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Clustering of diffusing organisms

B. Houchmandzadeh*
CNRS, Laboratoire Spectrometrie Physique, BP87, 38402 St-Martin d’He`res, Cedex, France

~Received 14 June 2002; published 13 November 2002!

Recently, a ‘‘Brownian bugs’’ model has been proposed as a possible explanation for the clustering of
organisms such as planktons@W.R. Young, A.J. Roberts, and G. Stuhne, Nature~London! 412, 328~2001!#. In
this model, diffusing organisms die and give birth with equal probabilities and are independent of each other.
The clustering phenomenon is due to the discreteness of birth and death events and cannot be explained in the
framework of the continuous model of population dynamics. We show by exact calculation that at dimensions
smaller than or equal to 2, this simple mechanism is enough to provoke aggregations of the organisms. At
dimensions higher than 2, the clustering phenomenon disappears, but reproductive fluctuations can still be
large compared to diffusive ones.
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I. INTRODUCTION

Many processes in nature such as kinetic reactions or
fate of living organisms are inherently discrete. Very ofte
these systems are described in terms of the evolution of
averageof the quantity of interest by means of continuu
differential equations. In a kinetic reaction for example, t
time evolution of different agentsconcentrationsis com-
puted. For living organisms, the discrete population sizeN is
often replaced by a continuous quantityX, assuming that the
relative variation of the population sizeDN/N in a short time
interval is sufficiently small for the process to be conside
as continuous. The fundamental assumption behind s
modeling is that fluctuations are small compared to avera
~typically of the order of the square root of averages! and can
be neglected. There are cases however, where this ass
tion is violated and fluctuations can become arbitrary lar
In these cases, the continuous description of the stoch
phenomenon fails completely, and numerical simulations
the discrete processes display behaviors strikingly differ
from the continuous approximation.

An example, which will be the subject of this paper, h
been proposed by Younget al. @1# as a possible mechanism
for clustering of organisms such as planktons. Clustering
organisms can be due to many causes such as social an~or!
nonlinear interactions between one or more species w
spontaneously break the translational symmetry and give
to patterns. By numerical simulations, these authors sh
however that a population of independent diffusing ‘‘Brow
ian bugs’’ without any interaction, and submitted only to ra
dom division and death~of equal rate! can generate ex
tremely heterogenous patterns of concentration and orga
into clusters. The continuous equation, governing the ev
tion of such a population reads

] tc5~a2m!c1D¹2c, ~1!

wherec is the local concentration of the organism,a andm
are the birth and death rates, respectively, andD is the dif-
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fusion coefficient. Whena5m, there is no net creation o
destruction of organisms, and the solution tends towar
homogeneous concentration. One may expect that when
crete individuals are simulated, even if random birth a
death induce some~large! fluctuations, the local tempora
cluster should disappear and be smoothed by diffusion. T
is not the case: Fig. 1 shows a numerical simulation of
evolution of the 1d concentration profile of individual diffus-
ing organisms, subject to random and equal birth and de
events. The concentration does not tend toward a unifo
one, but becomes extremely rough and its local fluctuat
diverges as a function of time.

Ecologists generally think of population distribution a
‘‘niche oriented,’’ i.e., organisms tend to aggregate in are
where they are best adapted to the local ecosystem. Hub
has recently proposed a neutral theory@2# where all species
have equal fitness. Numerical simulations@3# show that this
model displays a striking similarity with the pattern of sp

FIG. 1. Numerical simulation of 105 individual organisms, over
a circular space ofL520. At t50, particles are spread uniformly in
space.a50.1, diffusion step50.01. Concentrations are compute
by counting the number of particles in a cell of sizel 50.1 at
positionx. At each time step, individuals die or give birth accordin
to a. Each remaining particle then moves by choosing randomly
direction and amplitude. Particle positions are continuous.
©2002 The American Physical Society02-1
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cies distributions. The model we study below belongs to t
class of models and we are able to derive exact analy
results for the aggregation phenomena.

In the following, we analyze, by exact computation of t
master equation, the role of competition between smooth
by diffusion and clustering by random discrete birth~death!.
We will first recall the problem of a population at zero d
mension (d50) which contains the essential ingredients
fluctuation divergence. We will then introduce the diffusio
for a spatially extended system. We will show that ford
<2, concentration fluctuations always diverge as a funct
of time. For higher dimensions, fluctuations remain fini
There is no phase transition from a diverging phase to a fi
one at any dimension. Because for many organisms, life
two dimensions, this mechanism may play an important r
in aggregation and clustering phenomena.

II. MASTER EQUATION AT dÄ0

In this section, we will recall the main results of popul
tion size evolution atd50 @4#, which will be important when
we introduce diffusion. Suppose that we begin at timet50
with a population ofn0 individuals which can die or give
birth to a new organism. In what follows, we will alway
supposea5m, i.e., equal probabilities for birth and dea
events. If the size of the population at timet is n, the prob-
ability for the population to lose or gain one individual du
ing an infinitesimal timedt is W(n→n11)5W(n→n21)
5andt. Figure 2~a! shows 50 realizations of this stochas
process. As can be observed, the majority of the realizat
disappear as time flows, but very few are able to escape
reach very high values. The ensemble average, howeve
mains constant, i.e., some of the few escapees can r
large values and compensate for the disappearance o
majority. Enrichment of the staten50 and conservation o
the ensemble average imply that the variance grows a

FIG. 2. Numerical simulation of a stochastic birth-death p
cess, for equal birth and death rates; initial population 5.~a! Popu-
lation size versus time for 50 different realizations;~b! average~left
scale, dotted curve! and variance~right scale, black curve! as a
function of time computed for 50 000 realizations.
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function of time. The probabilityP(n,t) of having n indi-
viduals at timet obeys

] tP~n!5~n21!P~n21!1~n11!P~n11!22nP~n!,
~2!

where time is written in 1/a ~generation! units and the initial
condition is P(n,0)5dn,n0

. The characteristic function

f(s,t)5(nP(n,t)exp(ins), is given by

f~s,t !5F ~ t21!eis2t

teis2~ t11!
G n0

. ~3!

Various moments are computed by the successive der
tion of f,

^n~ t !&5 i ]sfus505n0 , ~4!

^n2~ t !&52]s
2fus505n0

212n0t, ~5!

s2~ t !52n0t. ~6!

The variance of the population diverges linearly in time b
the average is kept constant.P(0,t), the fraction of realiza-
tions which have disappeared at timet, reads

P~0,t !5~ t/~11t !!n0, ~7!

and tends toward 1 as 12n0 /t. Large statesn have nonzero
amplitude. Forn051,

P~n,t !5tn21/~11t !n11.

The above results for the moments can also be obta
by multiplying the master equation byn or n2 and summing
over n’s @5#:

d^n&/dt50, ~8!

d^n2&/dt52^n&, ~9!

which are identical to Eqs.~4! and ~5!.

III. SPATIALLY EXTENDED SYSTEM

At zero dimensions, fluctuations due to random and eq
birth and death rates diverge linearly in time. If we dispo
an array ofN noncommunicating petri dishes withn0 organ-
isms in each of them att50, after large enough time, w
would observe that many of them are empty and few con
large quantities of the organism, hence the clustering p
nomenon. Allowing the petri dishes to communicate w
somehow diminish this clustering. We will investigate in th
section the effect of diffusion by considering ad-dimensional
lattice of cell size,. We suppose homogeneous initial co
ditions, i.e.,n0 particles per lattice site.

We call P(n;t)5P( . . . ,ni , . . . ;t) the probability to
haveni particles at lattice sitei at time t. The master equa
tion reads

-

2-2
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]P~n!

]t
5b(

i , j
$~ni11!P~ni11,nj21,n̂!2ni P~n!%

1a(
i

$~ni21!P~ni21,n̂!1~ni11!P~ni11,n̂!

22ni P~ni ,n̂!%, ~10!

where b is the hopping rate to a neighbor site,a is, as
before, the death~birth! rate, andn̂ designates all explicitly
unwritten variables. The indexj in the above equation des
ignates neighbors of celli. The first term in the right hand o
Eq. ~10! is the diffusion term, the second term is the sou
term, i.e., the local creation or annihilation of particles.

A. One dimensional systems

Let us first investigate the 1d case for ease of notation. B
multiplying Eq. ~10! by ni and summing overn, we obtain
the evolution equation for the average values

d^ni&/dt5b~^ni 21&22^ni&1^ni 11&!, ~11!

which is the usual diffusion equation. The source term, a
Eq. ~8!, makes no contribution. Initial conditions impose t
trivial solution ^ni(t)&5n0.

For the correlationŝnini 1k&, by multiplying Eq.~10! by
nini 1k and summing overn, we obtain

du0 /dt52b~u2122u01u1!1an0 , ~12!

dui /dt52b~ui 2122ui1ui 11!, ~13!

where u05^nk
2&2n0

22n0 and ui5^nknk1 i&2n0
2 ~note that

u2 i5ui). Because of the translational symmetry,^nknk1 i&
depends only on the relative distance between two sitei.
The solution of linear equations~12! and ~13! reads

un~ t !52n0e24btI n~4bt !1~an0/4b!Ln~4bt !, ~14!

whereI n(z) is the modified Bessel function of ordern and

Ln~t!5E
0

t

e2zI n~z!dz. ~15!

The first term in Eq.~14! is the relaxation of initial con-
ditions, and the second term is the forcing term due to b
~death! source. As for large z, e2zI n(z)51/A2pz
1O(z23/2), all correlationsun(t) diverge, for larget, as
an0At/4b. Thus, for a one dimensional system, we retrie
basically the same phenomenon as atd50: fluctuations be-
come arbitrarily large while the averages remain const
hence the clustering of organisms for a particular realiza
of the discrete system.

At d51, the solutions can be written explicitly,

L0~z!5ze2z@ I 0~z!1I 1~z!#, ~16!

and by using the derivative formula for Bessel functions,
n>1,
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Ln~z!5L0~z!2n@12e2zI 0~z!#12e2z(
k51

n21

~n2k!I k~z!

~17!

5ze2z~ I n21~z!1I n~z!!22e2z(
k5n

`

I k~z!. ~18!

For z@4n2, Ln(z)5L0(z)2n1O(z21/2) and thus correla-
tions decreaselinearly in n. For smallz, Ln(z);(z/2)n/n!.

B. Higher dimensions

The above equations ford51 generalize without diffi-
culty to higher dimensions. At any dimension, the avera
^ni& obey a simple diffusion equation, and because of hom
geneous initial conditions ofn0 particles per cell, they re-
main constant:̂ni(t)&5n0. For the general case ofd dimen-
sions, the correlations read

uk, . . . ,n52n0e2d4btI k~4bt ! . . . I n~4bt !

1~an0/4b!Lk, . . . ,n~4bt !,

where

Lk, . . . ,n~t!5E
0

t

e2dzI k~z! . . . I n~z!dz,

and u0, . . . ,05^ni , . . . ,jni , . . . ,j&2n0
22n0 and uk, . . . ,n

5^ni 1k, . . . ,j 1nni , j&2n0
2.

For largez, the integrand;z2d/2. For d52, correlations
diverge as (an0/4b)ln(4bt): at two dimensions, diffusion is
more efficient than at one but still not enough to inhib
fluctuation divergence.

For d.2, Lk(t) remains finite whent→`. For larget,
fluctuations are given by

^n2&2n0
25~11Ca/4b!n0 , ~19!

whereC is a numerical constant. The second term in the ri
hand side of Eq.~19! is the reproductive fluctuations due t
the source term. This last result is what is obtained from
mean field approximation of the master equation.

Even though atd>3, fluctuations do not diverge in time
they can become arbitrarily large~compared to diffusion
without the source term! if a@b. As b5D/,2 (D: diffusion
coefficient!, one can always consider large enough cells
order for the reproductive fluctuations to be noticeably lar
than the diffusive ones. No clustering could however happ
at d.2, regardless of the lattice size: clustering can o
happen if fluctuations are of the order of averages, i.e.
^n2&2n0

2.n0
2. This means that the added fluctuations due

birth ~death! events,a/4b, have to be of the order of the
average number of particles per site,n0. The first term grows
as ,2, and the second one as,d, so the condition is neve
satisfied as,→` for d.2.
2-3
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IV. CONCLUSION

The problem of clustering by birth~death! and diffusion
processes was first investigated by Zhanget al. @5# and was
further developed by Meyeret al. @6#. The first authors
solved the problem atd50 for equal birth and death rate
To solve the diffusive process, however, they introduc
a global constraint which keeps constant the size of
population: each time an individual duplicates, another o
chosen at random in the whole population, dies. They t
estimated the size of clusters and the diffusion of the ce
of the gravity of the whole population. The second auth
also considered the case where less than one individual
when one duplicates. The global constraint, however,
moves all divergences from the correlation functions a
their results are thus qualitatively different from ours. In ge
eral, we find it more attractive to consider the environmen
affecting individuals’ birth~death! rates, which in turn regu-
lates the population size and not vice versa.

The problem we have investigated belongs to the clas
nonequilibrium models where detailed balance is violated
closely related problem, the branching and annihilating r
dom walk~BARW! has received wide attention@7,8#. There,
the reactionA1A→B and A→mA is considered and it is
shown that there is a phase transition from an inactive ph
~concentrations decaying as a function of time! to an active
one ~nonzero concentrations! at some critical dimension
which depends onm.

The problem we have investigated could be relevant
living organisms. Due to limited resources, the condition
equal birth and death rates is satisfied for most organi
d
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evolving in their natural environment. However, local grow
of an organism will deplete the local resources and he
inhibit cluster formations, and this situation is best studied
the framework of BARW processes, where the number
particles per site is not restricted to 0 or 1@9#. If the local
limiting resource can be considered as independent of
density of the organism, our treatment of clustering is va
This is the case, for example, if the limiting resource is t
available light, or if it is a small molecule diffusing muc
faster than the organism~such as Fe for phytoplankton!. Us-
ing RG techniques, Schnerbet al. @10# have analyzed the
problem of diffusing resources~catalyst! and have shown the
existence of an active phase in some conditions.

To summarize, we have considered here the evolution
population of Brownian particles, submitted to random a
equally probable birth and death events:A→B and A
→2A. We have shown that, even though the average c
centration remains constant, fluctuations can become la
At d<2, fluctuations diverge as a function of time, th
giving rise, for a particular realization, to the clustering ph
nomenon. Atd.2, fluctuations remain finite, but concentr
tion fluctuations can become arbitrarily large compared
ones due to diffusion, without inducing the formation
clusters.
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