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Optimal bistable switching in nonlinear photonic crystals
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We present an analytical model and numerical experiments to describe optimal bistable switching in a
nonlinear photonic crystal system. It is proved that only three parameters are needed to characterize a bistable
switch: the resonant frequencyv res, the quality factorQ, and parameterk that measures nonlinear ‘‘feedback
strength.’’ A photonic crystal enables the device to operate in single-mode fashion, as if it were effectively one
dimensional. This provides optimal control over the input and output and facilitates further large-scale optical
integration.
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A powerful principle that could be explored to impleme
all-optical transistors, switches, logical gates, and memor
the concept of optical bistability. In systems that display o
tical bistability, the outgoing intensity is a strong nonline
function of the input intensity, and might even display a hy
teresis loop. In this work, we use the flexibility offered b
photonic crystals@1–3# to design a system that is effective
one dimensional~1D!, although it is embedded in a highe
dimensional world. Because our system is one dimensio
and single mode, it differs from previous studies@4–6# and
provides optimal control over the input and output. For e
ample, one can achieve 100% peak theoretical transmis
Moreover, the use of photonic crystals enables the syste
be of a size on the order of the wavelength of light, consu
only a few milliwatts of power, and have a recovery a
response time smaller than 1 ps. As a consequence, the
tem is particularly suitable for large-scale all-optical integ
tion. We solve the full nonlinear Maxwell’s equations n
merically ~with minimal physical approximations! to
demonstrate optical bistability in this system. We also
velop an analytical model that excellently describes the
havior of the system and is very useful in predicting a
elucidating bistability phenomena.

Ideally, we would like to work with a 3D photonic crysta
system. Recently, however, a 3D photonic crystal struct
has been introduced that can closely emulate the phot
state frequencies and field patterns of 2D photonic cry
~PC! systems@7#. In particular, cross sections of point an
line-defect modes in that structure are very similar to
profiles of the modes we describe in the present paper.
can therefore simplify our calculations without loss of ge
erality by constructing the system in 2D. Our design
shown in Fig. 1. It resides in a square lattice 2D PC of hign
dielectric rods (nH53.5) embedded in a low-n dielectric ma-
terial (nL51.5). The lattice spacing is denoted bya, and the
radius of each rod isr 5a/4. We focus our attention on
transverse-magnetic~TM! modes, which have electric fiel
parallel to the rods. To create single-mode waveguides~line
defects! inside of this PC, we reduce the radius of each rod
1063-651X/2002/66~5!/055601~4!/$20.00 66 0556
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a line tor /3.1 Further, we also create a resonant cavity~point
defect! that supports a dipole-type localized resonant mo
by increasing the radius of a single rod to 5r /3. We connect
this cavity to the outside world by placing it three unpe
turbed rods away from the two waveguides, one of
waveguides serving as the input port to the cavity and
other serving as the output port. The cavity couples to
two ports through tunneling processes. It is important
optimal transmission that the cavity be identically coupled
the input and output ports. We consider a physical sys
where the high-index material has an instantaneous K
nonlinearity~index change ofnHc«0n2uE(x,y,t)u2, wheren2

is the Kerr coefficient!. We neglect the Kerr effects in th
low-index material. In order to simplify computations with
out sacrificing the physics, we consider only the regi
within the square of63 rods from the cavity to be nonlinea
Essentially all of the energy of the resonant mode is wit
this square, so it is the only region where the nonlinea
will have a significant effect.

Consider now numerical experiments to explore the
havior of the device. Namely, we solve the full 2D nonline
finite-difference time-domain equations@8#, with perfectly
matched layer boundary regions to simulate our system.
nature of these simulations is that they model Maxwe
equationsexactly, except for the discretization; as one in
creases the numerical resolution, these simulations sh
asymptotically reproduce what is obtained in an experime
Most of the simulations are performed at a resolution of
312 pixels pera3a; doubling the resolution changes th
results by less than 1%. To match the waveguide modes
side the PC to the PML region, the PC waveguide is ter
nated with a distributed-Bragg reflector@9#.

The system is designed so that it has a TM band gap
18% between vmin50.24(2pc)/a, and vmax
50.29(2pc)/a. Furthermore, the single-mode wavegui

1Note that this is just one particular way of implementing lin
defects in PCs; a more common way to create a line defect wo
be to completely remove an entire line of rods.
©2002 The American Physical Society01-1
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created can guide all of the frequencies in the TM band g
Finally, the cavity is designed to have a resonant freque
of v res50.2581(2pc)/a and a Lorentzian transmission spe
trum: T(v)[Pout(v)/Pin(v)'g2/@g21(v2v res)

2#, where
Pout andPin are the outgoing and incoming powers, resp
tively, andg is the width of the resonance. The quality fact
of the cavity is found to beQ5v res/2g5557.

As a first numerical experiment, we launch off-resonan
pulses whose envelope is Gaussian in time, with full-width
half-maximumDv/v051/1595, into the input waveguide
The carrier frequency of the pulses isv050.2573(2pc)/a
so v res2v053.8g. When the peak power of the pulses
low, the total output-pulse energy (Eout[*2`

` dtPout) is only
a small fraction~6.5%! of the incoming pulse energyEin
since we are operating off-resonance. As we increase
incoming pulse energy, the ratioEout/Ein increases, at firs
slowly. However, as we approach the value ofEin5(0.57
31021)@(l0)2/cn2#,2 the ratio Eout/Ein grows rapidly to
0.36, after this point,Eout/Ein slowly decreases as we in
creaseEin . The dependence ofEout/Ein vs Ein is shown in
Fig. 2.

Intuitively, as one increases the optical power, the incre
ing index due to the nonlinearity lowersv res through v0 ,
causing a rise and fall in transmission. This simple pict
however is modified by nonlinear feedback: as one mo
into the resonance, coupling to the cavity is enhanced~posi-
tive feedback! creating a sharper on-transition and as o
moves out of the resonance, the coupling is reduced~nega-
tive feedback! causing a more gradual off-transition.

Consider now a repetition of the above simulation; b
with continuous-wave~CW! signals launched into the cavit
instead of Gaussian pulses. There are two reasons for d
this. First, the upper branch of the expected hysteresis c

2Here,l0 is the carrier wavelength in vacuum.

FIG. 1. ~Color! Electric field for a photonic crystal bistabl
switch at 100% resonant linear transmission. The device consis
a resonant cavity in a square lattice of high dielectric~nonlinear!
rods coupled~via tunneling effects! to two waveguides that serve a
input and output ports.
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is difficult to probe using only a single input pulse. Secon
it is much simpler to construct an analytical theory expla
ing the phenomena when CW signals are used. In all ca
we find that the amplitudes of the input signals grow slow
~compared with the cavity decay time! from zero to some
final CW steady-state values. Denoting byPin

S , Pout
S the

steady-state values ofPin and Pout, respectively, we obtain
the results shown by red circles in Fig. 3. For lowPin

S , Pout
S

slowly increases with increasingPin
S . However, at a certain

Pin
S , Pout

S jumps discontinuously. This is precisely the desir
performance, but it is not the full story.

Hysteresis loops occur quite commonly in systems t
exhibit optical bistability; an upper hysteresis branch is
physical manifestation of the fact that the system ‘‘reme
bers’’ that it had a highPout/Pin value prior to getting to the
current value. To observe the upper hysteresis branch,
launch pulses that are superpositions of CW signals

of

FIG. 2. Transmission of Gaussian-envelope pulses through
device of Fig. 1. AsEin is increased, theEout /Ein ratio slowly
grows. At a large enoughEin , the ratio of the outgoing and incom
ing pulse energies increases sharply.

FIG. 3. ~Color! Plot of Pout
s vs Pin

s for the device of Fig. 1. The
red circles are obtained by launching CW signals into the dev
The blue dots correspond to launching superpositions of Gaus
pulses and cw signals into the cavity in order to access the hy
esis portion of the curve. The green line is the analytical predict
corresponding tod53.8 andP052.631026l0 /n2 .
1-2
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Gaussian pulses~where the peak of the Gaussian pulse
significantly higher than the CW steady-state value!. In this
way the Gaussian pulse will ‘‘trigger’’ the device into a hig
Pout/Pin state and, as thePin relaxes to its~lower! CW value,
the Pout will eventually reach a steady-state point on t
upper hysteresis branch. This is confirmed in Fig. 3 wh
we plot Pout

S as blue dots. After the CW value ofPin
S passes

the threshold of the upper hysteresis branch, thePout
S value is

always on the upper hysteresis branch.
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For the case of CW signals, one can achieve a pre
analytical understanding of the phenomena observed. In
ticular, we demonstrate below that there is a single additio
fundamental physical quantity associated with this cavity~in
addition toQ and v res) that allows one to fully predict the
Pout

S (Pin
S) behavior of the system. First, according to firs

order perturbation theory, the field of the resonant mode w
~through the Kerr effect! induce a change in the resona
frequency of the mode, given by
t of
eter
dv

v res
52

1

4

*vold
dr @ uE~r !•E~r !u212uE~r !•E* ~r !u2#n2~r !n2~r !c«0

*vold
dr uE~r !u2n2~r !

, ~1!

wheren(r ) is the unperturbed index of refraction,E(r ,t)5@E(r )exp(ivt)1E* (r )exp(2ivt)#/2 is the electric field,n2(r ) is the
local Kerr coefficient,c«0n2(r )n(r )uE(r )u2[dn(r ) is the local nonlinear index change, vol of integration is over the exten
the mode, andd is the dimensionality of our system. We now introduce a dimensionless and scale-invariant paramk,
defined as

k[S c

v res
D d *vold

dr @ uE~r !•E~r !u212uE~r !•E* ~r !u2#n2~r !n2~r !

@*vold
dr uE~r !u2n2~r !#2n2~r !umax

. ~2!
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As we shall see below,k is a measure of the geometr
nonlinear feedback efficiency of the system. We thus cak
the nonlinear feedback parameter. k is determined by the
degree of spatial confinement of the field in the nonlin
material; it is a very weak function of everything else.k is
scale invariant because of the factor (c/v res)

d, and is inde-
pendent of the materialn2 because of the factorn2(r )umax

@the maximum value ofn2(r ) anywhere#. Because the
change in the field pattern of the mode due to the nonlin
effects ~or due to small deviations from the operating fr
quency! is negligible,k will also be independent of the pea
amplitude. Moreover, since the spatial extent of the mo
changes negligibly with a change in theQ of the cavity,k is
independent ofQ. We found this to be true within 1% fo
cavities withQ5557, 2190, and 10 330~corresponding, re-
spectively, to 3, 4, and 5 unperturbed rods comprising
walls.! Indeed we findk50.19560.006 across all the simu
lations in this work, regardless of input power,Q, and oper-
ating frequency.~For comparison, if one had a system
which all the energy of the mode were contained uniform
inside a volume (l0/2nH)3, k would be'0.34.! Thus,k is
an independent design parameter. The larger thek, the more
efficient the system is. Moreover,k facilitates system design
since a single simulation is enough to determine it. One
then add rods to get the desiredQ, and change the operatin
frequencyv0 until one gets the desired properties.

Let us now construct an analytical model to predict t
nonlinear response of a cavity in terms of only three fun
mental quantities: the resonance frequencyv res, the quality
factorQ, and the nonlinear feedback parameterk. From Eqs.
~1! and ~2!, we getdv52(1/2)(v res/c)dkQcPout

S n2(r )umax;
to see this note that the integral in the denominator of th
equations is proportional to the energy stored in the cav
r
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which is in turn proportional toQPout
S . Next, a Lorentzian

resonant transmission givesPout
S /Pin

S5g2/@g21(v02dv
2v res)

2#. This expression can be simplified by defining tw
useful quantities:d5(v res2v0)/g, the relative detuning of
the carrier frequency from the resonance frequency, andP0

[1/ @kQ2(v res/c)d21n2(r )umax# , a ‘‘characteristic power’’
of the cavity. With these definitions the relation betweenPout

S

andPin
S becomes

Pout
S

Pin
S 5

1

11~Pout
S /P02d!2 . ~3!

Thus, Pout
S (Pin

S) is now reduced to depend on only two p
rameters,P0 andd, each one of them having separate effec
a change inP0 is equivalent to a rescaling of both axes b
the same factor, while the shape of the curve can only
modified by changingd. In general, cubic equation~3! can
have either one or three real solutions forPout

S , depending on
the value of the detuning parameterd. The bistable regime
corresponds to three real solutions and requires a detu
parameterd.). As mentioned earlier, the detuning in ou
simulations isv res2v053.8g, which means thatd53.8,
which is well within the predicted bistability regime. Equa
tion ~3! is plotted in Fig. 3 as a green line for the case
Q5557 andk50.195. It is in excellent agreement with th
results from the computational experiments, predicting b
the upper and lower hysteresis branches exactly. Note
the middle branch~dashed green line! is unstable in that tiny
perturbations cause the solution to decay to either the up
or lower branch@10#.
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From Eq.~3! one can also calculate some typical pow
levels for the device. For example, the input power nee
for 100% transmission can be seen to beP100%5dP0 ~cor-
responding toPin

S53.8P0 in Fig. 3.! The minimum power
needed for bistability is attained whend5) in which case
we obtainPb min5)P05)/ @kQ2(vres/c)d21n2(r )umax# .

Since the profiles of our modes are so similar to the cr
sections of the 3D modes described in Ref.@7#, we can use
our 2D simulations to estimate the power needed to opera
true 3D device. According to what is shown in Ref.@7#, we
are safe to assume that in a 3D device, the profile of
mode at different positions in the third dimension will b
roughly the same as the profile of the mode in the transv
direction of the 2D system. Thus, taking the Kerr coefficie
to be n251.5310217 m2/W, ~a value achievable in man
nearly instantaneous nonlinear materials!, and a carrier
wavelengthl051.55mm, gives a characteristic power o
P0577 mW, and a minimum power to observe bistability
Pb,min5133 mW.

This level of power is many orders of magnitude low
than that required by other small all-optical ultrafa
switches. There are two reasons for this. First, the transv
area of the modes in the photonic crystal in question is o
'(l/5)2; consequently, to achieve the same-size nonlin
effects ~which depend on intensity!, we need much less
power than in other systems that have larger transv
modal area. Second, since we are dealing with a highly c
fined, high-Q cavity, the field inside the cavity is much large
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than the field outside the cavity; this happens because
energy accumulation in the cavity. In fact, from the expre
sion for the characteristic powerP0 , one can see that th
operating power falls as 1/Q2. Building a high-Q cavity that
is also highly confined is very difficult in systems other th
photonic crystals, so we expect high-Q cavities in photonic
crystals to be nearly optimal systems with respect to
power required for optical bistability. For example, aQ
54000 would be quite useful for telecommunications, a
leads to the operational power of roughly 2.6 mW. Moreov
the peak dn/n needed to operate the device would
,0.001, which is definitely possible with conventional i
stantaneous Kerr materials. Consequently, the material
sponse and recovery time could easily be smaller than 1
Potential applications for such a device include: optical lo
cal gates, switches, optical regeneration, all-optical mem
and amplification@10#.
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