in Fig. 8. For a relathe ordinary rate equations. We observe that the deviations
tively large grain,P(n) exhibits a well defined and nearly Detween the rate equation results and the correct results ob-
symmetric peak. For a very small grain it becomes a monotained from the master equation are significant mostly in the

tonically decreasing function, dominated by-0, 1, and 2. Sécond order domaitFig. 7). In the domain of first order
kinetics such deviations occur only for extremely small

grains, which may be physically irrelevatkig. 6).
While the results of the calculations above were presented
The analysis above can be related to the modified ratesing dimensionless parameters, the actual calculations in
equations studied in Ref§36-38. The modification is Figs. 6 and 7 were done for physically relevant parameters.

IV. DISCUSSION

056103-10



EXACT RESULTS FOR HYDROGEN RECOMBINATION ON . .. PHYSICAL REVIEW E 66, 056103 (2002

In both of them we used the parameters of the amorphougrovides the probability distributioR(n) of havingn atoms
carbon sample, measured experimentally in REf§.33. o the grain as a function of the grain size, flux, temperature,
On this sample the activation energies for H diffusion andand the parameters of the surface. From this distribution one
desorption were found to beE,=44.0 meV and E;  can obtain an exact expression for the hydrogen recombina-
=56.7 meV, respectively. The density of adsorption sites onion rate on the grain surface. The results were compared to
the amorphous carbon surface was found toshg,=5  those obtained from the rate equations which describe the
X 10" (sites cm ?). The results for first order kinetid§ig.  recombination process on macroscopic surfaces. In the case
6) were obtained folf =17 K andf=5x10"8 MLs™ . The of a macroscopically large surface, two length scales are
results for second order kineti¢Eig. 7) were obtained for identified. One length scale is related to the average number
T=18 K and f=3.4x10"° MLs™ . The connection with Of vacant sites around each adsorbed atom, gives,Qyn.

the density and temperature of the hydrogen in the gas phadd'® other length scale is given by the average number of
is made througH = pgag gad4Sgens WHeETe p s (atoms cm’d) sitessysit that an _ads_orbed atom visits before it desdrizs

is the density of H atoms in the gas phasg,is the typical glecting recombmano)? The relation t_)etween these two
velocity of these atoms, and the factor of 4 in the denomina{/€N9th scales determines the properties of the recombina-

tor is the ratio between the surface area and the cross sectigfn Process, dividing the parameter space into two domains.

for a spherical graif43].The number of adsorption sites on The d_omai.nsvisit> s\,acamis (_:harac'Fe.r ized by fi_rst order kinet_—
a spherical grain of diameteris given by ics with high recombination efficiency, while the domain

Svisit<< Svacant €Xhibits second order kinetics with low recom-
bination efficiency. In both domains the finite size of the
grain enters as a significant fact@equiring the use of the
master equation rather than the rate equajiovigen it be-

comes the smallestength scale in the system. In the do-

= 2 i i i
?hned ;gglflgi(ilén g]‘(gfr)b é) ﬁggc) g%sufgrslgr\slﬁit;?s ;;nrgli(r:]zuianﬂi]r?tter[nain of first order kinetics the gra_in §ize becomes the small-
stellar clouds exhibits a broad distribution of grain sizes,GSt(lengm scale wherb<syacamwhile in the second order it

roughly in the range 10°<d<10* cm [50-53. occurs wherB<sysi;-

d 2
82477(5) Sdens: (47)
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