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Clustering of diffusing organisms
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Recently, a “Brownian bugs” model has been proposed as a possible explanation for the clustering of
organisms such as planktop\d/.R. Young, A.J. Roberts, and G. Stuhne, Natirendon 412, 328(2001)]. In
this model, diffusing organisms die and give birth with equal probabilities and are independent of each other.
The clustering phenomenon is due to the discreteness of birth and death events and cannot be explained in the
framework of the continuous model of population dynamics. We show by exact calculation that at dimensions
smaller than or equal to 2, this simple mechanism is enough to provoke aggregations of the organisms. At
dimensions higher than 2, the clustering phenomenon disappears, but reproductive fluctuations can still be
large compared to diffusive ones.
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[. INTRODUCTION fusion coefficient. Where= u, there is no net creation or
destruction of organisms, and the solution tends toward a
Many processes in nature such as kinetic reactions or theomogeneous concentration. One may expect that when dis-
fate of living organisms are inherently discrete. Very often,crete individuals are simulated, even if random birth and
these systems are described in terms of the evolution of théeath induce som@arge fluctuations, the local temporal
averageof the quantity of interest by means of continuum cluster should disappear and be smoothed by diffusion. This
differential equations. In a kinetic reaction for example, theis not the case: Fig. 1 shows a numerical simulation of the
time evolution of different agentsoncentrationsis com-  evolution of the @l concentration profile of individual diffus-
puted. For living organisms, the discrete population §ize  ing organisms, subject to random and equal birth and death
often replaced by a continuous quantiyassuming that the events. The concentration does not tend toward a uniform
relative variation of the population siZzeN/N in a short time  one, but becomes extremely rough and its local fluctuation
interval is sufficiently small for the process to be considerediverges as a function of time.
as continuous. The fundamental assumption behind such Ecologists generally think of population distribution as
modeling is that fluctuations are small compared to average®iche oriented,” i.e., organisms tend to aggregate in areas
(typically of the order of the square root of averagmsd can  where they are best adapted to the local ecosystem. Hubbell
be neglected. There are cases however, where this assumyas recently proposed a neutral thef2y where all species
tion is violated and fluctuations can become arbitrary largehave equal fitness. Numerical simulatidid$ show that this
In these cases, the continuous description of the stochastinodel displays a striking similarity with the pattern of spe-
phenomenon fails completely, and numerical simulations of
the discrete processes display behaviors strikingly differenis® - . - . - .
from the continuous approximation. -- 0
An example, which will be the subject of this paper, has
been proposed by Youngt al. [1] as a possible mechanism
for clustering of organisms such as planktons. Clustering of
organisms can be due to many causes such as sociggnd
nonlinear interactions between one or more species whict
spontaneously break the translational symmetry and give ris&
to patterns. By numerical simulations, these authors show
however that a population of independent diffusing “Brown- kil Ik WH, i ok
ian bugs” without any interaction, and submitted only to ran- !
dom division and deatlof equal rat¢ can generate ex-
tremely heterogenous patterns of concentration and organiz
into clusters. The continuous equation, governing the evolu-

tion of such a population reads o . L
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dc=(a—p)c+DV7e, 1) FIG. 1. Numerical simulation of faindividual organisms, over

) ) ) a circular space df =20. Att=0, particles are spread uniformly in
wherec is the local concentration of the organismandw  gpace.w=0.1, diffusion step:0.01. Concentrations are computed
are the birth and death rates, respectively, Bnid the dif-  py counting the number of particles in a cell of size=0.1 at

positionx. At each time step, individuals die or give birth according
to «. Each remaining particle then moves by choosing randomly its
*Email address: bahram@spectro.ujf-grenoble.fr direction and amplitude. Particle positions are continuous.
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200 @ function of time. The probability?(n,t) of having n indi-

viduals at timet obeys
- P(n)=(n—=1)P(n—=1)+(n+1)P(n+1)—2nP(n),
S 100 n (2)

S0 where time is written in X (generationunits and the initial
- i condition is P(n,0)= 5n,n0. The characteristic function,

@(s,t)=2,P(n,t)expins), is given by

10 r r r T T T T 500
8§ /400 (t—l)eis—t no
s of B Haog p(st)=| —— ()
e Jomo® te'*—(t+1)
20 — 100
o= | , | , | , | 1 Various moments are computed by the successive deriva-
0 10 t(zgeneration time u3r(|)it) “ % t|0n Of ¢’
FIG. 2. Numerical simulation of a stochastic birth-death pro- (n(t))=ids¢|s=0=no, 4
cess, for equal birth and death rates; initial populatiotebPopu-
lation size versus time for 50 different realizatiofls); averaggleft (nz(t)> =— a§¢|s=0= ng+ 2net, (5)
scale, dotted curyeand variance(right scale, black curyeas a
function of time computed for 50 000 realizations. 0'2(t)=2n0t. (6)

cies distributions. The model we study below belongs to thisThe variance of the population diverges linearly in time but
class of models and we are able to derive exact analyticdhe average is kept constaf(0.t), the fraction of realiza-

results for the aggregation phenomena. tions which have disappeared at timeeads
In the following, we analyze, by exact computation of the .
master equation, the role of competition between smoothing P(O)=(t/(1+1))", ™

by diffusion and clustering by random discrete biteath.
We will first recall the problem of a population at zero di- @hd tends toward 1 as-iny/t. Large states have nonzero
mension @=0) which contains the essential ingredients of@mplitude. Fomy=1,

fluctuation divergence. We will then introduce the diffusion
for a spatially extended system. We will show that fibr

<2, concentration fluctuations always diverge as a function The ab its for th N Iso be obtained
of time. For higher dimensions, fluctuations remain finite. € above results for (ne moments can also be obtaine

. . . 2 .
There is no phase transition from a diverging phase to a ﬁnitQy multiplying the master equation byor n” and summing

one at any dimension. Because for many organisms, life is &tV&" 'S [S]
two dimensions, this mechanism may play an important role
in aggregation and clustering phenomena.

P(n,t)=t""Y/(1+t)""1,

d(ny/dt=0, ®

d(n?)/dt=2(n), (9

Il. MASTER EQUATION AT d=0 ) ) )
which are identical to Eqg4) and (5).

In this section, we will recall the main results of popula-
tion size evolution atl= 0 [4], which will be important when
we introduce diffusion. Suppose that we begin at tirnsed
with a population ofng individuals which can die or give At zero dimensions, fluctuations due to random and equal
birth to a new organism. In what follows, we will always birth and death rates diverge linearly in time. If we dispose
supposea= u, i.e., equal probabilities for birth and death an array ofN noncommunicating petri dishes witty organ-
events. If the size of the population at tihé n, the prob-  isms in each of them at=0, after large enough time, we
ability for the population to lose or gain one individual dur- would observe that many of them are empty and few contain
ing an infinitesimal timedt is W(n—n+1)=W(n—n—1) large quantities of the organism, hence the clustering phe-
= andt. Figure Za) shows 50 realizations of this stochastic nomenon. Allowing the petri dishes to communicate will
process. As can be observed, the majority of the realizationsomehow diminish this clustering. We will investigate in this
disappear as time flows, but very few are able to escape arsgction the effect of diffusion by consideringlaimensional
reach very high values. The ensemble average, however, rittice of cell sizef. We suppose homogeneous initial con-
mains constant, i.e., some of the few escapees can readitions, i.e.,nq particles per lattice site.
large values and compensate for the disappearance of the We call P(n;t)=P(...,n;, ...;t) the probability to
majority. Enrichment of the state=0 and conservation of haven; particles at lattice sité at timet. The master equa-
the ensemble average imply that the variance grows as ton reads

IIl. SPATIALLY EXTENDED SYSTEM

052902-2



BRIEF REPORTS PHYSICAL REVIEW B6, 052902 (2002

dP(n) n-1

T:’BZ,; {(ni+1)P(n;+1n;—10)—n;P(n)} L(@)=Lo(@)—n[1-e @] +2e7 23 (=Kl
(17)
+a, {(ni—1)P(nj—1,0)+(nj+1)P(n;+1n)
—onP(n; A} 10 =ze7p 12 +1n(2)-2e77 2 1(2). (19

where B is the hopping rate to a neighbor site, is, as

before, the deatkbirth) rate, andn designates all explicitly
unwritten variables. The indejxin the above equation des-
ignates neighbors of ceill The first term in the right hand of

For z=4n?, L (2)=L(2)—n+0O(z ¥ and thus correla-
tions decreasénearly in n. For smallz, L,(z)~(z/2)"/n!.

Eq. (10) is the diffusion term, the second term is the source B. Higher dimensions
term, i.e., the local creation or annihilation of particles. The above equations fat=1 generalize without diffi-
culty to higher dimensions. At any dimension, the averages
A. One dimensional systems (n;) obey a simple diffusion equation, and because of homo-

geneous initial conditions of, particles per cell, they re-
main constant{n;(t))=n,. For the general case dfdimen-
sions, the correlations read

Let us first investigate thedlcase for ease of notation. By
multiplying Eq. (10) by n; and summing oven, we obtain
the evolution equation for the average values

= a-d4pt
d(n)/dt=B((n_)—2(n)+(n.1), (1D U ..n="Mo® TLA4BY) - 1n(450)
+(ang/4B)L 4Bt),
which is the usual diffusion equation. The source term, as in (ano/4B)L,....n(4BY)
Eq. (8), makes no contribution. Initial conditions impose the

trivial solution {(n;(t))=n,. where

For the correlationgn;n; ), by multiplying Eq.(10) by
nin;. and summing oven, we obtain L (7= fo e 91 (2) . 1.(2)dz,

dUO/dtZZﬁ(U,1_2U0+Ul)+Cl’no, (12)
_ 2
du; /dt=28(U; _1—2U;+U, 1), 13 and U .. g=(ni.., jni ..... p)—Ng—no and U
_<n|+k ..... J+nnlj> n0

where ug=(n?)—n3—ny and u;=(nn,,;)—n3 (note that For largez, the integrand~z~%2. Ford=2, correlations

u_;=u;). Because of the translational symmet{g,n,. ;) diverge as &ng/4B)In(44t): at two dimensions, diffusion is
depends only on the relative distance between two sites, more efficient than at one but still not enough to inhibit
The solution of linear equationd2) and (13) reads fluctuation divergence.

. Ford>2, L, (7) remains finite whernr—o. For larget,
Un(t)=—noe™ *#1,(4B8t) + (ane/4B)L(4Bt), (14)  fluctuations are given by

wherel ,(z) is the modified Bessel function of ordarand (n?)—n2=(1+Cal4g)n,, (19

La(m)= fo e *In(2)dz (15 \whereC is a numerical constant. The second term in the right
hand side of Eq(19) is the reproductive fluctuations due to
The first term in Eq(14) is the relaxation of initial con- the source term. ThIS |aSt result iS What iS Obtained from the
ditions, and the second term is the forcing term due to birtinean field approximation of the master equation.
(death source. As for large z, e 2 .,(2)=1/27z Even though ati=3, fluctuations do not diverge in time,
+0(z%?), all correlationsu,(t) diverge, for larget, as they can become arbitrarily larggompared to diffusion
without the source teriif o> 8. As B=D/¢? (D: diffusion
ang\t/4B. Thus, for a one dimensional system, we retrieve/ .
basically the same phenomenon asiat0: fluctuations be- coefficienj, one can always consider large enough cells in

come arbitrarily large while the averages remain constantorder for the reproductive fluctuations to be noticeably larger
hence the clustering of organisms for a particular realizationan the diffusive ones. No clustering could however happen

of the discrete system. at d>2, regardless of the lattice size: clustering can only

At d=1, the solutions can be written explicitly. happen if fluctuations are of the order of averages, i.e., if

' ' (n?)—n2>n3. This means that the added fluctuations due to
Lo(2)=ze lo(2)+14(2)], (16) birth (death events,a/48, have to be of the order of the

average number of particles per sitg, The first term grows
and by using the derivative formula for Bessel functions, foras ¢2, and the second one #$, so the condition is never
n=1, satisfied ad — o for d>2.
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V. CONCLUSION evolving in their natural environment. However, local growth
of an organism will deplete the local resources and hence
inhibit cluster formations, and this situation is best studied in
the framework of BARW processes, where the number of
particles per site is not restricted to 0 ofd]. If the local
imiting resource can be considered as independent of the

a global constraint which keeps constant the size of th ensity of the organism, our treatment of clustering is valid.

o . Lo . his is the case, for example, if the limiting resource is the
population: each t'me an individual dupl_lcates_, another ON€,vailable light, or if it is a small molecule diffusing much
chqsen at randpm in the whole populat_lon, _dles. They the?aster than the organisiisuch as Fe for phytoplanktpriJs-
estimated the size of clusters and the diffusion of the cent%g RG techniques, Schnendt al. [10] have analyzed the
of the gravity of the whole population. The seqon.d.author_s roblem of diﬁusing’ resource(satélys} and have shown the
also considered the case where less than one individual di Sistence of an active phase in some conditions
when one duplicates. The global constraint, however, re- To summarize, we have considered here the evolution of a

moves all divergences from the correlation functions an opulation of Brownian particles, submitted to random and
their resu.lts are thus quahpatwely d|ﬁgrent from ours. In gen-equally probable birth and death even&— and A
eral, we find it more attractive to consider the environment aS 5 A “We have shown that even thouah the average con-
affecting individuals’ birth(death rates, which in turn regu- i . ' f oug b 9 |
lates the population size and not vice versa. centration remains constant, fluctuations can become large.

- . : . ;
The problem we have investigated belongs to the class o'%t d=<2, fluctuations diverge as a function of time, thus

nonequilibrium models where detailed balance is violated. AViIng r1se, for a particular realization, to the clustering phe-

closely related problem, the branching and annihilating ranfiomenon. Atl>2, fluctuations remain finite, but concentra-

dom walk(BARW) has received wide attentidi,8]. There, tion fluctuatlon§ can becc_)me a(bltrar!ly large compgred to
. . . .. ones due to diffusion, without inducing the formation of

the reactionA+A— ¢ and A—mA is considered and it is clusters
shown that there is a phase transition from an inactive phasé '
(concentrations decaying as a function of tjm@ an active
one (nonzero concentratiopsat some critical dimension ACKNOWLEDGMENTS
which depends om.
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living organisms. Due to limited resources, the condition ofhalcescu for fruitful discussions and a critical reading of the
equal birth and death rates is satisfied for most organismsanuscript.

The problem of clustering by birtkdeath and diffusion
processes was first investigated by Zhat@l. [5] and was
further developed by Meyeet al. [6]. The first authors
solved the problem ad=0 for equal birth and death rates.
To solve the diffusive process, however, they introduce
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